

DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

FCIC Task 6: High Temperature Conversion

March 15th, 2021 Feedstock Conversion Interface Consortium

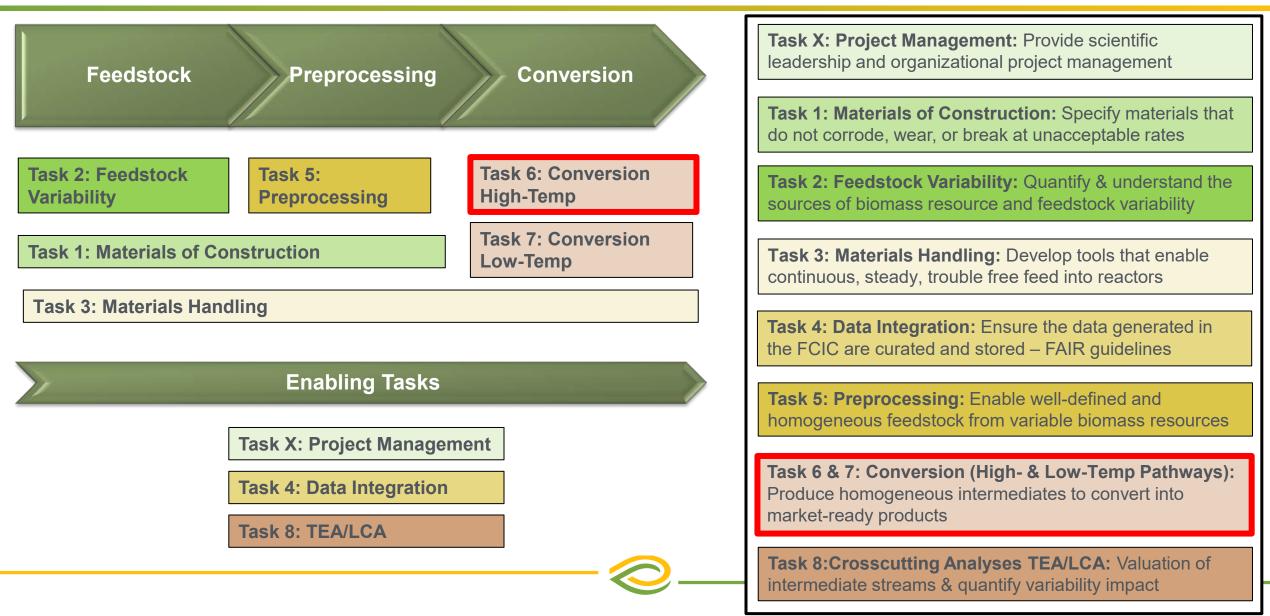
Daniel Carpenter (NREL) Jim Parks (ORNL)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

FCIC – High Temperature Conversion Team

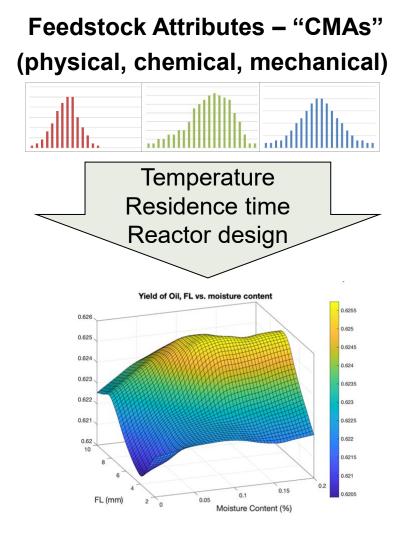
Daniel Carpenter (Lead) Peter Ciesielski Meagan Crowley Tim Dunning Brennan Pecha Steven Rowland Anne Starace

George Fenske

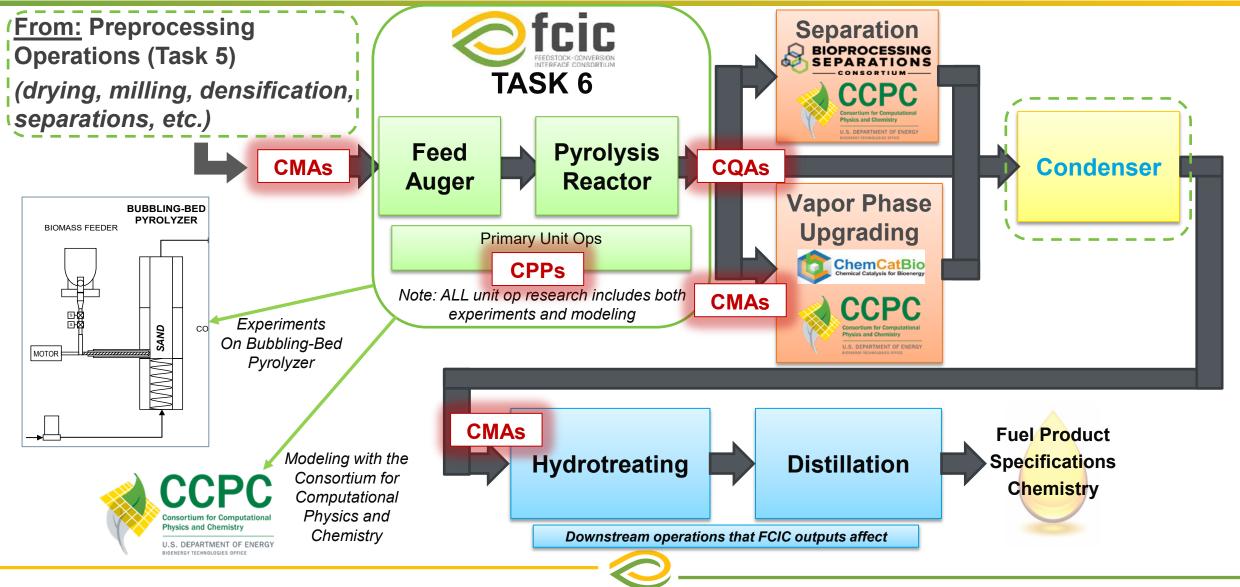


Jordan Klinger Neal Yancey

FCIC Task Organization

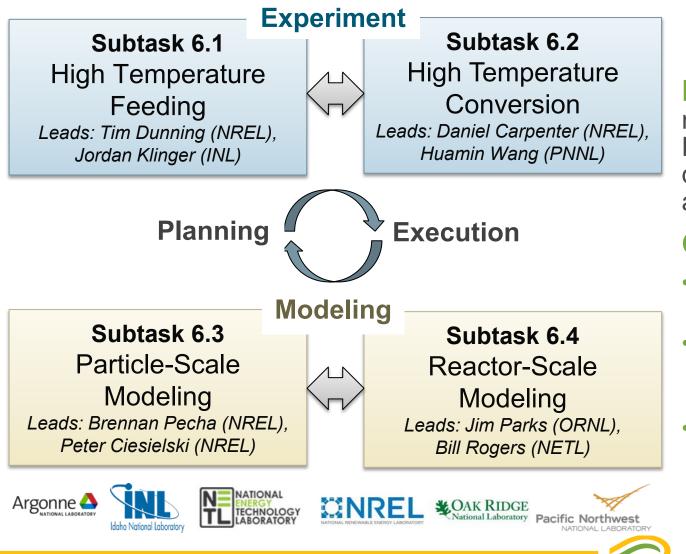


Project Overview



- **Objective:** (1) Develop science-based understanding to predict the effects of variable feedstock attributes and process parameters on pyrolysis product quality; (2) build a validated, multiscale experimental and computational framework to predict product yields and quality
- Current limitations: Feedstock impacts on high-temperature unit operations are either not known or are poorly-defined; Current design principles are based on empirically-derived guidelines, useful only over a very narrow range of feedstock properties
- **Relevance:** This work will de-risk high temperature biorefinery design, integration, and operation to enable flexible processes that are robust and responsive to natural and market feedstock variability, while maximizing productivity
- Risks: (1) Biomass is complex and feedstock attributes are crosscorrelated; (2) Detailed pyrolysis product characterization is limited; (3) Difficult/expensive to assess downstream processability of intermediate products

Project Overview: Task 6 Scope in Process



Task 6 – High Temperature Conversion 5

1 – Management and Communication

Multidisciplinary project team to address industry-relevant problems

Risks: Annual operating plan identifies risks and mitigation strategies; connections with core Program work and computational tool development are maintained with ChemCatBio and CCPC to ensure relevance

Communication strategy:

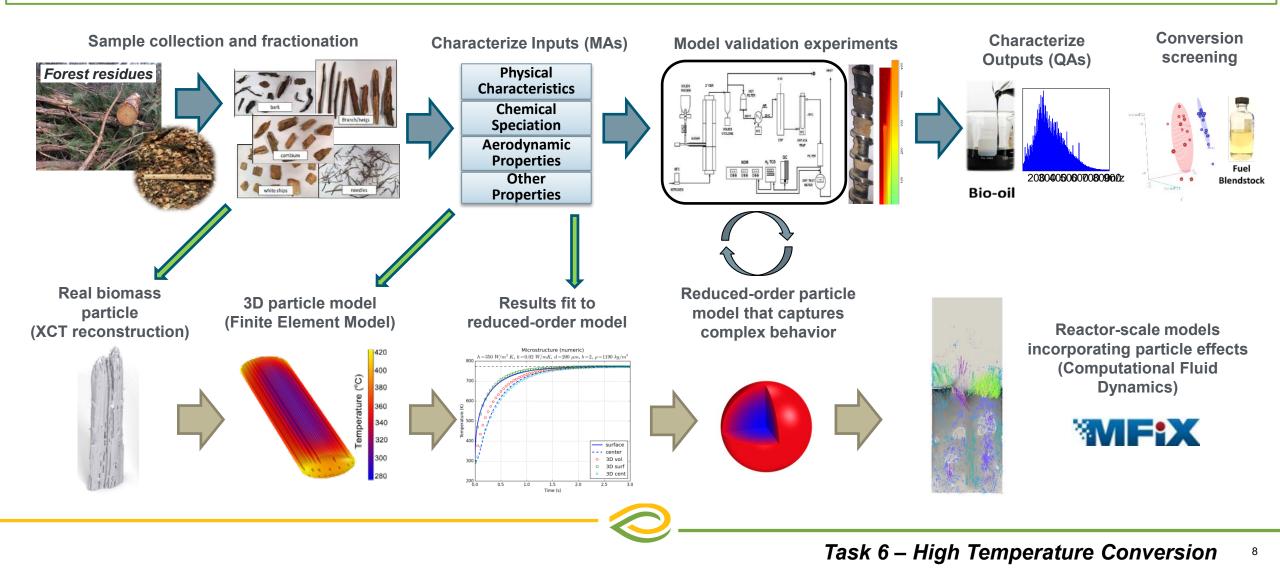
- **Task 6:** Close coordination via frequent meetings between experimental and modeling subtasks
- FCIC: Biweekly cross-task coordination for FY21 case study and engagement with Industry Advisory Board
- **Beyond FCIC:** connections to industry on related projects and to other BETO Consortia

Task 6 – High Temperature Conversion

6

1 – Management (Cont.)

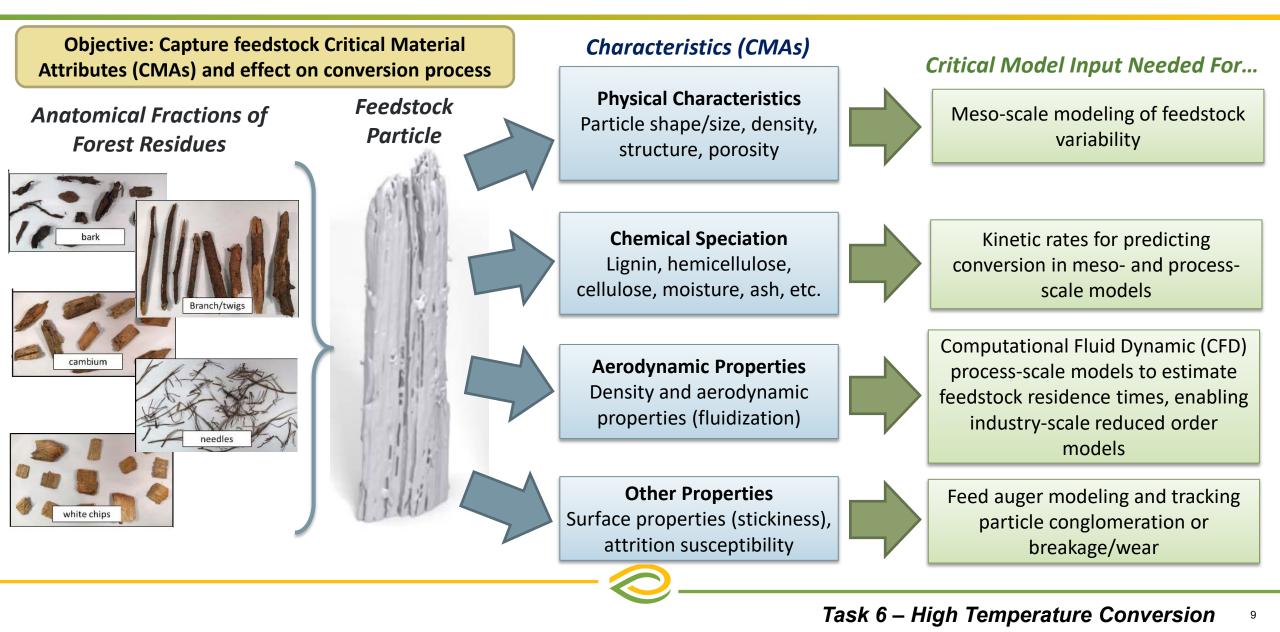
Subtask	Lead(s)	Major Responsibilities	
6.1 Biomass Thermal Transformations During High-Temperature Feeding	Tim Dunning (NREL), Jordan Klinger (INL)	Collect experimental and material characterization data (coordinate efforts at INL, NREL, ANL, ORNL) and with Subtask 3.2 (modeling); develop design heuristics	
6.2 Impacts of Forest Residue Variability on Critical Pyrolysis Product Attributes	Daniel Carpenter (NREL), Huamin Wang (PNNL)	Collect experimental and material characterization data (coordinate efforts at NREL and PNNL); coordinate with and provide validation data to modeling Subtasks 6.3/6.4	
6.3 Mesoscale Simulation of High-Temperature Conversion	Brennan Pecha (NREL, Peter Ciesielski (NREL)	Develop particle models for high temperature conversion and validate using experimental results; coordinate transfer of results to reactor modeling team	Pacific Northwest
6.4 High-Temperature Reactor Scale Modeling	Jim Parks (ORNL), Bill Rogers (NETL)	Develop CFD and reduced-order reactor models for high temperature conversion and validate using experimental results; implement in MFiX open- source suite	NATIONAL LABORATORY



7

2 - Approach

A multiscale approach for biomass pyrolysis



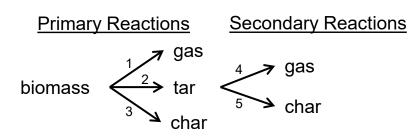
2 - Approach

Critical Feedstock/Particle Characterization

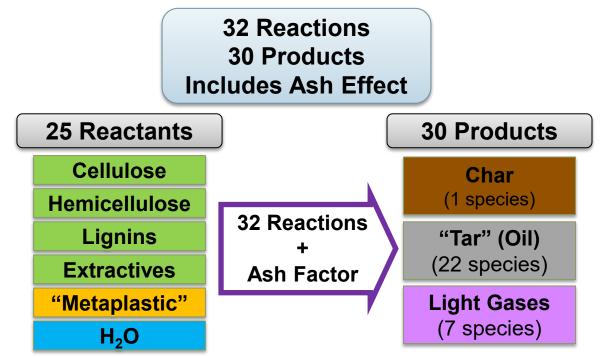
2 - Approach

Updated Comprehensive Kinetics to Capture Complex Biochemistry of Feedstocks (progress since last review)

Before


Now

DiBlasi* Kinetics


- Very simplified and not sufficient for FCIC objectives
- Primary and secondary reactions produce gas, tar (condensable liquid or bio-oil), and char
- Density is primary way to differentiate feedstocks

5 Reactions 3 Products No Ash Effect

Debiagi**/CRECK*** Kinetics

- Feedstocks and products differentiated by chemical composition
- Common set of kinetics being used in models of varying complexity (reduced order to computational fluid dynamics)
- Includes Ash Factor to account for effects from ash

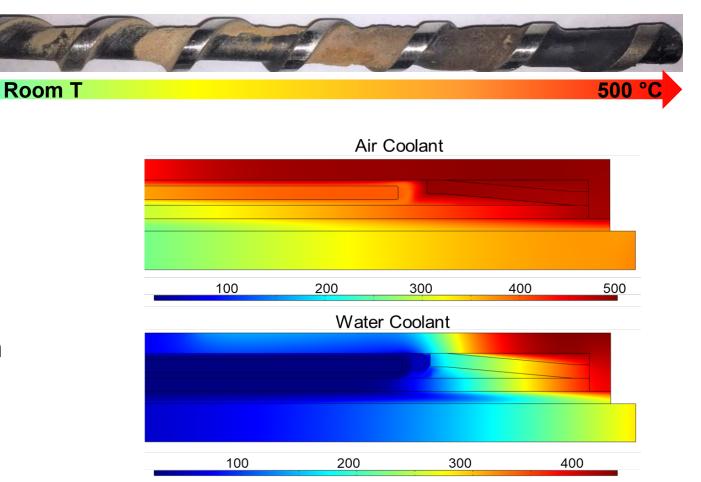
P. Debiagi, G. Gentile, A. Cuoci, A. Frassoldati, E. Ranzi, and T. Faravelli, Journal of Analytical and Applied Pyrolysis **134 (2018) 326-335.

