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International System of Units to U.S. customary units

Multiply By To obtain

Length

kilometer (km) 0.6214 mile(mi)
Area

square kilometer (km2) 247.1 acre
square kilometer (km2) 0.3861 square mile (mi2)

Volume

liter (L) 1.057 quart (qt)
liter (L) 0.2642 gallon (gal)
cubic meter (m3) 264.2 gallon (gal)
cubic meter (m3) 35.31 cubic foot (ft3)

Mass
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metric ton (t) 1.102 ton, short [2,000 lb]
metric ton (t) 0.9842 ton, long [2,240 lb]

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows: °F 
= (1.8 × °C) + 32.

Datum
Vertical coordinate information is referenced to the North American Vertical Datum of 1988 
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Supplemental Information
Specific conductance is given in millisiemens per centimeter at 25 degrees Celsius (mS/cm 
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Streamflow is given in cubic feet per second (ft3/s), which can be converted to cubic meters per 
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A water year is the period from October 1 to September 30 and is designated by the year in 
which it ends; for example, water year 2018 was from October 1, 2017, to September 30, 2018.
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Continuous Monitoring of Nutrient and Sediment Loads 
from the Des Plaines River at Route 53 at Joliet, Illinois, 
Water Years 2018–20

By Colin S. Peake and Timothy O. Hodson

Abstract
The Des Plaines River in southern Wisconsin and 

northern Illinois is the principal conduit for the discharge 
of wastewater effluent and stormwater runoff from the 
greater Chicago metropolitan area. In November 2017, the 
U.S. Geological Survey, in cooperation with the Metropolitan 
Water Reclamation District of Greater Chicago, installed 
a continuous monitoring station to measure water quality 
and streamflow in the Des Plaines River at Joliet, Illinois. 
Surrogate models encompassing continuous data and discrete 
water-quality samples were used to estimate loads of nitrate, 
total phosphorus, and suspended sediment. Comparisons to 
other major rivers in Illinois show that the Des Plaines River 
is a substantial contributor to statewide loading estimates for 
nitrate and total phosphorus but only a minor contributor to 
suspended sediment. Future loading estimates of total phos-
phorus could include more research into the effects of com-
bined sewage overflows because these effects likely increased 
model uncertainty. The results in this report document current 
loadings and provide a baseline from which to assess future 
water-quality management decisions.

Introduction
In the 1960s and 1970s, State and Federal water-quality 

standards, as environmental regulations, were established for 
the Chicago Area Waterway System (Hines, 2012; Copeland, 
2016). The Metropolitan Water Reclamation District of 
Greater Chicago (MWRDGC) operates and maintains a 
water-quality monitoring network along the system and has 
done extensive data collection and reporting on the concen-
trations and loads of nutrients (for example, Abedin, 2016; 
Minarik and Wasik, 2017). The system’s operation procedures 
incorporate information from the water-quality monitoring 
network and flow data to help meet the water-quality stan-
dards. However, since the completion of the Chicago Sanitary 

and Ship Canal, which rerouted the Chicago River away from 
Lake Michigan, demands on the system, as well as its moni-
toring needs, have expanded through time. Navigation and 
wastewater discharge regulations have become increasingly 
stringent and require more monitoring to effectively meet and 
balance increasing demands for water quality, commercial and 
recreational navigation, and regional flood control, as well as 
newer issues such as the threat from aquatic invasive species 
and the recovery of native species.

In addition to these local water-quality concerns, nutri-
ents from the Des Plaines River contribute to the formation of 
a large low-oxygen or hypoxic region that develops each sum-
mer in the northern Gulf of Mexico. The State of Illinois, as 
well as other States within the Mississippi River Basin, have 
voluntarily committed to reduce nitrate-nitrogen and phos-
phorus loads to the Mississippi River (Illinois Environmental 
Protection Agency [IEPA] and others, 2015). State regulators 
assessing progress toward this goal need better documentation 
and monitoring of the contribution of nutrients to the Illinois 
River from the greater Chicago metropolitan area to be able 
to determine the relative contributions from this area to the 
overall nutrient loading of the Illinois Waterway (monitored 
by the U.S. Geological Survey [USGS] with continuous nutri-
ent sensors at the Illinois River at Florence, Ill. [Terrio and 
others, 2015]).

