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SU~1MARY 

Two tests of undensified Space Shuttle thermal protection tiles under 

combined static and dynamic loads have been conducted. The tiles had a 

density of approximately 144 Kg/m3 (LI900 tiles) and were mounted on a strain 

isolation pad which was 0.41 cm (.160 inch) thick. A combined static and 

dynamic mission stress histogram representative of the W-3 area of the wing 

of the orbiter vehicle was applied. The stress histogram was provided by 

the Space Shuttle Project. Results presented in this paper include: tabula­

tion of measured peak and root-mean-square (RMS) accelerations in both com­

pression and tension; peak SIP stress in compression and tension, peak and 

RMS amplitude response ratios; lateral to vertical response ratios; response 

time histories; peak stress distributions (histograms), and SIP extension 

measured both with and without static tension at various mission times. 

INTRODUCTION 

The Space Shuttle contains in excess of 30,000 ceramic tiles for protec­

tion of the aluminum substructure from the high temperature of reentry. These 

tiles are attached to the Shuttle by first bonding each tile to a felt material 

called Strain Isolator Pad (SIP) and then bonding the combination to the sub­

structure. The configuration defined by the tile-adhesive-SIP represents a 

complex system that exhibits unique response to static and dynamic loading. 

The structural mechanics properties of the tile/SIP system have been under 

investigation at NASA Langley Research Center (LaRC) with a particular emphasis 

upon developing a data base for the assessment and/or prediction of tile 

fatigue life. 
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Several studies (see refs. 1-3, for example) have characterized the non­

linear stress-strain behavior of the SIP material and defined static failure 

modes and loads for both densified and undensified tiles. This nonlinear 

relationship between the tile load and tile displacement results in a complex 

nonlinear response behavior as discussed in reference 4. For example, large 

stress amplifications due to sharp peaks in tile acceleration response waveform 

were observed and parametric response under certain sinusoidal excitations 

occurred. Other studies (ref. 5, for example) have investigated fatigue 

properties of the tile/SIP system under constant amplitude, fully reversed 

sinusoidal loading applied at a frequency of 1 hertz. The results of these 

tests, however, do not reflect the effect of nonsinusoidal, high strain rate 

response of the tiles such as would actually be experienced in flight. It is 

the purpose of this paper to present and summarize the results of an experi­

mental investigation to obtain dynamic response data under high strain rate 

conditions for use in assessment of tile dynamic response and fatigue life. 

Two high stress level tests of LI 900/.160 (tile type/SIP thickness in inches) 

undensified tiles representative of the W-3 area of the orbiter vehicle were 

conducted. In these tests, the tiles were subjected to static tensile stress 

combined with a dynamic stress histogram corresponding to an expected mission 

load profile. The mission load histogram was applied repeatedly until tile 

failure occurred or until 1500 simulated missions were achieved. The magnitude 

of the applied loads were provided by the Project. In this paper, the rationale 

used to develop the test loads is not discussed. Further, no attempt is made 

to interpret the data in terms of fatigue properties or fatigue life of the 

Thermal Protection System (TPS). Details of the test configurations, procedures, 

and limitations are discussed, since they ~an influence the interpretation of 

the results obtained. In particular, some of the practical problems that arose 

because of the system nonlinear response characteristics are noted. 
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Test Specimens 

Two specimens were tested, both of which were LI900 undensified tiles 

having footpad dimensions of 15.24 x 15.24 cm (6" x 6") but different thick­

nesses (5.1 and 7.0 cm). The tiles were bonded to a 28 x 28 x 1.27 cm 

(ll" x 11" X 0.5") flat aluminum substrate plate with filler bar added. The 

substrate plate was then bolted to the fixture plate of the vibration shaker. 

No attempt was made in these tests to simulate substrate deformation. 

In order to obtain the required stress levels in the SIP, it was necessary 

to bind a 15.24 x 15.24 x 0.95 cm (6" x 6" X .375") steel plate {net weight = 

1.63 kg (3.6 lbs.)) to the tile upper surface. The center of this steel plate 

contained an eye bolt for attaching a 1.0 cm (3/8 in.) bungee cord that was 

used to produce static tensile stress in the SIP. A sketch of the fatigue 

specimen and test configuration is shown in figure 1. In the remainder of this 

paper, the two tile/SIP specimens will be referred to as Tile FLO-2 (5.1 cm 

(2.0") thick) and Tile FLO-4 (7.0 cm (2.75") thick). 

Test Apparatus 

Vibration system.- An electromagnetic vibration exciter was used to excite 

the tiles. The exciter is capable of producing 44,482 N (10,000 lbs.) of force 

at frequencies from 5 to 2500 Hz, within the limitations imposed by the armature 

mass of 445 kg {110 lbs.} and velocity/displacement limits of 190 cm/sec 

(75 in/sec), and 2.5 cm (1 in.) double amplitude, respectively. The require­

ments of this test were sufficiently below the machine capabilities that there 

were no constraints imposed by the equipment. 

Control system.- A digital control system was used to generate the vibration 

spectrum and control the applied vibration levels. The sine vibration mode of 

operation was chosen with the frequency'selected to be below the natural frequency 
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of the test specimen but high enough to minimize the time required to apply a 

discrete number of load cycles to the specimen. A nominal test frequency of 

100 Hz was chosen. 

A feedback source for the controller was chosen to be a pair of acceler­

ometers mounted on diagonal corners of the tile top, and these were designated 

the control accelerometers. The controller operates by varying the drive signal 

to the vibration exciter to maintain the tile acceleration level, as measured 

by the control accelerometer receiving the higher peak acceleration, at the 

level specified by the reference spectrum. 

