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Executive Summary 
Load forecasts are an important tool for decision makers to ensure reliable energy systems. Load 
forecasting seeks to understand and predict future energy demand at relevant timescales and 
provide decision makers with information and assumptions to decide whether to procure new 
resources when necessary. Load forecasting generally takes place on the long (> 24 months), 
medium (1–24 months) and short (days) timescales or terms (Hahn, Meyer-Nieberg, and Pickl 
2009). Load forecasting timescales are matched to decision-making around building new power 
plants (long), servicing power plants and starting new energy saving programs (often medium) 
and calling on individual generators (or consumers) to meet (or reduce) demand (short). Load 
forecasting becomes particularly important as variable energy is increasingly utilized. Variable 
energy sources like wind and solar photovoltaics (PV) can be operated reliably, but they are most 
economic when forecasts of both weather and electricity demand are sufficiently accurate and 
timely to ensure that supply meets demand on the hourly, seasonal, and annual timescales. 

In 2015 Morocco announced its intention to have 52% of electricity generation capacity from 
renewable sources (20% solar, 20% wind, and 12% hydroelectric) by 2030 (“Morocco 
Renewable Energy Target 2030 – Policies” 2019). The country has made great strides in this 
area. For example, the largest concentrating solar power plant in the world is the Ouarzazate 
plant (units I, II, and III), which is located in southeast Morocco and was completed in 2018. As 
of the end of 2019, Morocco had installed 1.22 GW of wind, 711 MW of solar, and 1,770 MW of 
hydroelectricity, including 464 MW in pumped-storage hydropower, with specific regulatory 
changes enacted to encourage uptake (such as allowing for competition from independent power 
producers in the renewable energy sector). Baseload energy is still primarily served by coal 
(“Rapport D’Activités 2019 Energie Electrique” 2019; “Chiffre Clés 2019 Energie Electrique” 
2019). 

On the demand side, Morocco has seen steadily increasing needs for power generation. On 
average, power demand grew 6.5% annually between 2003 and 2014, primarily due to economic 
growth, increased industrial load, and rural electrification. There was a certain deceleration 
between 2015 and 2019 when demand only grew by 3.1% on average due to a slight decline in 
economic growth, energy efficiency, and electrification load growth being saturated, reaching a 
rate of 99.72% at the end of 2019 (“ONEE Data, Site Web Officiel de l’ONEE - Branche 
Electricité” 2021). Morocco categorizes its utility customers into residential, commercial, public 
lighting, administration, industrial, and agricultural. Already substantial, the residential sector 
has increased its share over time. This likely relates to urbanization and increased use of air 
conditioning.  

This report contributes to the building of robust load forecasting capabilities within Morocco. 
The Office National de l’Electricité et de l’Eau Potable (ONEE, or Moroccan Office of 
Electricity and Drinking Water) and the National Renewable Energy Laboratory (NREL), 
supported by the U.S. Department of Energy and U.S. Department of State, worked together to 
conduct load forecasting on the long, medium, and short terms for the electricity system. ONEE 
had already conducted some long-term load forecasts based on scenarios of population and 
economic growth. This report builds on ONEE’s data and expertise to test several algorithms 
related to regression or multivariable regression, decomposition, auto-regressive, and machine 
learning to predict future electricity demand. 
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For the three timescales described a total of eight methodologies were tested (three for long-
term, three for medium-term, and two for short-term), six of which were included in this report. 
These methodologies were linear and multivariable regression on the annual (long-term) and 
hourly (long- and medium-term) basis, load clustering (medium-term), and two auto regressive 
models for short-term analysis.   

Based on long-term analysis, depending on growth scenarios, Morocco can expect an annual 
peak demand in 2030 ranging approximately 8–11 GW with annual energy consumption ranging 
55–77 TWh. This is based on an assumed annual gross domestic product (GDP) growth of 
2.5%–4.0%. Analysis was conducted for PV deployment between 1–7 GW and resulting net load 
curves are forecast. See Section 9.2. Additional work will need to be done to evaluate system 
integration potential, depending on the geospatial placement of PV and other renewable energy 
(RE) and non-RE deployments.  

For the medium term, several regressions were tested and produced hourly load forecasts for one 
year in advance. Using historical data, three methodologies were tested and were found to have 
an average error of 6%–12%. Additionally, the Moroccan power system was compared to other 
jurisdictions in terms of load factor and system efficiency through the evaluation of load duration 
curves, as discussed in Section 9.3.2. Included in this report is a comparison to the Electric 
Reliability Council of Texas (ERCOT) system which was shown to have a flatter load duration 
curve, but a higher ratio of minimum to maximum system load. In contrast, since 2011, the 
Moroccan power system has decreased its system maximum to minimum load ratio to 2.25, 
indicating a more efficient system, though there are still opportunities to increase system load 
factor and flatten the load curve. The Electric Reliability Council of Texas was chosen as an 
appropriate comparison due to its similar temperature and geographic parameters, as is further 
discussed in Section 9.2.  

For the short-term analysis, artificial intelligence-driven AR methods were used in conjunction 
with historical data to predict electricity demand over a one-week period using three regimes: a 
Monday, Tuesday, Wednesday, Thursday model, a Friday-Saturday model, and a Sunday model. 
These methods showed a mean error of approximately 1%–3% and a maximum error of 6%–
13%. This short-term methodology could potentially be deployed in real time by a central agency 
to produce demand forecasts. 

