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Abstract: 

Astronauts are exposed to a unique set of stressors in spaceflight. Microgravity, isolation, 
confinement, and environmental and operational hazards: all of these can impact sleep, vigilant 
attention, and alertness, which are critical to mission success. In this paper, we seek to 
understand the most important predictors of alertness over the course of a space mission, 
using self-reported, cognitive, and environmental data collected from 24 astronauts on 6-
month missions to the International Space Station (ISS). Alertness was repeatedly and 
objectively assessed on the ISS with a brief 3-minute Psychomotor Vigilance Test (PVT) that is 
highly sensitive to sleep deprivation. To relate PVT performance to time-varying and sparsely-
measured environmental, operational, and psychological covariates, we propose an ensemble 
prediction model comprising of linear mixed effects regression, random forest, and functional 
concurrent regression models. An extensive cross-validation procedure reveals that this 
ensemble outperforms any one of its components alone. We also discover that a participant’s 
past performance, reported fatigue and stress, and temperature and radiation exposure were 
among the most important variables associated with alertness. This method is broadly 
applicable to environmental studies where the main goal is accurate, individualized prediction 
involving a mixture of person-level traits and irregularly measured time series. 

Keywords: cognitive performance, spaceflight, PVT, functional data analysis, ensemble 



Introduction 

During spaceflight, astronauts must perform cognitively intensive tasks that require sustained 
attention, often with disruptions to sleep and the circadian rhythm (Barger et al., 2014). Human 
performance deteriorates without proper rest, manifesting in longer reaction times and 
increased errors (Dinges, 1995), heightening the risk of accidents. As space travel is a costly and 
hazardous endeavor, it is critical to anticipate changes in alertness on a dynamic and 
individualized basis. While environmental and psychological correlates of alertness have been 
studied in the general population, highly trained and carefully selected astronauts are not 
necessarily represented in this population. In space, they are exposed to a unique set of 
conditions (Scully et al., 2019; Strangman et al., 2014; Thirsk et al., 2009), including 
microgravity, extended confinement and isolation, radiation exposure, and other 
environmental and operational extremes. The collective impact of these challenges on 
psychological health and cognitive performance are not yet fully understood (Roy-O’Reilly et al., 
2021). 

The goal of this study is to dynamically predict vigilant attention as a function of astronauts' 
past performance, self-reported stress and fatigue, demographic information, and variations in 
environmental stressors. Vigilant attention is assessed using the LRM-50 score (Basner et al., 
2015), which is derived from a shortened version of the Psychomotor Vigilance Task (PVT) 
developed for spaceflight (Basner et al., 2011). The main challenge of predicting PVT 
performance is unraveling variation associated with the circadian rhythm, individual traits, 
psychological state, and the external environment (Olofsen et al., 2010; Rupp et al., 2012). 
Previously, PVT performance was successfully predicted via a two-process model (Borbély, 
2008), which incorporates a system of differential equations to describe homeostatic and 
circadian pressures governing sleep. While such models have expanded our understanding of 
the biological mechanisms of sleep and have been greatly adapted (McCauley et al., 2013; 
Postnova et al., 2018; St. Hilaire et al., 2007), they are often deterministic and so preclude 
statistical comparisons; even models with person-level random effects (Van Dongen et al., 
2007) cannot typically accommodate a large number of covariates.  

Statistical models offer a complementary approach to prediction, focusing on prediction 
accuracy and uncertainty estimation at the expense of only indirectly modelling physiological 
processes. Traditional methods for assessing the associations between PVT performance and 
sleep patterns have included correlation and ANOVA analyses (Bhat et al., 2018; Graw et al., 
2004), which allow for hypothesis testing but cannot make forecasts of later performance, 
adjust for the autocorrelation in repeated PVT measures over time, or accommodate the non-
linear relationships between PVT performance and predictors (Jewett et al., 1999). Methods 
which have addressed these have mainly considered mixed-effect models (Bermudez et al., 
2016) or an ensemble of mixed-effects and random forest models (Cochrane et al., 2021). 
However, neither of these methods can explicitly model time-varying predictors whose effects 
themselves are time-varying, as in the case of circadian effects (Blatter & Cajochen, 2007) or 
acclimation (Liu et al., 2016; Williams et al., 2009). 