Instrumentation.- Four accelerometers were mounted to the steel top 

plate of the tile, oriented to measure accelerations in the vertical (perpen­

dicular to the plane of the SIP) direction. A diagonal pair of these acceler­

ometers were designated the control accelerometers. Another pair of acceler­

ometers, mounted orthogonally at diagonal corners of the steel plate, measured 

lateral accelerations. An additional accelerometer measured the input accel­

eration (vertical) of the vibration exciter fixture plate. 

Two noncontacting, nonforce inducing position transducers were placed to 

obtain vertical displacement information from the tile top. Two position 

sensors were also located at opposite ends of one side of the tile, sensing 

lateral motions. A fifth position sensor obtained table motion information 

in the vertical direction. These noncontacting displacement sensors consist of 

a variable impedance bridge with an active and a reference coil. The variations 

in impedance result from the eddy currents induced in nearby conductive surfaces. 

The conductive target for the vertical sensors was the steel top plate, whereas 

aluminum tape was added to the side of the tile to provide a lateral conductive 

target. The effective range of the sensors used was about 2.5 cm (1 in.). 
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Accuracy is about ~ .003 cm over a range of 1 to 2.5 cm. The locations of 

the accelerometers a~d position transducers are shown in figure 1. Also 

attached to the steel top plate was a bungee cord used to develop static 

stress in the SIP as required by the stress histogram (see next s~ction). 

The bungee was, in turn, attached to a load cell and overhead power lift. 

Test Procedures 

The load cycle histogram of figure 2 was supplied as representative of 

one mission. In the tests described herein, only the stress bins between 

20,685 Pa and"55,160 Pa (3.0 and 8.0 psi) were used. In order to implement 

the dynamic component of this histogram with. the vibration exciter controller, 

the reference spectrum of figure 3 was developed. This spectrum represents a 

10 mission block and contains very close to the exact number of load cycles 

(multiplied by 10) that would be required by the histogram. The spectrum was 

swept in frequency because the controller is incapable of changing output 

level without simultaneously changing frequency. A swept (rather than stepwise) 

level change was used in order to minimize the effects of the rate-of-change 

time constant inherent to the coritro11er. For this reason also, the rate of 

change of level was made as constant as practical. 

Because of nonlinear stress-strain behavior of the SIP which results in 

distorted response waveforms, a slight overtest of Tile FLD-2 occurred due to 

the nonsinusoidal response of the tile/SIP system. The controller is factory 

programmed to average the positive and negative peak input received from each 

control accelerometer and control the exciter to maintain that average at the 

level specified by the reference spectrum. Since the ratio of the compression 

to tension response peak varies with stress level, and insufficient data existed 

to predict what the ratios would be at the various stress levels, the controller 
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was allowed to maintain the average level of each load cycle for Tile FLD-2. 

For Tile FLD-4, a signal conditioner was inserted in the accelerometer signal 

path. The conditioner acted to increase the apparent level of the compres­

sion peak to be equal to the tension peak. The controller then accurately 

applied the desired peak stress spectrum. A block diagram of the signal con­

ditioner is shown in figure 4. Note that the signal conditioner produces a 

square wave output. Because the controller develops the drive signal based 

upon the peak value of control accelerometer signal, modification of the wave­

shape by the signal conditioner did not affect controller performance. A 

detailed description of the operation and function of the signal conditioner is 

given in Appendix A. 

Method of application.- Prior to each test, the accelerometers were attached 

to the shaker fixture plate and calibrated by application of a ~ 10 g accelera­

tion level at 44.3 Hz. This produced an easily measured 0.245 cm (0.1 in.) 

double amplitude displacement. The displacement sensors were calibrated 

statically using the actual specimens as targets (see Instrumentation Section). 

The specimens were then mounted to the shaker fixture plate, the bungee cord 

and accelerometers attached, and the desired tension load was applied by 

pulling the bungee vertically with an electrically-powered lift. Tension force 

was monitored by a load cell attached between the bungee and lift. Once the 

desired tension force was attained, the static extension of the SIP was recorded 

from a digital readout of the displacement sensor output. The dynamic loading 

was then applied via the vibration exciter in consecutive groups of 10 mission 

cycles. At the completion of each set of 50 missions, the test was stopped and 

SIP extension was recorded with the static tension load still applied. The 

static load was then removed and SIP extension was recorded for the unloaded 
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conditi6n. Next, the static load was reapplied and the tests were continued. 

The above sequence \'/as repeated after every group of 50 mi ss ions. The test 

continued until SIP failure occurred or until 1500 missions were completed. 

The first test (Tile FLD-2) used a static SIP stress of 22,408 Pa (3.25 PSI)'­

equivalent to 361.42 N (81.25 lbs.) tension force, and the second test 

(Tile FLD-4) used a SIP stress of 17,237 Pa (2.50 PSI), equivalent to 278 N 

(62.5 lbs.) tension. 