The load forecasting methodologies listed in this report all showed promise and encouraging 
results; however, as conducted, the errors and uncertainties for these methods were larger than 
would be desirable for operational load forecasts to guide Moroccan decision makers. Errors 
should be reduced such that reserve capacity can compensate for errors to prevent the need for 
load shedding and to maximize system reliability, while also minimizing system cost. The 
following recommendations were identified as possible methods to reduce load forecasting error: 

• Establish a data acquisition plan: Based on the uncertainties observed in this work, it is 
recommended that ONEE develop a plan to collect more granular electricity load data to 
reduce the most impactful uncertainties. Data that could be of most use includes the 
customer, city, and region level electricity demand with higher temporal resolution, and a 
longer chronological duration to account for meteorological years.  
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• Develop Morocco-specific load profiles and scenarios: The load forecasting performed 
in this report was top-down, meaning it focused on “macro” trends of the aggregate 
electricity load. An alternative method is bottom-up load forecasting that uses 
standardized curves for electricity customers (such as residential, commercial, etc.) and 
aggregates them to predict not just total but also sector-based demand. This bottom-up 
methodology can then examine scenarios, such as widespread air conditioning adoption, 
and how these scenarios could impact electricity demand. A recommended next step 
would be to identify key sectors of the Moroccan economy, build standardized load 
profiles, and reexamine load forecasts in this report using a scenario-based approach. 

• Test alternative models and algorithms: In the literature cited for this work, there are 
additional mathematical models for producing load forecasts. Many of these advanced 
methods rely on further segmenting the data into categories such as winter-weekday, 
winter-weekend, winter-holiday, summer-weekday, summer-weekend, summer-holiday, 
etc. Beginning with the peak season on the Moroccan grid, it is recommended that future 
load forecasts further split the data into representative categories and examine additional 
models and algorithms. 

• Establish a best practice with regards to weather data: The load forecasting in this 
report examined weather data as it related to the short-term electricity demand; however, 
the weather data used in this report was oversimplified as part of the initial attempt. 
Building a more robust load forecast would require a better understanding of the interplay 
between weather and electricity demand. ONEE could therefore consider launching an in-
depth study about this relationship and develop a list of best practices (i.e., weighting 
local weather measurements by population) to process and connect weather data to 
electricity load that can be used across load forecasting efforts. Ultimately, weather data 
will be linked to both customer consumption (such as heating and air conditioning) and 
customer production (for rooftop solar PV generation). Understanding the relationship 
between weather and electricity at a higher geographic, relational, and temporal 
resolution is recommended for further study. 

• Establish a load forecasting authority: Load forecasting on multiple timescales has 
large data requirements and is generally undertaken by a central authority such as utilities 
or government entities (Hong 2014; 2016; Kuster, Rezgui, and Mourshed 2017; Singh 
and Khatoon 2012). This central authority then communicates its load forecasts with 
other relevant entities. This report makes no recommendations on the organization, 
structure, or authority that should take on load forecasting responsibilities within 
Morocco.  

As Morocco pursues its ambitious clean energy goals, ONEE has a central role to play in load 
forecasting and has a unique opportunity to develop novel methodologies for load forecasting in 
North Africa. There are many unique aspects of this region that have yet to be examined in terms 
of electricity load forecasting. Exploring the effects on electricity load of local variables could 
establish ONEE as a regional leader in this space and contribute to national research and 
development activity goals.   
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List of Acronyms 
ACF autocorrelation function 
AIC Akaike information criterion 
AMEE Moroccan Agency for Energy Efficiency 
ANRE Moroccan Electricity Regulatory Authority  
ARIMA auto regressive integrated moving average 
ARMA auto regressive moving average 
BIC Bayesian information criterion 
GDP gross domestic product 
HCP Moroccan High Commission for Planning 
IRESEN Institute for Research into Solar and Renewable Energies 
LEAP Long-range Energy Alternatives Planning 
MAED Model for Analysis of Energy Demand  
MAGG Ministry of General Affairs and Governance 
MASEN Moroccan Agency for Sustainable Energy 
MEFAR Minister of the Economy, Finance and Administration Reform  
MEME Ministry of Energy, Mines and Environment 
MTWR Monday, Tuesday, Wednesday, Thursday 
NGCP National Grid Corporation of the Philippines 
NREL National Renewable Energy Laboratory 
ONEE Office National de l’Electricité et de l’Eau Potable, Moroccan Electricity 

and Drinking Water utility 
PACF partial autocorrelation function 
PDOE Philippines Department of Energy 
PLF probabilistic load forecasting 
PV photovoltaic 
SARIMA seasonal auto regressive integrated moving average 
SARIMAX seasonal auto regressive integrated moving average with exogenous 

variable 
SIE Société d’Investissement Energétiques 
UPME National Mining and Energy Planning Unit 
UN United Nations 
VRE variable renewable energy 
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Table of Variables 
Throughout the formulas and calculations in this report, several variables are used. The table 
below provides these variables along with their definitions and units.  

Parameter Definition Units 

𝐿𝐿 System load megawatts (MW) 

𝑦𝑦 Year — 

𝑡𝑡 Hour of year (1–8,760) — 

𝑃𝑃 Peak system load MW 

𝐴𝐴 Annual system load megawatt-hours (MWh), 
gigawatt-hours (GWh), and 
terawatt-hours (TWh) 

𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 Regression coefficients — 

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 System load normalized (value between 0 and 1) to 
peak load for a time domain 

— 

ℎ Hour of the day (1–24) — 

𝑆𝑆 Solar generation MW 

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛 Net load (system load less contributions from solar 
and/or wind) 

MW 

𝑅𝑅 System ramp rate MW/time period 

p, d, q,  
P, D, Q 

SARIMAX model parameters Units provided in model 
description. 

