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A Machine Learning Approach to Modeling Streamflow 
with Sparse Data in Ungaged Watersheds on the Wyoming 
Range, Wyoming, 2012–17

By Ryan R. McShane and Cheryl A. Eddy-Miller

Abstract
Scant availability of streamflow data can impede the util-

ity of streamflow as a variable in ecological models of aquatic 
and terrestrial species, especially when studying small streams 
in watersheds that lack streamgages. Streamflow data at fine 
resolution and broad extent were needed by collaborators 
for ecological research on small streams in several ungaged 
watersheds of southwestern Wyoming, where streamflow data 
are sparse.

To improve the utility of sparse streamflow data to 
ecological research in ungaged watersheds, we developed a 
machine learning approach in R for modeling spatially and 
temporally continuous monthly streamflow from 2012 through 
2017 in three semiarid montane-steppe watersheds (with 
drainage areas of 26–55 square miles and mean elevations of 
8,031–8,455 feet) on the Wyoming Range in the upper Green 
River Basin. A machine learning streamflow (MLFLOW) 
model was calibrated and validated with 971 discrete stream-
flow observations and 24 static and dynamic predictor vari-
ables derived from geospatial and time series data on climatic, 
physiographic, and anthropogenic characteristics affecting 
streamflow. The predictor variables were temporally and spa-
tially conditioned to amplify the relation of predictor variables 
to monthly streamflow.

The MLFLOW model had satisfactory agreement 
between observed and predicted streamflow (coefficient 
of determination [R2]=0.80, Nash-Sutcliffe efficiency 
[NSE]=0.79, NSE with log-transformed data [logNSE]=0.82, 
and percent bias [PBIAS]=0.7 percent). NSE and logNSE 
indicated the MLFLOW model performed equally well for 
high and low flows, and PBIAS indicated the MLFLOW 
model did not overpredict or underpredict monthly streamflow. 
Streamflow predictions seemed to well represent the annual 
hydrograph within the study area during the study period.

The most important variables (statistically important 
in the MLFLOW model) for explaining monthly stream-
flow were temporally and spatially conditioned dynamic 
climatic variables, mostly precipitation and snow water 
equivalent. Importance of the static and dynamic variables 
did not differ substantially among the three watersheds but 

differed considerably among the 6 years. Monthly streamflow 
increased with increasing precipitation, snow water equivalent, 
and drainage area but decreased with increasing forest cover, 
elevation, evapotranspiration, and temperature.

The MLFLOW model was most sensitive to selection of 
dynamic climatic variables. Unconditioned dynamic climatic 
variables alone explained 54 percent of the variance (R2=0.54) 
in monthly streamflow, whereas adding static physiographic 
and anthropogenic variables only explained 12 percent more 
of the variance (R2=0.66). Also, spatial conditioning of all 
variables together with temporal conditioning of dynamic vari-
ables increased the variance explained in the MLFLOW model 
by another 14 percent (R2=0.80). The MLFLOW model also 
had greater sensitivity to temporal than to spatial differences 
in the data. For the MLFLOW model trained with observa-
tions from all watersheds and years or for models trained with 
observations from all except one watershed or 1 year left out 
sequentially, performance was better in testing on observations 
from each watershed than from each year separately. Also, 
performance was better for models fitted to fewer sites than to 
fewer months of observations.

The greatest utility of the modeling approach is the ease 
of use and the speed of processing input data, running the 
model, and interpreting the model output, whereas the greatest 
limitation is the need for spatially and temporally representa-
tive streamflow observations to drive the model. Although 
familiarity with R is necessary, only a working knowledge 
of hydrology (for selecting appropriate predictor variables 
and evaluating the quality of streamflow observations) and 
a rudimentary understanding of machine learning models 
are needed. Therefore, this modeling approach is practicable 
for other scientists who work with water but who are not 
hydrologists.

Introduction
Streamflow is a necessary ecological resource for many 

animal and plant species. However, scant availability of 
streamflow data can impede the utility of streamflow as a 
variable in ecological models of aquatic and terrestrial species, 
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especially when studying small streams (low stream order 
or low flow, or both) in watersheds that lack streamgages. 
Much ecological research on small streams is concentrated 
on species-habitat relations throughout the channel network 
of a watershed, but streamflow data, needed at fine resolu-
tion and broad extent for this research, are typically sparse. 
For instance, collaborators with the Wyoming Cooperative 
Fish and Wildlife Research Unit (University of Wyoming 
and U.S. Geological Survey [USGS]) needed more detailed 
streamflow information for researching the effects of multiple 
stressors (including low flows) on fish and invertebrates in 
several ungaged watersheds in the upper Green River Basin 
(not shown) in southwestern Wyoming (fig. 1), where stream-
flow data are sparse (Girard and Walters, 2018; Walters and 
others, 2019; Walker and others, 2020).

Several approaches to modeling streamflow at various 
scales have been developed that may improve the utility of 
sparse streamflow data to ecological research in small streams. 
One approach is a water-balance model that estimates various 
elements of the hydrologic cycle (including runoff genera-
tion), such as the USGS Thornthwaite water-balance model 
(McCabe and Markstrom, 2007). Another approach is a physi-
cally based hydrologic (rainfall-runoff) model that simulates 
water and energy fluxes between the atmosphere and the land 
surface, such as the USGS Precipitation-Runoff Modeling 
System (Leavesley and others, 1983; Markstrom and others, 
2015). However, these two approaches require streamflow 
data of adequate quality and in sufficient quantity, typically 
from USGS streamgages, that may not be available for the 
area or period of interest, and the approaches require expertise 
in hydrologic modeling that may be impractical for a scientist 
without much knowledge of hydrology or experience using 
complicated applications for modeling streamflow.

A third streamflow modeling approach is a machine 
learning model that can fit potentially complex relations 
between streamflow observations and environmental predic-
tor variables. Machine learning models are increasingly used 
in the water sciences in general (Shen and others, 2018) and 
specifically for modeling streamflow (Bellos and Carbajal, 
2020). However, many applications of machine learning to 
streamflow modeling are reliant on streamflow data from 
streamgages for use in model calibration and validation. 
These data are typically more available for larger, higher-
order streams, and calibration and validation of models on 
low-order streams has been uncommon. For example, Miller 
and others (2018) used a random forest model fitted to USGS 
streamgage data (with few data from low-order streams) to 
predict monthly streamflow for the conterminous United 
States. However, in contrast to this reliance on streamgage 
data, Jaeger and others (2019) used a random forest model 
fitted to thousands of observations of wet or dry stream condi-
tions to predict the annual probability of a channel maintaining 
streamflow throughout the year in the Columbia River Basin 
(not shown).

Of the three approaches to modeling streamflow, machine 
learning models may be most adaptable to the needs of ecolog-
ical researchers working in ungaged watersheds and may have 
fewer initial learning impediments to developing a working 
streamflow model. Moreover, using a more complex water-
balance model or physically based hydrologic model, even if 
the requisite data are available, does not necessarily result in 
better streamflow predictions than using a simpler machine 
learning model. Therefore, we determined that a machine 
learning model was the most appropriate streamflow modeling 
approach for this study.

The primary objective of this study was to develop an 
approach to modeling streamflow with sparse data in ungaged 
watersheds in southwestern Wyoming, predicting spatially 
and temporally continuous monthly streamflow for all the 
study area and study period (fig. 1). A secondary objective was 
to explain the environmental drivers of monthly streamflow 
within the study area during the study period. We accom-
plished these two objectives by developing a machine learning 
streamflow (MLFLOW) model calibrated and validated with 
discrete streamflow observations and static and dynamic pre-
dictor variables derived from geospatial and time series data 
on climatic, physiographic, and anthropogenic characteristics 
affecting streamflow. The resulting model predictions and 
explanation of streamflow are applied at the reach scale (tens 
of meters), of use particularly on small streams.

This study also is a contribution to the Wyoming 
Landscape Conservation Initiative (WLCI), a program with 
the mission “to implement a long-term, science-based program 
of assessing, conserving, and enhancing fish and wildlife habi-
tats while facilitating responsible energy and other develop-
ment through local collaboration and partnerships” (Bowen 
and others, 2014, p. 2). Much of the WLCI area in southwest-
ern Wyoming consists of small streams in watersheds with-
out streamgages, which complicates management of species 
dependent on these streams. Therefore, the modeling approach 
developed in this study can support species management deci-
sions throughout the WLCI area.

Description of Study Area

The channel networks of 3 watersheds and 125 stream-
flow sampling sites on the Wyoming Range in southwestern 
Wyoming (fig. 1) were used for modeling monthly streamflow. 
The three watersheds are identified by the following USGS 
12-digit hydrologic unit codes (HUC12; U.S. Geological 
Survey, 2016): 140401010907 (Lower South Piney 
Creek), 140401011102 (North Fork Dry Piney Creek), and 
140401011103 (Dry Piney Creek). In this report, these three 
HUC12s are referred to as watersheds 1–3, respectively. The 
three watersheds are in the western WLCI area, which covers 
much of southwestern Wyoming (fig. 1).

The three watersheds are in a sparsely populated region 
and have many similar physical properties. Watersheds 1 
and 2 are similar in drainage area (34 and 26 square miles 
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[mi2], respectively) and mean elevation (8,428 and 8,455 feet, 
respectively), whereas watershed 3 is larger (55 mi2) and lower 
(8,031 feet) (U.S. Geological Survey, 2019a). The watersheds 
have a similar semiarid climate characterized by warm sum-
mers with precipitation from occasional thunderstorms and by 
cold winters with snow typically covering the montane-steppe 
landscape from November through March. Watersheds 1 and 
2 have a mean annual temperature of 38.1 degrees Fahrenheit 
and a total annual precipitation of 10.6 inches, whereas 
watershed 3 is cooler (37.2 degrees Fahrenheit) and wetter 
(13.7 inches) (PRISM Climate Group, 2018). Geology of 
the watersheds is mostly sedimentary rocks of Quaternary 
and Tertiary age (Oriel and Platt, 1980). The watersheds are 
on the eastern Overthrust Belt (not shown), and the surficial 
units in the upper elevations and Cretaceous Mountain (not 
shown; to the east of watersheds 1 and 2) are much older, 
dating to the Cambrian. Additionally, the Overthrust Belt has 
many surficial and buried faults that transmit groundwater 
into the watersheds through springs and seeps (Zielinski and 
others, 1985). Land cover in the watersheds is mostly shrub/
scrub (66–72 percent) and forest (20–25 percent), and irri-
gated land use ranges from about 0.5 to 2.5 percent (Multi-
Resolution Land Characteristics Consortium, 2017). Oil and 
gas development began in the region in the early 1900s and 
is ongoing. The energy development footprint increases from 
watershed 1 to 3 (Walters and others, 2019). Total length 
of streams in the three watersheds is 372 miles, and about 
75 percent (277 miles) consisted of first- and second-order 
streams (U.S. Geological Survey, 2019a). Annual hydrographs 
are characterized by snowmelt high flows in late spring and 
early summer (May and June) followed by low flows during 
summer through the following spring; the lowest flows are in 
fall and winter.