In this paper, we propose a 3-model ensemble prediction scheme consisting of a linear mixed 
effects model (Rencher & Schaalje, 2007), a random forest model (Breiman, 2001), and a 
functional concurrent model (Leroux et al., 2018), the last of which allows us to estimate time-
varying effects of each (potentially time-varying) predictor. We also incorporate predicted 
outcomes from a two-process model (McCauley et al., 2013) as a covariate, with the aim to 
connect the biomathematical and statistical models commonly used to predict performance. 
Similar to previous methods (Cochrane et al., 2021), we employ forward-chaining cross-
validation (Bergmeir & Benítez, 2012) to demonstrate that the ensemble predicts best over the 
entire mission compared to any single component alone. The remainder of this paper is 
organized as follows: in section 2, we introduce the Reaction Self-Test (RST) and environmental 
data collected from astronauts and instruments aboard the International Space Station (ISS). In 
section 3, we describe a variable selection and model validation procedure that emphasizes 
prediction accuracy. In section 4, we consider the best-performing ensemble model and identify 
key predictors of alertness. In section 5, we conclude with a discussion of our findings and 
future work. 

Data 

Participants and Protocol 

Reaction Self-Test (i.e., self-report and PVT-B data, see below) data was collected from n = 24 
astronauts over 19 mission increments between 2009 and 2013 (Table 1). Astronauts spent an 
average of 160 (SD = 19) days, with a range of 123 to 192 days on the ISS. Ahead of the mission, 
astronauts were scheduled to complete the RST once at 180, 120, 90, 60, and 30 days before 
launch and daily in the week before launch. Post-mission RST assessments were scheduled daily 
in the week after return to Earth as well as once at 30, 60, and 90 days after return. Whilst in-
flight during the mission, astronauts were instructed to complete the RST twice a day (upon 
waking and in the 2 hours before sleep) every four days, with extra sessions completed around 
extravehicular activities (EVAs) and sleep period shifts to accommodate spacecraft dockings. 
The total adherence rate of 78.9% across all RSTs (83.8% in-flight) exceeded the pre-determined 
project goal of 75% adherence. This resulted in a total of n = 2,968 RST observations. The 
original study as well as this re-analysis were approved by the IRB of Johnson Space Center and 
the University of Pennsylvania (for data analysis). Participants provided written informed 
consent prior to study participation and re-consented for the re-analysis of the data. 

Reaction Self-Test (RST) 

The RST consists of a brief survey followed by a validated, brief (3-minute) version of PVT (PVT-
B). The PVT is a validated measure of sustained attention based on reaction time (RT) to visual 
stimuli that occur at random inter-stimulus intervals (Basner & Dinges, 2011). Astronauts were 
instructed to monitor a box on the laptop screen and press the space bar once a millisecond 
counter appeared in the box and started incrementing. The reaction time was then displayed 



for one second. Participants were instructed to be as fast as possible without hitting the 
spacebar in the absence of a stimulus. The PVT is a sensitive measure of vigilant attention, and 
has been well-established as a tool to detect acute and chronic sleep deprivation and circadian 
misalignment, conditions highly prevalent in spaceflight (Barger et al., 2014). The PVT has 
negligible aptitude and learning effects (Basner et al., 2018), and is ecologically relevant as 
sustained attention deficits and slow reactions affect many real-world tasks (e.g., operating a 
moving vehicle) (Dinges, 1995). 

The survey includes a sleep diary, 11-point rating scales on tiredness, mental fatigue, physical 
exhaustion, stress, sleepiness, with the final rating depending on the time of day: workload 
(evening administration only) or sleep quality (morning administration only). During both the 
morning and evening RSTs astronauts were asked to list the name, dose unit, and doses taken 
of all medications they ingested before going to bed last night (morning RST) and since 
awakening in the morning (evening RST). Additionally, in the evening RST they were asked to 
list caffeinated food or beverages they had taken since awakening in the morning (in both 
cases, “None” and “Decline to answer” were response alternatives). Astronauts were also asked 
whether they performed an EVA. This information was used to create binary variables for 
certain classes of medications and upcoming EVAs for each RST observation (Table 2).  