*DiBlasi, Combustion Science and Technology, 90, pp 315–340 (1993).

***CRECK Modeling Group at Politecnico di Milano (http://creckmodeling.chem.polimi.it/)

 Task 6 – High Temperature Conversion
 10

Coupling of Analytical Data to Kinetics is Critical


Challenge/Risk	Mitigation Approach	
Difficult to couple model kinetics input/output chemistry to experimental chemistry results (especially product side)	 Lots of discussion between modelers and experimentalists In-depth discussions with Debiagi (who has been superbly supportive) Large number of samples analyzed Working with BETO analytical projects to improve analytical capabilities 	Ideal World Model Parameters Experimental Data
 Experimental validation challenging due to: (1) high number of CMAs/properties (2) limited amount of experiments and (3) rarity of completely pure feedstocks for experiments 	 Lots of discussion between modelers and experimentalists Careful design of experiments for validation runs Extensive analysis of feedstocks for validation runs Knowledge/selection of purity levels resulting from classification techniques 	Our World! Model Parameters Experimental Data
Difficult to fully integrate high fidelity particle-scale model into high fidelity CFD reactor model	 Now: convert particle-scale model to reduced-order variant for incorporation into CFD model Future: utilize high performance computing resources to retain more particle-scale details 	

2 - Approach

Biomass Changes During Feeding are Part of Broader FCIC Studies of Feed Process

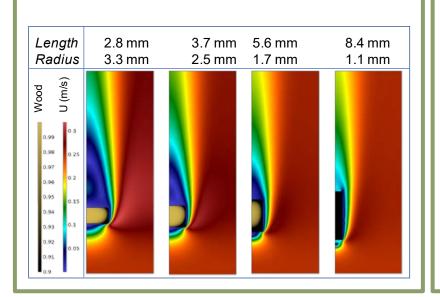
- Task 6 R&D scope:
 - Characterize early volatile emissions and tendency to recondense
 - Long duration feeding tests for temperature profile, torque, and deposition data
 - Heated auger tests to characterize feedstock changes under auger conditions (moisture, agglomeration, etc.)
 - Feeding process studies in collaboration with other tasks:
 - Task 1 (Materials of Construction): metallurgy, integrity, deposition
 - Task 3 (Material Handling): modeling flowability and consistency of feed

Temperature distributions in biomass inlet with air (top) and water (bottom) as cooling fluid.

Impact:

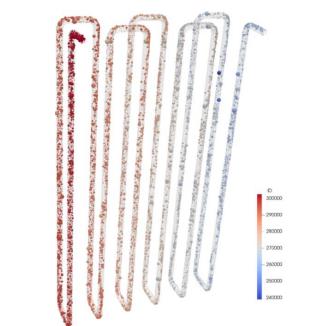
- Feedstock variability effects almost every unit operation; we are providing a science-based understanding of how CMAs, CPPs, and CQAs are related for high temperature biomass conversion
- Biorefinery design engineers and operators will be able to develop unit operations and integrated processes that are more robust, flexible, and market-responsive with respect to feedstock variability
- This project provides direct, quantitative feedback to **inform the value of preprocessing** approaches as related to conversion performance and overall biorefinery production costs

Dissemination: Peer reviewed publications & reports; open-source code; modules for process model software (ASPEN); LabKey interface; webinars; handbook of engineering design principles

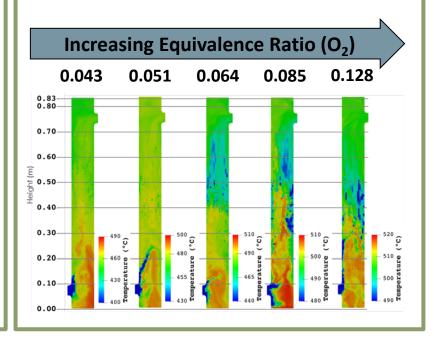

Modeling Toolset Providing Impact Beyond FCIC

Particle-scale model aids **Forest Concepts** in understanding feedstock shape (aspect ratio) effects

"The modeling data developed by NREL gave our company an understanding of how our production engineers can co-optimize reactors and feedstock properties to improve functional performance. This conversion data will also help our customers select the optimal feedstock for their specific conversion process." - James H. Dooley, CTO at Forest Concepts


forestconcepts

Reactor-scale model (MFiX) utilized to inform **BETO Catalytic Fast Pyrolysis Verification** decisions


NETL model of Entrained Flow Reactor in NREL Thermo-Chemical Process Development Unit captured different residence times to calculate impact of size distribution on yield

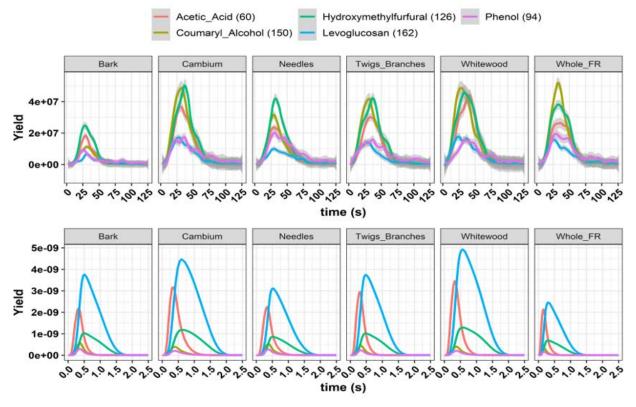
Feedstock: 60% air-classified Forest Residues (pine)/30% Clean Pine/10% Hybrid Poplar

Reactor-scale model (MFiX) providing insight into Auto-Thermal Pyrolysis with **Iowa State University**

Spatial distribution of reactor temperature during autothermal pyrolysis for varying equivalence ratio (O_2 content) provides critical information for optimizing exothermic heat release and product chemistry

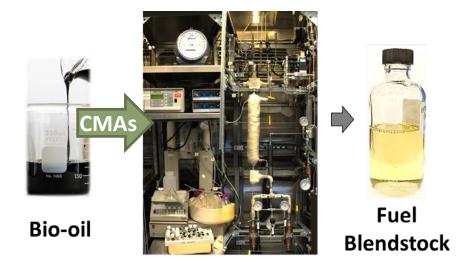
4 – Progress & Outcomes

Understanding pyrolysis fundamentals



Whole Tree Pine 200°C Breakdown Products of Abietic Acid & Abietic Acid & Dehydroabietic Acid

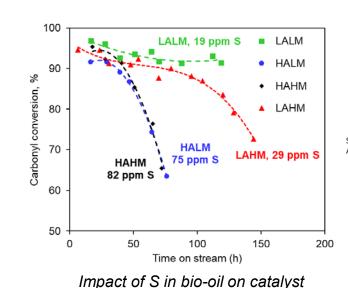
- Early volatiles are distinct for pine anatomical fractions; 12-15% *non-water* mass loss at 300 °C
- Characterization of auger and deposits reveal metallurgy, adhesion, and cohesion insights



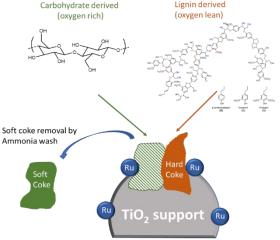
- Measured vs. predicted real-time release of pyrolysis
 vapor molecular species from pine residue fractions
- Method development and model refinement are ongoing

