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GAS CROSSFLOW EFFECTS ON AIRFLOW THROUGH A WIRE-FORM

TRANSPIRATION-COOLING MATERIAL

by Albert Kaufman, Louis M. Russell, and David J. Poferl

Lewis Research Center

SUMMARY

In transpiration-cooled airfoils used in aircraft gas turbines, the discharge air
from vanes and blades mixes with the gas stream flowing through the channels formed by
adjoining airfoils. A study was made to determine the effects of the outside gas flow on
the flow characteristics of a wire-form porous material. Experimental flow data were
obtained in a bench-type facility with airflow rates through the porous material from

9 1 ^ 90.129 to 0.695 g/sec-cm (1.83x10 to 9. 88x10 Ib/sec-in. ) and external air stream
Mach numbers from 0 to 0. 46. It was concluded that, within the range of test conditions
investigated, the porous-material flow characteristics were not affected by external air-
flow parallel to the discharge surface.

INTRODUCTION

An experimental analysis was conducted to evaluate the effects of gas flow over the
outside surface of a transpiration-cooling material on the flow characteristics of the air
transpiring through the porous wall.

This study is the third in a series undertaken by the NASA Lewis Research Center
to develop methods for predicting coolant airflow distributions in a transpiration- cooled
gas-turbine blade or vane. In the first of these studies (ref. 1), the flow characteristics
of both wire-form and laminate-form porous materials used for transpiration cooling
were correlated with geometrical parameters for these materials. It was demonstrated
that these correlations could be successfully applied to predict flow rates with air tem-
peratures up to 722 K (840° F) and with porous sheet curvatures as high as 0.25 cm
(0.10 in.). The flow correlations derived for the wire-form porous material were used
in a subsequent study (ref. 2), in which an analysis was developed for predicting airflow
rates and pressure distributions in the coolant distribution passages of a transpiration-



cooled vane and the discharge flow rates from the porous airfoil shell. The analytical
model was verified by the good agreement between flow rate and pressure predictions
and experimental data obtained from cold-flow tests on a transpiration-cooled vane with
the use of a bench-type flow facility. However, the vane cold-flow tests did not com-
pletely determine how well the airflow distribution could be predicted in the
transpiration-cooled vane, because these tests were not conducted with gas flowing along
the airfoil surfaces, as would be the case in actual engine operation. In references 3
and 4, tests were conducted on perforated plates under normal- and parallel-flow con-
ditions with free-stream Mach numbers from 0.2 to 1.3. The flow data from these tests
indicated that the parallel-flow condition reduced the normal flow through the perforated
plates for a given pressure drop. Therefore, a distinct possibility existed that the flow
characteristics of the transpiration-coo led material in an engine environment could be
substantially different from those determined from cold-flow tests in a static environ-
ment. The likelihood of this effect occurring increases as the thickness of the porous
material is reduced, because the internal passages in the porous material tend to behave
more like small orifices, as in the perforated plates tested in references 3 and 4.

The purpose of this investigation was to determine if gas flow parallel to a porous
transpiration-cooled surface affects the flow characteristics of the porous material and /
to analyze these effects if they are significant. Experimental data were obtained from/
cold-flow tests in a bench-type facility with gas-stream flow parallel to the airfkwdis-
charge surface of a flat, porous specimen. Measurements of the airflow through the
wire-form porous specimen were taken over a range of specific flow rates from 0.129
to 0, 695 g/sec-cm2 (1. 83xlO~3 to 9. 88xlO~3 Ib/sec-in.2). Flow data were compared
for free-stream Mach numbers from 0 to 0. 46. The porous material was of the same
type and geometry as the material used for the airfoil of the transpiration-cooled vane
studied in reference 2. The thickness of thes material, 0. 061 cm (0. 024 in.), was con-
sidered the practical minimum for a transpiration-cooled airfoil because of structural
considerations such as resistance to impact by foreign objects. Therefore, if the ex-
ternal gas stream was found to have no effect on the flow characteristics of this mater-
ial, it probably would not affect the flow characteristics of any transpiration-cooled
vane or blade.

APPARATUS AND PROCEDURE

Test Specimen

The porous specimen shown in figure 1 was fabricated from Poroloy, a wire-wound
material manufactured by the Bendix Corporation; this material was also used in the



2.79 cm by 2.79 cm (1.1 in. by 1.1 in.) because of the presence of a weld-affected zone
around the edges.