Among the PVT performance metrics, we derive the LRM-50 as the outcome of interest, since it 
has been shown to be highly sensitive to sleep deprivation, and has an approximately normal 
distribution (Basner et al., 2015). LRM-50 is a likelihood ratio-based metric that assigns a 
likelihood of being sleep-deprived depending on the response time to each PVT stimulus; high 
values of the LRM-50 translate to low levels of alertness. Although the number of lapses in 
attention is a more commonly used PVT metric, it is less able to differentiate high performers, 
such as astronauts, compared to LRM-50. The standardized LRM-50 outcome, which is formed 
by scaling each individual's LRM-50 by their person-level mean and standard deviation, was 
considered in our analyses but not shown to drastically improve prediction accuracy. 

Environmental Data 

During the study period, five domains of environmental measures were also recorded from the 
ISS. Radiation exposure levels were obtained from the Space Radiation Analysis Group at 
Johnson Space Center, and were summarized in daily dosage units (mGy) based on active 
dosimeters located on the interior and exterior of the space station. The radiation dose was 
defined as the sum of radiation due to Galactic Cosmic Rays (GCR) and the South Atlantic 
Anomaly (SAA). Next, oxygen (O2) and carbon dioxide (CO2) levels in units of mmHg were 
collected from Major Constituent Analyzer (MCA) sensors located in the space station's air 
circulation system. Finally, temperature in Celsius and noise level in A-weighted decibels (dBA) 
were recorded by sensors distributed across the ISS. Environmental variables were only 
collected during the in-flight period but not during pre- or post-flight periods. 



Demographic and Operational Data 
 
Demographic information included sex, age at ISS docking, nationality, space agency, military 
background, educational attainment, marital status, number of children, number of prior space 
missions and prior days in space. Operational data included the number of occupants on the ISS 
for each day of the mission; proximity of test to dock maneuvers, undock maneuvers, or EVAs; 
and the scheduled sleep period. The latter was used to identify sleep shifts. 

Methods 
 
Derived Predictors 
 
We derived several predictors based on the RST data: a fatigue composite score, four 
medication flags, and predicted PVT lapses. The fatigue composite score was created based on 
principal components analysis (PCA) of the 11-point scales on which the crew rated several 
behavioral states (see above) before taking the PVT. The score was calculated as the weighted 
average of the VAS questions, with weights determined by the loadings of the first PCA 
component. Table S1 shows the loadings of the first PC, which accounted for 48.3% of the 
variance. Higher values of the fatigue composite variable correspond to higher workload, 
increased tiredness, more stress, and worse sleep quality. Next, medication use was coded as a 
binary variable for four broad categories: pain medications, sleep aids, decongestants, and 
antihistamines. These categories were chosen as their use may affect sleep or be correlated 
with conditions affecting sleep (Marin et al., 2006; Meltzer, 1990; Tannenbaum et al., 2012). 
The final derived covariate was the number of predicted PVT lapses under a two-factor model 
(McCauley et al., 2013) given the sleep schedule collected in the RST.  
 
Data Integration and Interpolation 
 
To integrate the environmental data with the RST data, several strategies were required. This is 
because different variables were recorded at different time intervals: RST was collected twice a 
day every few days; radiation exposure and other operational variables were measured daily; 
temperature, noise level, CO2, and O2 were measured multiple times per day or minute. For 
each RST observation, the value of radiation (and other day-level variables) from that day was 
used. For more finely-measured variables, we used the hourly average from the hour that the 
RST was taken, if available.  
 
When the daily or hourly value of an environmental variable was unavailable, we used two 
interpolation strategies. Temperature, O2, and CO2 data had a relatively low rate of 
missingness, so the locally estimated scatterplot smoothing (LOESS, neighborhood parameter 𝛼𝛼 
= 1) value was used if the hourly average was unavailable. The expected PVT lapses could not 
be predicted for periods where no sleep diary information was provided, and in these periods 
the number of lapses was also interpolated using LOESS. Noise levels were only recorded on a 
handful of days: for this variable, the average noise during daytime (7:00 AM to 10:59 PM UTC) 



and nighttime (11:00 PM to 6:59 AM UTC) hours was interpolated separately using linear 
interpolation. The distribution of smoothed and unsmoothed environmental data is shown in 
Supporting Table S2. 
 