4 – Progress & Outcomes

Determining CMAs for Hydrotreating


Example CMAs

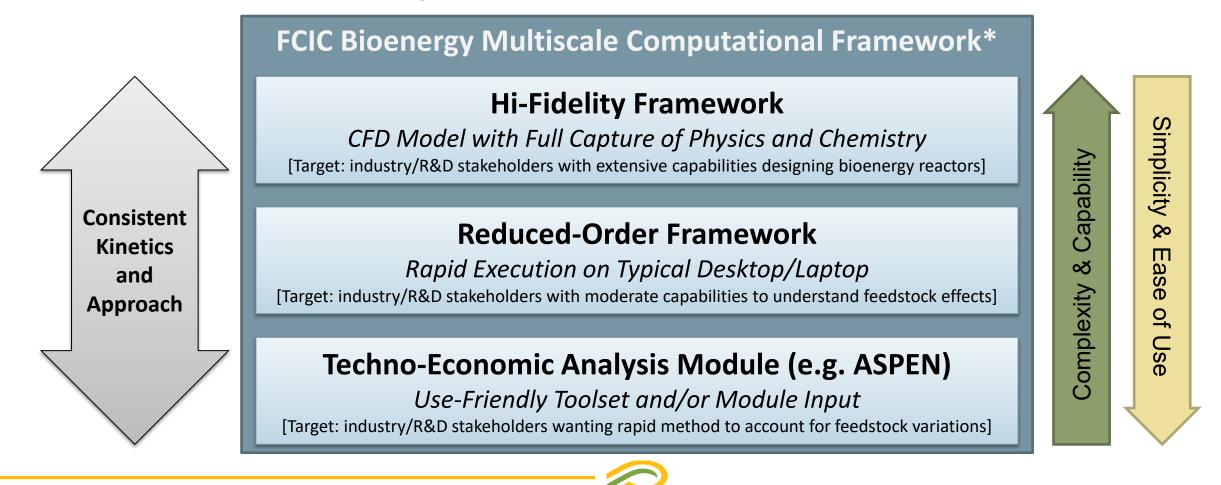
- Viscosity
- Homogeneity
- Foulant precursor content (carbonyls and others TBD)
- Inorganic content &


 Acidity speciation

- Sulfur and nitrogen content
- Oxygen and water content
- Particulate content

- Sulfur content and type in biomass determine the sulfur content in bio-oil and catalyst stability of bio-oil stabilizer
- Lignin and carbohydrate derived components in biooil are hypothesized to cause "hard" and "soft" coke deposits on bio-oil stabilizer catalyst, respectively

stability of bio-oil stabilizer



Impact of bio-oil composition on coke formation on bio-oil stabilizer catalyst

4 – Progress & Outcomes Computational Framework Outcome Includes Three Levels of Complexity & Capability for Range of Users

End-of-Project Outcome: A validated, multiscale experimental and computational framework that allows biorefinery design engineers and operators to optimize productivity and control critical product quality attributes with variable incoming feedstock attributes.

*Tech Transfer via Publications, WebTools, and Open-Source Code

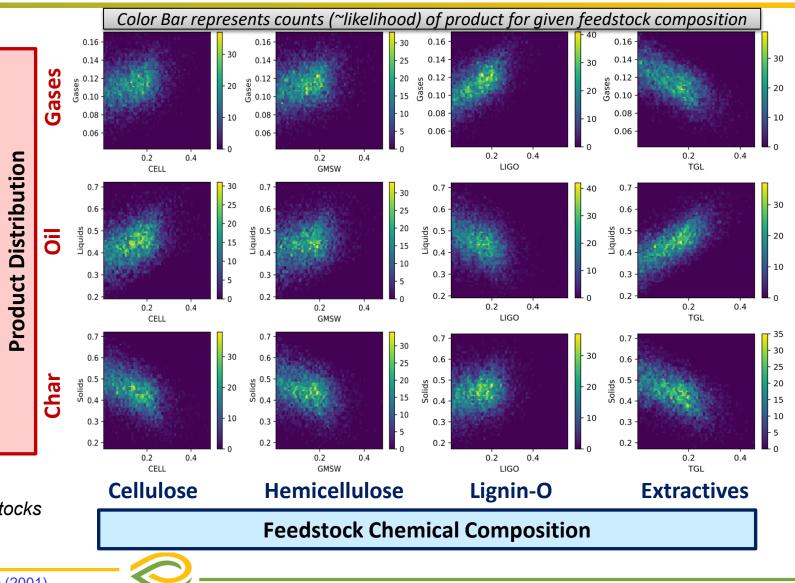
17


4 – Progress & Outcomes

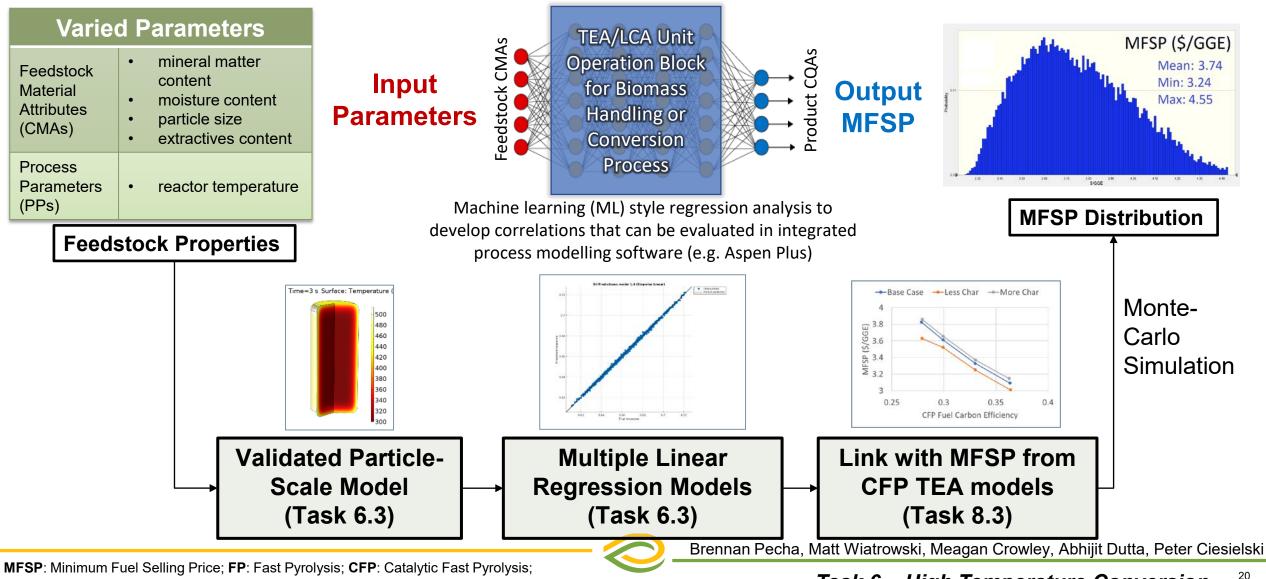
Hi-Fidelity CFD Framework Captures Fluidization and Chemistry for Reactor Design and Operation Guidance

Full fluidization of sand and biomass coupled with Debiagi kinetics enables comprehensive CFD (MFiX) prediction of pyrolysis oil yield and chemistry Matrix of Computational Framework simulations provides reactor design guidance and operational maps for different feedstocks and operating conditions

CFD=computational fluid dynamics


4 – Progress & Outcomes **Reduced-Order Framework Efficiently Calculates Impact of Feedstock Properties on Product Distributions**

- The reduced-order simulation framework is:
 - Efficient: can calculate product yields for *a large set* of feedstock compositions and properties *suitable for advanced data analytics (AI/ML)*
 - Flexible: can be applied to different reactors, feedstocks, systems, etc.
- Code execution in Python on common laptop computer
- Sobol* sensitivity analysis feedstock chemical composition impact on product distribution performed using 9,000 randomly generated samples spanning range of biomass compositions in Phyllis2** feedstock database
 - Reactor Conditions:
 - Residence Time=10 sec.
 - Temperature =500°C
 - Pressure=101.3 kPa


**Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar, https://phyllis.nl/ ECN.TNO

^{*}I.M. Sobol, *Mathematics and Computers in Simulation* **55**, pp. 271-280 (2001). Herman et al., *Journal of Open Source Software*, **2**(9), 97 (2017).