The Des Plaines River originates in southeast Wisconsin 
and flows south through suburban communities in northeastern 
Illinois before turning southwest to run parallel to the Chicago 
Sanitary and Ship Canal for about 32 kilometers. The canal 
joins the Des Plaines River just north of Joliet, Illinois. The 
canal is the downstream reach of the Chicago Area Waterway 
System (fig. 1). The system consists of a combination of 
natural and man-made channels that form an interconnected 
navigable waterway of about 145 kilometers in the Chicago 
metropolitan area of northeastern Illinois. The system is used 
for commercial and recreational transportation and as the 
conduit for the discharge of wastewater effluent and stormwa-
ter runoff.
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In November 2017, the USGS, in cooperation with the 
MWRDGC, installed a continuous monitoring station to col-
lect water-quality and streamflow data in the Des Plaines River 
at Route 53 at Joliet, Ill. (USGS station 05537980; fig. 1). 
Those continuous data, along with discrete water-quality 
samples, were used to develop models for estimating con-
centrations and annual loads of dissolved nitrite plus nitrate 
as nitrogen (NO23), total phosphorous (TP), and suspended 
sediment at the Des Plaines River at Joliet, Ill., for water years 
(WYs) 2018–20.

Purpose and Scope
This report documents the development and application 

of surrogate models for estimating concentrations and loads of 
NO23, TP, and suspended sediment at the Des Plaines River 
at Route 53 at Joliet, Ill., using data collected during WYs 
2018–20. The models apply a method documented in Hodson 
and others (2021a) to statistically relate in situ, continu-
ous water-quality data with analytical results from discrete 
water samples. The data collected are available in the USGS 
National Water Information System database (USGS, 2021b).
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Methods
In-stream sensors were used to record water tempera-

ture, specific conductance, dissolved oxygen, pH, turbidity, 
nitrate, and orthophosphate at 15-minute intervals during WYs 
2018–20. From that data, concentrations of NO23, TP, and 
suspended sediment were estimated using covariate-based 
Bayesian imputation (Hodson and others, 2021a). Loads 
were calculated by multiplying daily mean concentration and 
streamflow with a unit conversion factor, where annual loads 
are the summation of daily loads.

Data Collection

Monitoring instrumentation was on the upstream side 
of the central pier protection cell of the Route 53 bridge. 
This mounting location allowed for adequate depth under 
all streamflow conditions while protecting the instrumenta-
tion from boat traffic and in-stream debris. YSI EXO 2 (YSI, 
Inc., Yellow Springs, Ohio), Hach Nitratax plus sc (Hach, 
Loveland, Colorado), and Hach Solitax sensors were installed 
in separate 4-inch polyvinyl chloride conduits. The YSI P 
700 IQ orthophosphate (OP) analyzer has a larger rectan-
gular filter that was installed on a railing system welded to 
the pier-protection cell. Detailed descriptions of the sen-
sors and analyzers are provided in table 1. All water prop-
erties were measured at 15-minute intervals beginning in 
November 2017, except for OP, which was initially measured 
hourly but switched to a 15-minute interval in August 2018. 

To assist with discrete sample collection, a ISCO autosampler 
(Teledyne ISCO, Lincoln, Nebraska) was installed in spring 
2019 to sample based on turbidity and OP concentration 
thresholds.

The continuous data record for each property was ana-
lyzed, approved, and audited according to established USGS 
protocols and methods (Wagner and others, 2006). These 
protocols included removal of obvious erroneous data, correc-
tion for sensor fouling and calibration drift, and comparison 
of continuous sensor data with periodic discrete verification 
samples that were analyzed by the USGS National Water 
Quality Laboratory in Denver, Colorado. Continuous data and 
annual summaries of the minimum, maximum, and mean con-
centrations for the water-quality properties at the monitoring 
station are in the USGS National Water Information System 
database (USGS, 2021b).

Surrogate Modeling

A challenge with using continuous data in modeling is 
the uncertainty that is created from periods of missing data, 
and how that uncertainty affects predictions derived from the 
data, such as annual loading rates. This study uses covariate-
based Bayesian imputation (Hodson and others, 2021a), which 
imputes missing data based on other covariates monitored dur-
ing the study, including water temperature, pH, dissolved oxy-
gen, specific conductance, turbidity, streamflow, season, and 
time. The approach assumes the joint distribution of the data 
is multivariate lognormal, learns the joint distribution from 
observations, and then simulates missing observations using 

Table 1.  Manufacturer specifications for each instrument used for data collection.