Results and Discussion 

Response time histories.- Characteristics of tile response to sinusoidal 

base (table) excitation at both high and low SIP stress levels ar.e illustrated 

by the response time histories in figures 5 through 8. Each figure contains 

the table excitation, tile vertical acceleration response at each accelerometer 

location, and lateral acceleration response. Accelerometer locations are shown 

on top view of figure 1. Acceleration response time histories for low and high 

stress level conditions for Tile FLD-2 are shown in figures 5 and 6, respec­

tively. Figures 7 and 8 present similar data for Tile FLD-4. In both tests, 

the acceleration response time histories were reasonably sinusoidal in shape 

at low stress levels. However, as the stress level increased, the tile response 

characteristics became decidedly nonlinear as evidenced by the sharp negative 

acceleration (tension) peaks, which in some cases, exceeded twice the magnitude 

of the corresponding compression peaks (see figs. 8(b) and 8(c), for example). 

The nonsymmetrical response can be characterized by the ratio of compressive 

acceleration to tension acceleration. This ratio is presented in figur~ 9 as 

a function of peak SIP stress (static + dynamic) level. Data are sho\'tn for 

both tiles and for measurements made early and late in the test sequence. The 

data for Tile FLD-2 indicate that tile/SIP response was approximately sinusoidal 
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(Gcomp/Gtens ~ 1.0) only at the lowest stress levels and became increasingly 

nonsymmetrica1 as SIP stress increased. ~1easurements taken at the end of 700 

missions (shaded circles) showed little change in the nonsymmetry characteristic, 

indicating that the basic dynamic response signature of this tile was unaffected 

by the load history. This tile failed at 710 missions, which corresponds to 

more than 107 load cycles at greater than 34,475 Pa (5.0 PSI). 

The dynamic response time histories for Tile FLD-4 indicated a substantial 

increase in nonsymmetry as compared to Tile FLD-2. Tile FLD-4·completed 1500 

missions. Measurements made just prior to the end of the test showed a shift 

to a more symmetric response as indicated by the shaded squares in figure 9. 

Several factors that may account for the difference in response characteristics 

between the two tiles include: (1) different static loads, hence, different R 

ratios (see eq. (3)) due to the different applied dynamic stress components; 

(2) shift in tile resonant frequency due to the different tension loads; and 

(3) more accurate control of tile response for Tile FLD-4 because of insertion 

of signal conditioning into the shaker control loop. The reduction in response 

nonsymmetry for Tile FLD-4 at 1500 missions could have been the result of SIP 

softening under the higher dynamic stress component and extended mission time. 

Response 1eve1s.- Peak acceleration responses in compression and tension 

at each accelerometer location are listed in Tables 1 and II for various mission 

times. With regard to the lateral accelerometers, the terms tension and com­

pression refer to the lateral peaks that occurred simultaneously with the ver­

tical tension and compression peaks. The table entries are the peak tension 

and corresponding compression accelerations measured within the 10 mission 

group preceding the number of missions listed in the far left column. At each 

accelerometer location, the peak acceler~tions were averaged over missions to 
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give the mission average at the bottom of each column. In addition, at each 

number of missions, the four vertical tile accelerations were averaged and 

tabulated in the far right column. 

Accelerometer measurements at each location varied only slightly as the 

number of missions increased. This illustrates the ability of the shaker 

controller to consistently maintain relatively constant tile acceleration 

response levels even though SIP characteristics may have changed with repeated 

loading. Second, the nonsymmetry of tile vertical response is apparent. 

Finally, peak tile acceleration levels experienced by Tile FLD-2 were greater 

than those of Tile FLD-4 in both compression and tension because insertion of 

the signal conditioner in the control loop (see test spectrum discussion) _ 

resulted in an effective reduction in table acceleration applied to Tile FLD-4 

compared to Tile FLD-2. RMS acceleration levels corresponding to the peak 

accelerations in Tables I and II are given in Table III. The ratio of mission 

averaged peak tile acceleration response to mission averaged peak table accel­

eration are given in Table IV (a) and (b). The data show that the amplification 

ratio for peak tile acceleration response was approximately 3.0 for both tiles 

whereas the ratio of RMS tile acceleration to.RMS table acceleration was about 

1.55 for Tile FLD-2 and 1.72 for Tile FLD-4. For a linear dynamic system, the 

peak and RMS acceleration ratios are identical. The above differences reflect 

the effect of the nonlinear SIP characteristics. This nonlinearity is further 

illustrated in Table V, which presents the ratio of average peak acceleration 

to average Rt1S acceleration for each vertical accelerometer. The average 

values refer to the average over mission time; i.e~, the column averages in 

Tables I O(b), II (b), and III (a) and (b). The peak to RMS ratio for Tile FLD-2 

was approximately 3.2 and for Tile FLD-4 approximately 2.5 to 2.6. If the SIP 

were linear, the peak to RMS ratio would be 1.4. 
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Table VI 'presents the ratio of average (over mission time) peak lateral 

acceleration response to the overall averaged (over mission time and location) 

peak vertical response. The maximum lateral response observed in these tests 

occurred for Tile FLO-2 and equalled approximately 15 percent of the corres­

ponding vertical response. For Tile FLO-2, the maximum lateral response was 

3.3 percent of vertical response. In both cases, the lateral frequency was 

identical to the vertical frequency, although waveform analysis showed the 

presence of appreciable amounts of one-half, second,and third harmonics which 

were not coherent with the tile vertical response waveshape. 