Finally, temperature was measured using multiple sensors across the ISS, including the US Lab 
and the Node 2 modules. Therefore, we also performed spatial matching and aggregation to 
achieve the best estimate for each RST. When the RST was taken in Node 2 or the US Lab, only 
the temperature data from the corresponding Node 2 or US Lab was used. When the RST was 
taken elsewhere or the location was unknown, a weighted average of the Node 2 (75%) and US 
Lab (25%) measurements were used, reflecting the empirical frequency of RSTs taken in these 
modules. 
 
Statistical Models 
 
Our main goal was to construct a statistical model to predict the LRM-50 score for each 
participant at future points in time. We were also interested in identifying a subset of variables 
that were most important to predicting LRM-50. Candidate predictors of LRM-50 included a 
mixture of time-varying (i.e., function-valued) variables such as environmental data, most 
recent LRM-50 score, self-reported fatigue score and ISS occupancy, as well as person-level (i.e., 
scalar-valued) data including each participant's demographics, pre-flight average PVT, sex, and 
age. We employed an ensemble of several models to address each aspect of the data.  
 
For participant 𝑖𝑖 and time 𝑡𝑡, the linear mixed effects (LME) model defines the LRM-50 score 
𝑦𝑦𝑖𝑖𝑖𝑖 as a function of 𝑝𝑝 covariates 𝑋𝑋𝑖𝑖𝑖𝑖 = (𝑋𝑋𝑖𝑖𝑖𝑖

(1), … ,𝑋𝑋𝑖𝑖𝑖𝑖
(𝑝𝑝)) , person-specific random intercept 𝑏𝑏𝑖𝑖, and 

noise 𝜀𝜀𝑖𝑖𝑖𝑖: 
 

𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛽𝛽0 + 𝑋𝑋𝑖𝑖𝑖𝑖𝛽𝛽 + 𝑏𝑏𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖. 
 
The advantages of LME include its simplicity and efficiency, as well as the option to model 
correlated measurements over time: we specified a lag-one autoregressive (AR1) correlation 
structure to model the repeated measures of 𝑦𝑦𝑖𝑖𝑖𝑖.  
 
By contrast, the random forest model (Breiman, 2001) specifies no closed form for the 
relationship between 𝑦𝑦𝑖𝑖𝑖𝑖 and 𝑋𝑋𝑖𝑖𝑖𝑖; rather, it uses an aggregate of decision trees to identify 
splitting points for continuous variables that optimally predict the outcome. While prone to 
overfitting, random forests are able to model a more flexible non-linear relationship between 
outcome and predictors, at the cost of interpretability. 
 
Finally, since neither the random forest nor the LME are able to model the serial dependence of 
time-varying predictors and their time-varying effects, we also considered the functional 
concurrent model (Leroux et al., 2018): for participant 𝑖𝑖 and time 𝑡𝑡𝑖𝑖𝑖𝑖, the time-varying 
outcomes 𝑦𝑦𝑖𝑖𝑖𝑖 are related to 𝑝𝑝 covariates 𝑋𝑋𝑖𝑖𝑖𝑖

(1), … ,𝑋𝑋𝑖𝑖𝑖𝑖
(𝑝𝑝) through the following: 

 



𝑦𝑦𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝑓𝑓1�𝑋𝑋𝑖𝑖𝑖𝑖
(1), 𝑡𝑡𝑖𝑖𝑖𝑖� + ⋯+ 𝑓𝑓𝑝𝑝 �𝑋𝑋𝑖𝑖𝑖𝑖

(𝑝𝑝), 𝑡𝑡𝑖𝑖𝑖𝑖� + 𝑏𝑏𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� + 𝜀𝜀𝑖𝑖𝑖𝑖, 
 
where 𝑓𝑓𝑖𝑖  are smooth functions approximated by thin plate splines, and 𝑏𝑏𝑖𝑖(𝑡𝑡) and 𝜀𝜀𝑖𝑖𝑖𝑖 are 
Gaussian processes representing person-level random trajectories and time-independent 
errors, respectively. Finally, the ensemble prediction was constructed as the unweighted 
average of predictions from the LME, random forest, and functional concurrent model. All data 
analysis was performed using R version 3.6.1 (R Core Team, 2019), employing the nlme, 
randomForest, and fcr packages for each model. 
 
