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1. Axial cracking in intermediate and high-speed-stage shaft bearings 
(white etching cracks: WECs)

2. Most common failure mode in WT gearboxes[1]

3. Possibly resulting in costly repairs and high downtime[1]

4. Failed bearings also damage surrounding components.[2]

Background

HSS = high-speed shaft; IMS = intermediate shaft
Source: Gould, B., Greco, A. The Influence 
of Sliding and Contact Severity on the Generation 
of White Etching Cracks. Tribol Lett 60, 29 (2015).

Axial Crack

Source: Yi Guo, NREL
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Additional data are calculated using physics-based models and gearbox 
design to enrich bearing fault signatures.[3][4]

• These models are developed by the NREL team with major contributions by 
Yi Guo, and this study is incorporating these models.

Existing systems use SCADA (supervisory control and data acquisition) data.
• SCADA data capture the overall condition of a wind turbine.
• Data do not allow the investigation of a specific bearing’s health.

Approach
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Data Description

Thirteen 1.5-MW wind turbines 
– Axial cracking (bearing A [rotor side] or bearing B [generator side, upwind] of 

intermediate or high-speed-stage shaft
SCADA data: 10-minute averaged measurements of various sensors

– Power, wind speed, bearing temperature, oil temperature, ambient temperature, 
nacelle temperature, status code, and other data. 

December 2008 to October 2018

A total of 144 (6 per hour × 24 hours) rows of data are recorded per day 
by a single turbine in the SCADA system. 
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Modeled Data

1. Consider the data only when a turbine is in running condition and power 
is produced

2. To represent bearing’s health, additional data are calculated using 
various models and gearbox configuration:
– Bearing load, roller load, roller deflection, frictional energy, slide-to-roll 

ratio, and other data.

GB = Gearbox
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Data Preprocessing

1. Perform correlation analysis (Pearson correlation coefficient) and drop 
features considering collinearity threshold as 0.9, including:
– Ambient temperature, bearing roller load, roller deflection, and other 

features
2. Detect outliers using interquartile range (IQR)[5] method and replace 

them with median values:
[Q1 – 1.5 x IQR, Q3 + 1.5 x IQR]
– Outliers are few and random, with no correlation found with bearing failure
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Data Preprocessing

3. Data aggregation and daily summary statistics are found:
– Minimum, maximum, and length of data
– Mean, standard deviation, and root mean square
– Skewness and kurtosis.
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Methodology

Train-Test Split
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Methodology

Data Labeling
– Predicting failure 30 days ahead of its time
– Hypothesis: Data from last month before failure contains strong signal of 

bearing fault 

Data show strong seasonality and distributions that vary month to month



NREL    |    10

Methodology

Class imbalance as we mark only last month of data as “faulty”
Note: Algorithms are biased toward majority class.

Two techniques to address class imbalance:
1. SMOTE (synthetic minority oversampling technique)[6]

2. Cost-sensitive learning
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Methodology

Four algorithms are selected for bearing failure prediction:
1. Logistic regression[7]

2. Random forest[8]

3. XGBoost (Extreme Gradient Boosting)[9]

4. LSTM (Long Short-Term Memory) networks.[10]

Libraries
– Logistics regression, random forest: scikit-learn library[11]

– XGBoost: XGBoost library[12]

– LSTM: Keras library[13]

• SMOTE cannot consider temporal structure of multivariate sequential data.
– SMOTE is used with logistic regression, random forest, and XGBoost.
– We do not use SMOTE with LSTM, as it handles imbalanced data well.

• Cost-sensitive learning is used on all four algorithms.
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Methodology

Recent historical data are helpful for prognostics, as axial cracking in 
bearings does not happen instantaneously.

– Add 1–30 days of lagging variables of SCADA channels while training logistic 
regression, random forest, and XGBoost

– LSTM handles a sequence of past observations as input.

All four algorithms are trained and tested on two sets of data:
1. SCADA data
2. SCADA data and modeled data.

We are interested in knowing how models perform when we add bearing-specific 
model data to capture a bearing’s health.
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Evaluation

• We evaluate model performance using Precision, Recall, F1 score, and 
AUC (area under ROC [receiver operating characteristic] curve).

• ROC[14] is a probabilistic curve that shows the model performance at 
various classification thresholds. 

Metric Formula

Precision TP/(TP + FP)

Recall or TPR TP/(TP + FN)

F1 score 2 × Precision × Recall/(Precision + Recall)

FPR FP/(FP + TN)

TPR = true positive rate; FPR = false positive rate
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Results

Cost-sensitive learning performs slightly better than SMOTE for logistic 
regression, random forest, and XGBoost models.