Task 6 – High Temperature Conversion

4 – Progress & Outcomes Utilizing Framework as Techno-Economic Analysis (TEA) Module for Prediction of Cost Impacts of Feedstock Material Attributes

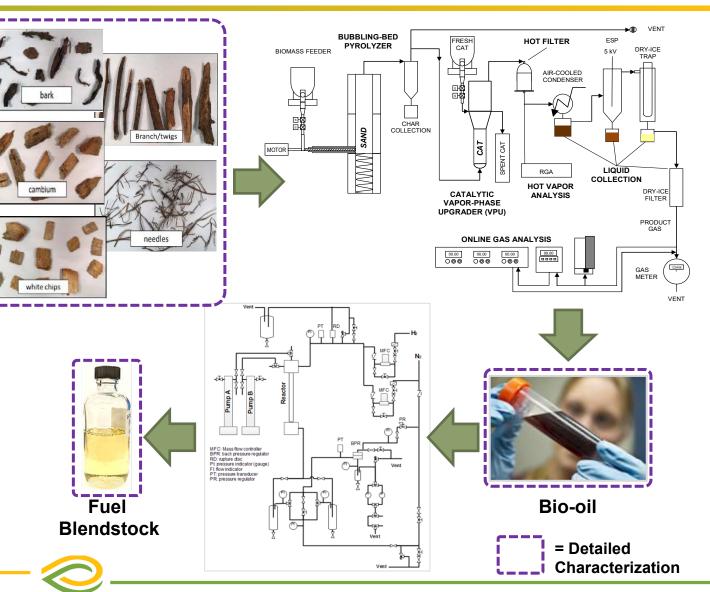
TEA: Techno-Economic Analysis

Task 6 – High Temperature Conversion ²⁰

4 – Progress & Outcomes

Experimental Validation In Progress (FY21 Q2)

Feedstocks:

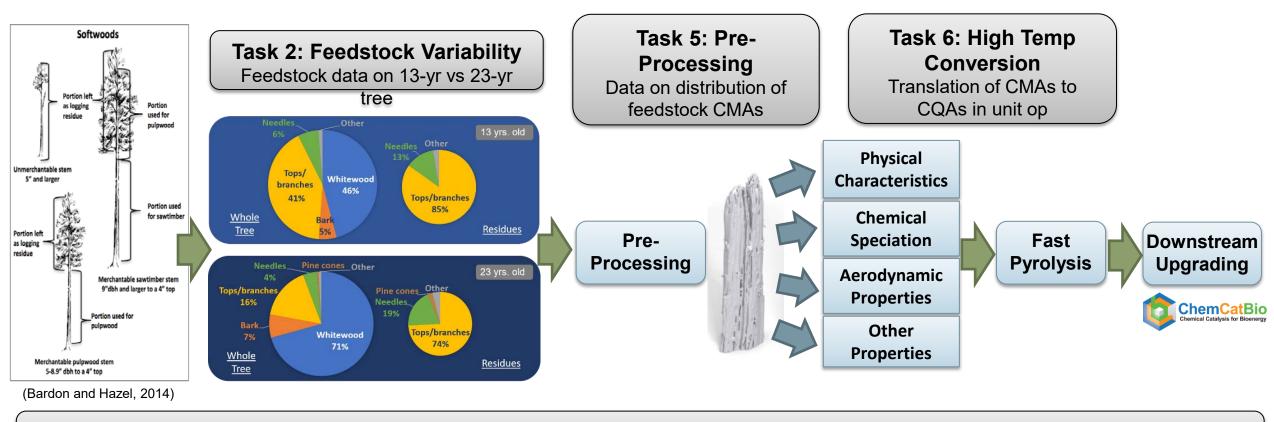

- Residues (13-yr & 23-yr trees)
- Anatomical fractions
- Densified
- Air classified

Data outputs:

- Process data; mass balances
- On-line vapor/gas analysis
- Detailed feedstock, catalyst, char, and oil product analysis

Outcomes:

- Conversion performance and product quality (CQAs) as a function of feedstock CMAs (composition, preprocessing, format)
- Model validation
- Inorganics and sulfur distribution



4 – Progress & Outcomes

Case Study to Demonstrate Utility

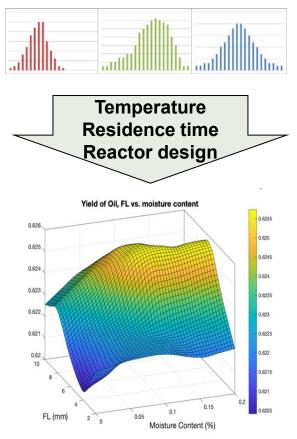
FY21 Case Study of Interest and Associated Connections

Task 8: Crosscutting Analysis

TEA and LCA (with data input along process)

Summary

Management: Multidisciplinary, multi-lab team with computational and experimental expertise; **annual operating plan** defines work breakdown, milestones, risks, and mitigation strategies; **close connections** with core Program work (ChemCatBio) and computational tool development (CCPC) to ensure relevance


Technical Approach: Coupled multi-scale experimentation, modeling, and advanced product characterization to accurately capture the fundamental physics and chemistry of high-temperature biomass **feeding** and **pyrolysis reactor** unit operations.

Impact: Science-based understanding of feedstock variability effects enables more **robust** and **flexible** integrated processes with respect to feedstock variability and quantitative feedback to inform the value of preprocessing approaches

Progress: Characterized pine residue **volatiles**, feed auger **deposits** and **deformation**; completed multi-scale, high-fidelity **computational model framework**, hybrid gas/biomass/sand **drag model**, and sensitivity analysis w.r.t feedstock attributes; sulfur, lignin, sugars impact on **hydrotreating**

Feedstock Attributes – "CMAs" (physical, chemical, mechanical)

Quad Chart Overview- FCIC, Task #6 High Temperature Conversion

Timeline

10/1/2018 - 9/30/2021

	FY20	Active Project
DOE Funding	\$1,732 K	FY19- \$2,010 K FY20- \$1,732 K <u>FY21- \$1,732 K</u> Total- \$5,474 K

Project Partners (N/A)

Barriers addressed

19Ft-E FSL Feedstock Quality: Monitoring and Impact on Preprocessing and Conversion Performance

19Ct-A CONV Defining Metrics around Feedstock Quality

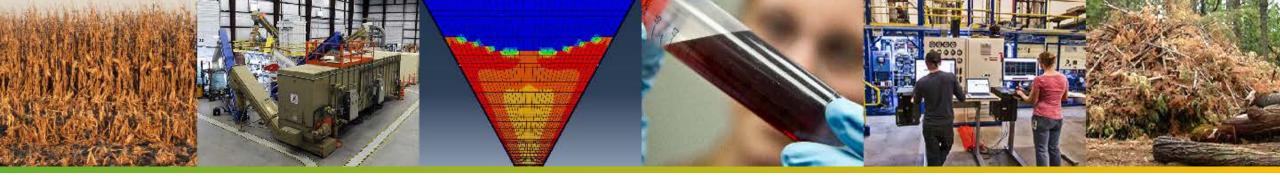
Project Goal

Develop the science-based understanding required to accurately predict the effects of variable feedstock attributes and process parameters on pyrolysis product quality attributes. Develop a validated, multiscale experimental and computational framework that allows biorefinery design engineers and operators to optimize productivity and control critical product quality attributes with variable incoming feedstock attributes.

End of Project Milestone

All results and models validated and integrated into final experimental and computational framework that captures the fundamental physics and chemistry of biomass feeding and pyrolysis unit operations as a function of feedstock particle size, anatomical fraction, and inorganic speciation, achieving 95% agreement between experiment and simulation, and providing actionable information for biorefinery design engineers and operators to optimize productivity and control critical product quality attributes with variable incoming feedstock attributes. Analyze carbon cycle and production practices for the case study of 13-yr, 23-yr pine trees in a catalytic fast pyrolysis process.

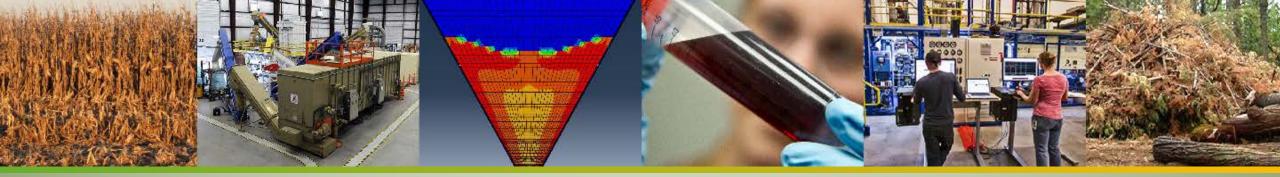
Funding Mechanism (N/A)


Thank you! Questions?

www.nrel.gov

NREL/PR-5100-79467

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.



