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Background

1. Axial cracking in intermediate and high-speed-stage shaft bearings
(white etching cracks: WECs)

Most common failure mode in WT gearboxes!]
Possibly resulting in costly repairs and high downtimeltl  —

Failed bearings also damage surrounding components. [
Axial Crack

HSS/IMS Stages

== )

RO - HSS = high-speed shaft; IMS = intermediate shaft
Source: Gould, B., Greco, A. The Influence i
of Sliding and Contact Severity on the Generation Source: Yi Guo, NREL NREL | 2
of White Etching Cracks. Tribol Lett 60, 29 (2015).



Approach

Existing systems use SCADA (supervisory control and data acquisition) data.
e SCADA data capture the overall condition of a wind turbine.
* Data do not allow the investigation of a specific bearing’s health.

Additional data are calculated using physics-based models and gearbox

design to enrich bearing fault signatures.3l(4]
 These models are developed by the NREL team with major contributions by
Yi Guo, and this study is incorporating these models.
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Data Description

December 2008 to October 2018

Thirteen 1.5-MW wind turbines

— Axial cracking (bearing A [rotor side] or bearing B [generator side, upwind] of
intermediate or high-speed-stage shaft

SCADA data: 10-minute averaged measurements of various sensors

— Power, wind speed, bearing temperature, oil temperature, ambient temperature,
nacelle temperature, status code, and other data.

A total of 144 (6 per hour x 24 hours) rows of data are recorded per day

by a single turbine in the SCADA system.
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Modeled Data

1. Consider the data only when a turbine is in running condition and power

is produced

2. Torepresent bearing’s health, additional data are calculated using
various models and gearbox configuration:
— Bearing load, roller load, roller deflection, frictional energy, slide-to-roll

ratio, and other data.

/ ADN Filter: Turbine
\Dat/ Running Status

Physics-based
models & GB design

Bearing-specific
Modeled Data

GB = Gearbox
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Data Preprocessing

1. Perform correlation analysis (Pearson correlation coefficient) and drop
features considering collinearity threshold as 0.9, including:

— Ambient temperature, bearing roller load, roller deflection, and other
features

2. Detect outliers using interquartile range (IQR)®! method and replace
them with median values:
[Q1-1.5x1QR, Q3 + 1.5 x IQR]
—  Outliers are few and random, with no correlation found with bearing failure

QOutliers Detection
using IQR

Daily Summary
Statistics

Correlation Analysis &

Drop Features Data Aggregation
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Data Preprocessing

3. Data aggregation and daily summary statistics are found:
— Minimum, maximum, and length of data
— Mean, standard deviation, and root mean square

— Skewness and kurtosis.

Daily Summary
Statistics

Correlation Analysis & Qutliers Detection

Drop Features using IQR Data Aggregation
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Methodology

Train-Test Split

Purpose

Model Training
B Madel Testing
Failure
O HSS Bearing A

* < HSS Bearing B
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Methodology

Data Labeling
— Predicting failure 30 days ahead of its time

— Hypothesis: Data from last month before failure contains strong signal of
bearing fault

. ) Bearing failure
Bearing's Life |

< 4
[ Healthy I Faulty ]

12/01/2008 Time

Y

Data show strong seasonality and distributions that vary month to month
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Methodology

Class imbalance as we mark only last month of data as “faulty”
Note: Algorithms are biased toward majority class.

Two techniques to address class imbalance:
1. SMOTE (synthetic minority oversampling technique)!®!

2. Cost-sensitive learning
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Methodology

Four algorithms are selected for bearing failure prediction:
1. Logistic regression!]
2. Random forest(®
3. XGBoost (Extreme Gradient Boosting)!®!
4. LSTM (Long Short-Term Memory) networks.[10!

Libraries
— Logistics regression, random forest: scikit-learn library!1]
— XGBoost: XGBoost library!12
— LSTM: Keras library(3!

« SMOTE cannot consider temporal structure of multivariate sequential data.
— SMOTE is used with logistic regression, random forest, and XGBoost.
— We do not use SMOTE with LSTM, as it handles imbalanced data well.

e Cost-sensitive learning is used on all four algorithms.
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Methodology

Recent historical data are helpful for prognostics, as axial cracking in
bearings does not happen instantaneously.

— Add 1-30 days of lagging variables of SCADA channels while training logistic
regression, random forest, and XGBoost

— LSTM handles a sequence of past observations as input.

All four algorithms are trained and tested on two sets of data:
1. SCADA data
2. SCADA data and modeled data.

We are interested in knowing how models perform when we add bearing-specific
model data to capture a bearing’s health.
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Evaluation

We evaluate model performance using Precision, Recall, F1 score, and
AUC (area under ROC [receiver operating characteristic] curve).

ROC4 s a probabilistic curve that shows the model performance at
various classification thresholds.

Prediction Metric Formula

Healthy Faulty Precision TP/(TP + FP)

Recall or TPR TP/(TP + FN)
True Negatives  False Positives

Healthy >
Actual o A F1 score 2 x Precision x Recall/(Precision + Recall)
False Negatives  True Positi
Faulty € o088 Sy FPR FP/(FP + TN)

TPR = true positive rate; FPR = false positive rate
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Cost-sensitive learning performs slightly better than SMOTE for logistic
regression, random forest, and XGBoost models.

When we add modeled data to SCADA data, model performance increases in
terms of F1 score and AUC.

— Precision increases, which improves overall F1, as it is a harmonic mean of
precision and recall.

— LSTM models perform the best.
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Results: Modeled Data
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Conclusion and Future Work

Study shows the potential of bearing-specific modeled data, and they
should be explored further.

Optimum classification threshold can be optimized using ROC curve and
considering false alarms and missed detections cost.

Overall performance can be improved if machine learning models for
individual bearings are developed.

We do not know when the cracks start developing until they are visually
detectable.

— Further work would be to find the maximum lead time (assumed to be the
last 30 days in this study) to predict bearing axial cracking
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