SIP stress.- The SIP stress levels were derived from the acceleration 

measurement by application of the fo110\'/ing equations: 

where 

(aSIP)TENSION(COMP) = SIP tensile (compressive) stress assuming 
uniform stress dist2ibution over the SIP 
footprint, Pa(lb/in ) 

aSTATIC = Static tensile stress due to bungee pull, Pa(lb/in2) 

Gt = Acceleration in tension direction, 9 units 

Gc = Acceleration in compression direction. g units 

K = Ratio of footprint area divided by total tile weight, 
m2/Kg(in2/1b), K = B.16 x 10-3(5.740) for FLO-2 and 
K = 7.96 x 10-3(5.594) for FLO-4' 

(1) 

(2) 

For both tests, the desired (nominal) maximum SIP stress was 55160 Pa (B.O PSI). 

The actual SIP stresses obtained (based upon eqs. (1) and (2)) are given in 

Table VII. It is seen in Table VII (a) that Tile FLO-2 experienced SIP 

10 



stresses in excess of 62055 Pa (9.0 PSI) {average SIP stress = 64675 PA 

(9.38 PSI)). This overstress condition resulted from strong nonsymmetry in 

tile response which inadvertant1y introduced a larger than desired shaker 

drive signal at the high stress condition. This overstress condition does 

not invalidate the data obtained from Tile FLO-2. It will, however, influence 

predicted fatigue life which must be based upon the actual load experience of 

an individual tile. 

Introduction of the signal conditioner (see test spectrum section) in 

the feedback control loop resulted in the peak stress levels given in Table 

VII (b) for Tile FLO-4. The use of the signal conditioner led to a reduction 

in peak stress by approximately 6895 Pa (1.0 PSI). The average peak stress 

for the Tile FLO-4 was 57918 Pa (8.4 PSI) compared to 6483 Pa (9.4 PSI) for 

Tile FLO-2. Also listed in Tables VII (a) and (b) are the average Rvalues 

at the high stress condition where R is defined as: 

(3) 

The data probably of most use to fatigue specialists are the actual load 

experiences of each tile; i.e., the distribution of peak stress occurrences. 

These data are summarized in Tables VII (a) and (b) and in figures 10 and 11. 

Each table contains the actual number of peak stress occurrences within a 

la-mission block taken early (41-50 missions, column 2) in the test and 

within a la-mission block taken late (column 3) in the test. The far right 

column in each table contains the desired peak stress occurrences and the far 

left column identifies the stress bins within which the peak stress events 

occurred. In both tests, the actual peak count slightly exceeded the nominal 

count. This probably was due to counting of secondary peaks (see figs. 6 an9 8, 
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for example) that were present at the highest stres~ levels. Further, the peak 

stress distribution for Tile FLO-2 differed greatly from the nominal distribu­

tion, particularly within the higher stress bins. Approximately 280 peaks 

within each 10-mission block of Tile FLO-2 exceeded 55160 PA (8.0 PSI). The 

load distribution for Tile FLO-4 more nearly approached the nominal distribu­

tion, although a significant increase in peak counts occurred in the 48265 to 

55160 Pa (7.0 to 8.0 PSI) stress bin. Only 15 peaks exceeded 55160 Pa (8.0 PSI) 

for Tile FLO-4. 

SIP extension.- SIP extension resulting from the combined load condition was 

measured by two displacement sensors mounted above but on opposite sides of the 

tile. SIP extension was measured prior to application of dynamic loading (zero mis­

sions) and after each subsequent interval of 50 missions (see test procedure section). 

The SIP extension data obtained are summarized in Tables IX and X and figures' 12 

through 17. These data indicate significant SIP extension occurred and generally 

increased somewhat linearly with respect to the logarithm of the mission 

exposure. Figures 12 and 15 are plotted in semi-log form to illustrate this 

point; the remainder are plotted on linear axes. Further, the SIP did not 

stretch uniformly but varied across the footprint area (see figs. 12 and 15 for 

example). Maximum measured SIP extension for Tile FLO-2 was 0.556 cm (0.219 

inches) on side 1 and 0.345 cm (0.136 inches) on side 2 which gave an average 

extension of 0.452 cm (0.178 inches) (see fig. 12). For Tile FLO-4 (see fig. 15), 

the maximum SIP extensions under tension load were 0.48 cm (0.19 inches) on 

side 1,0.40 cm (0.16 inches) on side 2 for an average extension of 0.44 cm 

(0.175 inches). The SIP extensions measured upon removal of the static tension 

load are shown in figures 12 and 16. Comparisons of the average SIP extension 

for the loaded and unloaded conditions of Tiles FLO-2 and FLO-4 are given in 
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figure 17. These·data show that the SIP undergoes a steadily increasing per­

manent set as the number of missions increases. In the case of Tile FLD~2, 

SIP failure occurred. at 710 missions, whereas Tile FLD-4 completed 1500 missions. 

A photograph of the failure mode of Tile FLD-2 is shown in figure 18 .. The 

failure mode in this case was separation at the tile/SIP interface. The 

photograph also indicates the nonuniform nature of SIP extension at SIP failure. 

CONCLUSIONS 

Two tests of undensified Space Thuttle thermal protection tiles under 

combined static and dynamic loads have been conducted .. The tiles weighed 

144.2 Kg/m3 (LI 900 tiles) and were mounted on a strain isolator pad which was 

0.41 cm (.160 in.) thick. A combined static and dynamic mission stress histo­

gram representative of the W-3 area of the wing of the orbiter vehicle was 

applied. The stress histogram was provided by the Space Shuttle Project. 