𝜖𝜖,𝜃𝜃,𝐶𝐶 Error terms, coefficients, and constants used in the 
SARIMAX model 

Units provided in model 
description. 
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1 Overview of the Moroccan Electricity System 
Morocco relies on fossil fuels for electricity generation but is starting to use more renewable 
generation. Morocco intends to source at least 52% of total installed power capacity from 
renewable sources by 2030. This goal was announced during the 21st Session of the United 
Nations Framework Convention on Climate Change Conference of the Parties in 2015 
(“Morocco Renewable Energy Target 2030 – Policies” 2019). 

Fossil fuels accounted for over 80% of the country’s electricity generation mix in 2017. Wind 
accounted for 9%, hydroelectricity 5%, and solar 1% (“Morocco - Countries & Regions” 2020). 
Morocco imports 89.4% of its primary energy needs and 17% of its electricity needs (Bentaibi et 
al. 2019). Indigenous production of fossil fuels is negligible.  

Renewable energy capacity has increased in dramatically in the past decade. Morocco currently 
has 1.22 GW of wind capacity and 711 MW of solar capacity as of 2018 (“Morocco - Countries 
& Regions” 2020). See Figure 1 for electricity generation by source. 

 

Figure 1. Electricity generation by source, Morocco 1990–2017 
Source: Public data from (“Morocco - Countries & Regions” 2020) and figures produced by NREL 

Renewable energy production has increased in Morocco partly due to a regulatory push within 
the country. Morocco’s National Energy Strategy of 2009 is organized around five pillars 
(Usman and Amegroud 2019): 

• Optimize the fuel mix in the electricity sector 
•  Accelerate the development of renewable energy to reduce import dependency  
• Make energy efficiency a national priority  
• Encourage more foreign investment in the energy sector 
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• Promote integration into the regional grids 

Morocco’s Renewable Energy Law 13-09 allows for the development of renewable energy and 
partially opens the electricity market to competition. Private entities may develop renewable 
energy generation projects and sell to large consumers. Private entities also are entitled to access 
to the power grid to transport electricity. The generators may also export electricity to Spain and 
Algeria (as Morocco has transmission connections to these grids). Later legislation allows for net 
metering for solar PV and onshore wind generation (Hochberg 2016).  

Private generation constitutes about 50.8% of total generation as of 2017 (Usman and Amegroud 
2019). ONEE, the state-owned utility, previously had a monopoly on generation, transportation, 
and distribution of electricity. 

Increases in renewable energy power generation are also due to the Morocco Solar Program. The 
Morocco Solar Program aims to increase solar generation through developing solar projects. The 
projects will include solar thermal, photovoltaic (PV), and concentrated solar power 
(“MoroccoSolar Program”). Currently, the Ouarzazate Solar Power Station, also called the Noor 
Power station, is the only solar power station in Morocco (REDE 2020). It is a 580-MW plant 
and is the largest concentrated solar plant in the world. The Moroccan Agency for Solar Energy 
signed power purchase agreements for the entire power output of the project (“Noor Ouarzazate 
Solar Complex, Morocco” n.d.).  

Morocco has substantial solar energy potential, which can fuel a greater increase of renewable 
energy generation to meet both growing demands and Morocco’s energy goals. Morocco 
receives over 3,000 hours of sunshine annually with an irradiation of approximately 5 
kWh/m2/day, which was evaluated using NREL’s  Renewable Energy Data Explorer (“RE 
Explorer” 2021). 

Morocco is estimated to have a 25 GW of wind energy technical potential, and the government 
of Morocco seeks to develop this technical potential through the National Integrated Wind-
Power Program (PNEI). PNEI aims to install 1 GW of wind energy by 2020 (“SIE” 2021). The 
wind potential is due to good climatic and geographic conditions for wind turbines, particularly 
on the coastline, where wind speeds can reach up to 10 meters per second (El Khchine et al. 
2019) Additional geospatial analysis was completed by NREL for wind speed at 200 meters, 
which showed strong wind resources in the country (“RE Explorer” 2021). Both ONEE and 
private entities own wind farms in Morocco. The largest wind farm, Tarfaya, has a 300-MW 
nameplate capacity and is a joint venture of Nareva Holding and Engie (The Wind Power 2017). 
Nareva Holding also owns the second largest wind farm in the country, Midelt, with Enel 
GreenPower. Midelt has a 210-MW nameplate capacity (The Wind Power 2017). ONEE owns 
and operates the Tangier wind farm, which has a 107-MW nameplate capacity (The Wind Power 
2017). Overall, of the 1,291MW nameplate capacity listed by Wind Power, ONEE owns and 
operates approximately 200 MW, about 15%. The rest is owned and operated by private entities 
(The Wind Power 2017). 

Morocco’s electricity demand grew at an average rate of 6.5% annually from 2003 to 2014 and 
3.1% between 2015 and 2019. This demand growth has been driven by economic growth and a 
growing industrial sector, which includes electricity intensive activities. High rates of 
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electrification also contribute to growing electricity demand. In 1995, the country had 18% rural 
electrification. This has increased to 99.72% at the end of 2019 (“ONEE Data, Site Web Officiel 
de l’ONEE - Branche Electricité” 2021). Using tariff data, Figure 2 were generated to show the 
total annual consumption and percentage annual consumption by customer type. As can be seen, 
household electric load is the largest contributor to energy consumption in terms of GWh 
consumed. This suggests that household energy demand should be better understood through 
data collection or sampling to produce a standardized energy curve for load forecasting, followed 
by industrial energy consumption.  