Model Validation 
 

 

 
To assess the performance of each model as well as the ensemble, we employed a forward-
chaining validation procedure (Figure 1). For participant 𝑘𝑘 and training length 𝑡𝑡 ∈
{5, 10, … , 45, 50}, a given model was fit on the first 𝑡𝑡 RST observations from participant 𝑘𝑘 and 
all data from all other participants. The squared prediction error at day 𝑡𝑡 + 1 was then 
averaged over all training lengths 𝑡𝑡 for participant 𝑘𝑘 to obtain a person-level mean squared 
error (MSE). These were again averaged over all participants to obtain an overall MSE for each 
model. 
 
Other models, such as multivariate linear regression, time series regression (using the dyn R 
package), and generalized additive models (using the gamlss R package) were considered at this 
stage, but did not perform well to justify inclusion in the final ensemble. 
 
Variable Selection 
 



To identify the most important subset of variables for predicting LRM-50, we quantified a 
variable's importance by the average increase in mean square error (MSE) (%IncMSE) when 
permuting that variable within a random forest model. By repeating this process 100 times and 
sampling 50% of the data each time, we obtained 100 rankings of variable performance. The 
most important variables were then defined as those that appeared in the top 10 with the 
highest frequency. In statistical analyses, we considered both models fit on the full set of 
predictors, as well as using the subset of the most important variables. 

Results 
 
Based on the random forest importance ranking, the most important predictors of LRM-50 
included individual characteristics such as age and average pre-flight PVT score; the most 
recent LRM-50 score; psychological factors such as the fatigue score and feelings of stress; 
sleep-related factors including caffeine intake, predicted lapses under a two-factor model, and 
the amount of sleep missed (i.e., the sum of time taken to fall asleep, time spent awake during 
the night due to sleep disturbances, and time spent in bed before getting up); and smoothed 
environmental measurements including temperature and radiation exposure (Figure 2). 
Comparatively, we found that sex, medication use, scheduled EVAs, and workload were less 
important to predicting LRM-50. 
 

 

Our experiments indicate that the ensemble model performed better than any single model 
alone over various training lengths 𝑡𝑡 after forward-chaining cross-validation (Figure 3). 



Interestingly, in the testing data, the MSE of all models decreased with longer training period 𝑡𝑡 
when 𝑡𝑡 was small, but then increased with 𝑡𝑡 for larger 𝑡𝑡. One potential explanation is the lack of 
testing data for higher values of 𝑡𝑡. We also found that the linear mixed effects model 
performed better than functional concurrent and random forest with smaller 𝑡𝑡, while the other 
two models outperformed LME for higher 𝑡𝑡. Together, these suggest that the random forest 
and functional models are more suitable for longer time series, while the LME performs 
sufficiently for shorter time series when fewer dynamic relationships are observed between 
variables. 
 

 
Figure 3. Prediction accuracy among each of the component models and the ensemble. Model performance was measured 
using the mean squared error (MSE) in predicting LRM-50. A standardized measure of prediction error, which can be used to 
compare across different outcomes, was obtained by dividing the root MSE (RMSE) by the standard deviation of the outcome in 
the training set. In other words, the RMSE/sd represents the variation in the observed LRM-50 data that is not explained by the 
model. 

We next considered the effects of environmental conditions on LRM-50 by examining the 
corresponding LME coefficients (Table S3) and functional concurrent regression heat maps 
(Figure 4). In both models, we found that better performance (i.e., lower LRM-50) was 
associated with lower radiation exposure and higher CO2 levels. The functional model further 
revealed that the negative effects of radiation exposure and positive effects of CO2 were 
attenuated over time, suggesting acclimation. Finally, the functional model identified non-
monotonic relationships between performance and temperature and oxygen, suggesting the 
existence of an optimal range for these measures; this type of relationship could not be 
assessed by the mixed model. 
 