Pertinent results and comments are summarized below: 

1. Tile/SIP response was highly nonlinear at the larger dynamic stress 

levels and was characterized by sharp tension peaks which could exceed twice 

the magnitude of the corresponding compression peaks. 

2. The nonlinear tile/SIP response properties resulted in overstress of 

Tile FLD-2 when the standard shaker control system was used. Modification of 

the controller feedback loop by insertion of a special purpose signal conditioner 

was effective in reducing the amount of overstress. This situation illustrates 

a potential problem that must be resolved when designing tests within which 

tile response is a control parameter. 

3. Tile FLD-2, which had an applied static stress of 22409 Pa (3.25 PSI), 

failed at 710 missions because of separation at the tile/SIP interface. This 

tile experienced an overstress of approximately 9653 Pa (1.4 PSI) at the high 
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stress level condition. Tile FLO-4, which had corrected load levels, an 

applied static stress of 17,237 Pa (2.50 PSI), and an overstress of 2758 Pa 

(0.40 PSI) completed 1500 missions. 

4. The ratio of peak tile acceleration to peak table acceleration was 

approximately 3.0 for both tiles. The corresponding ratios of RMS tile accelera­

tion to RMS table acceleration was 1.55 for Tile FLO-2 and 1.72 for Tile FLO-4. 

This difference reflects the nonlinear stress-strain behavior of the SIP. 

5. Maximum lateral tile response occurred for Tile FLO-2 and equalled 

15 percent of the vertical response. For Tile FLO-4, the maximum lateral 

response was 3.3 percent of the vertical response. Vertical and lateral 

response were identical in frequency, although different in waveshape. 

6. Significant SIP extension occurred for both tiles because of the static 

preload and as a result of cycling of the SIP material under dynamic loading. 

SIP extension gradually increased over mission time, proportionate to the 

logarithm of the accumulated cyclical loads. The average extension for 

Tiles FLO-2 and FLO-4 equalled 0.452 cm (0.178 in.) and 0.439 cm (0.173 in.), 

respectively. Upon removal of the preload, a permanent set remained. This 

permanent extension of each tile also increased with increased mission time. 
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APPENDIX 

Signal Conditi~ner Discussion 

A block diagram of the acce1~ration signal conditioner is presented in 

figure 4. The waveforms shown in this figure represent idealized signals 

which would typically be present at the points labeled with the same letters 

in the b1ock .. diagram, during a time segment equivalent to two tension and one 

compression half cycle. The accelerometer signal (A) is input to a precision 

rectifier and a polarity detector. The output of the polarity detector is a 

digital pulse train of the same frequency as the input, and is a high level 

when the input is positive and zero level when the input is negative. This 

pulse train is used for control purposes to be described later. 

The rectified signal (B) is an exact duplicate of the input signal, 

except that the negative portions have been made positive. This wave is 

modified to a level (C) by the peak hold circuit. This level is exactly as 

high as the peak of the signal received by the peak hold circuit. The i11us-

tration is idealized; a decay rate is built into the peak hold, or else the 

level could never decrease. In actuality a decay rate slightly greater than 

the maximum decay rate of the vibration exciter was purposely introduced. 

This resulted in the actual output level having a slight increase as each 

tension peak appeared, then a slight decay for approximately 10 ms until the 
I 

next tension peak. 

The level (C) is then sent through two parallel buffers, one of which 

inverts the signal (0 and E). The analog multiplexer selects between these 

two signals depending upon the instantaneous level of the control signal (F), 

and applies the proper signal to the output line to obtain a square wave (G) 
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of the same frequency and phase as the input, but with a magnitude (both 

positive and negative) as great as the peak positive or negative input occur­

ring in that time segment. 

A slight error is present in the output because of the decay built into 

the peak hold circuit. For purposes of this test the error was calibrated out 

by varying the gains of the two buffers. This was possible only because of 

the narrow frequency range required for this test. A more straightforward 

approach would be to give the peak hold a very long time constant, and reset 

the peak hold to zero at the beginning of each tension cycle. This approach 

will be used for any future testing. The vibration controller senses only the 

fundamental frequency and peak amplitude of the accelerometer signal. -Therefore, 

the fact that the output waveshape of the signal conditioner no longer resembles 

the input waveshape is of no importance. 
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TABLE 1.- PEAK ACCELERATION LEVELS IN COMPRESSION AND 
TENSION FOR TEST FLD-2 

--' 
(X) (a) COMPRESSION PEAKS, G 

NUMBER OF VERT VERT VERT VERT LAT LAT TABLE AVr, 
MISSIONS ACCEL 1 ACCEL 2 ACCEL 3 ACCEL 4 ACCEL 1 ACCEL 2 ACCEL VERT G 

100 15.64 18.09 18.06 15.81 2.28 1. 06 13.1 q 16.90 
150 16.06 18.38 18.52 16.50 2.30 1. 22 13.20 17.36 
200 16.10 18.30 18.47 16.71 2.36 1. 14 13.26 17.39 
350 16.06 18.04 18.36 15.14 2.32 1. 37 13.98 16.90 
450 15.95 17.67 17.68 15.03 2.28 1. 51 13.37 16.58 
550 15.72 16.98 17.46 15.65 2.13 1. 35 13.52 16.45 
650 16.08 16.91 17.11 15.76 2.2fl 1. 31 13.38 16.46 