 

Figure 2. Annual energy consumption by sector 
Source: Public data from (“Morocco - Countries & Regions” 2020) and figures produced by NREL 
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Table 1. Key Stakeholders in the Moroccan Electricity Sector 

Organization Acronym Type Description 
Moroccan Electricity and 
Drinking Water Utility 

ONEE Government 
Utility 

The state-owned utility owns and operates the 
transmission and a part of the distribution grid, 
and it is the system operator and power 
dispatcher. ONEE produces power generation 
and transmission master plans. 

Ministry of Energy, Mines 
and Environment 

MEME Government The main authority over energy policy; it drafts 
and enforces laws and regulations. 

Energy Investment 
Company  

SIE Government SIE supports the development of renewable 
energy through investments. 

Moroccan Electricity 
Regulatory Authority  

ANRE Regulator Autonomous regulator that was established in 
2018. It regulates access to networks, sets 
tariffs for utilization of transmission and medium-
voltage grid, and ensures efficient market 
functions 

Moroccan Agency for 
Sustainable Energy 

MASEN Private 
company with 
public 
shareholding 

MASEN leads and manages the deployment of 
renewable energy in Morocco. The goal is to 
secure 52% of the country’s energy mix from 
renewable sources by 2030.  

Moroccan Agency for 
Energy Efficiency 

AMEE Government AMEE has a mandate to focus on improving 
energy efficiency in the usage and storage of 
power. 

Distribution Companies  Utilities There are 11 distribution companies (7 
municipal utilities and 4 private concessions). 

Ministry of General Affairs 
and Governance 

MAGG Government Responsible for price and competition policy, 
also regulates electricity and fuel prices 

Ministry of Economy, 
Finance and 
Administration Reform 

MEFAR Government Oversees the financial side of energy sector and 
approves the investment plans of ONEE  

Institute for Research into 
Solar and Renewable 
Energies 

IRESEN Government Identifies research priorities and projects and 
disseminates research 

 
Much of Morocco’s electricity sector is controlled by government entities. There are, however, 
many public, private, and public-private organizations that support the energy supply. Table 1 
highlights the key stakeholders within the Moroccan electricity sector. Figure 3 shows the 
relationships between these entities to provide context related to partnerships.  
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Figure 3. Private and public entities in the energy sector and their roles 
Source: Produced by NREL, data from: (Usman and Amegroud 2019)  

The Moroccan Solar Program involves many international stakeholders, as well as local 
stakeholders. MASEN was created in 2010 to implement the Program and SIE participates as a 
shareholder in MASEAN by owning 25% of shares and by participating as a member of MASEN 
supervisory board (“SIE” 2021). The Moroccan Solar Program is supported by the Moroccan 
government through supportive policies for renewable energy development, as discussed above. 
International financing comes from Climate Investment Funds, the World Bank, the Asian 
Development Bank, the European Investment Bank, KfW Group, and the French Development 
Agency. The program receives technical assistance from German Cooperation for International 
Collaboration (Senhaji 2016). 

This information is provided for context and the load forecasting and planning under uncertainty 
sections that follow provide more detailed information related to future projected demand, 
integrating renewable energy technologies and energy efficiency for into grid systems.  
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2 Load Forecasting Introduction 
Ensuring the reliable and economic operation of complex power systems requires significant 
planning efforts from many different energy sector actors. These planning efforts have 
traditionally focused on key questions considered over a planning horizon, ideally including 
descriptions of key uncertainties and their impacts, such as: 

• Load Forecast - What will the annual and peak electricity demand be? 
• Electricity Generation Planning -  How much and what type of generation is needed to 

serve this demand? 
• Transmission Expansion Planning -  What transmission system enhancements are 

necessary to ensure the reliable and economic delivery of electricity when and where it is 
needed (Katz and Milligan 2016)? 

Load (or demand, or consumption) commonly refers to electrical energy (in GWh) and electrical 
power (in MW). Load forecasting is the process of predicting how a system’s load may behave 
in the future over a given planning horizon. Forecasting is done for various horizons based on the 
purpose of the planning activity.  

Energy policies and utility-scale integrated resource planning (i.e., processes for making 
generation, transmission, and sometimes distribution investment and retirement decisions) 
typically consider long-term (i.e., 10 or more years) planning horizons due to the significant 
lifetime of power system infrastructure, the timeline for infrastructure implementation, and the 
long runup needed for sector-wide energy transitions. Planning at this timescale requires long-
term load forecasts. Short-term load forecasts (i.e., snapshot, day-ahead, or up to about 2 weeks 
in the future) are conducted to anticipate the dispatch of resources or for technical network 
studies. Medium-term load forecasts (i.e., months to years) are often completed for planning 
updates or nearer-term generation or system planning (Hong 2016).  

Load forecasts are a key initial step in power system planning efforts and feed into subsequent 
analyses, as depicted in Figure 4. Developing a realistic, accurate forecast is critical to the 
development of a well-functioning power system. Load forecasts have traditionally laid the 
foundation for determining the least-cost mix of generation resources and transmission 
expansion options in power system planning. Under-forecasting load can result in system-wide 
generation shortages, which require load-shedding activities or expensive emergency 
generation.1 Alternately, over-forecasting load may result in an excessive financial burden on a 
utility, if a surplus of generation is planned and built, which may lead to higher prices for 
consumers.  

To support these analyses, load forecasts generally result in the following three components: 

1. Energy consumption (in GWh or MWh) 
2. Peak demand (in GW or MW) 
3. Hourly load profiles for a typical year (8,760 hours) or in time slices that capture 

seasonal, weekly, and daily variations (IRENA 2017; Carvallo et al. 2016; Herrick 2016). 