The only USGS streamgage close to the study area 
and operating during the study period (2012–17) was on 
Fontenelle Creek near Herschler Ranch, near Fontenelle, 
Wyoming (USGS 09210500; fig. 1), which has a drainage 
area of 152 mi2 and an elevation of 6,950 feet (above the 
National Geodetic Vertical Datum of 1929; U.S. Geological 
Survey, 2021). The watershed monitored by this streamgage 
has a larger drainage area and lower mean elevation than all 
three watersheds of the study area. This difference in drainage 
area and elevation and the distance of this streamgage from 
the study area made the streamgage unfit for calibrating and 
validating a streamflow model.

Purpose and Scope

A machine learning approach was developed in R 
(R Core Team, 2021) for modeling monthly streamflow from 
2012 through 2017 in three watersheds on the Wyoming 
Range. This study was intended to investigate the utility and 
limitations of applying a machine learning approach to model-
ing streamflow with sparse data (for example, streamflow 
measurements made at different times and places instead of a 

time series of streamflow observations made at a streamgage). 
This study was not intended to investigate performance dif-
ferences among various machine learning models used for 
modeling streamflow. Methodology of the modeling approach 
is described, including temporal and spatial conditioning pro-
cesses applied to the input data and calibration and validation 
of the MLFLOW model. Results of the MLFLOW model are 
presented with discussion of the model output, including pre-
dictive performance at the sampling sites (with comparisons 
to other streamflow modeling studies), variable importance 
for explaining monthly streamflow, sensitivity to the predic-
tor variables and streamflow observations used in fitting the 
model, and monthly streamflow predictions on the channel 
networks. The input data, model output, and R scripts for 
the MLFLOW model are available in an accompanying data 
release (McShane and Eddy-Miller, 2021).

Methods for Machine Learning 
Approach to Modeling Streamflow

The MLFLOW model was developed to predict monthly 
streamflow using static and dynamic variables derived from 
geospatial and time series data and to explain the multidi-
mensional relation of monthly streamflow to the predictor 
variables. The following sections describe characteristics of 
the input data (streamflow observations and predictor vari-
ables) and procedures used to process data temporally and 
spatially for use in the MLFLOW model, development of the 
MLFLOW model, evaluation of the model output for predic-
tive performance and variable importance, and assessment 
of model sensitivity to how the data were used in fitting the 
MLFLOW model. All data preparation, streamflow modeling, 
and model analysis were done by using geoprocessing tools 
in ArcGIS (Esri, 2019) and TauDEM (Tarboton, 2016) and by 
using several packages in R (R Core Team, 2021).

Streamflow Observations

No USGS streamgages, with time series of streamflow, 
were available in the study area for use in developing the 
MLFLOW model. One nearby streamgage (less than 20 miles 
from the study area) was operational during the study period 
(2012–17), but the streamgage was on a river with a larger 
drainage area and lower mean elevation than of the three 
watersheds of the study area. Therefore, this study relied on 
available discrete streamflow observations to calibrate and 
validate the MLFLOW model.

Streamflow measurements were made at 125 sites (fig. 1) 
in 35 months during 2012–17, totaling 971 discrete observa-
tions (table 1); only a single measurement was made at any 
site in any month. These observations were not made on a 
consistent spatiotemporal basis but together are representative 
of the annual hydrograph on a monthly timestep, including 
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high flows in late spring and early summer (fig. 2B–E) and 
low flows from late summer through early spring (fig. 2F–H, 
A). Therefore, the observations were assumed to qualitatively 
represent monthly streamflow. Ecologists with the Wyoming 
Cooperative Fish and Wildlife Research Unit (University of 
Wyoming and USGS) made 763 observations at 101 sites in 
30 months during 2012–17 for various research on aquatic 
species distribution and abundance. Most (736) of the obser-
vations were made during May through August of 2012–17, 
and the remainder of the observations were made during 
April of 2012 and 2017 and September of 2013–16. USGS 
hydrologists made 208 observations at 24 sites in 10 months 
during 2015–17 for research on groundwater/surface-water 
relations. Most (184) of the observations were made during 
June, August, and November of 2015 and 2016 and July and 
September of 2017; the remainder of the observations were 
made during April 2016 and February 2017. Streamflow mea-
surements were made following standard USGS techniques 
and methods for streamflow measurement and computation 
using current-velocity meters, portable flumes, or pressure 
transducers (Rantz and others, 1982; Sauer and Turnipseed, 
2010). The monthly streamflow observation data are avail-
able in the accompanying data release (McShane and Eddy-
Miller, 2021).

The number of sites where streamflow measurements 
were made was different among the three watersheds and 
among the 6 years of sampling, whereas the number of months 
when streamflow measurements were made was similar among 
watersheds and among years. On average, sampling involved 
42 sites and 33 months per watershed and 88 sites and 
6 months per year (table 1). No sites were sampled in every 
month, but every site was sampled in at least 2 months, and of 
the 35 months sampled during 2012–17, sites were sampled 
in 8 months on average (McShane and Eddy-Miller, 2021). 
The sites sampled in the greatest number of months were 
sites 25, 27, and 31 (fig. 1), which were sampled in 28, 25, 

and 28 months, respectively. Additionally, the watershed (3) or 
year (2013) with the most streamflow observations had about 
100 more observations than the watershed (1) or year (2014) 
with the fewest streamflow observations (table 2).

Observed flows at the sampling sites ranged from 0 to 
19.67 cubic feet per second (ft3/s) and averaged 2.39 ft3/s 
(table 2), and drainage area of the sampling sites ranged from 
0.64 to 78.1 mi2 and averaged 14.3 mi2 (fig. 2). A robust 
streamflow/drainage-area relation among the sampling sites 
was not readily apparent in every month sampled (fig. 2A–H), 
most likely because sites with different drainage areas were 
sampled in different months, confounding the relation between 
streamflow and drainage area with the relation between stream-
flow and month. Sites with the largest drainage areas (greater 
than 67 mi2) were sampled only in watershed 3 and only dur-
ing summer (June through August, fig. 2D–F). Furthermore, 
sites with smaller drainage areas (less than 41 mi2) were 
sampled in every month (fig. 2A–H) but only in 1 or 2 years 
in February, April, and November (table 1; fig. 2A, B, H). 
Additionally, in some months (for example, May, fig. 2C), the 
streamflow-drainage area relation seemed to be more robust 
by watershed, where streamflow increased with increasing 
drainage area, than by year, when streamflow decreased with 
drainage area in some years but increased in others.

The distribution in values of streamflow observations var-
ied more among the 6 years of sampling than among the three 
watersheds. For example, mean streamflow differed by only 
31 percent among watersheds but by 740 percent among years 
(table 2). In general, streamflow values were low—median 
streamflow ranged from 0.4 to 4.01 ft3/s among watersheds and 
years; furthermore, two watersheds and 3 years had zero-flow 
observations (table 2). In addition, climatically, 2012 and 2013 
were dry years, whereas 2017 was a wet year. These 2 dry 
years and 1 wet year had very low and very high mean stream-
flow, respectively, compared with the other 3 years (2014–16, 
table 2).

Table 1.  Number of sites and months sampled by watershed and year and spatial and temporal distribution among watersheds and 
years of number of streamflow observations by month sampled during 2012–17.

[--, not sampled]

Watershed 
or year

Number 
of sites 

sampled

Number 
of months 
sampled

Number of streamflow observations

February April May June July August September November

Watershed 1 37 32 3 1 16 87 96 69 20 22
Watershed 2 37 33 3 5 9 80 91 73 11 9
Watershed 3 51 34 7 8 11 131 119 69 16 15
2012 80 5 -- 1 5 45 40 79 -- --
2013 95 5 -- -- 5 74 92 28 3 --
2014 71 5 -- -- 7 19 55 11 6 --
2015 95 6 -- -- 8 53 45 35 8 22
2016 95 7 -- 11 7 83 19 31 7 24
2017 94 7 13 2 4 24 55 27 23 --
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Figure 2.  Observed streamflow against drainage area of sampling sites by watershed and year for each month sampled during 
2012–17. A, February; B, April; C, May; D, June; E, July; F, August; G, September; and H, November.

Table 2.  Summary statistics of streamflow observations by watershed and year.

Watershed 
or year

Number of  
streamflow  

observations

Summary statistics of streamflow observations 
(cubic foot per second)

Minimum Median Mean Maximum

Watershed 1 314 0.05 1.81 2.68 19.67
Watershed 2 281 0 1.40 2.53 17.08
Watershed 3 376 0 1.13 2.05 19.54
2012 170 0 0.40 0.62 4.34
2013 202 0 0.46 0.84 9.97
2014 98 0.05 2.32 2.97 11.49
2015 171 0.13 2.01 2.89 11.90
2016 182 0.04 1.98 2.72 9.39
2017 148 0 4.01 5.21 19.67
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Predictor Variables

Based on the potential to affect streamflow, 24 vari-
ables describing physiographic, anthropogenic, and climatic 
characteristics were chosen as predictors in the MLFLOW 
model—20 variables described static physiographic and 
anthropogenic conditions, and 4 variables described dynamic 
climatic conditions (table 3). Vector data (surficial geology 
permeability index and number of surficial geology contacts, 
bedrock geology faults, springs, water diversions, roads, and 
water wells, table 3) were converted to raster data. Raster 
data describing topography (drainage area, elevation, slope-
area ratio, and slope, table 3) were derived from the 30-meter 
(m) resolution National Elevation Dataset digital elevation 
model (DEM) in the USGS National Hydrography Dataset 
(U.S. Geological Survey, 2019a). All variables were snapped 
to the 30-m DEM extent. Any variable with lower spatial 
resolution than the 30-m DEM resolution, including base-flow 
index, depth to soil restrictive layer, depth to water table, and 
every climate variable (table 3), was resampled, which was 
necessary for processing the data for use in the MLFLOW 
model. This resampling produced data with higher spatial 
resolution than the original data resolution but with minimal 
change in the distribution of values of the original data. Each 
climate variable was provided as a monthly value—total for 
evapotranspiration and precipitation, mean for temperature, 
and first day of the month for snow water equivalent. Values of 
each predictor variable were produced throughout the channel 
networks of the three watersheds, which consisted of every 
cell of the flow accumulation grid in the medium resolution 
(30 m) National Hydrography Dataset with a value of 100 or 
more, equivalent to a drainage area of 0.09 square kilometer 
or more. Data on the predictor variables are available in the 
accompanying data release (McShane and Eddy-Miller, 2021), 
including raw values of the variables and values of the vari-
ables with temporal and spatial conditioning—the condition-
ing processes are described in the following section.