Thank you

energy.gov/fcic

Additional Slides

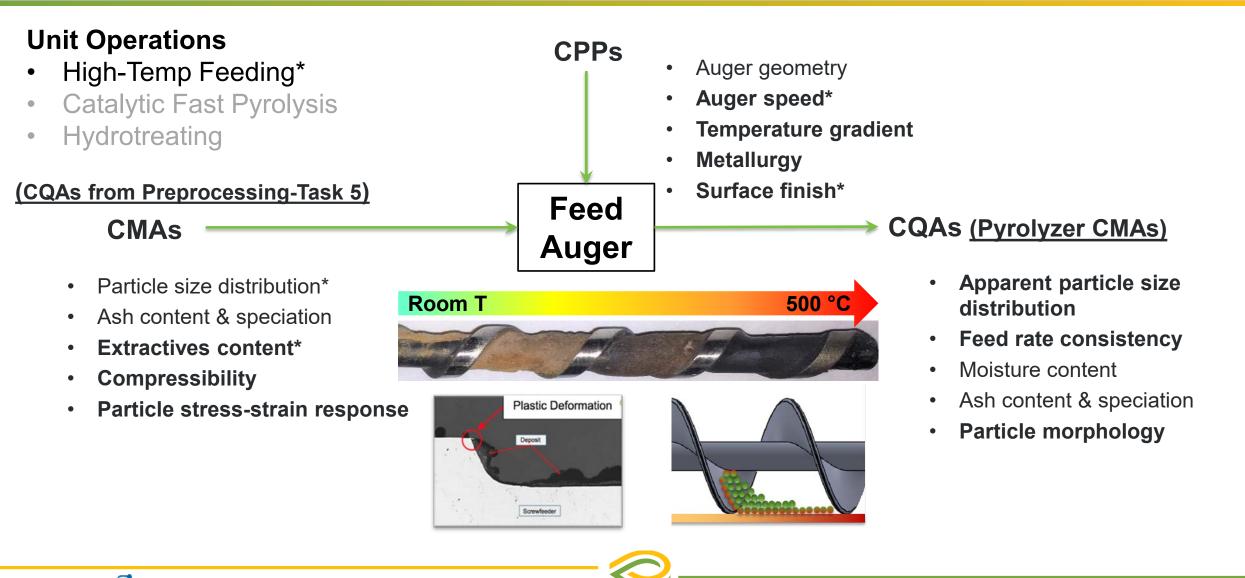
Publications

Publications

- 1. M.A. Ardila-Barragán, C.F. Valdés-Rentería, M.B. Pecha, A. López-Díaz, E. Gil-Lancheros, M.C. Vanegas-Chamorro, J.E. Camporredondo-Saucedo, L.F. Lozano-Gómez, "Gasification of coal, Chenopodium Album biomass, and co-gasification of a coal-biomass mixture by thermogravimetric-gas analysis," Revista Facultad de Ingeniería (2019) 28, 53-77 https://doi.org/10.19053/01211129.v28.n53.2019.10147.
- 2. P.N. Ciesielski, M.B. Pecha, A. Lattanzi, V.S. Bharadwaj, M.F. Crowley, L. Bu, J.V. Vermaas, K.X. Steirer. "Advances in multiscale modeling of lignocellulosic biomass," ACS Sustainable Chemistry and Engineering (2020) 8(9), 3512-3531 https://doi.org/10.1021/acssuschemeng.9b07415.
- J. Klinger, D. Carpenter, V. Thompson, N. Yancey, R. Emerson, K. Gaston, K. Smith, M. Thorson, H. Wang, D. Santosa, I. Kutnyakov. "Pilot Plant Reliability Metrics for Grinding and Fast Pyrolysis of Woody Residues Pilot plant reliability metrics" ACS Sus Chem Eng (2020), 8, 2793-2805, DOI: 10.1021/acssuschemeng.9b06718.
- 4. L. Lu, X. Gao, M. Shahnam, W.A. Rogers, "Open Source Implementation of Glued Sphere Discrete Element Method and Non-spherical Biomass Fast Pyrolysis Simulation," AIChE J. n/a (n.d.) e17211. https://doi.org/10.1002/aic.17211.
- 5. L. Lu, X. Gao, A. Gel, G. Wiggins, M. Crowley, B. Pecha, M. Shahnam, W.A. Rogers, J. Parks, P.N. Ciesielski. "Investigating Biomass Composition and Size Effects on Fast Pyrolysis using Global Sensitivity Analysis and CFD Simulations," Chem. Eng. J. (2020) 127789. https://doi.org/10.1016/j.cej.2020.127789.
- 6. L. Lu, X. Gao, M. Shahnam, W.A. Rogers. "Bridging particle and reactor scales in the simulation of biomass fast pyrolysis by coupling particle resolved simulation and coarse grained CFD-DEM," Chem. Eng. Sci. 216 (2020) 115471. https://doi.org/10.1016/j.ces.2020.115471.
- L. Lu, X. Gao, M. Shahnam, W.A. Rogers. "Coarse grained computational fluid dynamic simulation of sands and biomass fluidization with a hybrid drag," AIChE J. 66 (2020) e16867. https://doi.org/10.1002/aic.16867.
- 8. L. Lu, J. Yu, X. Gao, Y. Xu, M. Shahnam, W.A. Rogers. "Experimental and numerical investigation of sands and Geldart A biomass co-fluidization," AIChE J. 66 (2020) e16969. https://doi.org/10.1002/aic.16969.
- 9. J. Montoya, C. Valdes, H. Chaquea, M.B. Pecha, F. Chejne, "Surplus electricity production and LCOE estimation in Colombian palm oil mill using empty fresh bunches (EFB) as fuel," Energy (2020) 202, 117713 https://doi.org/10.1016/j.energy.2020.117713.
- 10.A. Harman-Ware, K. Orton, C. Deng, S. Kenrick, D. Carpenter, J. Ferrell. "Molecular weight distribution of raw and catalytic fast pyrolysis oils: comparison of analytical methodologies" RSC Advances (2020), 10 (7), 3789-3795, DOI: 10.1039/C9RA09726K.