[°C, degree Celsius; ±, plus or minus; mS/cm, millisiemens per centimeter; %, percent; mg/L, milligram per liter; CT, calibration temperature; FNU, Formazin 
Nephelometric Unit; <, less than; mm, millimeter; mg N/L, milligrams of nitrogen per liter; mg P/L, milligrams of phosphorus per liter]

Property Instrument Range Accuracy   Resolution

Water temperature YSI EXO2 Multiparameter 
Sonde

−5–50 °C −5–35 °C: ±0.01 °C; 
35–50 °C: ±0.05 °C

0.001 °C

Specific conductance YSI EXO2 Multiparameter 
Sonde

0–200 mS/cm 0–100 mS/cm: ±0.5%; 
100–200 mS/cm: ±1%

0.0001–0.01 mS/cm, range 
dependent

Dissolved oxygen YSI EXO2 Multiparameter 
Sonde

0–50 mg/L 0–20 mg/L: ±1.0%; 
20–50 mg/L: ±5.0%

0.1 mg/L

pH YSI EXO2 Multiparameter 
Sonde

0–14 standard 
units

±0.1 standard units within ±10 °C 
of CT, 
±0.2 standard units otherwise

0.01 standard units

Turbidity YSI EXO2 Multiparameter 
Sonde

0–4,000 FNU 0–999 FNU: ±2%; 
1,000–4,000 FNU: ±5%

0–999 FNU: 0.01 FNU; 
1,000–4,000 FNU: 
0.1 FNU

Turbidity Hach Solitax 0–4,000 FNU 0–1,000 FNU: <1% with calibration 0.01 FNU
Nitrate plus nitrite Hach Nitratax plus sc 2 mm 0–50 mg N/L ±3% or 0.5 mg N/L, whichever is 

greater
0.1 mg N/L

Orthophosphate YSI P 700 IQ 0.05–15 mg 
P/L

±2% or 0.05 mg P/L, whichever is 
greater

0.01 mg P/L
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the learned joint distribution of the data. Additional detail 
about the model is provided in Hodson and others (2021a), but 
the basic structure of the model is represented in its likelihood:

	 z=[logc, logq, sin2πt, cos2πt, t, logx]� (1)

	 z∼lognormal(μ,Σ)� (2)

where
	 z	 is the true state of the system,
	 c	 is concentration of the constituent of interest,
	 q	 is daily mean streamflow,
	 t	 is time in decimal years,
	 x	 are other covariates,
	 μ	 is a vector containing the median value for 

each element in z, and
	 Σ	 is the covariance of z.

The model underlying the Bayesian method is some-
what analogous to regressing logarithmic transformed con-
centration against the logarithmic transformed covariates, 
but the Bayesian version has several advantages, such as 
being less prone to certain biases caused by missing data. If 

only streamflow, season, and time are available, the model is 
analogous to the five-parameter model from Cohn and others 
(1992) but with regularization to minimize overfitting. Data is 
available in the National Water Information System (USGS, 
2021a), and modeled data is available from Hodson, 2021b. 
For more details on the method and modeled data, see Hodson 
and others (2021a, b).

Data Coverage
Continuous water-quality data collection began after 

equipment installation on November 17, 2017, and continued 
through September 30, 2020. The percentage of continuous 
data coverage for each property is separated by streamflow 
quartile and shown in table 2. Data coverages across the 
streamflow quartiles for temperature, specific conductance, 
dissolved oxygen, both turbidity sensors, and NO23 were 
94 percent or higher for each quartile. OP was 80 percent or 
higher, whereas pH was 75 percent or higher. OP and pH had 
lower percentages largely because of the use of consumable 
parts that resulted in lost data.

Table 2.  Percentage of record with continuous data coverage from November 17, 2017, to September 30, 2020, by streamflow quartile.

[SC, specific conductance; DO, dissolved oxygen; OP, orthophosphate]

Streamflow 
quartile

Percentage of record with continuous data coverage

Temperature SC DO pH

Turbidity 
(YSI EXO2 

Multiparameter 
Sonde)

Turbidity 
(Hach 

Solitax)
Nitrate OP

First quartile 100 100 100 79 94 98 99 80
Second quartile 99 95 99 76 96 98 99 96
Third quartile 100 95 100 75 96 98 100 94
Fourth quartile 100 97 100 79 94 95 100 86
Overall 100 96 100 77 95 97 99 90
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Streamflow and Discrete 
Water-Quality Data