Processes of Temporal and Spatial Conditioning
Streamflow is affected by antecedent climatic conditions. 

For example, precipitation during an earlier period can have an 
enduring effect on streamflow. Therefore, to generate a diverse 
lagged effect of climatic conditions on streamflow, a temporal 
conditioning process was applied to the climate variables. The 
process consisted of moving averages of the time series data 
that ranged from the prior month to the prior year. Data on 
evapotranspiration, precipitation, snow water equivalent, and 
temperature were temporally conditioned into five variants for 
each climate variable, and every variant was used in fitting the 
MLFLOW model—moving-average (mean) values of the cur-
rent month together with the previous 1, 3, 6, 9, or 12 months 
(codes with suffix “01” through “12,” table 3). Data on the 
four climate variables without conditioning (raw values of the 
data; codes with suffix “00,” table 3) also were used in model 

fitting. Using May 2017 as an example, variants for snow 
water equivalent were generated to describe, for any cell, 
unconditioned (raw) snow water equivalent for the current 
month (fig. 3A); mean snow water equivalent for the current 
and prior month (fig. 3B); and mean snow water equivalent for 
the current and prior 3, 6, 9, and 12 months (fig. 3C–F, respec-
tively). For any cell in the resulting grids, the different condi-
tioned variants (fig. 3B–F) could have a value greater or less 
than the raw value of the current month (fig. 3A), which might 
be more explanatory, in the MLFLOW model, of streamflow 
in the current month.

The relation of a predictor variable to streamflow depends 
on the area upslope of a channel and the distance to a channel 
downslope. Therefore, two geospatial processes were used to 
account for area and distance effects on streamflow. An area-
averaged accumulation of the spatial data generated upstream 
effects of a variable. A distance-decayed accumulation of the 
spatial data generated more localized effects of a variable. 
Practical software tools for implementing these geospatial 
(flow-conditioning) processes are available in Barnhart and 
others (2020).

The process for area-averaged accumulation involved 
weighting a flow accumulation grid with values of a variable 
and dividing by the total area of all upslope grid cells. The 
resulting grid described the average value of the variable for 
the area upslope of each grid cell. Area-averaged condition-
ing was most applicable to more continuous variables, such 
as vegetation and climate, whose effect on streamflow was 
anticipated mostly from areas upstream. Spatial conditioning 
with an area-averaged accumulation was applied to 17 vari-
ables (codes with suffix “a,” table 3) as follows: 6 geology 
(soil bulk density, soil saturated hydraulic conductivity, 
depth to soil restrictive layer, surficial geology permeability 
index, soil saturated water content, and depth to water table); 
1 hydrology (base-flow index); 3 topography (elevation, slope, 
and slope-area ratio); 3 vegetation (cropland cover, forest 
cover, and wetland cover); and 4 climate (evapotranspiration, 
precipitation, snow water equivalent, and temperature). Using 
forest cover as an example, the unconditioned value of forest 
cover for any cell was 0 or 100 percent (fig. 4A), but area-
averaged conditioning produced a continuous value for every 
cell based on the averaged downslope accumulation of forest 
cover (fig. 4B). Streamflow would be less affected by the for-
est cover at a specific grid cell on the channel network than by 
the general forest cover upstream from the cell.

The process for distance-decayed accumulation involved 
weighting a flow accumulation grid with values of a variable 
and multiplying by a decay grid, which was implemented as a 
negative exponential function of the distance of any grid cell 
to the nearest channel downslope (traveling along the flow 
direction grid). The resulting grid described the total value of 
the variable for all cells upslope of each grid cell attenuated by 
distance. Distance-decayed conditioning was most applicable 
to discrete variables, such as human infrastructure or geologic 
structures, which were expected to affect streamflow more 
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Table 3.  Static physiographic and anthropogenic variables and dynamic climatic variables used in the machine learning streamflow model.

[Suffixes of variable codes (following an underscore) with the following definitions: a, area-averaged spatial conditioning; d, distance-decayed spatial conditioning; 00, 01, 03, 06, 09, 12, temporal conditioning 
of dynamic climatic variables with a moving average of the current month (00) and prior 1, 3, 6, 9, or 12 months (01–12), respectively. DEM, digital elevation model]

Variable Code Source

Static physiographic and anthropogenic variables used to fit models

Geology Soil bulk density bulkDens_a Chaney and others (2019); POLARIS (2019)
Number of surficial geology contacts contacts_d Wyoming State Geological Survey (2015)
Number of bedrock geology faults faults_d Wyoming State Geological Survey (2014)
Soil saturated hydraulic conductivity hydCond_a Chaney and others (2019); POLARIS (2019)
Depth to soil restrictive layer restrLayer_a Soil Survey Staff (2016, 2017)
Surficial geology permeability index surfPerm_a Stoeser and others (2005); Bartolino and others (2019)
Soil saturated water content waterCont_a Chaney and others (2019); POLARIS (2019)
Depth to water table waterTable_a Soil Survey Staff (2016, 2017)

Hydrology Base-flow index baseFlow_a Wolock (2003)
Number of springs springs_d U.S. Geological Survey (2019b)

Topography Drainage area area Computed with 30-meter DEM (U.S. Geological Survey, 2019a) 
using TauDEM (Tarboton, 2016)

Elevation elevation_a 30-meter DEM (U.S. Geological Survey, 2019a)
Slope slope_a Computed with 30-meter DEM (U.S. Geological Survey, 2019a) 

using TauDEM (Tarboton, 2016)
Slope-area ratio slopeArea_a Computed with 30-meter DEM (U.S. Geological Survey, 2019a) 

using TauDEM (Tarboton, 2016)
Vegetation Cropland cover cropland_a Massey and others (2017)

Forest cover forest_a Homer and others (2015); Multi-Resolution Land Characteristics 
Consortium (2017)

Wetland cover wetland_a Homer and others (2015); Multi-Resolution Land Characteristics 
Consortium (2017)

Human Number of water diversions diversions_d Wyoming Water Development Office (2007)
Number of roads roads_d O’Donnell and others (2014)
Number of water wells wells_d Wyoming State Engineer’s Office (2016)
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Table 3.  Static physiographic and anthropogenic variables and dynamic climatic variables used in the machine learning streamflow model.—Continued

[Suffixes of variable codes (following an underscore) with the following definitions: a, area-averaged spatial conditioning; d, distance-decayed spatial conditioning; 00, 01, 03, 06, 09, 12, temporal conditioning 
of dynamic climatic variables with a moving average of the current month (00) and prior 1, 3, 6, 9, or 12 months (01–12), respectively. DEM, digital elevation model]

Variable Code Source

Dynamic climatic variables used to fit models

Climate Evapotranspiration eta_00_a, eta_01_a, eta_03_a, eta_06_a, 
eta_09_a, eta_12_a

Senay and others (2013); U.S. Geological Survey (2018)

Precipitation ppt_00_a, ppt_01_a, ppt_03_a, ppt_06_a, 
ppt_09_a, ppt_12_a

Daly and others (2008); PRISM Climate Group (2018)

Snow water equivalent swe_00_a, swe_01_a, swe_03_a, swe_06_a, 
swe_09_a, swe_12_a

Barrett (2003); National Operational Hydrologic Remote Sensing 
Center (2004)

Temperature tmp_00_a, tmp_01_a, tmp_03_a, tmp_06_a, 
tmp_09_a, tmp_12_a

Daly and others (2008); PRISM Climate Group (2018)
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in proximate channels. Spatial conditioning with a distance-
decayed accumulation was applied to six variables (codes with 
suffix “d,” table 3) as follows: two geology (number of surfi-
cial geology contacts and number of bedrock geology faults); 
one hydrology (number of springs); and three human (number 
of water diversions, number of roads, and number of water 
wells). Using surficial geology contacts as an example, the 
unconditioned value of a geologic contact for any cell was 0 or 
1 (fig. 5A), but distance-decayed conditioning produced a con-
tinuous value for every cell based on the decayed downslope 
accumulation of geologic contacts (fig. 5B). Streamflow would 
be most affected in a channel closest to the geologic contact, 
decreasing in effect farther downstream; moreover, a geologic 
contact would have less effect on streamflow as upslope dis-
tance from a channel increased.

Evaluation of Predictor Variable Conditioning
The dynamic and static variables were temporally and 

spatially conditioned to amplify the relation of the predic-
tor variables to the response variable (monthly streamflow). 
Pearson correlation coefficient (r) was used to evaluate the 
effect of temporal and spatial conditioning on the predictor-
response relation. Values of r were compared between a 
variable without conditioning and the equivalent variable 
with temporal or spatial conditioning (for example, uncondi-
tioned forest cover and forest cover with area-averaged spatial 
conditioning).

EXPLANATION
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Figure 3.  An example of a dynamic climatic variable, snow water equivalent, shown before and after temporal conditioning with a 
moving average of cell values (figure area, fig. 1). A, current month May 2017; B, current and prior month; C, current and prior 3 months; 
D, current and prior 6 months; E, current and prior 9 months; and F, current and prior 12 months.
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Development of Machine Learning Streamflow 
Model

The MLFLOW model used a gradient boosting machine 
(Friedman, 2001, 2002; also known as boosted trees or 
generalized boosted models) because of the potential for the 
machine learning model to fit complex relations between 
the predictor variables (24 geology, hydrology, topography, 
vegetation, human, and climate variables, table 3) and the 
response variable (monthly streamflow; streamflow observa-
tions, table 1). Gradient boosting machines are one of many 
machine learning models, including random forests, support 
vector machines, and neural networks, that are used in vari-
ous hydrologic modeling (Shen and others, 2018), including 
modeling of streamflow (Bellos and Carbajal, 2020). Gradient 
boosting machines were applied in this study using the “caret” 
(Kuhn 2008, 2020) and “gbm” (Greenwell and others, 2020; 
Ridgeway, 2020) packages in R (R Core Team, 2021).