 
1 See (Hale et al.) for a case study in South Africa that shows a demand response program quickly enacted. 
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Wherever the data allow each of these components should have temporal and spatial resolutions 
to support planning efforts. They may be disaggregated by sector (e.g., residential, commercial, 
industrial, and public). Temporal resolution refers to the number and/or length of time slices 
represented by the data (e.g., annual, monthly, hourly, and subhourly). Spatial resolution refers to 
the number of data points within the geographic area of study, crucial for transmission planning, 
especially with large quantities of variable renewable generation (Cox et al. 2018). 

 
Figure 4. Key steps of traditional power system planning processes (orange boxes) and additional 

steps for integrating variable renewable energy (green boxes) 
Source: (Katz and Milligan 2016) 

Load forecasting is a challenging process for all utilities, but is made especially difficult in 
developing economies, where the required data are often less readily available and rapid changes 
in sectoral demand are common. Many developing economies are seeing high gross domestic 
product (GDP) growth and are forecast to continue that trajectory. Developed economies often 
utilize inexpensive labor and moderate regulations to provide supply chain inputs more cheaply. 
This industrial, and less agricultural, activity is sometimes electricity-intensive, causing the 
forecast demand for power to be aggressive, critical, and challenging to supply.  

Disruptive technologies, such as distributed generation, can confound load forecasting for 
developing economies. Power sector projections can embed an estimate of cost projections and 
adoption forecasts for things like rooftop solar, small-scale energy storage, and electric vehicles. 
Further, it is sometimes difficult to determine where the country lies on the electricity intensity 
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curve. Even if efficiency best practices are implemented (e.g., less electric load per appliance), 
plug load may increase due to an increase in the number of devices, with former “luxury” items 
becoming affordable to more people.  

With energy efficiency and other factors, load growth is no longer a certainty in some countries. 
For example, areas of the United States are forecasting flat or even declining load growth, from 
distributed generation, energy efficiency, and electricity demand being less linked to gross 
domestic product (due to more service-based economies). In the next decade, three major U.S. 
regional transmission organizations are forecasting flat or slightly declining load (-0.6% for the 
New York Independent System Operator, –0.14% for ISO New England, and 0.4% for the PJM 
Interconnections) (Walton 2018).  

While developing economies are not forecasting declining demand, load forecasting is difficult 
and inherently includes significant uncertainty. The techniques discussed within this paper are 
some considerations to mitigate these uncertainties and  more anticipate future load. This 
document summarizes common approaches, including tools and skill sets, that are helpful for 
load forecasting, as well as case examples of load forecasting in select countries. A detailed 
outlook for Morocco follows, including expected load growth and discussion around possible 
improvements for future load forecasts.  
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3 Load Forecasting Methodologies 
At its most basic, load forecasting methodologies attempt to estimate load at some time in the 
future (𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑𝑛𝑛+1) based on information on current (or historical) load (𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑𝑛𝑛) and some 
assumptions of how this load may evolve in the future (𝐶𝐶) as depicted as: 

𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑𝑛𝑛+1 = 𝐶𝐶 ×  𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑𝑛𝑛 

Here, 𝐶𝐶 may represent many different values or additional equations, where:  

• In its simplest form, 𝐶𝐶 is a constant estimated by an expert, the forecast is a judgmental 
approach that uses extrapolation to project load into the future. For example, 𝐶𝐶 could be 
as simple as a constant expected load growth rate—such as 5%, where 𝐶𝐶 = 1.05. 

• 𝐶𝐶 is determined through historical time series analyses or dependent and independent 
variables that affect load. The model may be a time-series analysis or an econometric 
approach. 

• The information contained in 𝐶𝐶 is based on studies of the share of end-use technologies 
and their energy intensities. The model may be an end-use or engineering model 
(Bhattacharyya and Timilsina 2009). 

 
In reality, the last two approaches yield the estimate of load in the future (𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑𝑛𝑛+1) based on a 
function of historic load (f(𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑𝑛𝑛)):  

𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑𝑛𝑛+1 = f(𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑𝑛𝑛) 
In many cases, multiple future load data points are being forecast from multiple past load data 
points. Regardless, each of these approaches is distinct from one another and may have varying 
degrees of complexity, which may require different user skill sets. The methodologies 
highlighted in this report include time-series analysis, econometric, and end-use approaches.  

In general, there are independent variables on which the dependent variable, electricity 
generation, relies. Independent variables, which commonly can help predict electricity 
consumption, include: 

• GDP 
• Price of power (both current and historic) 
• Population and population growth 
• Household size 
• Weather factors 
• Individual customer sector growth (e.g., industrial, commercial, domestic, agriculture, 

bulk supply, public lighting) 
• Employment (or other labor statistic) 
• Demand-side technology adoption (e.g., air conditioning, refrigeration, electric vehicles). 

Regardless of which method is used, having historically complete data, and the most accurate 
forecasted set of independent variables, is beneficial to the robustness and fidelity of load 
forecasts. While a large part of the load forecasting work involves collecting and providing 
quality control of electricity generation numbers, it is typically other governmental organizations 
who are tasked with data veracity for these other demographic or economic variables.  
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3.1 Time-Series Analysis Approaches 
Time-series analysis assumes a future trend based on the past data (or the impact of parametric 
changes on load growth) and accounts for correlations with diurnal cycles, weather, and other 
cyclical phenomena. This form of analysis was the approach of choice during the mid-20th 
century (Weron 2006; Singh and Khatoon 2012). It requires the smallest volume of data to 
inform the analysis: weather data and historical electricity load data. These time-series methods 
are limited to time-based data and statistical treatment of that data, and initially were primarily 
based on regression.  