Streamflow measurements began at the Des Plaines River 
at Joliet in 2005. During WYs 2006–17, mean annual stream-
flow was 3,461 million cubic meters (Mm3), whereas mean 
annual streamflow during the study period (WYs 2018–20) 
was 23 percent higher at 4,485 Mm3. Annual streamflow 
rankings for 2018, 2019, and 2020 were the second, first, and 
fourth highest mean annual streamflows, respectively, since 
monitoring began in 2005. Streamgages upstream at the Des 
Plaines River near Lemont (USGS station 05533600), the 
Chicago Sanitary and Ship Canal near Lemont (USGS station 
05536890), and the Des Plaines River at Riverside (USGS 
station 05532500; not shown on a map) all experienced above-
average streamflow during the study period; and 2019 was the 
highest annual streamflow across the period of record for all 
sites (USGS, 2021a).

Discrete water-quality samples were collected during 
maintenance visits, scheduled routine sampling, or with the 
automated ISCO sampler. These samples allow for direct 

comparison between nutrient sensors and surrogate models 
and help quantify errors in continuous monitors. Analytical 
method information for the discrete water-quality samples is 
provided in table 3. Discrete samples were typically collected 
using a weighted-bottle sampler with a 1-liter pre-cleaned 
polypropylene bottle suspended by a rope. The sampler was 
lowered as quickly as possible to the depth of the continuous 
sensors and allowed to fill. Samples were collected immedi-
ately next to the sensors, and the ISCO intake was also next to 
the sensors. Cross-sectional samples were depth- and width-
integrated and characterize whether the location of the sensors 
was representative of the entire width of the river. During the 
study, two cross-sectional samples were collected. Mean dif-
ferences between discrete point and cross-sectional samples 
were 15, 13, and 25 percent for NO23, TP, and suspended 
sediment, respectively. Further sampling is planned to fully 
assess potential bias over the full range of streamflow condi-
tions. Summary statistics of the discrete water-quality samples 
are provided in table 4 (USGS, 2021a).

Table 3.  Analytical method information for discrete water-quality samples.

[µm, micrometer; mg/L, milligram per liter; sulfuric acid, H2SO4; <, less than]

Constituent Preservation Analysis method Limit detection method

Nitrate plus nitrite as nitrogen Filtered (0.45 µm), chilled, 
dark bottle

Colorimetry, enzymatic reduction-diazotization 
(Patton and Kryskalla, 2011)

0.04 mg/L

Total phosphorus Chilled, H2SO4 acid to 
pH<2

Colorimetry, alkaline persulfate digestion 
(Fishman, 1993)

0.01 mg/L

Orthophosphate Filtered (0.45 µm), chilled, 
dark bottle

Colorimetry, phosphomolybdate reduction (Patton 
and Kryskalla, 2003)

0.004 mg/L

Table 4.  Summary of discrete water-quality samples collected during water years 2018–20.

[Data are summarized from the National Water Information System database (U.S. Geological Survey, 2021a)]

Constituent
Sample 
count

Summary statistic, in milligrams per liter

Minimum Maximum Median 1st quartile 3d quartile

Nitrate plus nitrite 30 1.28 6.70 3.97 3.12 4.95
Orthophosphate 42 0.004 2.17 0.50 0.37 0.79
Total phosphorus 42 0.38 2.35 0.66 0.46 1.07
Suspended sediment 43 5 211 13 10 27
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Loads and Yields
Modeled annual loading results for WYs 2018–20 for 

NO23, TP, and suspended sediment are in table 5, and loading 
timeseries are in figures 2–4, respectively. Using these results, 
nutrient and sediment loads from the Des Plaines River were 
compared to the other major rivers in the State, as well as to 
nutrient loads from water reclamation plant (WRP) effluent 
data from the MWRDGC (MWRDGC, 2021). Annual WRP 
loads were estimated by multiplying the mean daily effluent 
loading for each water year by 365.25 because about 24 per-
cent of daily loads were missing, disproportionally affecting 
TP and WY 2020. These estimates are used to create a basic 
relation between WRPs and station loads and were within 
20 percent of the selected major municipalities TP loads from 
the latest Biennial Illinois Nutrient Loss Reduction Strategy 
Report (IEPA and others, 2019). The estimated WRP annual 
loadings are in table 5. For WRP suspended-sediment esti-
mates, total suspended solids effluent data were used for com-
parison with suspended sediment because no direct compari-
son was available. However, for predominantly fine-grained 
(particle sizes less than 0.0625 millimeter) systems, this is 
acceptable for relative comparisons (Gray and others, 2000; 
Groten and Johnson, 2018).

