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Abstract

Described is an application in which an Artificial Neural Network (ANN) controls the

positioning of a robot arm with five degrees of freedom by using visual feedback provided by

two cameras. This apphcation and the specific ANN model, local linear maps, are based on the

work of Ritter, Martinetz, and Schuhen. We extended their approach by generating a filtered,

average positioning error from the continuous camera feedback and by coupling the learning

rate to this error. When the network learns to position the arm, the positioning error decreases

and so does the learning rate until the system stabilizes at a minimum error and leaming rate.

This abohshes the need for a predetermined cooling schedule. The automatic cooling

procedure results in a "closed-loop" control with no distinction between a leaming phase and a

production phase. If the positioning error suddenly starts to increase due to an internal failure

such as a broken joint, or an environmental change such as a camera moving, the learning rate

increases accordingly. Thus, learning is automatically activated and the network adapts to the

new condition after which the error decreases again and learning is "shut off." The automatic

cooling is therefore a prerequisite for the autonomy and the fault-tolerance of the system.

* This research was supported by the National Aeronautics and Space Adminislration under NASA Contract No.
NAS1-18605 while the first and second authors were in residence at ICASE, NASA Langley Research Center,
Hampton, VA 23665.





1. Introduction

One of the challenges of applying ANNs to the control of autonomous systems is to utilize

their ability to learn and to adapt in a way that does not require any outside intervention, such

as a teacher, even if drastic failure conditions occur. In order to demonstrate this ability, we

implemented an application of an ANN which controls the positioning of a robot end effector

by mapping the visual feedback from two cameras to a set of joint angles which are the control

signals for the manipulator. This application and the underlying ANN model, called local linear

maps [2], is based on the work of Ritter, Martinetz, and Schulten [1-4].

One problem with the approach of Ritter et al. is the need for a predetermined "cooling"

schedule which reduces the learning rate over time to stabilize the system after it has learned the

required mapping. While the approach works well for the initial learning, it effectively keeps

the learning rate at a constant level after the "freezing" of the system, which is insufficient for

allowing the network to adapt to sudden and drastic changes in the robot's environment. If

the final learning rate is too low, the system takes extremely long to adapt and leams a new

mapping poorly. On the other hand, if the final learning rate is too large, the system is able to

adapt quickly, but never stabilizes enough to perform precise positioning.

In order to allow the network to react autonomously to different failure events, we propose

an automatic cooling procedure that couples the leaming rate to the average positioning error

which can be obtained from the available camera feedback. This results in a "closed-loop"

control with no distinction between a learning phase and a production phase. It enables the

network to adapt to changing conditions quickly by raising the learning rate when learning

needs to be done and by practically shutting off learning when the robot system is functioning

well. In the following three sections, we briefly describe the application, review the approach

of Ritter et al., and discuss our modifications. Section 5 illustrates the achievable adaptivity

and fault-tolerance of the system by showing how the network automatically recovers from a

series of cumulative fault-scenarios.

2. The Robot and ANN Model

Figure 1 shows the "world" of the robot system as seen by an outside observer. The robot

arm consists of a single revolute joint at the base and four prismatic joints. Thus, it has five

degrees of freedom, two more than is needed to reach all the locations in the workspace. The

length of each segment of the arm starting from the base is 0.2, 0.25, 0.2, 0.15, and 0.15.

The robot arm operates in a 3-D workspace determined by the distribution of target points

to which the robot end effector should be positioned. The target points are uniformly distributed

within a space of 0.7 x 0.4 x 0.2. The distribution of the target locations need not be known

a priori because the neural network is able to allocate weight vectors to approximate the

probability density function of target points within the workspace. The 512x512 pixel images



FigureI. Illustrationof therobotand camerasobservingtheworkspacewitha representationof the

learnedmapping before(left)and after(right)training.

provided by the two cameras arc processed to yield a 4-D vector /7which containsthe two

x-y-coordinatesof the targetwithin the workspace.

In contrastto RAtteret al.'sapproach [1, 3, 4], we use a locallinearmap with only 56

neurons which wc found sufficientto perform the task. The 56 neurons are connected in a

3-D latticeof 7x4x2 neurons inwhich each neuron r isresponsiblcforitsown nonoverlapping

receptivefield[I]. Associated with each neuron axe the input weights t_r and two setsof

output weights, 0"_and Ar. Each neuron is connected to the output of the cameras /7via its

input weights d:,., whereas the output weights if,. represent the joint angles of the robot ann

that should position it at the target location. The additional set of output weights Ar represent

a 5x4 Jacobian matrix which provides a local linear approximation of the mapping if(_7), valid

only in the vicinity of the receptive field of neuron r. This operation, the original learning

algorithm, and out modifications are explained in the next section.

3. The Learning Algorithm

Below is a description of the learning algorithm from RAtter, Martinetz, and Schulten [3],

except for step 10 which was added to allow "closed-loop" control of the arm. The parameter

o is the learning rate and cr determines the shape of a unirnodal Gaussian function centered

around the "winning" neuron s which determines how much neighboring neurons participate in

the adaptation step [3, 4]. Constants ah and crh determine the upper bound of ca and a, while

_t and at determine their lower bound. The moving average of the positioning error is z. The

gain of the function relating the positioning error to the learning rate is ,\. The time constants

of the low pass filters for the learning rate and the positioning error are :3 and -_, respectively.