 
Figure 4. Using predictions from the functional concurrent model, these heat maps show how the non-linear effects of 
environmental variables on LRM-50 vary over time in mission (ranging from 0 to 1 representing the proportion of mission time 
elapsed). The same functional concurrent model, which was fit on the entire observed data, was used for each panel. For each 
environmental variable, predictions were made at a regular grid of timepoints between 0 and 1, and at all observed values of 
that environmental variable. All other variables were held at their average (continuous) or reference (categorical) value. We 
find that better performance (i.e., lower LRM-50, indicated by lighter yellow regions) is generally associated with lower 
radiation, moderate to higher temperatures, higher CO2, and moderate and lower O2. 

 
The ensemble model was implemented as a user-friendly and interactive R Shiny application 
(Figure 5). Given the data and the fitted ensemble model, the application displays individualized 
LRM-50 predictions and other model diagnostic information. To encourage hypothesis 
generation, the value of predictor variables can also be "toggled," allowing the user to view the 
predicted LRM-50 under hypothetical sets of conditions. Finally, the application includes each 
participant's entire trajectory of predicted and observed LRM-50 scores as a function of the 
training period. 
 
An astronaut's LRM-50 score can be predicted at an arbitrary number of future timepoints, but 
this requires knowledge of environmental conditions and other covariates at those timepoints. 



In practice, we may obtain the best prediction at a particular timepoint by re-fitting the model 
on all previous data from that individual, as well as all data collected from other participants. 
After fitting the model, predictions are then made using the observed covariates from that day. 
By repeatedly re-fitting the model and predicting the next LRM-50 score at each observation, 
we are able to compare the entire timeline of observed and predicted performance for each 
participant (Figure 6). The root mean squared error (RMSE) of these "chained" predictions over 
time ranged from 4.06 to 11.98 among astronauts. 
 
 

 
Figure 5. A screenshot of the R Shiny application implementing the ensemble prediction model. In the left panel, the user may 
"toggle" the value of each predictor (pre-set to averages observed for the individual astronaut). In the right panel, the 
individualized predicted LRM-50 score for the selected participant is displayed (blue star at bottom of graph), along with the 
distribution of that astronaut's observed scores; the red and green regions correspond to that astronaut's worst 10% and best 
10% scores. 

 



 
Figure 6. At each timepoint and for a given astronaut, LRM-50 can be predicted by fitting the model on all preceding data from 
that astronaut and the full data from other astronauts. The prediction (solid green triangles) is then made using covariate 
values from that timepoint. The actual values of LRM-50 are displayed as hollow yellow circles. (A) A participant with prediction 
MSE in the highest (worst) 25th percentile. (B) A participant with prediction MSE in the lowest (best) 25th percentile.  

Discussion 
 
In this paper, we proposed an ensemble model to predict cognitive performance in astronauts 
during spaceflight missions. In contrast to previous methods that employed a single prediction 
method (Bermudez et al., 2016) or ensemble (Cochrane et al., 2021), we added a dynamic 
component to model time-varying covariate effects using a functional concurrent model 
(Leroux et al., 2018). The resulting model can flexibly and accurately predict LRM-50 alertness 
score. We also identified the most important predictors of alertness as a combination of 
individual traits, dynamic psychological state, and environmental conditions. 
 
Spaceflight is a complex environment with myriad psychological, operational and 
environmental stressors that change throughout the course of a mission. Behavioral health 
studies in space or ground-based space analog environments have traditionally focused on a 
small number of stressors (Basner et al., 2021; Connaboy et al., 2020; Strangman et al., 2014). 



While these studies provide important mechanistic information, they fail to address the 
intertwined and time-varying effects of several concurrent stressors. To our knowledge, our 
model is the first investigation of the dynamic, non-linear relationships between common 
spaceflight stressors, astronaut demographics, and self-reported ratings on vigilant attention, 
that also includes individualized predictions of future performance. 
 
Ensemble models of machine learning models are increasingly popular in human health studies 
due to their flexibility and ability to accommodate non-standard data types (Rose, 2018). Our 
results suggest that, in settings where the goal is the prediction of a time-varying outcome 
given a combination of person-level and irregularly measured time series, ensembles which 
include a functional concurrent regression (Leroux et al., 2018) are able to powerfully capture 
dynamic effects. Furthermore, the incorporation of models with both scalar and functional 
random effects are useful to making individualized predictions (Figure 6). 
 