A gradient boosting machine is a machine learning model 
used to solve regression or classification problems. The gradi-
ent boosting machine produces a predictive model that is an 
ensemble of many weaker models, which are typically imple-
mented as decision trees. Gradient boosting is treated statisti-
cally as a numerical optimization problem with an objective 
of minimizing the loss of the model by adding weak learners 
using a functional gradient descent (Friedman, 2002). Gradient 
boosting machines are applied with the following features in R 
(Ridgeway, 2020): a loss function (squared error) to optimize; 
a weak learner (decision trees) for predicting; and an additive 
model (stochastic gradient descent) for adding weak learners 
to minimize the loss function. However, gradient boosting is 
a greedy model, meaning gradient boosting can readily overfit 
the data (Friedman, 2001). To limit the model from overfit-
ting the data, the following four hyperparameters of gradient 
boosting machines can be tuned using packages in R (Kuhn, 
2020, Greenwell and others, 2020): (1) the learning rate 
(shrinkage) of the decision trees; (2) the maximum interaction 
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Figure 4.  An example of a static physiographic variable, forest 
cover, shown before and after spatial conditioning with an 
area-averaged accumulation of cell values (figure area, fig. 1). 
A, unconditioned and B, with area-averaged conditioning.
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Figure 5.  An example of a static physiographic variable, number 
of surficial geology contacts, shown before and after spatial 
conditioning with a distance-decayed accumulation of cell values 
(figure area, fig. 1). A, unconditioned and B, with distance-decayed 
conditioning.
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depth (number of branches, or intermediate nodes) of a tree; 
(3) the minimum number of observations per leaf, or terminal 
node, of a tree; and (4) the number of iterations (trees) fit. The 
hyperparameters of the models in this study were tuned as fol-
lows: 0.005, 0.01, or 0.05 for shrinkage; 1 or 5 for maximum 
interaction depth; 5 or 10 for minimum number of observa-
tions; and 500 for number of trees. More detail on modeling 
with gradient boosting machines in general and specifically in 
R is available in Kuhn and Johnson (2013).

Development of the MLFLOW model proceeded in 
an iterative process of model calibration and validation. 
Streamflow observations (monthly streamflow) used to fit 
the model were split into training and testing samples using 
repeated k-fold cross-validation (Hastie and others, 2009). The 
data were randomly split into 10 folds, with each fold contain-
ing 10 percent of the data. The model was iteratively trained 
with 9 folds and tested against 1 fold left out. The splitting of 
data into 10 folds was repeated 5 times, totaling 50 iterations 
(resamples) of training and testing. For each resample, the 
model fitted 500 trees, with each tree iteratively learning from 
the previously fitted tree.

Evaluation of Predictive Performance and 
Variable Importance

Predictive performance of the MLFLOW model was 
evaluated with the following four goodness-of-fit metrics: 
coefficient of determination (R2), Nash-Sutcliffe efficiency 
(NSE), NSE with log-transformed data (logNSE), and percent 
bias (PBIAS). R2 measures the proportion of the data variance 
that can be explained by the model; values greater than 0.5 
may be considered acceptable (Legates and McCabe, 1999). 
NSE measures the relation of the residual variance to the data 
variance (Nash and Sutcliffe, 1970). Because NSE is com-
puted with squared values of predictions and observations, 
the metric is biased toward predictions agreeing with observa-
tions at larger values. Log transformation of data reduces the 
difference between large and small values, so logNSE is more 
responsive to agreement between predictions and observa-
tions at smaller values. PBIAS measures the average tendency 
that predicted values are greater or less than observed values 
(Moriasi and others, 2007). For the purposes of hydrologic 
modeling of monthly streamflow, values of NSE and logNSE 
greater than 0.5 and PBIAS less than 25 percent are consid-
ered satisfactory (Moriasi and others, 2007).

The MLFLOW model was developed not only as a pre-
dictive model but also as an explanatory model. The explana-
tory power of predictor variables in the model was evaluated 
with variable importance, which was computed as the reduc-
tion in squared error in any decision tree fitted using a predic-
tor variable, averaged for every tree that included the variable 
(Friedman, 2001). Variable importance was evaluated for the 
MLFLOW model fitted to all data and for models fitted to data 
from each watershed or year separately. Moreover, the rela-
tion between predictor variables and monthly streamflow was 

interpreted with partial dependence plots, which emphasize the 
effect of each predictor variable by marginalizing the effect of 
all other predictor variables in the model (Friedman, 2001).

Explanation and Prediction of Streamflow
The MLFLOW model was initially fitted to all data. 

This initial model was used to explain monthly streamflow 
in relation to the predictor variables for all the study area 
and study period (2012–17), and predictive performance and 
variable importance (including partial dependence plots) were 
evaluated. Furthermore, predictive performance was evalu-
ated independently for every site with at least 8 streamflow 
observations, which was the median number of observations 
per site of all 125 sites sampled. Nine additional models were 
fitted, one model for each watershed (using data from all years 
in each model) and one model for each year (using data from 
all watersheds in each model). These additional models were 
used to explain spatial or temporal variation in the relation of 
monthly streamflow to the predictor variables, and variable 
importance of each model was evaluated. Lastly, the initial 
model, fitted to all data, was used to predict monthly stream-
flow at every cell on the channel networks in every month 
of 2012–17. The predictions were assumed to qualitatively 
represent natural streamflow because the MLFLOW model 
had no predictor variables or mechanism for quantifying the 
effect of human infrastructure on streamflow. The monthly 
streamflow prediction data for each cell (17,518 cells) and 
month (72 months) are available in the accompanying data 
release (McShane and Eddy-Miller, 2021). Further models 
were fitted for qualitatively assessing model sensitivity, which 
is explained in the following section.

Assessment of Model Sensitivity
Multiple models were fitted to qualitatively assess sen-

sitivity of the MLFLOW model to variations of the predictor 
variables and streamflow observations. The MLFLOW model 
was applied using the following three variations of the data: 
(1) dynamic or static predictor variables with or without tem-
poral or spatial conditioning, (2) streamflow observations dif-
ferentially grouped by watershed or year, and (3) streamflow 
observations progressively reduced by percentage of sites or 
months available. Models developed using these data varia-
tions were qualitatively assessed using goodness-of-fit metrics 
(R2, NSE, logNSE, and PBIAS).

Models fitted to different combinations of predictor 
variables were used to assess sensitivity to selection and con-
ditioning of the predictor variables—static versus dynamic; 
conditioned versus unconditioned. The following five com-
binations of the variables were used to fit models: (1) uncon-
ditioned climatic (dynamic) variables (4 climate variables); 
(2) dynamic variables with temporal conditioning (20 moving-
average variants of the climate variables); (3) unconditioned 
dynamic and physiographic and anthropogenic (static) 
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variables (24 variables); (4) dynamic and static variables with 
spatial conditioning (24 variables); and (5) static variables 
with spatial conditioning and dynamic variables with spa-
tial and temporal conditioning (44 variables, including the 
20 moving-average variants of the climate variables) (table 3).

Model sensitivity to fitting data from a different area 
(watershed) or period (year) was assessed by differentially 
grouping streamflow observations by watershed or year for use 
in model training and testing. The following two approaches 
were used in grouping the observations: (1) training with 
observations from all groups (all watersheds and years) and 
testing on observations from each watershed (1, 2, or 3) or 
year (2012, 2013, 2014, 2015, 2016, or 2017) separately 
and (2) training with observations from all groups except 
one group left out sequentially and testing on observations 
from the left-out group; for example, training with data from 
watersheds 1 and 2 and testing on data from watershed 3, or 
training with data from 2012 through 2016 and testing on data 
from 2017.

Model sensitivity to the quantity of data fitted was 
assessed by progressively reducing streamflow observations 
by percentage of sites or months available for use in model fit-
ting. Models were fitted using observations randomly sampled, 
with 50 iterations, in two percentages as follows: (1) obser-
vations from only 50 percent of the sites or months (63 sites 
or 18 months on average per random sample) and (2) obser-
vations from only 15 percent of the sites or months (about 
19 sites or 6 months on average per random sample).

Results of Machine Learning Approach 
to Modeling Streamflow

The MLFLOW model performed satisfactorily—
streamflow predictions generally agreed with observations 
at low and high flows. Most of the important predictors of 
monthly streamflow were temporally conditioned dynamic 
climatic variables. Temporal and spatial conditioning of the 
predictor variables improved the explanatory power of the 
variables in the MLFLOW model. The next three sections dis-
cuss predictive performance, variable importance, and model 
sensitivity to variations of the predictor variables and stream-
flow observations (including comparison of the MLFLOW 
model with other streamflow modeling approaches). Spatial 
and temporal variability of the streamflow predictions and util-
ity and limitations of the MLFLOW model are discussed in the 
last two sections.

Predictive Performance

The MLFLOW model fitted to all data had satisfac-
tory agreement between observed and predicted streamflow 
(R2=0.80, NSE=0.79, logNSE=0.82, and PBIAS=0.7 percent, 
fig. 6). The equivalence between NSE (0.79) and logNSE 

(0.82) indicated the MLFLOW model performed equally well 
for high and low flows. PBIAS (0.7 percent) indicated the 
MLFLOW model did not overpredict or underpredict monthly 
streamflow in general. For streamflow observations less than 
10 ft3/s, the model on average overpredicted by less than 
1 percent. For streamflow observations toward 20 ft3/s, the 
model on average underpredicted by about 5 percent; however, 
the model had fewer streamflow observations to fit toward the 
upper range of values.

The MLFLOW model performed equally well for all 
months with streamflow observations. For each month, the 
mean of the distribution of residuals (observed minus pre-
dicted streamflow) of the model was about zero (fig. 7), indi-
cating model predictions for months with fewer observations 
(such as February and April) were not biased by the model 
potentially overfitting data for months with more observa-
tions (such as June and July). For most months, the median of 
model predictions was higher than the median of streamflow 
observations, and the distribution of model predictions for all 
months was more limited than the distribution of streamflow 
observations (fig. 7), suggesting the MLFLOW model was fit-
ting toward the mean of the data.

[Metrics are the mean of 50 model resamples (tenfold 
cross-validation with 5 repetitions). R 2, coefficient of 
determination; NSE, Nash-Sutcliffe efficiency; logNSE, 
NSE with log transformed data; PBIAS, percent bias; 
n, number of sampling units]

R 2=0.80
NSE=0.79
logNSE=0.82
PBIAS=0.7
n=971
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Figure 6.  Relation between observed and predicted streamflow.
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Goodness-of-fit metrics computed independently for 
every site with at least eight streamflow observations also 
indicated acceptable performance of the MLFLOW model 
(table 4). Medians of the goodness-of-fit metrics for the 
85 sites analyzed were 0.81 for R2, 0.74 for NSE, 0.77 for 
logNSE, and 2.3 percent for PBIAS (table 4), not much differ-
ent from the metrics for the MLFLOW model fitted to all data 
(R2=0.80, NSE=0.79, logNSE=0.82, and PBIAS=0.7 percent, 
fig. 6). Median absolute deviation (MAD) of the metrics indi-
cated some variation in model performance among the sites 
analyzed (table 4). However, the difference between median 
and MAD for PBIAS was less than 25 percent (median plus or 
minus MAD), so the MLFLOW model performed satisfacto-
rily even for sites toward the tails of the distribution (table 4). 
The other three metrics were all greater than or equal to 0.5 
(median minus MAD) toward the lower distributional tail, also 
indicating satisfactory model performance (table 4).