This approach can be useful for simple load trajectories and does not require powerful data 
analytics, but it does not capture the complexity and “lumpiness” of real-world economic 
systems and technological adoptions, such as air conditioning. Further, it produces inaccurate 
results if the underlying structure of the data changes, as with a shift from an energy-intensive 
production economy to a more energy-efficient service economy, as well as growth in self-
generation options. As described in Section 3.2, more advanced statistical and machine learning 
methods can be applied, incorporating more variables such as temperature data with 
autoregressive algorithms. 

Auto regressive models are one class of time-series model. In simple auto regressive models, 
past values of the load (𝐿𝐿𝑡𝑡−𝑖𝑖 ) are used to forecast the future load (𝐿𝐿𝑡𝑡 ). In the following equation, 
𝐶𝐶 is a constant, ∅1,…. ∅𝑝𝑝 are coefficients of the lag demands, and 𝜖𝜖𝑡𝑡 is the forecasting error. The 
order of the model indicates the number of lags (p) that are included (Bozkurt et al.).  

𝐿𝐿𝑛𝑛 = 𝐶𝐶 +  ∅1𝐿𝐿𝑛𝑛−1 + ∅2𝐿𝐿𝑛𝑛−2+. .∅𝑝𝑝𝐿𝐿𝑛𝑛−𝑝𝑝 + 𝜖𝜖𝑛𝑛 

Time series models such as the auto regressive moving average (ARMA) and seasonal auto 
regressive integrated moving average (SARIMA) use past values of load in terms of lag demands 
and lag values of the errors. The moving average component of the model tells dependency of 
the load (𝐿𝐿𝑛𝑛) on the lagged forecasted errors (𝜖𝜖𝑡𝑡−𝑗𝑗). Combining both auto regressive and moving 
average models, the ARMA model can be defined as the following equation, in which 
𝜃𝜃1, . .𝜃𝜃𝑞𝑞 are the coefficients lag forecast errors included up to q numbers.  

 𝐿𝐿𝑛𝑛 = 𝐶𝐶 +  ∅1𝐿𝐿𝑛𝑛−1+. . + ∅𝑝𝑝𝐿𝐿𝑛𝑛−𝑝𝑝 + 𝜖𝜖𝑛𝑛 +  𝜃𝜃1𝜖𝜖𝑛𝑛−1 + 𝜃𝜃2𝜖𝜖𝑛𝑛−2+. . + 𝜃𝜃𝑞𝑞𝜖𝜖𝑛𝑛−𝑞𝑞  

Furthermore, in auto regressive integrated moving average (ARIMA) models time series data 
needs to be differenced to make the data series stationary. Generally, the ARIMA model is 
defined as the ARIMA(p,d,q) model, where p is the number of autoregressive terms, q is the 
number of moving average terms, and d is the number of nonseasonal differences needed for 
stationarity of data. The SARIMA(p,d,q)x(P,D,Q) model for seasonal patterns, which is daily for 
Morocco electricity demand forecast, is an extended version of ARIMA with additional seasonal 
terms, where P is the degree of seasonal, Q is the degree of seasonal moving average, and D is 
the degree of seasonal integration. 

In addition to the past load values, there are other variables that influence the short-term 
electricity demand (Rafal Weron). Specifically, weather is an important factor that can be 
included as an exogenous input to the time series model. In the seasonal auto regressive 
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integrated moving average with exogenous variable (SARIMAX) model (see the following 
equations), electricity demand (𝐿𝐿𝑡𝑡) is forecasted using demand of previous time steps (𝐿𝐿𝑡𝑡−𝑖𝑖) with 
coefficients (∅𝑖𝑖), exogenous variable (𝑊𝑊𝑘𝑘) with coefficients (𝜔𝜔𝑘𝑘). Moving average window for 
error terms (𝜖𝜖𝑡𝑡−𝑗𝑗) with coefficients (𝜃𝜃𝑗𝑗) and constant (𝐶𝐶) are also included in the model (Bozkurt, 
Biricik, and Tayşi 2017; Bennett, Stewart, and Lu 2014). 

𝐿𝐿𝑛𝑛 = 𝐶𝐶 + �∅𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝐿𝐿𝑛𝑛−𝑖𝑖 + �𝜃𝜃𝑗𝑗

𝑞𝑞

𝑗𝑗=1

𝜖𝜖𝑛𝑛−𝑗𝑗 + �𝜔𝜔𝑘𝑘𝑊𝑊𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ 𝜖𝜖𝑛𝑛 

This analysis requires staff with a background in data analytics and analysis tools such Microsoft 
Excel, MATLAB, Python, or R. For example, and as will be discussed in Section 9.4, Python 
provides an ARIMA model for time-series forecasting.  

3.2 Machine Learning Approaches 
Machine learning methods have been extensively used for load forecasting because of the 
strength of these techniques in modeling nonlinearities. Among several machine learning 
methods, support vector machine, artificial neural networks, fuzzy logic, and evolutionary 
algorithms have been applied for several studies. Support vector machine is a class of supervised 
learning method, which transforms nonlinear load forecasts into high dimensional space, and 
then uses linear regression in the new space (Cortes and Vapnik n.d.; Turkay and Demren 2011).  

Artificial neural network is computational model that is inspired by the way biological neural 
networks in the human brain process information. In the artificial neural network models, nature 
of connecting input and output is not predetermined, and optimal structure of the model is 
identified through the training process. The basic unit of computation in a neural network is the 
neuron, often called a node or unit. It receives input from some other nodes, or from an external 
source and computes an output. Each input has an associated weight (w), which is assigned 
based on its relative importance to other inputs. During the training process these weights are 
adjusted iteratively. There are different types of artificial neural network, and different options of 
selecting the activation functions, layers and neurons of the model (Houimli, Zmami, and Ben-
Salha 2020). 