Our findings have three main applications: 
 

1) The models were used to identify the most relevant predictors of psychomotor vigilance 
in spaceflight. Self-assessments of fatigue and stress, temperature and radiation 
exposure, caffeine consumption, and past performance were identified as some of the 
most important correlates of performance. This variable selection helps space agencies 
like NASA to concentrate research and mitigation measures on those variables. Once 
new data is available from future studies, the ensemble model could easily expand to 
include other predictors of interest. 

2) Relationships between two predictor variables can be visualized in the R shiny 
application (Figure 5) and in heatmaps (Figure 4). This tool therefore facilitates the 
generation of hypotheses that can later be empirically verified. 

3) Exploration-class space missions will involve communication delays and increase crew 
autonomy. Self-administered tests that assess readiness-to-perform can therefore be a 
helpful tool in guiding astronaut operational decisions. One application of the ensemble 
model is real-time decision-making aboard the ISS. The predicted LRM-50, given the 
most current environmental and RST data, could be used as a score of astronaut 
readiness ahead of mission critical tasks (e.g., EVAs). For new participants (i.e., 
individuals whose data did not inform model fitting), the predicted value would be 
heavily weighted on the group average. This highlights the importance of using a 
representative sample for model fitting. Our data, which represents one of the largest 
studies of cognitive performance in astronauts on the ISS, would be a suitable option for 
making predictions in astronauts, and the R shiny application is a good first step in this 
direction. However, further validation and tests of astronaut acceptability are required 
before such a tool could be used in spaceflight. 

 
This study has several limitations. Because the main goal of ensemble prediction is accuracy, it 
is not generally possible to make inferences about the effect of any single predictor on the 
outcome. The coefficients (if they are available) of each component model are not guaranteed 
to be consistent across models, which may limit interpretability. Secondly, our ensemble 



prediction weighted each model equally, as no model consistently over- or under-performed. 
Future work could use cross-validation to determine the weights empirically. Finally, the 
ensemble model uses the entire data and concurrent measurements to predict LRM-50. When 
new observations are made, the entire model must be fit again on the expanded data. An 
interesting extension could involve Bayesian updating similar to those developed for the unified 
model of performance (Smith et al., 2009). 
 
The success of spaceflight depends on the physical and mental health of crew members. Our 
study, based on one of the largest datasets of astronaut cognitive performance and sleep in 
space, has identified promising avenues in modelling dynamic and personalized profiles of 
alertness. Such tools could have important implications for safety and decision-making in one of 
the world’s most high-profile and dangerous occupations. 
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Tables 
 

Table 1. Summary characteristics of the astronauts with RST data. Table values are mean (standard deviation) and count 
(percent) for continuous and categorical variables, respectively. 

  Overall  
(N = 24) 

Sex, n (%) 
 

Male 19 (79.2) 
Female 5 (20.8) 

Age at Dock 48.2 (4.78) 
Agency, n (%) 

 

NASA 16 (66.7) 
Non-NASA 8 (33.3) 

Average Pre-Flight PVT Score 0.95 (0.02) 
Inflight RST Observations 87.2 (18.8) 

 
 
  



Table 2. Summary measures from the RST data, including pre- and post-flight observations. Table values are mean (standard 
deviation) and count (percent) for continuous and categorical variables, respectively. 

  
Overall 

    (N = 2968)  
Period, n (%) 

 
 

Pre-Flight 506 (17.0)  
Inflight 2109 (71.1)  
Post-Flight 353 (11.9)  

Time of Day, n (%) 
 

 
Morning 1568 (52.8)  
Evening 1379 (46.5) 

  Other 21 (0.71) 
Alertness LRM-50 -33.0 (12.7) 

Sleep Time in Bed Sleeping, hours 6.61 (1.30) 
  Time in Bed Not Sleeping, hours 0.61 (0.77) 

Self-Report VAS Low Workload (0-10) 4.47 (2.18) 
  Very Stressed (0-10) 3.87 (2.01) 
 Poor Sleep Quality (0-10) 3.60 (1.87) 

Medication Use Caffeine, doses 2.05 (1.50)  
Sleep Aid Flag, n (%) 131 (4.41)  
Decongestant Flag, n (%) 25 (0.84)  
Antihistamine Flag, n (%) 36 (1.21) 

  Pain Medication Flag, n (%) 143 (4.82) 
EVA EVA Today Flag, n (%) 8 (0.27)  

EVA Tomorrow Flag, n (%) 23 (0.77) 
 
  



Supporting Material 
 
Table S1. Principal components analysis (PCA) of the Self-Report VAS variables and the loadings 
on the first principal component are shown below. These were then used as weights to 
calculate a composite variable called the fatigue index. Based on these weights, higher values of 
the fatigue index correspond to greater workloads, more stress, and more physical and mental 
tiredness. 
 