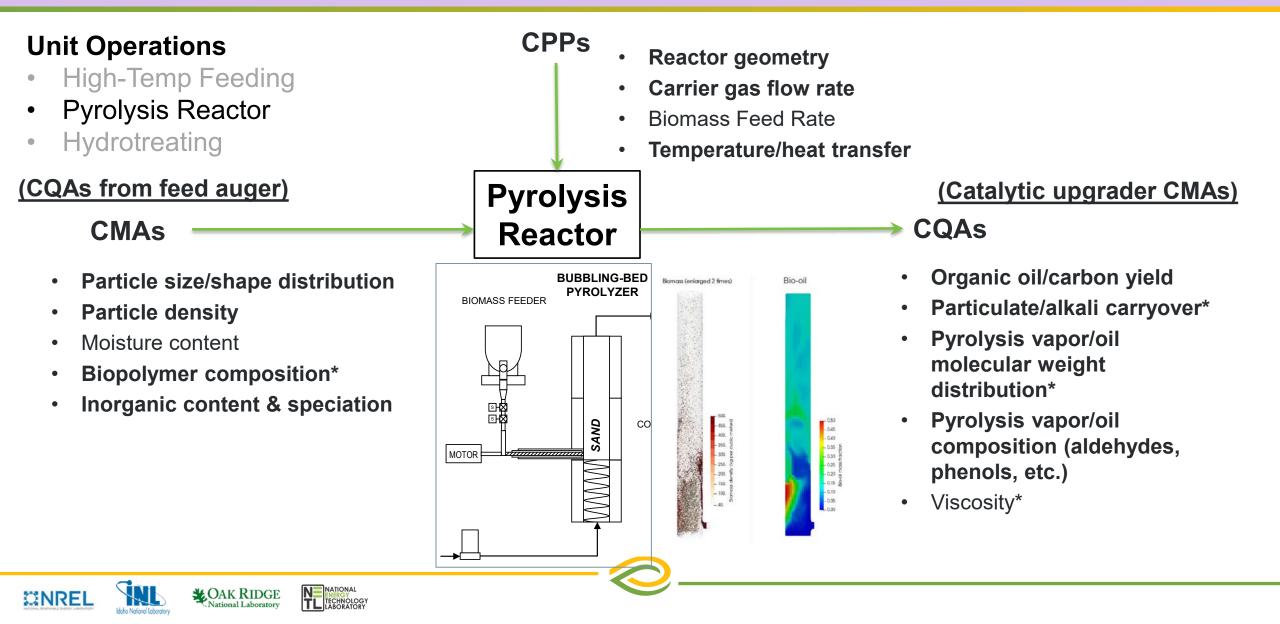
Presentations

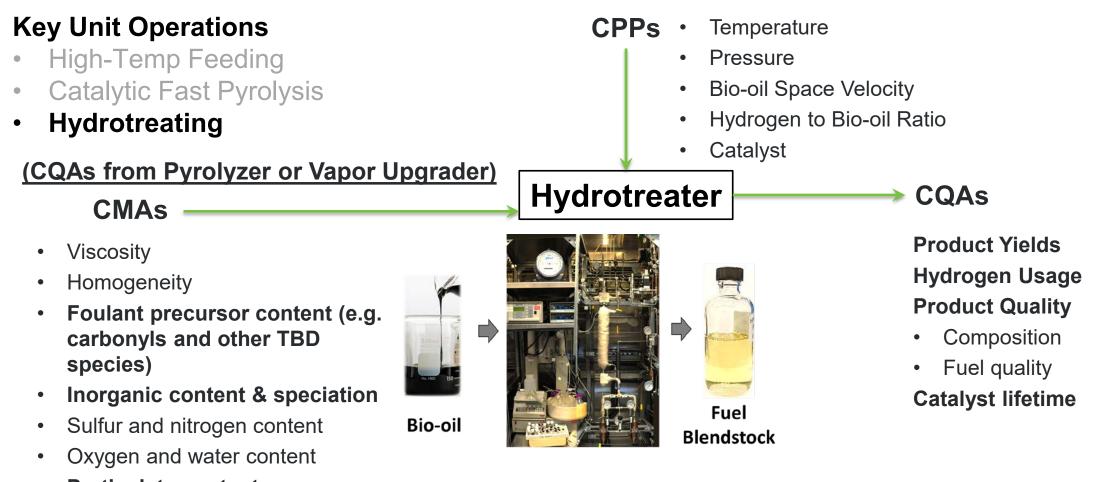
- 1. D. Carpenter, V. Thompson, K. Gaston, N. Yancey. "Pilot plant reliability metrics for grinding and fast pyrolysis of woody residues," tcbiomass+, Rosemont, IL, October 2019 (oral).
- 2. T. Dunning. "Determining Design Criteria for Feeding Biomass into a Fluidized Bed using a Feed Screw." tcbiomass+, Rosemont, IL, October 2019 (oral).
- 3. R. Emerson, S. Rowland, J. Klinger, D. Carpenter, C. Pilgram, L. Ware, E. Fillerup, A. Starace. "Impacts of biopolymer structural and chemical attributes on the product distribution of fast pyrolysis and catalytic fast pyrolysis of loblolly pine," Thermal & Catalytic Sciences Symposium, Richland, WA (Virtual), October 2020 (oral).
- 4. L. Lu, X. Gao, A. Gel, M. Shahnam, W. Rogers. "Influences of Biomass Compositions, Particle Sizes, and Fluidization Gases on Fast Pyrolysis." 2020 Virtual AIChE Annual Meeting.
- 5. L. Lu, Xi Gao, M. Shahnam, W. Rogers. "Hybrid drag model for the simulation of biomass fast pyrolysis." AIChE 2019 Annual Meeting, Orlando, Nov 2019.
- 6. M.B. Pecha. "High temperature conversion of wood and waste to fuels at the National Renewable Energy Laboratory," Scaling Biochar Forum, Sonoma, CA (Virtual), Oct. 13, 2020 (oral).
- 7. M.B. Pecha, X. Gao, Z. Mills, G. Wiggins, C. Finney, W. Rogers, J. Parks, P. Ciesielski, D. Carpenter, K. Gaston, K. Smith. "High fidelity multiscale modeling of fast pyrolysis of woody feedstock blends in a fluidized bed reactor and entrained flow reactor" Thermal & Catalytic Sciences Symposium (Virtual), Richland, WA, October 2020 (oral).
- 8. M.B. Pecha. "How biomass burns and char is produced, particle size optimum, resulting biochar outcomes." Biomass to Biochar Workshop (Virtual), Pullman, WA, April 27, 2020 (oral).
- 9. S. Rowland, A. Starace, K. Hietala, D. Carpenter. "Insight into Biomass Pyrolysis from Molecular Beam Mass Spectrometry," ASMS June 3, 2019 (poster).



High-Temperature Conversion

CAK RIDGE


Argonne 🛆


High-Temperature Conversion

High-Temperature Conversion

- Particulate content
- Acidity

Pacific Northwest

Outcome: A validated, multiscale experimental and computational framework that allows biorefinery design engineers and operators to optimize productivity and control critical product quality attributes with variable incoming feedstock attributes.

Outcomes	Tech Transfer Component	Target Customers
Validated particle-scale biomass model (high fidelity, COMSOL)	Validated Feedstock Model for Accurate Development of Sub-Model	R&D Community & Bioenergy Industry + Large Energy Cos.
Validated particle-scale biomass model (reduced-order)	Sub-Model for Incorporation into Commercial Model Code	CPFD? Other CFD code companies?
Validated multi-scale reactor model capturing biomass variability (high fidelity, MFiX)	Framework and Toolset for Scale-Up of Commercial Biorefineries	R&D Community & Bioenergy Industry + Large Energy Cos.
Validated multi-scale reactor model capturing biomass variability (reduced-order, Python)	Model and Sub-Model Code on GitHub (publicly available download)	R&D Community & Bioenergy Industry
Techno-Economic Analysis of Variability Impacts (HT-C-1, 5 variables in current variant)	On-Line Tool for Calculating Feedstock CQAs as f(CMAs)	Bioenergy Industry
Life Cycle Analysis of C Pathway in Thermo-	Process Scale Unit Operation Model	ASPEN? Other process model companies?
Chemical Conversion (definition in progress)	Sensitivity Analysis Defining Criticality Factor for CMAs	Bioenergy Industry
FCIC Case Study: 13-yr vs. 23-yr pine trees	Publication	R&D Community & Bioenergy Industry

Experiments planned for 2" Fluidized Bed Reactor

Cycle 1	Residues	Benchmark material (23 y.o. tops/branches)	Cycle 12	Air classified 1	To verify ash reduction impacts (fan speed 1?)
Cycle 2	Stem wood	Anatomical fraction – model validation; 23 y.o.	Cycle 13	Air classified 2	To verify ash reduction impacts (fan speed 2?)
Cycle 3	Bark	Anatomical fraction – model validation; 23 y.o.	Cycle 14	Residues (rep 2)	Benchmark material – QC (23 y.o. tops/branches)
Cycle 4	Needles	Anatomical fraction – model validation	Cycle 15	Whole tree (13-year- old thinnings)	Impact of tree age and performance of whole young tree vs. older residues
Cycle 5	Bark + Needles	2-component blend	Cycle 16	TBD (from 13-year- old thinnings)	Select anatomical fraction or whole residue for age comparison (based on microscale test results)
Cycle 6	Pine pellets, p1	To understand particle density effects (pelletized + crushed/crumbled)	Cycle 17	CFP – Residues	Benchmark material (23 y.o. tops/branches)
Cycle 7	Pine pellets, ρ2	To understand particle density effects (pelletized + crushed/crumbled)	Cycle 18	CFP – Stem wood	Anatomical fraction – explicit in conversion models
Cycle 8	Residues (rep 1)	Benchmark material – QC (23 y.o. tops/branches)	Cycle 19	CFP – Bark	Anatomical fraction – explicit in conversion models
Cycle 9	Pine crumbles	Using Forest Concepts rotary sheer operation (~2mm smallest crumble)	Cycle 20	CFP – Needles	Anatomical fraction – explicit in conversion models
Cycle 10	Residues:bark:nee dles 1:1:1	Represents "dirtier" residue, lower feedstock quality	Cycle 21	CFP - Air classified, 1 or 2	To verify ash reduction impacts (fan speed x?)
Cycle 11	Residues:bark:nee dles 1:2:2	Represents "dirtier" residue, lower feedstock quality	Cycle 22	CFP – Residues (rep)	Benchmark material – QC (23 y.o. tops/branches)

13/23 Case Study Material Characterization

Feedstock/bed material (model CMAs)

Particle size/shape distribution (Qicpic)

Particle structure/energy (bulk density, skeletal density, particle envelope density, mercury intrusion porosity, surface energy, surface area, DRIFTS)

Particle density (PTA)

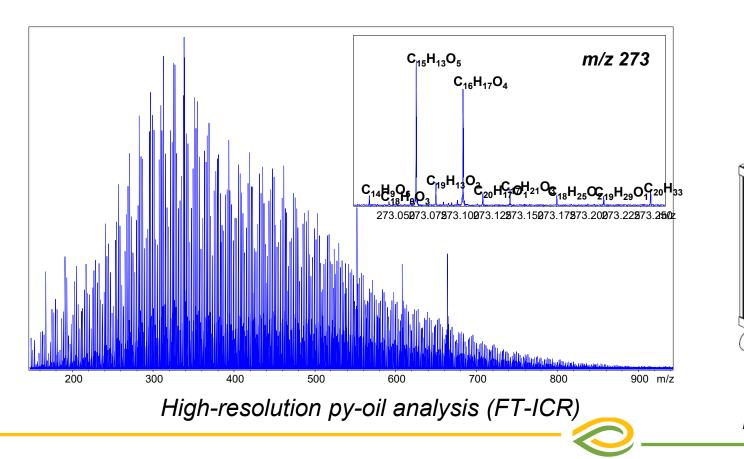
Surface roughness, topology, surface chemistry (Raman)