AVG= 15.94 17.76 17.95 15.80 2.26 1.28 13.41 16.86 

(b) TENSInN PEAKS, G 

NUMBER OF VERT VERT VERT VERT LAT LAT TABLE AVG 
MISSIONS ACCEL 1 ACCEL 2 ACCEL 3 ACCEL 4 ACCEL 1 ACCEL 2 p,CCEL VERT G 

100 34.57 36.67 34.74 34.62 5.54 2.22 11.67 35.15 
150 34.34 36.29 34.65 34.54 5.13 1. 93 12.04 34.96 
200 34.26 36.52 34.92 34.60 5.28 2.10 12.38 35.08 
350 35.01 36.63 34.76 34.17 5.13 1. 71 12.18 35.14 
450 34.59 36.36 34.81 33.87 5.04 1. 59 11.62 34.91 

550 35.51 36.82 35.55 34.41 5.47 1. 61 12.18 35.57 
650 35.34 36.82 35.45 34.51 5.40 1.46 11.53 35.53 

AVG= 34.80 36.59 34.98 34.38 5.28 1.80 11.94 35.19 



TABLE I1. - PEAK ACCELERATION LEVELS IN Cm~PRESSION AND 
TENSION FOR TEST FLD-4 

(a) COMPRESSION PEAKS, G 

NU~~BER OF VERT VERT .. VERT VERT LAT LAT TABLE I\VG. 
t4ISSIONS ACCEL 1 ACCEL 2 ACCEL 3 ACCEL 4 ACCEL 1 ACCEL 2 ACCEL VERT G 

100 10.30 11.01 10.76 10.44 11.23 10.62 
300 11.28 11.54 12.04 11.42 .265 .906 11.83 11.57 
500 11.59 12.18 12.48 12.08 .306 .906 10.81 12.08 
700 10.92 11.68 11'.53 11.06 .195 .719 11.53 11.30 
900 10.79 11.40 11.37 10.95 .438 .739 11. 16 11. 13 

1100 11.00 11.76 11.85 11.52 .417 .788 11.87 11.53 
1300 11.02 11.84 12. 12 11.66 .326 .857 11.72 11.66 
1500 10.81 11.44 11.51 11.12 .205 .847 11.56 11.22 

AVG= 10.96 11. 61 11.71 11.28 .307 .822 11.46 11.39 

(b) TENSION PEAKS, G 

NUMBER OF VERT VERT VERT VERT LAT LAT TABLE AVT 
MISSIONS ACCEL 1 ACCEL 2 ACCEL 3 I\CCEL 4 ACCEL 1 ACCEL 2 ACCEL VERT ~ 

100 32.66 31. 79 32.54 33.23 10.75 32.56 
300 33.28 33.77 36.27 34.64 .393 1.248 11.00 34.49 
500 30.07 30.33 33.16 31.23 .342 .954 10.23 31.20 
700 33.00 32.94 34.19 33.34 .402 1. 218 10.78 33.37 
900 31.25 30.33 32.40 31.56 .463 1.081 10.56 31.38 

1100 33.50 31.85 34.74 33.59 .544 1.042 11.58 33.42 
1300 33.79 34.32 37.23 35.33 .453 1. 051 11.29 35.17 
1500 32.93 31.32 33.16 32.63 .. 443 1.012 10.97 32.51 

--' 
AVG= 32.56 32.08 34.21 33.19 .434 1.086 10.90 33.01 

1.0 



TABLE 111.- MAXIMUM RMS ACCELERATION LEVELS FOR TESTS 
FLD-2 AND FLD-4(IN G UNITS) 

N 
0 (a) FU)-2 

NUMBER OF VERT VERT VERT VERT LAT LAT TABLE AVG 
MISSIONS ACCEL 1 ACCEL 2 ACCEL 3 ACCEL 4 ACCEL 1 ACCEL 2 ACCEL VERT G 

100 10.54 11.03 11. 12 10.55 1. 51 .653 7.04 10.81 
150 11.54 12.14 12.26 11.72 1.61 .686 7.74 11.92 
200 11 .14 11.62 11.77 11.30 1. 54 .656 7.52 11.46 
350 10.36 10.80 10.94 9.79 1. 42 .587 6.83 10.47 
450 11.04 11.48 11.64 10.42 1. 51 .669 7.20 11.14 
550 10.82 11. 19 11.34 10.70 1.48 .655 7.01 11.01 
650 10.79 11. 10 11. 19 10.72 1.46 .632 6.88 10.95 

AVG= 10.89 11.34 11.46 10.74 1.50 .648 7.18 11.10 

(b) FLD-4 

NUMBER OF VERT VERT VERT VERT LAT LAT TABLE AVG 
rUSSIONS ACCEL 1 ACCEL 2 I\CCEL 3 ACCEL 4 ACCEL 1 ACCEL 2 I\CCEL VEP.T G 

100 12.59 12.73 12.81 12.75 . 113 .619 7.46 12.72 
300 13.04 13.32 13.70 13.39 .101 .548 7.73 13.36 
500 12.48 12.84 13.26 12.96 .112 .504 7.40 12.88 
700 12.81 12.73 12.59 12.86 . 118 .488 7.51 12.75 
900 13.04 13.20 13.59 13.39 .135 .504 7.73 13.30 

1100 12.81 12.73 13.26 13.18 .146 .482 7.46 13. 00 
1300 12.81 13.08 13.59 13.28 .140 .488 7.57 13.19 
1500 12.70 12.37 12.37 12.75 .146 .460 7.40 12.55 

AVG= 12.78 12.88 13.15 13.07 .126 .512 7.53 12.97 



TABLE IV.- RATIO OF PEAK AND RMS ACCELERATION RESPONSE TO 
PEAK AND R~1S TABLE INPUT FOR THE HIGH STRESS 
LEVEL CONDITION IN TESTS FLD-2 AND FLD-4. 