When we add modeled data to SCADA data, model performance increases in 
terms of F1 score and AUC.

– Precision increases, which improves overall F1, as it is a harmonic mean of 
precision and recall.

– LSTM models perform the best.
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Results

Performance of LSTM model built using SCADA data



NREL    |    16

Results: Modeled Data

Performance of LSTM model built using SCADA and modeled data

• 50% 
reduction in 
false alarms

• F1 score is 
improved by 
12%

• Overall AUC is 
increased by 
6%
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Conclusion and Future Work

• Study shows the potential of bearing-specific modeled data, and they 
should be explored further.

• Optimum classification threshold can be optimized using ROC curve and 
considering false alarms and missed detections cost.

• Overall performance can be improved if machine learning models for 
individual bearings are developed.

• We do not know when the cracks start developing until they are visually 
detectable.
– Further work would be to find the maximum lead time (assumed to be the 

last 30 days in this study) to predict bearing axial cracking
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Additional Information

2020 Prognostics and Health 
Management Society Conference 

Prognosis of Wind Turbine Gearbox 
Bearing Failures Using SCADA and 

Modeled Data
Authors: Arch Desai, Yi Guo, Shawn Sheng, Caleb 

Phillips, and Lindy Williams



NREL    |    19

References
1. Shuangwen Sheng. 2014. Gearbox Reliability Database: Yesterday, Today, and Tomorrow (Presentation). NREL (National 

Renewable Energy Laboratory). NREL/PR-5000-63106. https://www.nrel.gov/docs/fy15osti/63106.pdf .

2. Musial, W., Butterfield, S., & McNiff, B. (2007). Improving Wind Turbine Gearbox Reliability. Proceedings of the 2007 
European Wind Energy Conference (pp. 1–13), May 7-10, Milan, Italy.

3. Guo, Y., & Keller. J. (2020). Validation of combined analytical methods to predict slip in cylindrical roller bearings. 
Tribology International, vol. 148, p. 106347. doi: 10.1016/j.triboint.2020.106347

4. Guo, Y., Sheng, S., Phillips, C., Keller, J., Veers, P., & Williams, L. (2020). A methodology for reliability assessment and 
prognosis of bearing axial cracking in wind turbine gearboxes. Renewable and Sustainable Energy Reviews, vol. 127, p. 
109888. doi: 10.1016/j.rser.2020.109888

5. Tukey, J. W. (1977). Exploratory data analysis. Pearson. 

6. Chawla, V., Bowyer, K., Hall, L., & Kegelmeyer, W. (2002). SMOTE: synthetic minority over-sampling technique. Journal 
of Artificial Intelligence Research, vol. 16, pp. 321–357. doi: 10.1613/jair.953

7. McCullagh, P., & Nelder, J.(1989). Generalized linear models (Eds. 2). London: Chapman & Hall. 

8. Liaw, A., & Wiener, M. (2002). Classification and Regression by random Forest. R News, 2(3), pp. 18-22. 

9. Chen, T., & Carlos, G. (2016). XGBoost. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining. doi: 10.1145/2939672.2939785 

10. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-term Memory. Neural computation, vol. 9 (8), p. 1735-80. doi: 
10.1162/neco.1997.9.8.1735

11. INRIA. (2018). Scikit-learn. Available at http://scikit- learn.org/stable. 

12. DMLC. (2019). XGBoost. Available at https://xgboost.ai 

13. Chollet, F., & others. (2015). Keras. Available at https://keras.io

14. Fawcett T. (2004). Roc graphs: Notes and practical considerations for researchers. Machine learning, vol. 31, pp. 1–38.

https://www.nrel.gov/docs/fy15osti/63106.pdf


www.nrel.gov

Thank you!

NREL/PR-2C00-79167

This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable 
Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by 
the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Wind Energy Technologies Office. 
The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The 
U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. 
Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published 
form of this work, or allow others to do so, for U.S. Government purposes.


	Machine Learning for Gearbox Fault Prediction by Using Both Scada and Modeled Data
	Background
	Approach
	Data Description
	Modeled Data
	Data Preprocessing
	Data Preprocessing

	Methodology
	Methodology
	Methodology
	Methodology
	Methodology

	Evaluation
	Results
	Results
	Results: Modeled Data

	Conclusion and Future Work
	Additional Information
	References