Model performance at the three sites with the most 
streamflow observations in this study (sites 25, 27, and 31, 
fig. 1) was acceptable (fig. 8A–C). All four goodness-of-
fit metrics indicated site 31 (fig. 8C) had the best perfor-
mance in general (R2=0.88, NSE=0.88, logNSE=0.91, and 

PBIAS=0.8 percent). Site 25 (fig. 8A) had R2 of 0.89 and NSE 
of 0.84, comparable with values for site 31, but had worse 
logNSE (0.77) and PBIAS (−3.6 percent) than for site 31. 
Site 27 (fig. 8B) had the best PBIAS (−0.6 percent) and had 
logNSE (0.75) similar to the value for site 25, but R2 (0.62) 
and NSE (0.61) were more than 25 percent less than for 
sites 25 or 31. Qualitatively, the MLFLOW model tended to 
underpredict the highest flows in most years, whereas lower 
flows were overpredicted in some years but underpredicted in 
others (fig. 8A–C). On average for the three sites, NSE (0.78) 
was lower than logNSE (0.81) (fig. 8A–C), indicating perfor-
mance was only about 3 percent better for low flows than for 
high flows, the same as for the MLFLOW model fitted to all 
data. The tendency to underpredict the highest flows probably 
resulted from fewer observations of high flows than of low 
flows available for use in fitting the MLFLOW model.

In comparison, Miller and others (2018) used a ran-
dom forest model fitted to USGS streamgage data to predict 
monthly streamflow for the conterminous United States. 
The approach of Miller and others (2018) included temporal 
conditioning of dynamic climatic predictor variables, as in 
this study. Median NSE ranged from 0.5 to 0.9 and median 
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Table 4.  Distribution of goodness-of-fit metrics from repeated cross-validation of the machine learning streamflow model, fitted to all 
streamflow observations, computed for each site independently.

[Metrics were analyzed for 85 sites with at least 8 streamflow observations, which was the median number of observations per site of all 125 sites sampled. R2, 
coefficient of determination; NSE, Nash-Sutcliffe efficiency; logNSE, NSE with log-transformed data; PBIAS, percent bias; MAD, median absolute deviation]

Number of 
sites analyzed

R 2 NSE logNSE PBIAS

Median MAD Median MAD Median MAD Median MAD

85 0.81 0.18 0.74 0.24 0.77 0.21 2.3 16.8
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PBIAS ranged from −15 to 5 percent (Miller and others, 
2018), compared with median NSE of 0.74 and median PBIAS 
of 2.3 percent for every site with at least eight observations in 
this study (table 4). In addition, the model in Miller and others 
(2018) was fitted to few data from low-order streams, unlike 
the MLFLOW model in this study.

Additionally, the Precipitation-Runoff Modeling System, 
a physically based hydrologic model, was used to model 
monthly streamflow in seven watersheds (about HUC12 in 
size) in Montana (Chase and others, 2016). USGS streamgage 
data were used by Chase and others (2016) to calibrate and 
validate the model, whereas discrete streamflow observations 
were used in this study. The model performance in Chase and 
others (2016) ranged from negative values for NSE to about 
0.75, whereas in this study, median NSE was 0.74 at sites with 
at least eight observations (table 4) and NSE was 0.84 or more 
at the two sites with the most observations (fig. 8A, C).

Variable Importance

The most important variables (statistically important in 
the MLFLOW model) for explaining monthly streamflow were 
the 6-month moving average of precipitation and the 3-month 
moving average of snow water equivalent (fig. 9). The top 
20 important variables were populated by the following 
14 moving-average variants: 4 precipitation variants, 4 snow 
water equivalent variants, 3 evapotranspiration variants, and 
3 temperature variants. Forest cover was the only static vari-
able among the top five variables (fig. 9). Elevation, drainage 
area, depth to water table, number of diversions, and number 
of surficial geology contacts—also static variables—also were 
important variables for explaining monthly streamflow.

The 20 most important variables in the MLFLOW model 
had simple to more complex relations with monthly stream-
flow as interpreted with partial dependence plots. Many of 
the relations between the predictor variables and monthly 
streamflow were intuitive. Monthly streamflow increased with 
increasing drainage area (fig. 10O) and number of surficial 
geology contacts (fig. 10P) and decreased with increas-
ing elevation (fig. 10R) and depth to water table (fig. 10T). 
Monthly streamflow also increased with increasing 6-, 9-, 
and 12-month moving averages of precipitation (fig. 10E–G, 
respectively) and 3- and 6-month moving averages of snow 
water equivalent (fig. 10J, K, respectively) and decreased with 
increasing 9-month moving averages of evapotranspiration 
(fig. 10C) and temperature (fig. 10N). Other relations between 
the predictor variables and monthly streamflow were counter-
intuitive. Monthly streamflow decreased with increasing num-
ber of water diversions (fig. 10Q) and forest cover (fig. 10S). 
However, in the study area, most forest cover was at higher 
elevations where channels had smaller drainage areas, and 
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most water diversions were on channels with larger drainage 
areas at lower elevations. Additionally, each climate variable 
had relations with monthly streamflow that reversed when 
proceeding from shorter to longer moving-average variants. 
For example, monthly streamflow increased with increasing 
current month and 1-month moving average of evapotranspira-
tion (fig. 10A, B, respectively) and current month and 6-month 
moving average of temperature (fig. 10L, M, respectively), but 
monthly streamflow decreased with 9-month moving averages 
of evapotranspiration (fig. 10C) and temperature (fig. 10N). 
In addition, intermediate values of some predictor variables 

produced the highest monthly streamflow (such as depth to 
water table, fig. 10T) or the lowest (such as 1-month moving 
average of snow water equivalent, fig. 10I), whereas for other 
predictor variables, the relation with monthly streamflow had 
more than one inflection. For example, as current month of 
snow water equivalent increased (fig. 10H), monthly stream-
flow increased, then decreased, and then increased again.

The most important variables in models fitted to data 
from each watershed did not differ substantially among the 
watersheds or from the MLFLOW model fitted to all data. For 
each watershed, moving-average variants of precipitation and 
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snow water equivalent were still the most important variables 
(fig. 11A–C), suggesting insubstantial spatial variability in the 
relation between monthly streamflow and the predictor vari-
ables. The effect of precipitation and snow water equivalent 
on monthly streamflow was apparently as important across 
small or large areas (each watershed modeled separately; 
fig. 11A–C) as across the study area (all watersheds modeled 
together; fig. 9). However, forest cover, contrary to its ranking 
as third most important variable in the model fitted to all data 
(fig. 9), was the fifth most important variable for watershed 1 
(fig. 11A) and was not among the top five important vari-
ables for the other two watersheds (fig. 11B, C). In contrast, 
the 9-month moving average of snow water equivalent was 
not among the top 20 important variables in the model fitted 
to all data (fig. 9) but was the third most important vari-
able for watershed 3 (fig. 11C). Additionally, drainage area 
was among the top five important variables for watersheds 2 
and 3 (fig. 11B, C, respectively), but drainage area was only 
the 11th most important variable in the model fitted to all 
data (fig. 9). The increased importance of drainage area was 
understandable for watershed 3, which has the largest area 
(55 mi2) of the three watersheds, but the increased importance 
of drainage area was surprising for watershed 2, which has the 
smallest area (26 mi2) (U.S. Geological Survey, 2019a).

The most important variables in models fitted to data 
from each year differed considerably among the years and 
from the MLFLOW model fitted to all data. Six static vari-
ables (cropland cover, number of surficial geology contacts, 
number of water diversions, forest cover, depth to water 
table, and drainage area)—from one to three variables for 
any year—were among the top five most important variables 
(fig. 12A–F), which suggests considerable temporal variability 
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in the relation between the predictor variables and monthly 
streamflow. In addition, moving-average variants of precipi-
tation (fig. 12A, C) and snow water equivalent (fig. 12D, F) 
were among the top five important variables in only 2 years, 
whereas moving-average variants of evapotranspiration and 
temperature were among the top five important variables in 
all but 1 year (fig. 12B–F). During a shorter period (each year 
modeled separately; fig. 12A–F), the effect of evapotranspira-
tion and temperature seemed more important, whereas the 
effect of precipitation and snow water equivalent seemed more 
important during the longer study period (all years modeled 
together; fig. 9). For 3 years, a dynamic variable was the most 
important—the 1-month moving average of snow water equiv-
alent for 2015 (fig. 12D) and the 9-month moving average of 
evapotranspiration for 2016 (fig. 12E) and 2017 (fig. 12F). 
However, for the other 3 years, a static variable was the most 
important—cropland cover for 2012 (fig. 12A) and 2013 
(fig. 12B) and forest cover for 2014 (fig. 12C). Although the 
varying importance of static variables from 1 year to another 
year may seem illogical, several reasons are possible. Static 
variables can interact differently with dynamic variables from 
year to year, resulting in the increased importance of a static 
variable. Dynamic variables alone can decrease in importance 
from year to year, which relatively increases the importance 
of a static variable. Dynamic variables may vary less within 
1 year than during several years, resulting in the decreased 
importance of dynamic variables for a single year. Lastly, one 
static variable may substitute, in relative importance, for many 
correlated dynamic variables.

Model Sensitivity

Temporal and spatial conditioning intensified the relation 
of many predictor variables with monthly streamflow, result-
ing in more information that the MLFLOW model could use 
for predicting streamflow. For many of the variables, such as 
forest cover or surficial geology contacts, unconditioned val-
ues of many cells on the channel networks were zero (figs. 4A, 
5A), but with spatial conditioning, values of most cells on 
the channel networks were nonzero (figs. 4B, 5B), providing 
the MLFLOW model with more diversely valued variables 
that might better explain variation in streamflow. Temporal 
conditioning increased r for the dynamic variables by as much 
as 0.34 compared with the equivalent variable without condi-
tioning (table 5). For example, current month of precipitation 
had r of −0.02 (ppt_00, table 5), whereas the 6-month moving 
average of precipitation had r of 0.36 (ppt_06, table 5). Spatial 
conditioning increased r for the moving-average variants 
of the dynamic variables by as much as 0.25 (table 5). For 
example, the 1-month moving average of snow water equiva-
lent without conditioning had r of 0.10 (swe_01, table 5), but 
the 1-month moving average of snow water equivalent with 
conditioning had r of 0.35 (swe_01_a, table 5). For the static 
variables, spatial conditioning increased r by as much as 0.15, 
such as for surficial geology contacts (contacts, table 5). Also, 

for some static variables, correlation between the uncondi-
tioned variable and monthly streamflow was not possible to 
compute because all values of the variable were zero for any 
streamflow observation, such as for water diversions (diver-
sions, table 5). However, spatial conditioning produced a cor-
relation of the variable with streamflow; for example, r of 0.09 
for water diversions (diversions_d, table 5).