(a) FLD-2; astatic = 22,408 Pa 
(3.25 PSI) 

ACCELEROMETER (PEAK) OUT/(PEAK) IN (Rr~S) OUT / (RMS) 

VERT 1 2.92 1. 52 
VERT 2 3.07 1. 58 
VERT 3 2.94 1.60 

VERT 4 2.88 1.50 

AVERAGE 2.95 1. 55 

(b) FLD-4; a t t· = 17,237 Pa 
s a lC (2.50 PSl) 

ACCELEROt1ETER (PEAK) OUT/(PEAK) IN ( R~1S) OUT / ( RMS) 

VERT 1 2.98 1. 70 
VERT 2 2.94 1. 70 
VERT 3 3.14 1. 75 
VERT 4 3.04 1. 74 

AVERAGE 3.02 1.72 

IN 

IN 

21 



N 
N 

TABLE V.- RATIO OF AVERAGE PEAK ACCELERATION TO AVERAGE Rt1S ACCELERATION 
FOR TESTS FLD-2 AND FLD-4. (AVERAGE TAKEN OVER MISSION TmEs 
SEE TABLES. I s II, I II); ACCELERATION IN GiS) 

PEAK ACCELERATION RMS ACCELERATION . (PEAK)/(RMS) 
ACCELEROt1ETER FLD-2 FLD-4 FLD-2 FLD-4 FLD-2 FLD-4 

VERT 1 . 34.80 32.56 10.89 12.78 3.20 2.55 
VERT 2 36.59 32.08 11.34 12.88 3.23 2.49 
VERT 3 34.98 34.21 11.46 13.15 3.05 2.60 
VERT 4 34.38 33.19 10.74 13.07 3.20 2.54 



TABLE VI.- RATIO OF AVERAr,E PEAK LATERAL RESPONSE TO 
AVERAGE PEAK VERTICAL RESPONSE FOR TESTS FLD-2 
AND FLD-4. (LATERAL RESPONSE AVERAGED OVER 
MISSION TIME, VERTICAL RESPONSE AVERAGED OVER 
~lISSION TIME AND ACCELERor~ETER LOCATION.) 

ACCELERDr1ETER 

LAT 1 
LAT 2 

... 

FLD-2 FLD-4 
a . = 22,408 Pa a . = 17,237 Pa 
statlc (3.25 PSI) statlc (2.50 PSI) 

0.150 0.013 
0.051 0.033 

23 
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TABLE VII.- PEAK SIP STRESS LEVELS IN COMPRESSION 
AND TENSION FOR TESTS FLD-2 AND FLD-4. 
STRESSES IN PSI 

ACCELERO~1ETER 

VERT 1 
VERT 2 
VERT 3 
VERT 4 

AVG STRESS= 

ACCELEROMETER 

VERT 1 
VERT 2 
VERT 3 
VERT 4 

AVG STRESS= 

(a) FLD-2 

COMPRESSION, PSI 

.473 

.156 

.123 

.497 

.312 

(b) FLD-4 

COMPRESSION, PSI 

.541 

.424 

.407 

.484 

.464 

TENSION, PSI 

9.31 

9.62 
9.34 
9.24 

9.38 

TENSION, PSI 

8.32 
8.23 
8.61 
8.43 

8.40 



TABLE VIII.- DISTRIBUTION OF PEAK STRESS FOR TESTS FLD-2 
AND FLD-4. STRESSES IN PSI 

(a) FLD-2 

STRESS RANGE MISSIONS 41-50 MISSIONS 691-700 
psi 

2.0 - 3.0 
3.0 - 4.0 262 312 
4.0 - 5.0 2433 2299 
5.0 - 6.0 8515 8902 
6.0 - 7.0 7106 6714 

7.0 - 8.0 3653 3775 
8.0 - 9.0 262 256 
9.0 - 10.0 21 23 

TOTAL 22252 22281 

(b) FLD-4 

STRESS RANGE MISSIONS 41-50 MISSIONS 1491-1500 
psi 

2.0 - 3.0 44 

3.0 - 4.0 113 175 

4.0 - 5.0 3230 2390 
5.0 - 6.0 12018 12809 

6.0 - 7.0 6353 5833 
7.0 - 8.0 1013 1097 
8.0 - 9.0 15 15 

9.0 - 10.0 

TOTAL . 22786 22319 

DESIRED 

2740 
12540 

6180 

360 

21820 

DESIRED 

2740 
12540 

6180 
360 

21820 

25 



N 
en 

NU~1BER OF 
MISSIONS 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 

TABLE IX.- ABSOLUTE AND RELATIVE SIP EXTENSION FOR TEST FLD-2. (ALL DISPLACEt,1ENTS IN CM) 