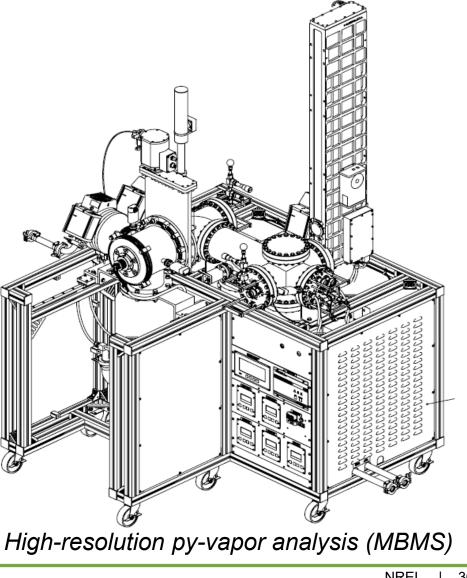
Aerodynamic properties (cold flow testing)

Proximate analysis (volatile matter, ash, moisture, fixed carbon)

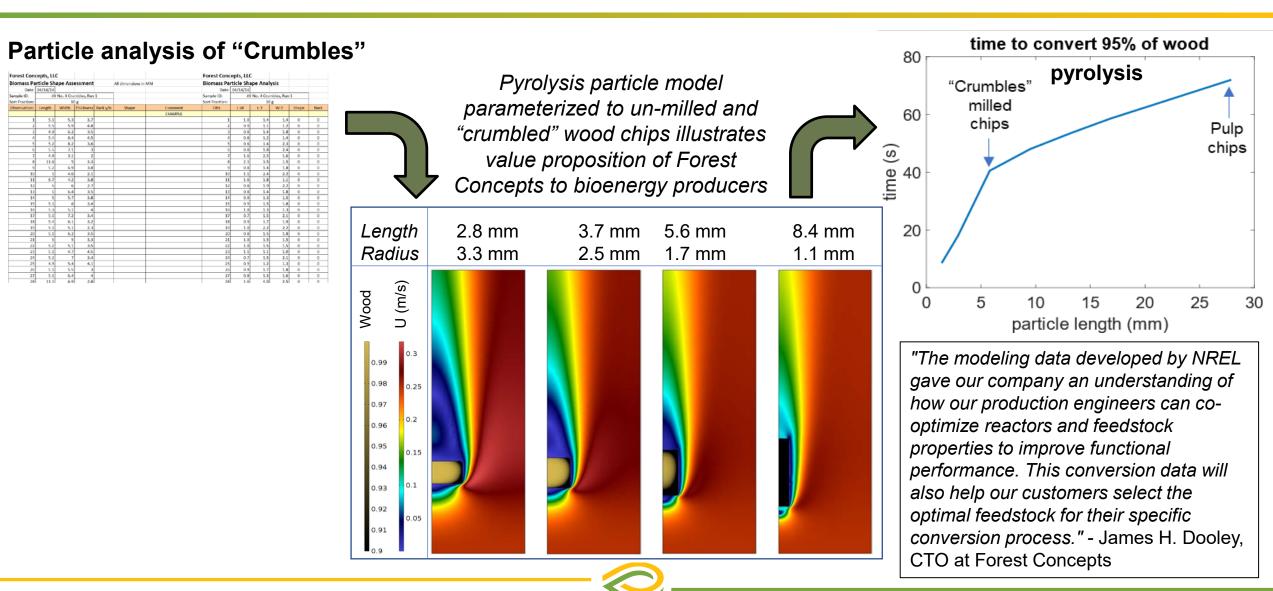
Ultimate analysis (C, H, O, N, S)

Ash analysis (Al, Ca, Fe, Mg, Mn, P, K, Si, Na, S, Ti)

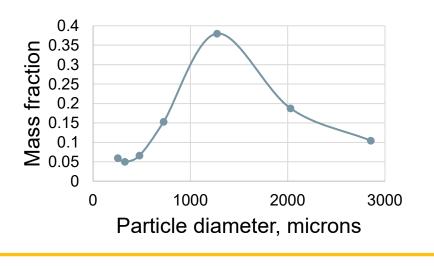

Structural organic composition (cellulose, hemicellulose, lignin)

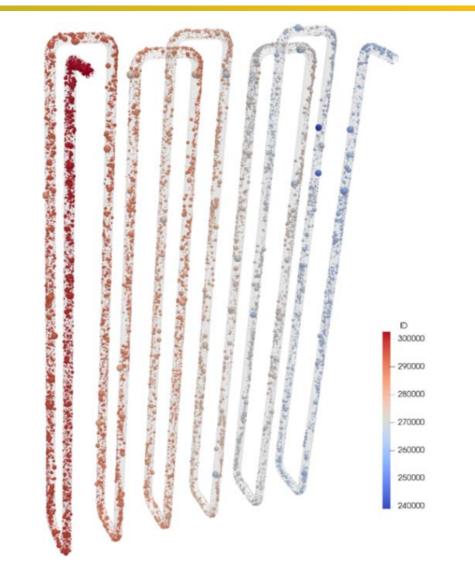

Oil/Char	
Proximate analysis (volatile matter, ash, moisture, fixed cark	oon)
Ultimate analysis (C, H, O, N, S)	
Ash species (Al, Ca, Fe, Mg, Mn, P, K, Si, Na, S, Ti)	
Water content (KF)	
GC-MS	
TAN	
Carbonyl content	
¹³ C NMR	
³¹ P NMR	
GPC	
Char structure, porosity, surface area, residual HC analysis	

New Analytical Tools Coming Online

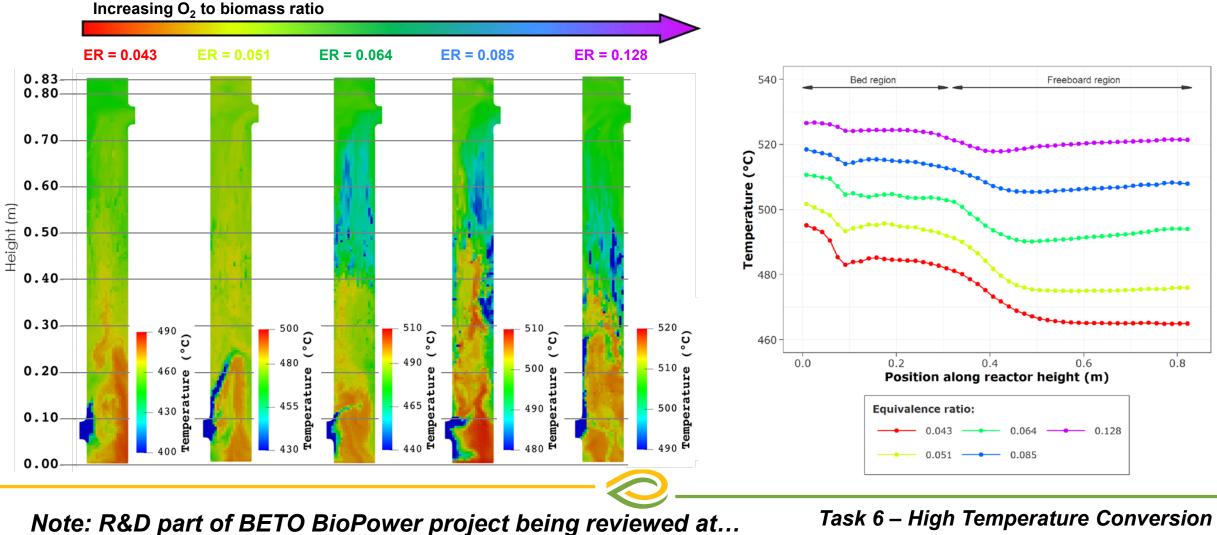

- Standard assay for pyrolysis oil analysis
- New analytical capabilities

Particle Scale Model Aids Industry in Understanding Feedstock Shape Effects on Pyrolysis Performance


Brennan Pecha & Peter Ciesielski


37 Task 6 – High Temperature Conversion

CFD (MFiX) Model Utilized to Inform BETO Catalytic Fast Pyrolysis Verification Decisions


- NETL CFD (MFiX) model of Entrained Flow Reactor in NREL Thermo-Chemical Process Development Unit (TCPDU)
- Feedstock: 60% air-classified Forest Residues (pine)/30% Clean Pine/10% Hybrid Poplar
- Model captured different residence times for distribution of particle sizes to calculate impact of size distribution on yield
- Model also utilized to understand fluidization impacts on yield for adding H₂ content to process gas (for downstream catalytic deoxygenation)

CFD (MFiX) Model Calculates Reactor Temperatures in Auto-Thermal Pyrolysis with Iowa State University

ORNL, NREL, NETL, & Iowa State University utilizing previous version of FCIC toolset to calculate spatial distribution of reactor temperature during auto-thermal pyrolysis for varying O_2 [equivalence ratio (ER) shown]

Task 6 – High Temperature Conversion

³⁹