Models fitted to different combinations of predictor 
variables were used to qualitatively assess sensitivity of the 
MLFLOW model to selection and conditioning of the pre-
dictor variables—static versus dynamic; conditioned versus 
unconditioned. Performance improved progressively from 
model 1 to model 5 (table 6). All models had acceptable per-
formance, although model 1 was marginal for three goodness-
of-fit metrics (R2=0.54, NSE=0.52, and logNSE=0.49, table 6). 
However, model 5 (the model fitted to all data) had the 
best performance (R2=0.80, NSE=0.79, logNSE=0.82, and 
PBIAS=0.7 percent, table 6).

Related to this study, Jaeger and others (2019) used a 
machine learning approach to modeling streamflow perma-
nence (presence or absence of streamflow) in the Columbia 
River Basin. Jaeger and others (2019) also applied spatial 
conditioning by area-averaged accumulation to the pre-
dictor variables, as in this study. Model performance was 
about 80 percent (out-of-bag error rate of 20 percent; Jaeger 
and others, 2019), which was comparable with this study 
(R2=0.80, NSE=0.79, and logNSE=0.82, table 6). Updated 
streamflow permanence modeling has been progressing in the 
upper Missouri River Basin (not shown), including tempo-
ral conditioning of dynamic predictor variables and spatial 
conditioning by distance-decayed accumulation (Roy Sando, 
U.S. Geological Survey, oral commun., 2020), similar to 
this study.

Different combinations of static or dynamic variables and 
unconditioned or temporally or spatially conditioned variables, 
or both, were used to fit the MLFLOW model, which resulted 
in considerable improvements in performance. Temporal 
conditioning of dynamic variables in model 2 increased R2, 
NSE, and logNSE by as much as 0.09 compared with the 
unconditioned dynamic variables in model 1 (table 6). Adding 
unconditioned physiographic and anthropogenic variables in 
model 3 increased R2, NSE, and logNSE by as much as 0.15 
compared with just the climatic variables in model 1 (table 6). 
Spatial conditioning of all variables in model 4 increased 
R2, NSE, and logNSE by as much as 0.05 compared with 
the unconditioned dynamic and static variables in model 3 
(table 6). Spatial conditioning of all variables together with 
temporal conditioning of dynamic variables in model 5 
increased R2, NSE, and logNSE by as much as 0.13 compared 
with just the spatial conditioning in model 4 (table 6). PBIAS 
varied less than 1 percent among the five models (table 6), 
indicating the MLFLOW model did not overpredict or under-
predict monthly streamflow in general within the study area 
during the study period. In addition, logNSE was worse than 
NSE by 0.03 in model 1 but was better by 0.03 in model 5 
(table 6). This 0.06 improvement of logNSE relative to NSE 
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indicates selection of all variables with all temporal and spatial 
conditioning improved prediction of low flows relative to 
prediction of high flows.

The MLFLOW model was most sensitive to selection of 
dynamic climatic variables. Unconditioned dynamic cli-
matic variables (model 1) alone explained 54 percent of the 
variance (R2=0.54, table 6) in monthly streamflow, whereas 
adding static physiographic and anthropogenic variables 
(model 3) only explained 12 percent more of the variance 
(R2=0.66, table 6), indicating the greater importance of the 
time series data. Also, spatial conditioning of all variables 
together with temporal conditioning of dynamic variables 
(model 5) increased the variance explained in the MLFLOW 
model by another 14 percent (R2=0.80, table 6). Kratzert and 
others (2019) used another machine learning approach (long 

short-term memory networks) with different combinations of 
dynamic and static variables that performed similarly to this 
study. Models developed with only dynamic climatic vari-
ables performed well (NSE=0.63) but performed moderately 
better with the inclusion of static physiographic variables 
(NSE=0.74) (Kratzert and others, 2019). However, model 
performance indicating that the dynamic variables had greater 
explanatory power than the static variables in the MLFLOW 
model was not surprising because time series data intrinsically 
have more variation, temporal and spatial, to use in fitting the 
model to the streamflow observations, which also are innately 
variable, temporally and spatially.

Sensitivity of the MLFLOW model to using data from a 
different area (watershed) or period (year) was qualitatively 
assessed by differentially grouping streamflow observations 

Table 5.  Relation of streamflow to some dynamic and static variables before and after temporal or spatial conditioning.

[r, Pearson correlation coefficient; --, not possible to compute]

Variable without conditioning Equivalent variable with conditioning

Code (table 3) r Code (table 3) r

Temporal conditioning of climatic (dynamic) variables

eta_00 0.26 eta_01 0.16
ppt_00 −0.02 ppt_06 0.36
swe_00 −0.06 swe_03 0.33
tmp_00 0.01 tmp_06 −0.26

Spatial conditioning of dynamic and physiographic and anthropogenic (static) variables

eta_12 0.13 eta_12_a 0.20
ppt_09 0.31 ppt_09_a 0.51
swe_01 0.10 swe_01_a 0.35
tmp_01 −0.10 tmp_01_a −0.12
contacts −0.02 contacts_d 0.17
diversions -- diversions_d 0.09
forest −0.07 forest_a −0.20
waterTable 0.04 waterTable_a −0.06

Table 6.  Goodness-of-fit metrics for models fitted to different combinations of static and dynamic variables before or after spatial or 
temporal conditioning, indicating qualitative model sensitivity to selection and conditioning of the predictor variables.

[Metrics are the mean of 50 resamples (tenfold cross-validation with 5 repetitions) per model. R2, coefficient of determination; NSE, Nash-Sutcliffe efficiency; 
logNSE, NSE with log-transformed data; PBIAS, percent bias]

Model 
number

Selection and conditioning of variables 
used to fit model

Number 
of variables

R 2 NSE logNSE PBIAS

1 Unconditioned climatic (dynamic) variables 4 0.54 0.52 0.49 0.6
2 Dynamic variables with temporal conditioning 20 0.60 0.58 0.58 1.2
3 Unconditioned dynamic and physiographic and anthropogenic 

(static) variables
24 0.66 0.65 0.64 1.2

4 Dynamic and static variables with spatial conditioning 24 0.69 0.67 0.69 0.6
5 Static variables with spatial conditioning and dynamic variables 

with spatial and temporal conditioning
44 0.80 0.79 0.82 0.7
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by watershed or year for use in model training and testing. For 
models trained with all watersheds and years, performance 
was better in testing on observations from each watershed than 
from each year separately (table 7), indicating the MLFLOW 
model had greater sensitivity to temporal than to spatial differ-
ences in the data. Means of the goodness-of-fit metrics were 
0.79 for R2, 0.79 for NSE, 0.82 for logNSE, and 1.4 percent 
for absolute value of PBIAS for models trained with all water-
sheds but were 0.68 for R2, 0.67 for NSE, 0.67 for logNSE, 
and 3.5 percent for absolute value of PBIAS for models 
trained with all years (table 7). However, in contrast, models 
trained with all except 1 year left out sequentially and tested 
on the left-out year performed better than models trained with 
all except one watershed left out sequentially and tested on the 
left-out watershed. Means of the goodness-of-fit metrics were 
0.51 for R2, 0.49 for NSE, 0.50 for logNSE, and 11 percent for 
absolute value of PBIAS for models trained with a watershed 
left out but were 0.56 for R2, 0.53 for NSE, 0.56 for logNSE, 
and 12 percent for absolute value of PBIAS for models trained 
with 1 year left out (table 7).

In general, performance for models trained with all 
except one watershed or 1 year left out sequentially was sat-
isfactory for all the test watersheds and years (table 7). Model 
performance was only unsatisfactory (for one goodness-
of-fit metric) for watershed 3 (logNSE=0.37) and 2013 
(logNSE=0.37) (table 7), indicating the relations between the 
predictor variables and monthly streamflow at low flows in 
watershed 3 and in 2013 were difficult to explain with data 
from the other watersheds or years. Less similarity of data 
among the three watersheds than of data among the 6 years 
may explain the better performance of the model in testing 
on 1 year left out from model training than on one watershed 
left out from model training. However, another explanation 
may be fewer data were excluded from model training by 
leaving out 1 year than by leaving out one watershed, and 
consequently, more data (with more variance) were included 
in model testing on the left-out watershed than on the left-
out year—on average, each watershed and year had 324 and 
162 observations, respectively.

Sensitivity of the MLFLOW model to the quantity of 
data used was qualitatively assessed by progressively reduc-
ing streamflow observations by percentage of sites or months 

Table 7.  Goodness-of-fit metrics for models trained with observations from all watersheds and years and tested on observations from 
each watershed or year separately or for models trained with observations from all except one watershed or 1 year left out sequentially 
and tested on observations from the left-out watershed or year, indicating qualitative model sensitivity to data used from a different area 
or period.

[Metrics are the mean of 50 resamples (tenfold cross-validation with 5 repetitions) per model. R2, coefficient of determination; NSE, Nash-Sutcliffe efficiency; 
logNSE, NSE with log-transformed data; PBIAS, percent bias]

Groups used to train model Group used to test model R 2 NSE logNSE PBIAS

Data grouped by watershed

All watersheds Watershed 1 0.82 0.82 0.84 −1.3
Watershed 2 0.79 0.79 0.84 3.0
Watershed 3 0.77 0.77 0.77 0.0

All except the test watershed Watershed 1 0.49 0.48 0.56 −8.1
Watershed 2 0.54 0.52 0.56 5.1
Watershed 3 0.50 0.46 0.37 19.9

Data grouped by year

All years 2012 0.68 0.63 0.58 9.3
2013 0.70 0.69 0.65 2.5
2014 0.56 0.56 0.63 2.8
2015 0.62 0.62 0.65 −1.4
2016 0.78 0.77 0.74 2.5
2017 0.75 0.75 0.75 −2.2

All except the test year 2012 0.61 0.59 0.55 9.9
2013 0.54 0.51 0.37 18.6
2014 0.59 0.58 0.63 6.9
2015 0.57 0.55 0.63 −10.3
2016 0.53 0.50 0.57 9.4
2017 0.49 0.46 0.62 −14.6
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available for use in model fitting. Performance was bet-
ter for models fitted to fewer sites than to fewer months of 
observations (table 8), which indicated the MLFLOW model 
was more sensitive to temporal than to spatial differences 
in the data. The goodness-of-fit metrics for models fitted to 
50 percent fewer months were worse than for models fitted to 
50 percent fewer months by 0.12 for R2, 0.14 for NSE, 0.17 
for logNSE, and 6.9 percent for absolute value of PBIAS 
(table 8). In addition, further reduction in sites and months 
from 50 to 15 percent affected the goodness-of-fit metrics 
more for models fitted to fewer months than to fewer sites. 
On average, for three goodness-of-fit metrics (R2, NSE, 
and logNSE), values decreased by 0.21 for models fitted to 
85 percent fewer sites but decreased by 0.27 for models fit-
ted to 85 percent fewer months (table 8). Performance was 
still satisfactory for models fitted to 50 percent of sites and 
was marginally satisfactory for models fitted to 50 percent of 
months but was no longer satisfactory for models fitted to only 
15 percent of sites or months (table 8).