ABSOLUTE RELATIVE 

AVERAGE AVERAGE 
LOADED LOADED UNLOADED UNLOADED AVERAGE 

DISPL 1 DISPL 2 DISPL DISPL 1 DISPL 2 DISPL b. DISPL 1 b. DISPL 2 b. DISPL 

.163 .119 .142 0 0 0 0 0 0 

.300 .193 .246 .213 .099 .157 .137 .074 .107 

.330 .208 .269 .246 .122 .183 .168 .089 .127 

.353 .224 .290 .279 .142 .211 . 191 .104 .147 

.373 .239 .305 .302 .152 .229 .211 .119 .165 

.399 .259 .330 .330 .183 .257 .236 .140 .188 

.396 .251 .325 .315 .163 .239 .234 .132 .183 

.419 .267 .343 .323 .165 .244 .254 .147 .201 

.434 .282 .358 .351 .193 .272 .272 .163 .218 

.450 .295 .371 .373 .208 .290 .287 .175 .231 

.460 .300 .381 .401 .229 .315 .297 .180 .239 

.472 .305 .389 .389 .216 .302 .310 .185 .249 

.490 .320 .406 .411 .229 .320 .328 .201 .264 

.513 .330 .422 .424 .244 .335 .351 .211 .279 
.. 556 .345 .452 .462 .254 .358 .394 .226 .284 



I 

I 

I 

I 
I NUMBER OF 
!MISSIONS 

N 

" 

0 
50 

100 
150 
200 
250 
300 
350 
400 
450 
500 
550 
600 
650 
700 
750 

TABLE X.- ABSOLUTE AND RELATIVE SIP EXTENSION FOR TEST FLD-4. (ALL DISPLACEMENTS IN CM) 

ABSOLUTE RELATIVE 

AVERAGE AVERAGE 
LOADED LOADED UNLOADED UNLOADED 

DISPL 1 DISPL 2 DISPL DISPL 1 DISPL 2 DISPL 11 DISPL 1 11 DISPL 2 

.165 . 135 .150 0 0 0 0 0 

.277 .231 .254 .168 .155 .163 .112 .099 

.318 .267 .292 .206 .175 . 191 .152 .132 

.340 .284 .312 .239 .198 .218 .175 . 150 

.356 .297 .325 .244 .203 .224 . 191 .163 

.368 .305 .335 .257 .218 .239 .203 . 170 

.386 .320 .353 .282 .239 .259 .221 .185 

.391 .323 .356 .287 .241 .264 .226 .188 

.406 .338 .371 .335 .279 .307 .241 .203 

.411 .343 .376 .310 .264 .287 .246 .208 

.417 .348 .381 .315 .269 .292 .251 .213 

.406 .335 .371 .315 .259 .287 .241 .201 

.424 .353 .389 .305 .257 .279 .259 .218 

.427 .353 .391 .310 .262 .284 .262 .218 

.429 .356 .394 .315 .262 .290 .264 .221 

.422 .348 .386 .305 .251· .279 .257 .213 

AVERAGE 
11 DISPL 

0 
.104 
.142 
.163 
.178 
.188 
.203 
.208 
.224 
.229 
.234 
.221 
.239 
.241 
.244 

" .234 



N 
00 

NUMBER OF 
MISSIONS 

800 
850 
900 
950 

1000 
1050 
1100 
1150 
1200 
1250 
l300 
1350 
1400 
1450 
1500 

LOADED 
DISPL 1 DISPL 2 

.432 .358 

.439 .363 

.442 .361 

.450 .371 

.452 .363 

.452 .368 

.452 .371 

.455 .373 

.460 .376 

.465 .384 

.470 .384 

.472 .386 

.470 .373 

.483 .391 

.485 .394 
----

AVERAGE 
LOADED 
DISPL 

.396 

.401 

.401 

.411 

.406 

.411 

.411 

.414 

.417 

.424 

.427 

.429 

.422 

.437 

.439 

TABLE X.- CONCLUDED 

ABSOLUTE RELATIVE 

AVERAGE 
UNLOADED UNLOADED AVERAGE 

DISPL 1 DISPL 2 DISPL !!l DISPL 1 !!l DISPL 2 !!l DISPL 

.323 .267 .295 .267 .224 .244 

.333 .274 .305 .274 .229 
I 

.251 : 
.330 .274 .302 .277 .226 .251 ! 

.343 .279 .310 .284 .236 .259 

.338 .277 .307 .287 .229 .259 I 

.353 .290 .320 .287 .234 .262 

.356 .295 .325 .287 .236 .262 

.338 .284 .310 .290 .239 .264 

.401 .325 .363 .295 .241 .269 

.414 .335 .376 .300 .249 .274 

.414 .335 .376 .305 .249 .277 

.419 .340 , .381 .307 .251 .279 

.417 .335 .376 .305 .239 .272 

.429 .343 .386 .318 .257 .287 

.432 .348 .391 .320 .259 .290 
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FIGURE 15.- ABSOLUTE SIP EXTENSION FOR TILE FLD-4 AS A FUNCTION 
OF THE NUMBER OF SIMULATED MISSIONS (STATIC STRESS = 

22.4 KPA). 
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FIGURE 16.- ABSOLUTE SIP EXTENSION FOR TILE FLD-4 AFTER REMOVAL 
OF STATUC LOAD AS A FUNCTION OF THE NUMBER OF 
SIMULATED MISSIONS. 
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FOR TILE FLD-4 • 
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