3.3 Econometric Approaches 
One approach for long-term load forecasting that incorporates additional complexity is 
econometric modeling, which may be combined with time series and end-use approaches 
(Feinberg and Genethliou 2005). These are statistical analysis methods that rely on large data 
sets to develop regression models that can predict future energy demand, or load. These models 
can also account for feedback loops within the system, meaning changes in one variable, such as 
number of customers, could impact other variables, like utility tariffs. They also can account for 
uncertainty in future changes in these variables by incorporating a stochastic (or random) 
element to the analysis. This can be useful to show the sensitivity of the load projection to 
changes in certain variables. 

Econometric modeling approaches predominate among Organization for Economic Cooperation 
and Development country utilities and incorporate multiple drivers of energy demand, such as 
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economic activity (GDP), weather, electricity prices, and natural gas prices. This modeling 
approach makes basic assumptions about the relationships between energy demand and these 
drivers; thus, it can account for the impact of competing fuels or generation technologies. It is 
critical to note that if these underlying assumptions change, such as the GDP to electricity use 
relationship changing because of a transition to a less energy-intensive service economy, 
econometric models can be very inaccurate. Accurately representing the structure of the 
economy in the future is an extremely important part of econometric modeling that can be 
difficult to do during times of transition. However, an advantage of this approach is that it may 
be easier to gather data on these economic drivers than the customer-specific information 
required for an end-use model.  

Utilities will likely need staff with a deeper background in statistical analysis and econometrics 
to perform this type of analysis. Econometricians usually divide their attention between 
economic theory, scientific study, and statistical analysis. Some potential software tools include 
the MATLAB econometrics toolbox, R, STATA, Eviews, SPSS, Microsoft Excel, and Python.  

Another approach, in lieu of the models discussed above,  is the use of computer learning 
algorithms. This approach applies an artificial intelligence algorithm that will often produce high 
accuracy models that can handle the complex relationships that exist in the power sector. The 
downside of these models is that they can involve complicated, unintuitive modeling equations 
that are not generalizable beyond the data set they used to develop the model and require vast 
quantities of training data. Some of the most common artificial intelligence-based methods 
include genetic algorithms, support vector machine, and fuzzy logic models (Mosad 2015; Singh 
and Chaturvedi 2013). These models are commonly available in statistical packages that can be 
used in such major software as Microsoft Excel, R, MATLAB, SAS, Python, and Julia, among 
many others, and likely require staff with degrees and experience in data or computer science. 

3.4 End-Use Approaches 
End-use models employ a “bottom-up” or “engineering” approach, and generally forecast load 
from the end-user standpoint. This method can use various levels of detail. At the most detailed, 
the bottom-up approach uses full data sets of the existing number of customers and their 
estimated electric load by end use. Bottom-up approaches can account for the impact of customer 
behavior, such as distributed technology adoption or participation in demand-side management 
programs (Gotham 2007). Although this approach can be very accurate, it is highly dependent on 
good quality end-use data that can be hard to obtain from customers, such as detailed customer 
load profiles and appliance specifications. Due its data intensity, this approach can also be 
combined with simpler methods. For instance, a bottom-up approach may capture some detailed 
end uses where data is available and then estimate the rest of the load with a simpler approach 
(Seiden and Eakin 2017; Fay and Ringwood 2010).  

Utilities will likely need diverse engineering skillsets to accurately model the energy 
consumption of different sectors, as well as data analysis skills to manage the large volume of 
data required for these estimates. The International Atomic Energy Agency has developed a 
range of tools to assist developing countries with end-use modeling, including the Model for 
Analysis of Energy Demand (MAED) and the Wien Automatic System Planning Package, which 
is one of the most widely used models in developing countries for energy system planning. In 
addition, the Long-range Energy Alternatives Planning System (LEAP) tool, developed at the 
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Stockholm Environment Institute, is widely used around the world, and can be utilized for end-
use modeling (IAEA 2018). 
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4 Evolving Methods of Load Forecasting  
Many countries are undergoing rapid structural changes to their energy markets, including 
increases in energy efficiency standards, tariff increases due to infrastructure investment, and 
growth in distributed generation technologies (Seiden and Eakin 2017). As a result, load 
forecasting has become an especially challenging exercise in recent years. To decrease the risk of 
overbuilding unneeded capacity, utilities are adopting several novel approaches to load 
forecasting. 

4.1 Planning Horizons 
Load forecasting can take place on several timescales. These timescales are meant to match 
decision-making. As described above, long-term load forecasting is often considered as 10 or 
more years, with short-term load forecasting on the order of days or weeks, and medium-term 
load forecasting filling the gap (Hong 2016; Singh and Khatoon 2012). The timescale is chosen 
based on the needs of the entity making decisions. For example, long-term load forecasting can 
be used to produce integrated resource plans charting out a path for the energy system over 
decades. Additionally, large projects such as coal, nuclear, and transmission infrastructure are 
served by long-term load forecasting. Short-term load forecasting assists in the day-to-day 
operations of the electric grid and planning the next several hours or days. Medium-term 
forecasting can help with planning operations, such as which season plants should go offline for 
maintenance, or when to build projects with shorter lead times, such as solar PV or natural gas 
plants. Different timescales are used for different decisions support and should, therefore, be 
matched based on the needs of the utility. 

4.2 Load Forecast Methodologies 
A study of the load forecasts of 12 integrated resource plans from load-serving entities in the 
United States found that forecasts with more sophisticated approaches had less forecast error 
than others that employed simpler approaches (Carvallo et al. 2016). This finding suggests that 
there may be benefits to the planning process from increased model complexity. As discussed 
above, this model complexity requires increased data input in addition to a higher skill level for 
modelers. 