Flow Test Apparatus and Procedure

The flow facility is shown in figure 2, and the system and associated instrumentation
n

are illustrated in figure 3. Secondary air at 86. 2 N/cm (125 psig) was supplied to the
test specimen through a filter, two pressure regulators in series, a calibrated nozzle
mass flowmeter, and a plenum chamber. Airflow parallel to the specimen discharge
surface was ambient air drawn through a tunnel by means of a vacuum system. The
free-stream Mach number in the tunnel was determined by measuring the total and static

Figure 2. -Test facility.
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tunnel pressures with water manometers accurate to ±0.13 cm (0. 05 in.) of water.
The flow rates through the test specimen were controlled by the pressure regulators

and measured by the nozzle flowmeter, with an assumed system minimum accuracy of
±2 percent of the measured value. The specimen upstream static pressure was obtained
by measuring the pressure in the cooling-air plenum, while the downstream static pres-
sure was obtained by measuring the differences between the plenum pressure and a ser-
ies of pressures across the downstream side of the specimen and subtracting the average
difference from the plenum pressure. The pressure gages were of the Bourdon type,
with accuracies of ±0.25 percent of full scale. Initially, tests were conducted at zero
Mach number, with the specimen removed from the tunnel and the airflow through the
specimen being exhausted into the atmosphere. Tests were then conducted with the spe-
cimen installed in the tunnel, at a free-stream Mach number of 0. 40. In an attempt to
increase the gas-stream Mach number, the tunnel height was decreased from 1.27 cm
(0. 50 in.) to 0. 63 cm (0. 25 in.); this was the minimum practical height to which the
tunnel could be reduced and resulted in only a slight increase in free-stream Mach num-
ber from 0. 40 to 0. 46. The airflow rates through the porous specimen were progres-
sively increased by varying the pressure difference across the specimen from 4 top
24 N/cm (6 to 35 psi). The Poroloy specimen discharge pressure varied from 9. 9 N/

ft t)

cm (14. 4 psia) for atmospheric discharge tests to 8. 6 N/cm (12. 5 psia) during the
tests with a free-stream Mach number of 0. 46.

RESULTS AND DISCUSSION

The experimental flow data are correlated in figure 4 in terms of the parameter
as a function of G/M. These parameters were derived from the

so-called Green equation for fluid flow through a porous medium, which was originally
presented in reference 6. This equation can be presented in a modified form as

2juRTrG
(1)

where the symbols are defined in the appendix. It is apparent that the left side of equa-
tion (1) is a linear function of G/ju. The flow resistances or characteristics of the
porous material, a and /3, are the intercept and slope, respectively, of the line.

Experimental results for the condition with airflow discharging into the atmosphere
(zero Mach number) and for tunnel free- stream Mach numbers from 0. 40 to 0. 46 are
compared in figure 4. A straight- line curve fit was drawn through the data points repre-
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Figure 4. - Effect of external gas-stream Mach numbers up to 0.46 on Poroloy specimen flow
characteristics.

senting zero Mach number. The external gas flow data scattered around both sides of
this base line with a maximum deviation of 4 percent.

The excellent correlation shown in figure 4 between test results for external gas
stream flow and test results for transpiring airflow exhausting to the atmosphere demon-
strated that there was no significant effect of gas-stream crossflow on the Poroloy flow
characteristics up to a free-stream Mach number of 0. 46. The linearity of the data in
figure 4 also confirmed that even with gas-stream flow across the discharge surface,
the transpiration flow obeys the standard flow relation for a porous material as defined
by the Green equation.

SUMMARY OF RESULTS

This investigation of parallel gas cross-flow effects on flow through a wire-form



transpiration-cooling material yielded the following results:
1. In comparison with tests performed under static ambient conditions, gas stream

flow up to a Mach number of 0. 46 across the discharge surface of the porous material
has no significant effect on the flow characteristics of the material.

2. Transpiration coolant flow combined with external gas cross flow obeys the stand-
ard flow relation for a porous medium as defined by the Green equation.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, October 18, 1972,
501-24.



APPENDIX - SYMBOLS

G airflow rate per unit area

g universal gravitational constant

P. upstream static pressure

P2 downstream static pressure

R gas constant

T static temperature

a viscous resistance coefficient

/3 inertial resistance coefficient

pt viscosity

T specimen thickness

10
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