Variable Loading 
Workload 

(0 = high, 10 = low) 
-0.0449 

Sleep Quality 
(0 = good, 10 = poor) 

0.2295 

Feeling Sleepy 
(0 = not at all, 10 = very much) 

0.4618 

Physically Exhausted 
(0 = energetic, 10 = physically exhausted) 

0.4898 

Mentally Fatigued 
(0 = mentally sharp, 10 = mentally fatigued) 

0.4607 

Tiredness 
(0 = tired, 10 = fresh, ready to go) 

-0.4812 

Stress 
(0 = not stressed, 10 = very stressed) 

0.2198 

 
 
  



Table S2. All predictors used in the prediction models. 
 

Source Category Variables Data Type 
Reaction Self-Test 
(RST) 

PVT Performance LRM-50 Time-Varying 
  

Standardized LRM-50 Time-Varying  
RST Type Time of Day (Morning/Evening) Time-Varying  
Sleep Time in Bed Sleeping Time-Varying   

Time in Bed Not Sleeping Time-Varying   
Predicted Lapses Time-Varying  

Self-Report Very Stressed Time-Varying   
Low Workload Time-Varying   
Poor Sleep Quality Time-Varying   
Fatigue Composite Score Time-Varying  

Medications Caffeine Doses Time-Varying   
Sleep Aid Flag Time-Varying   
Decongestant Flag Time-Varying   
Antihistamine Flag Time-Varying   
Pan Medication Flag Time-Varying 

Demographics 
 

Age at Dock Scalar   
Sex Scalar   
Average Pre-Flight PVT Score Scalar 

Environmental 
 

Radiation Time-Varying   
Temperature Time-Varying   
Noise Time-Varying   
CO2 Time-Varying   
O2 Time-Varying   
ISS Occupancy Time-Varying 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table S3. Coefficients for the linear mixed effects model to predict LRM-50 score, with a 
random intercept for each participant and AR1 correlation structure. To enable comparisons of 
coefficients between variables, both the numeric covariates and the outcome were z-scored 
(i.e., linearly scaled to have a mean of 0 and a standard deviation of 1). Positive coefficients are 
associated with an increase in LRM-50 (worse performance); negative coefficients are 
associated with a decrease in LRM-50 (better performance). 

  
Variable Coefficient 
(Intercept) -0.314 

Radiation, Smoothed (mGy) 0.010 
Noise, Smoothed (dBA) -0.059 

CO2, Smoothed (mmHg) -0.012 
O2, Smoothed (mmHg) -0.006 

ISS Occupants 0.018 
Temperature, Smoothed (°C) -0.060 

Sex = Male 0.302 
Age at Dock -0.071 

Average Pre-flight PVT Score -0.201 
Sleep Aid Flag 0.056 

Antihistamine Flag 0.078 
Time of Day = Morning Test 0.123 

Fatigue Composite Score 0.181 
Low Workload -0.016 

Poor Sleep Quality -0.005 
Very Stressed -0.013 

Total Sleep Hours -0.061 
Total Sleep Missed -0.005 

Predicted Lapses 0.006 
Caffeine Doses 0.022 

LRM-50 (Lagged) 0.122 



 
Figure S1. For each RST observation, the corresponding value of the environmental variable was found by using the observed 
value (if available) or the interpolated value formed by neighboring observations. These plots illustrate the LOESS curves (black 
line) fit to the entire environmental data for radiation, temperature (separately for each location), CO2, and O2. A linear 
interpolation was used for noise (separately for daytime and nighttime). Each blue dot corresponds to the observed hourly 
average (CO2, O2, temperature, noise) or daily average (radiation) that was used for an RST observation; the red dot indicates 
that the interpolated value was used. 
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