An estimated 63–76 percent of the annual NO23 load 
originated from WRPs during WYs 2018–20 (table 5). Storms 
were associated with increased NO23 loading but typically 
lower concentration. Lower NO23 concentration during 
storms is likely due to NO23 in WRP effluent being diluted by 
stormwater runoff (fig. 2). This dilution is common in urban-
ized watersheds where WRPs are the largest source of NO23 

(Terrio, 1994; Carey and Migliaccio, 2009). The mean NO23 
yield during WYs 2018–20 was 4.70 tons per square kilome-
ter (t/km2) for the Des Plaines River, which is similar to the 
Chicago and Des Plaines River’s Hydrologic Unit Code-8 
yields of 4.58 and 4.29 t/km2 for point sources, respectively 
(IEPA and others, 2015).

WRPs were also a large source of TP, contributing 
an estimated 43–71percent of the annual load during WYs 
2018–20. TP is more difficult to ascribe general patterns to 
because of the differences between the dissolved and particu-
late forms. In urbanized watersheds, OP is typically a larger 
part of the load during base-flow conditions, and particulate-
associated phosphorus is more prevalent during storm events 
(IEPA and others, 2015, 2019). An analysis of the discrete 
samples gives credence to this pattern in that the OP part 
averaged 49 percent of the TP concentration when streamflow 
was in the fourth quartile. During all other flows, the OP part 
averaged about 87 percent of the TP concentration. Figure 3 
shows a timeseries of TP concentration and loading and their 
uncertainties, which were largest during periods of missing 
continuous OP data. The annual TP yield averaged 0.96 t/km2 
during WYs 2018–20 for the Des Plaines River, which is simi-
lar to the estimated TP yields of the Chicago and Des Plaines 
River’s Hydrologic Unit Code-8 of 1.09 and 0.75 t/km2 for 
point sources, respectively (IEPA and others, 2015).

Only 8–15 percent of suspended sediment is estimated 
to have come from WRPs during WYs 2018–20. Storms were 
associated with increased suspended-sediment concentrations 
and therefore loading (fig. 4). The relation between suspended-
sediment concentrations and streamflow likely stems from 
river management during storms.

Table 5.  Nutrient and suspended-sediment loads for the Des Plaines River at Joliet, Illinois (U.S. Geological Survey station 05537980), 
including estimated wastewater reclamation plant annual loads, water years 2018–20.

[Station estimates are based on continuous monitoring with Bayesian imputation. NO23, nitrate plus nitrite as nitrogen; WRP, wastewater reclamation plant; 
WY, water year]

Water year

Load, in metric kilotons

NO23 Total phosphorus Suspended sediment

Station WRP Station WRP Station WRP

2018 18.4 11.6 3.7 1.6 128 12.6
2019 17.9 13.0 4.1 2.3 134 20.3
2020 18.6 14.1 3.5 2.5 116 9.6
2018–20 (mean) 18.3 12.9 3.7 2.1 126 14.2
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Figure 2. Timeseries of nitrate plus nitrite as nitrogen concentration, nitrate plus nitrite as nitrogen load, and streamflow for the Des 
Plaines River at Joliet, Illinois (U.S. Geological Survey station 05537980), water years 2018–20. [Data available from Hodson and others, 
2021b.]

Figures 5 and 6 compare loads and yields from the Des 
Plaines River to those from other major rivers in Illinois using 
data from Hodson and others (2021a, b). Figure 5 shows the 
part of loading from the Des Plaines River relative to that from 
the other tributaries of the Illinois River and other major rivers 
in the State of Illinois. For nitrate and phosphorus loading, the 
Des Plaines River contributes 9 and 19 percent, respectively, 
to the Illinois River (fig. 5). Suspended sediment from the Des 
Plaines River was a smaller fraction of the State and Illinois 
River load. An important caveat is that nutrient cycling likely 
plays a substantial role in altering nutrient loads between 
stations, meaning one cannot assume loading estimates from 
the Des Plaines River will leave the State. For example, the 
Illinois River flows about 438 kilometers within the State of 

Illinois from its origin (confluence of the Des Plaines and 
Kankakee Rivers; not shown) to the Mississippi River, allow-
ing for considerable nutrient uptake and deposition. By yield, 
the Des Plaines River has the largest NO23 and TP yields of 
the major rivers in the State and the second lowest suspended-
sediment yield (fig. 6). This agrees with previous research 
where the Des Plaines River is known to have some of the 
highest point-source nutrient loadings in the State of Illinois 
(IEPA and others, 2015, 2019). Streamflow from the Des 
Plaines River, as well as Illinois rivers statewide, was above 
average during the study period (Hodson and others, 2021a), 
and the relative contributions from each watershed may differ 
under other conditions.
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Figure 6.  Mean annual yields from the Des Plaines River and other major rivers in Illinois for water years 2018–20. [Data for other 
rivers are from Hodson and others, 2021a.]