The MLFLOW model fitted to all data performed very 
well (R2=0.80, NSE=0.79, logNSE=0.82, and PBIAS=0.7 per-
cent, table 8), but performance in general progressively 
decreased for models fitted to progressively reduced percent-
ages of sites or months (table 8). However, the reductions in 
sites and months were applied using random samples of the 
data, which may explain the poor performance of models 
fitted to only 15 percent of sites or months. The 15-percent 
samples of sites or months used to train the MLFLOW model 
may not have been adequately representative of the variance 
in the remaining 85 percent of the data used to test the model. 
If sites could be sampled more uniformly across a watershed, 
focusing on proportional representation of small, medium, 
and large streams (by drainage area), or if months could be 
sampled more intentionally throughout the year, focusing on 
key moments of the annual hydrograph for streams at different 
elevations (low, medium, and high), then data for fewer sites 

and months might be sufficient for the MLFLOW model to 
perform as well as the model performed with 971 streamflow 
observations.

Streamflow Predictions

The MLFLOW model predicted spatially and tem-
porally continuous monthly streamflow for the study area 
(17,518 cells; fig. 1) and study period (72 months; 2012–17), 
using 971 discrete streamflow observations (table 1). Spatial 
and temporal variations in the streamflow predictions are 
discussed in this section using, as an example, a subset of the 
study area (part of the channel network of watershed 2; figure 
area, fig. 1) and a subset of the study period (every month of 
2017 and every year in August).

Intra-annual variation in streamflow was simulated 
realistically by the MLFLOW model—seasonality of stream-
flow was well characterized. Predicted flows in 2017 were 
much lower from January through March (fig. 13A–C) and 
from August through December (fig. 13H–L), months before 
or after the snowmelt high flows during April through June 
(fig. 13D–F). Using February, May, August, and November 
to represent winter, spring, summer, and fall, respectively, 
mean of cells on the channel network was 8.9 ft3/s in May 
(fig. 13E) but only 1.0, 1.8, and 0.51 ft3/s in February, August, 
and November, respectively (fig. 13B, H, K, respectively). 
Furthermore, in May, some cells had predicted flows of almost 
17 ft3/s (fig. 13E), whereas in February and November, many 
cells on the channel networks had predicted flows of 0 ft3/s 
(fig. 13B, K, respectively). However, because 2017 was a wet-
ter year, no cells on the channel network in August had pre-
dicted flows of 0 ft3/s (zero flow; fig. 14F), whereas in August 
of 2012, which was a drier year, about 45 percent of cells 
on smaller channels had zero-flow predictions (fig. 14A). In 
February, predicted flows were higher in smaller channels than 
in larger channels (fig. 13B), but in May, larger channels had 
considerably higher predicted flows (fig. 13E), and in August 

Table 8.  Goodness-of-fit metrics for the model fitted to all observations or for models fitted to observations progressively reduced by 
percentage of sites or months available, indicating qualitative model sensitivity to quantity of the data used.

[Metrics are the mean of 50 resamples (tenfold cross-validation with 5 repetitions) per model. R2, coefficient of determination; NSE, Nash-Sutcliffe efficiency; 
logNSE, NSE with log-transformed data; PBIAS, percent bias]

Sampling of data 
used to fit model

Median  
number of sites 

per sample

Median number 
of months per 

sample

Median number of 
observations per 

sample
R 2 NSE logNSE PBIAS

All sites and months 125 35 971 0.80 0.79 0.82 0.7
Data reduced by site

50 percent of sites 63 34 492 0.58 0.56 0.62 1.5
15 percent of sites 19 32 148 0.38 0.36 0.39 1.9

Data reduced by month

50 percent of months 125 18 510 0.46 0.42 0.45 8.6
15 percent of months 97 6 155 0.23 0.16 0.14 −1.8
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and November, streamflow receded, remaining higher in more 
intermediate channels (fig. 13H, K, respectively). Higher flows 
were observed at sites with smaller drainage areas and higher 
snow water equivalent in February, at sites with larger drain-
age areas in May, and at sites with larger drainage areas or 
higher precipitation in August and November (McShane and 
Eddy-Miller, 2021).

The MLFLOW model also realistically simulated 
interannual variation in streamflow, well representing yearly 
hydroclimatic conditions. Predicted flows in August were 
low in 2012 and 2013 (fig. 14A, B, respectively), which were 
drier years, but warmer in 2012 and cooler in 2013 (McShane 

and Eddy-Miller, 2021), whereas predicted flows were high 
in 2014 and 2017 (fig. 14C, F, respectively), which were 
years with more normal temperature but wetter, with more 
rainfall in 2014 and more snowpack in 2017 (McShane and 
Eddy-Miller, 2021). Although 2015 was a drier, warmer year 
similar to 2012, predicted flows were higher in 2015 (fig. 14D) 
than in 2012 (fig. 14A), most likely because 2015 followed 
2014, a wetter year. Similarly, although 2016 was a wetter 
year similar to 2014 and 2017, predicted flows in 2016 were 
more intermediate (fig. 14E) similar to 2015 (fig. 14D), most 
likely because the preceding year, 2015, was drier. Using 
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2012 and 2017 to represent a range of hydroclimatic condi-
tions from warmer and drier to cooler and wetter, respectively, 
mean predicted flow was only 0.12 ft3/s in 2012 but 1.8 ft3/s 
in 2017. Moreover, maximum predicted flow in 2012 was 
only 0.61 ft3/s, whereas minimum predicted flow in 2017 
was 0.19 ft3/s. In 2017, a year with more snowpack, mean 
predicted flow in August was 1.8 ft3/s, whereas in 2014, a 
year with more rainfall, mean predicted flow in August was 
2.4 ft3/s, indicating the responsiveness of the model to recent-
month precipitation versus earlier-year snow water equivalent 
(McShane and Eddy-Miller, 2021). In August, observed flows 
at sites on larger channels were lower in 2012 than in 2013 
because these sites had lower snow water equivalent in 2012 
than in 2013. Observed flows were higher at sites on larger 
channels in 2017 but were higher at sites on more intermedi-
ate channels in 2014. This difference resulted from higher 
snow water equivalent at sites on larger channels in 2017 
than in 2014 and higher precipitation at sites on more inter-
mediate channels in 2014 than in 2017 (McShane and Eddy-
Miller, 2021).

Utility and Limitations of Modeling Approach

The greatest utility of the modeling approach is the ease 
of use and the speed of processing input data, running the 
model, and interpreting the model output, whereas the greatest 
limitation is the need for spatially and temporally representa-
tive streamflow observations to drive the model. Not only 
is the quantity of observations an important limitation but 
the quality of observations also is an important limitation. 

Streamflow measurements might be made by poorly trained 
persons and errors could be proportionally larger at low flows 
than at high flows; however, in this study, all measurements 
were made by well trained personnel following standard 
USGS techniques and methods (Rantz and others, 1982; Sauer 
and Turnipseed, 2010). In addition, the MLFLOW model 
performed well with the available streamflow measurements, 
which were made at a spatially representative number of sites 
and in a temporally representative number of months.

Streamflow predictions seemed to well represent the 
annual hydrograph within the study area during the study 
period. However, streamflow measurements were not made in 
January, March, October, or December, so model performance 
was not computable for those 4 months. In addition, for the 
other 8 months, streamflow measurements were not made at 
every site in every month of all 6 years, so the evaluation of 
predictive performance was more limited than what would be 
possible for a model developed using time series data from a 
USGS streamgage. Also, model predictions in this study were 
assumed representative of natural streamflow. Although three 
anthropogenic predictor variables (water diversions, roads, and 
water wells) were used in the MLFLOW model, the variables 
were merely informative of potential hydrologic alteration in 
a qualitative sense. Therefore, the MLFLOW model did not 
quantitatively characterize any actual streamflow regulation 
that was due to diversion, release, or return of water.

These observations, although single measurements in 
a month, were treated as representative of mean monthly 
streamflow for use in the MLFLOW model. Because the 
annual hydrograph of the study area is characterized by a 
relatively short period (about 3 months) of higher flows and a 
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much longer period (about 9 months) of lower flows, a stream-
flow measurement made on any day of the month is likely rep-
resentative of the mean monthly streamflow for most months 
of the year. However, during the rise and fall of the high-flow 
period, measurements made earlier and later in a month may 
be quite different from each other. Measurements may be 
lower in early May than in late May, and measurements may 
be higher in early June than in late June. Therefore, the mag-
nitude of the highest flow may not be accurately represented 
with the streamflow observations, but the magnitude of the 
shorter high-flow period (2 months) relative to the magnitude 
of the longer low-flow period (8 months) was evident with the 
available streamflow observations.

The MLFLOW model, fitted as is with the data used 
in this study, is not transferable to another watershed unless 
the other watershed has similar statistical distributions of 
the physiographic, anthropogenic, and climatic variables. 
Transfer of the model to another watershed with values of 
these variables at the margins of the variables’ statistical 
distributions would require judgment on the reliability of the 
model’s application. However, because of the data-driven 
nature of the machine learning approach in this study, new 
streamflow observations in addition to the current observations 
can be used to refit the model. Nonetheless, transferring the 
MLFLOW model, fitted as is, to a watershed with a different 
hydroclimatic regime would not be as reasonable as fitting a 
new model to data for the new regime.

The modeling approach in this study was not a process-
based model with mathematical functions derived from 
first principles or empirical research. Instead, temporal and 
spatial conditioning processes were applied to the predictor 
variables as a means to substitute simple properties of the 
data—temporally and spatially averaged or decayed values 
of climatic, physiographic, and anthropogenic variables—for 
some of the complex process-based functions (requiring much 
parameter optimization) for climate and land surface elements 
in a physically based hydrologic model.