1. The weights of the neural network get initialized to random values and the non-constant

parameters get set to their initial values; o = o _ = ah, cr = _r_ = crh, and _ = I t.

t Parameters with a prime are those used with the output weights.



2. A target location is chosenin the workspace.
giving _7.

3. The neuronwhoseweightsg:r areclosestto d asdeterminedby

r

is considered the "winner" and called s.

4. The input weights are immediately updated by

-,,,, ,d ( ).', = _F° + a l_r_ g;-- _-77_,t

1, =exp( II'zz :l')rs _ (.? .d' "

This position is viewed by the cameras

5. The robot arm changes its angles to _ given by

= < + A._I,r-,_"'" t

thus moving its end effector. The cameras read the new end effector position 7,.

6. The robot arm changes its angles again to 0"f given by

tYf = < + A.,(g- ?:i) (1)

and the location of the end effector is read from the cameras giving 7f.

7. The position can be improved further by replacing _, with 0"f and _:; with 7f in (1) and

iterating on step 6, thus doing additional fine movements.

8. Improved estimates of the angle and A matrix weights are given by

a,(_Z- q) (Z: - _',)7-
A* = A_ +

Ilzf- :,11_
9. The output weights of the network are updated with

"( 1_r"_°'= g;""+ _,t,,. g"- gr°'''

,.,. ,,( )A_ =A °t'_+oh_ A*-A °1_1 .

10. The positioning error in camera space is given by

o,,,):0,., = :ot,,+. _- _,11- :

and the learning rate and neighborhood size is adjusted based on this error by

o"'"' = o °la + 3((0/, - o,)(anh (..\g.) + c, 1 - o °1'1) (2)
%

11. The learning algorithm now loops back to step 2.
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Figure 2. Illustration of the relationship between _ and o for three different values of the gain A.

4. Description of the Automatic Cooling Procedure

The essence of the automatic cooling procedure is to allow for "closed-loop" control of

the learning rate by coupling it to the filtered, average positioning error. In step 5 of the

learning algorithm, the first move of the robot arm towards the target is made. With a properly

trained network, the difference of the arm position and the target position would be small. The

robot does not get any explicit information about the working status of the arm, i.e. if it is

functioning properly or not. Hence, if a joint breaks before the move is made, the difference

of the arm position and the target position would be large. This will then be reflected in the

value of -, which is the moving average of the positioning error. Because the leaming rate

is coupled to s through (2) and (3), the learning rate will increase enabling the network to

quickly overcome the fault. Figure 2 shows the relation of o to s for different gains )_, given

that 5=oh=l and ol=O. The hyperbolic tangent function in (2) and (3) was chosen because a

slight increase in s when _ is small should result in a large increase in o and or. It also bounds

c_ to a maximum value of 1.0 which is desirable.

Although the network is not overly sensitive to parameters, instabilities in the network may

occur if the gain is too small or too large. If the gain is too small, o will drop too quickly

and the network cools too fast, resulting in a poor performance. If the gain ,\ is too large,

the network may never cool. In order for the manipulator to do precise positioning, learning

must be local to the individual neuron only, and this can only be done if a is small (less than

0.7). Thus, the learning rate must be reduced before the positioning error comes down, and

the positioning error must come down before the learning rate is reduced. In practice, it is not

difficult to find a medium value for A that results in good performance.

4
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Figure 3. The effect of breaking two joints, moving both cameras, moving the robot, and killing 29%
of the neurons can be seen by three separate increases in the positioning error. The effect
this has on the learning rate, ct, is shown in the upper plot. Notice that the
positioning error can be reduced by doing additional fine movements.

5. An Example of the Automatic Cooling Procedure

Figure 3 shows an example of the networks ability to automatically recover from cumulative

faults. In this example, initial training consisted of 1,500 learning steps of which the first 1,000

are not shown in Figure 3. During the first 1,000 learning steps the learning rate and positioning

error slowly decrease from their initial values set at 1.0, to their values shown at step 1,000 in

Figure 3. After 1,500 learning steps joint 5 was broken by "freezing" it at its current position.

Immediately, the positioning error increases along with the leaming rate, which in turn quickly

decreases the error.

After 2,300 learning steps the cameras and the base of the robot are moved with respect to

the workspace. It is important to note that when the base position of the robot is moved along



with the cameras,all the weightsof the network must change to represent the new geometry

of the system.

After 3,100 learning steps, joint 3 is also frozen in its current position. Additionally, a

partial failure of the neural network is simulated by "incapacitating" 16 neurons. Of course,

this is of practical value only if the ANN is actually implemented in dedicated analog hardware.

The loss of the neurons results only in a loss of "resolution" in the overall map. The network

is then run until 4,000 learning steps have been completed. Even after all these faults, only a

slight performance degradation has occurred, and this can be improved by doing additional fine

movements. The parameter values used for the example shown were, oh=c_P/=1, at=O, o't=0.5,

Crh=2.5 , c:'/=l.5 , cr/=crPl=0.1, ,\-----4, t=-, =0.015.

6. Conclusion

An automatic cooling procedure for an ANN which controls the positioning of a robot

arm has been described. With the use of visual feedback provided by two cameras, the robot

system is able to learn to position its end effector anywhere in the workspace. The automatic

cooling procedure described is able to automatically activate learning when the positioning

error increases allowing the network to adapt quickly to drastic changes in the robot's work

environment. This adaptive ability is highly advantageous to conventional robot systems which

would require precise recalibration of the robot system components [5].
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