Uncertainty and Future Improvements
An advantage to the surrogate model used in this report is 

its ability to assess uncertainty in the loading estimates despite 
having periods of missing data, which is useful in considering 
the efficacy of management practices or whether manage-
ment goals have been met. The mean annual loads with their 
predicted uncertainty (posterior predictive distribution) are 
shown in figure 7. The figure also shows the highest posterior 

density of the predicted uncertainty, which is analogous to a 
frequentist confidence interval. Suggestions on how to reduce 
loading uncertainty were made by Hodson and others (2021a). 
Des Plaines River at Joliet, Ill. (USGS station 05537980) used 
nearly identical instrumentation and followed the same main-
tenance and operations schedule, making direct comparisons 
to Hodson and others (2021a) possible. The key difference for 
the Des Plaines River is TP loading.
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Figure 7.  Estimated mean annual load and uncertainty for 
nitrate, total phosphorus, and suspended sediment at the Des 
Plaines River at Joliet, Illinois (U.S. Geological Survey station 
05537980), water years 2018–20.

TP was particularly difficult to model because it consists 
of particulate and dissolved fractions. The dissolved fraction 
can be measured in situ as OP, but the particulate fraction 
can only be estimated using surrogates, like turbidity, which 
can have complex (nonlinear and time-varying) relations 
with particulate phosphorus. A few extreme events were 
responsible for a large part of the uncertainty in the TP load. 
Figure 8 shows in situ OP from the continuous monitor was 
strongly positively correlated with discrete TP, except dur-
ing periods of high flow (defined as periods within the fourth 
quartile of streamflow). Even when streamflow was high, only 
two samples substantially deviate from the regression line; 
however, these two samples are two of the three collected at 
the highest streamflow. This indicates that the relative contri-
butions from dissolved and particulate phosphorus fractions 
change during extreme storms. One explanation may be that 
combined sewage overflows (CSOs) account for a large part 
of TP through particulate and organic associated phosphorus 
during some extreme events. Data retrieved from MWRDGC’s 
public CSO reporting website (http​s://geohub​.mwrd.org/​
pages/​cso) show that multiple CSOs occurred around the time 
the two TP outlier samples were collected. For example, the 
two outlier samples were collected the day after major CSO 
pumping events, so if CSOs are responsible, CSO manage-
ment decisions could have a large effect on TP loading on the 
Des Plaines River during extreme storms. CSOs also occurred 
during several other storms but were not associated with 
high particulate phosphorus concentration. Thus, the relation 
between CSOs and TP loading in the Des Plaines River is 
not straightforward, and the locations, timing, and volumes 
matter when estimating TP loading. This finding is supported 
by modeling efforts on the Chicago Area Waterway System 
that found CSOs associated with extreme storms also caused 
TP concentration to increase at the Lockport Powerhouse and 
Controlling Work Dam just north of the water-quality station 
(fig. 1), but smaller CSO events did not (Quijano and others, 
2017). Once they become commercially available, an in situ 
TP analyzer could reduce loading uncertainty during extreme 
storms by measuring the parameter of interest directly.

https://geohub.mwrd.org/pages/cso
https://geohub.mwrd.org/pages/cso
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Figure 8.  Discrete total phosphorus concentration regressed against analyzer-measured, in situ orthophosphate concentration.

Summary
During water years 2018–20, the U.S. Geological Survey 

operated a continuous monitoring station on the Des Plaines 
River at the Route 53 bridge in Joliet, Illinois (U.S. Geological 
Survey station 05537980). Using discrete and continuous 
water-quality and streamflow data, surrogate models were 
used to estimate loads of nitrate, total phosphorus, and sus-
pended sediment. These estimates fill a critical gap in Illinois 

water-quality monitoring networks by providing continu-
ous water-quality monitoring downstream from the greater 
Chicago metropolitan area. In addition, these results serve 
to document current conditions and provide a baseline from 
which to assess future changes in water quality within this 
area. Future modeling and monitoring efforts could target 
combined sewer overflow events, especially for total phospho-
rus because this may reduce model uncertainty.
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