Temporal conditioning was an effective and efficient 
way of increasing the information content of the dynamic 
climatic variables. A moving average was computationally 
simple and provided a simplified means for simulating short 
to long periods of the water storage change in a runoff model. 
For monthly streamflow as modeled in this study, the effect 
of climate is less immediate than in an event-based model. 
Generating a progression of moving average values of the 
time series data provided the model with more dimensionality 
for exploring the relation of climate to streamflow. However, 
the multiplicity of moving-average variants of the dynamic 
variables may have increased the use of these variables in the 
MLFLOW model because of the greater abundance of the 
dynamic variables relative to the static variables. In addition, 
too many moving-average variants of the climate variables 
can complicate evaluation of variable importance, including 
interpretation of partial dependence plots.

Spatial conditioning also had an important effect on 
the information content of the dynamic and static variables. 
Spatial conditioning was especially important to the static 
variables with binary data because no or few nonzero values of 
water diversions, springs, roads, water wells, surficial geology 
contacts, or bedrock geology faults corresponded to any sam-
pling site, meaning these six variables (without spatial condi-
tioning) had no variance for the MLFLOW model to explain. 
However, spatial conditioning of the unconditioned variables 
altered them from discrete (0 or 1) to continuous (ranging 
from 0 to 1) data for each cell (with only nonzero values on 
the channel network). Consequently, all sampling sites had 
a nonzero value of the six spatially conditioned variables—
variance was generated in these variables for the MLFLOW 
model to explain. Area-averaged or distance-decayed accumu-
lation of the spatial data not only increased explanatory power 
of the variables but also modified incompatible spatially dis-
crete variables into applicable spatially continuous variables.

However, conditioning of the variables was less impor-
tant than selection of dynamic variables for use in the 
MLFLOW model. The variance of the time series data was 
more attuned to the variance of the streamflow observations 
because every monthly streamflow observation had a corre-
sponding monthly value of evapotranspiration, precipitation, 
snow water equivalent, and temperature. Therefore, the selec-
tion of additional dynamic variables might increase perfor-
mance more than any static variable already selected for use in 
the MLFLOW model.

Gradient boosting machines used in this study are just 
one of many available machine learning models, and other 
circumstances might make a different model better. However, 
most machine learning models can be readily applied in R, 
such as neural networks, support vector machines, and random 
forests. The “caret” package in R has more than 100 different 
models (Kuhn, 2020). Carlisle and others (2016) evaluated 
five machine learning models, including random forests and 
gradient boosting machines, and determined that random for-
ests performed more ably than the other four machine learning 
models. However, in this study, the MLFLOW model also was 
developed with a random forest, but performance was not as 
good as for the MLFLOW model developed with the gradient 
boosting machine.

The modeling approach in this study is relatively 
simple to apply. Other predictor variables can be used in 
the MLFLOW model, and variables that were most impor-
tant in the model are available for larger areas and longer 
periods than were applicable to this study. The R scripts are 
adaptable—other machine learning models can be substituted 
for the gradient boosting machine used in the MLFLOW 
model. Although familiarity with R is necessary, only a work-
ing knowledge of hydrology (for selecting appropriate predic-
tor variables and evaluating the quality of streamflow observa-
tions) and a rudimentary understanding of machine learning 
models are needed. Therefore, this modeling approach is 
practicable for other scientists who work with water but who 
are not hydrologists.
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Summary
Streamflow is a necessary ecological resource for many 

animal and plant species. However, scant availability of 
streamflow data can impede the utility of streamflow as a 
variable in ecological models of aquatic and terrestrial species, 
especially when studying small streams in watersheds that 
lack streamgages. Much ecological research on small streams 
is concentrated on species-habitat relations throughout the 
channel network of a watershed, but streamflow data, needed 
at fine resolution and broad extent for this research, are typi-
cally sparse. For instance, collaborators with the Wyoming 
Cooperative Fish and Wildlife Research Unit needed more 
detailed streamflow information for researching the effects of 
multiple stressors on fish and invertebrates in several ungaged 
watersheds in the upper Green River Basin in southwestern 
Wyoming, where streamflow data are sparse.

Several approaches to modeling streamflow at various 
scales have been developed that may improve the utility of 
sparse streamflow data to ecological research in small streams, 
including machine learning models that can fit potentially 
complex relations between streamflow observations and envi-
ronmental predictor variables. We developed a machine learn-
ing approach in R for modeling spatially and temporally con-
tinuous monthly streamflow from 2012 through 2017 in three 
semiarid montane-steppe watersheds (with drainage areas of 
26–55 square miles and mean elevations of 8,031–8,455 feet) 
on the Wyoming Range.

A machine learning streamflow (MLFLOW) model was 
developed to predict monthly streamflow using static and 
dynamic variables derived from geospatial and time series 
data and to explain the multidimensional relation of monthly 
streamflow to the predictor variables. Streamflow measure-
ments were made at 125 sites in 35 months during 2012–17, 
totaling 971 discrete observations; only a single measurement 
was made at any site in any month. Based on the potential 
to affect streamflow, 24 variables describing physiographic, 
anthropogenic, and climatic characteristics were chosen as 
predictors in the MLFLOW model—20 variables described 
static physiographic and anthropogenic conditions, and 4 vari-
ables described dynamic climatic conditions.

The dynamic and static variables were temporally and 
spatially conditioned to amplify the relation of predictor 
variables to monthly streamflow. To generate a diverse lagged 
effect of climatic conditions on streamflow, a temporal condi-
tioning process was applied to the climate variables. The pro-
cess consisted of moving averages of the time series data that 
ranged from the prior month to the prior year. Two geospatial 
processes were used to account for area and distance effects on 
streamflow. An area-averaged accumulation of the spatial data 
generated upstream effects of a variable. A distance-decayed 
accumulation of the spatial data generated more localized 
effects of a variable.

The MLFLOW model used a gradient boosting machine 
that is one of many machine learning models that are used 
in various hydrologic modeling, including modeling of 

streamflow. A gradient boosting machine is a machine learning 
model used to solve regression or classification problems. The 
gradient boosting machine produces a predictive model that 
is an ensemble of many weaker models, which are typically 
implemented as decision trees. Development of the MLFLOW 
model proceeded in an iterative process of model calibration 
and validation. Streamflow observations used to fit the model 
were split into training and testing samples using repeated 
k-fold cross-validation.

The MLFLOW model was initially fitted to all data 
to explain monthly streamflow in relation to the predictor 
variables for all the study area and study period. Additional 
models were fitted, one model for each watershed and year to 
explain spatial or temporal variation in the relation of monthly 
streamflow to the predictor variables. Multiple models were 
fitted to qualitatively assess sensitivity of the MLFLOW 
model to variations of the predictor variables and stream-
flow observations. Models fitted to different combinations of 
predictor variables were used to assess sensitivity to selection 
and conditioning of the predictor variables. Model sensitivity 
to fitting data from a different area or period was assessed by 
differentially grouping streamflow observations by watershed 
or year for use in model training and testing. Model sensitiv-
ity to the quantity of data fitted was assessed by progressively 
reducing streamflow observations by percentage of sites or 
months available for use in model fitting.

The MLFLOW model fitted to all data had satisfactory 
agreement between observed and predicted streamflow (coef-
ficient of determination [R2]=0.80, Nash-Sutcliffe efficiency 
[NSE]=0.79, NSE with log-transformed data [logNSE]=0.82, 
and percent bias [PBIAS]=0.7 percent). The equivalence 
between NSE (0.79) and logNSE (0.82) indicated the 
MLFLOW model performed equally well for high and low 
flows. PBIAS (0.7 percent) indicated the MLFLOW model did 
not overpredict or underpredict monthly streamflow in general. 
The MLFLOW model performed equally well for all months 
with streamflow observations.

The most important variables (statistically important in 
the MLFLOW model) for explaining monthly streamflow were 
moving averages of precipitation and snow water equivalent. 
Importance of the static and dynamic variables did not differ 
substantially among the three watersheds but differed consid-
erably among the 6 years. The 20 most important variables in 
the MLFLOW model had simple to more complex relations 
with monthly streamflow as interpreted with partial depen-
dence plots. Monthly streamflow increased with increasing 
moving averages of precipitation and snow water equivalent 
and decreased with increasing moving averages of evapotrans-
piration and temperature. Monthly streamflow also increased 
with increasing drainage area and decreased with increasing 
forest cover and elevation.

Temporal and spatial conditioning intensified the relation 
of many predictor variables with monthly streamflow, result-
ing in more information that the MLFLOW model could use 
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for predicting streamflow. However, conditioning of the vari-
ables was less important than selection of dynamic variables 
for use in the MLFLOW model.

The MLFLOW model was most sensitive to selection of 
dynamic climatic variables. Unconditioned dynamic climatic 
variables alone explained 54 percent of the variance (R2=0.54) 
in monthly streamflow, whereas adding static physiographic 
and anthropogenic variables only explained 12 percent more 
of the variance (R2=0.66), indicating the greater importance of 
the time series data. Also, spatial conditioning of all variables 
together with temporal conditioning of dynamic variables 
increased the variance explained in the MLFLOW model by 
another 14 percent (R2=0.80).

For models trained with all watersheds and years, 
performance was better in testing on observations from each 
watershed than from each year separately, indicating the 
MLFLOW model had greater sensitivity to temporal than to 
spatial differences in the data. However, in contrast, models 
trained with all except 1 year left out sequentially and tested 
on the left-out year performed better than models trained with 
all except one watershed left out sequentially and tested on the 
left-out watershed.

Performance was better for models fitted to fewer sites 
than to fewer months of observations, which indicated the 
MLFLOW model was more sensitive to temporal than to spa-
tial differences in the data. The MLFLOW model fitted to all 
data performed very well, but performance in general progres-
sively decreased for models fitted to progressively reduced 
percentages of sites or months.

Streamflow predictions seemed to well represent the 
annual hydrograph within the study area during the study 
period. Intra-annual variation in streamflow was simulated 
realistically by the MLFLOW model—seasonality of stream-
flow was well characterized. The MLFLOW model also real-
istically simulated interannual variation in streamflow, well 
representing yearly hydroclimatic conditions.

The greatest utility of the modeling approach is the ease 
of use and the speed of processing input data, running the 
model, and interpreting the model output, whereas the greatest 
limitation is the need for spatially and temporally representa-
tive streamflow observations to drive the model. Although 
familiarity with R is necessary, only a working knowledge 
of hydrology (for selecting appropriate predictor variables 
and evaluating the quality of streamflow observations) and 
a rudimentary understanding of machine learning models 
are needed. Therefore, this modeling approach is practicable 
for other scientists who work with water but who are not 
hydrologists.
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