A shift toward end-use load forecasting may be of use where the required data are available as 
well as capable modelers. In a publication in Public Utilities Fortnightly, Seiden and Eakin 
(2017) outline a bottom-up load forecasting approach that incorporates utility grid data, third-
party customer data, as well as the traditional variables such as economic, population, and 
weather data (Fay and Ringwood 2010). This approach requires a very large amount of data but 
may yield valuable location-specific load forecasting insights that were previously impossible 
with older computing technology. 

4.3 Ensuring Resource Adequacy 
Generation capacity markets play a pivotal role in balancing supply and demand and therefore 
require accurate load forecasts. Some new approaches to capacity procurement allow flexibility 
by the utility or operator such that they can revise medium-term forecasts more frequently. For 
example, PJM, a regional transmission operator coordinating wholesale electricity dispatch in 13 
states in the United States, has adopted an approach called incremental auctions, which can be 
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conducted 3 and 5 years out, allowing utilities to correct inaccuracies in load forecasting (Walton 
2018). However, this approach is only appropriate if generation technologies with shorter 
building lead-times are economically competitive. This approach allows opportunities for 
planners to balance out supply and demand in the medium term, but it also requires a consistent 
cycle of completing load forecasts, evaluation of how results compare with actual demand, and 
revision of load forecasts at certain decision points.  

4.4 Temporal and Spatial Resolution of Load Forecasts 
With increased penetrations of variable renewable energy (VRE) generation on the grid, planners 
and system operators must address the variable, uncertain, and geographically dispersed nature 
of these resources. Higher temporal and spatial resolutions become necessary to better match 
provision of geographically dispersed supply with geographically dispersed demand in the 
context of generation and transmission planning. 

4.4.1 Temporal Resolution 
Temporal resolution refers to the number and/or length of time slices represented in the data 
(e.g., annual, monthly, hourly, and subhourly). Long-term power system planning often defines 
two levels of temporal resolution. First is the resolution, or frequency, of modeled capital 
investment decisions for generation and transmission. The planning horizon often covers large 
portions of power plant and other power system infrastructure lifetimes (15–40 plus years) that is 
resolved into a number of investment decision points (every 1–5 years). Second is a finer 
resolution sufficient to describe operational characteristics of the power system. These would 
include, for example, the variability of the system’s load, VRE supply resource variability, as 
well as the flexibility requirements and technical characteristics (ramp rate limits and minimum 
generation levels) of the dispatchable power plants (IRENA 2017).  

Higher temporal resolution (hourly or subhourly) load forecasting enables planners to better 
estimate appropriate operational parameters by capturing the temporal match between demand 
and the availability of VRE. Annual demand is typically broken down into hourly slices to 
represent the variability of demand over 8,760 hours in a year in order to capture the seasonal, 
weekly, and daily variations of load. An hourly or subhourly load depiction that can be 
synchronized with daily and seasonal variations in VRE availability allows for alignment of 
VRE generation with demand, allowing planners to identify the contribution that VRE can make 
to firm capacity (aggregate capacity that is assured to meet demand) (IRENA 2017). Assigning 
capacity credits (or the percentage of nameplate capacity attributable as firm capacity) to all 
generation resources allows planners to employ generation expansion models to ensure sufficient 
firm capacity through the planning horizon.2 Without high-resolution load data, the variability of 
supply and demand would not be synchronized, possibly leading to suboptimal or inadequate 
capacity mixes as generation expansion models would not accurately represent periods of over- 
or under-generation. Additionally, any flexibility needs in the system such as ramping capacity 
may not be accurately captured. High-resolution data on VRE resources such as wind and solar 
have become more readily available to support these analyses (IRENA 2017). 

 
2 Many utilities and load-serving entities use a capacity credit approach to estimate capacity needs, but increasingly 
use probabilistic analysis (rather than a capacity credit estimation) to ensure sufficient resource adequacy (Frew et 
al. 2019). 
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4.4.2 Spatial Resolution 
Spatial resolution refers to the number of data points within the geographic area of study (e.g., a 
1 km x 1 km grid of cells over a continuous area, discrete nodes, or defined geographic area) 
(Cox et al. 2018). An increased spatial resolution in load forecasts is an important consideration 
in long-term generation planning (IRENA 2017).  

VRE generation, such as wind- and solar-based generation, are typically located in windy and 
sunny areas, which may be distant from load centers or existing transmission systems. Like large 
hydropower, the grid must be extended to these energy resources, as they are location 
constrained. Alternatively, lower-class wind, solar, and hydro resources may be available close 
to existing grid infrastructure and transmission capacity, which may provide a lower life cycle 
cost if new transmission infrastructure is not needed or can be developed more readily. Ensuring 
models can represent forecasted load by multiple nodes (location where demand is present) in the 
region of study can help estimate the potential cost of transmission expansion to connect VRE 
resources to load (IRENA 2017).  

Increased spatial resolution of on- and off-grid load can also support planning activities focused 
on increasing energy access through grid extension or off-grid energy systems. Locations with 
forecasted load can be compared to spatial data on VRE resources and transmission systems 
(Khatib, Mohamed, and Sopian 2013; Palit and Chaurey 2011; Sharif and Mithila 2013). With 
off-grid cases, there is increased necessity on understanding both the uncertainty of predicting 
VRE output and the load forecast uncertainty. There are several methodologies tailored to this 
work that are also applicable to load forecasting writ large (Khatib, Mohamed, and Sopian 2013). 
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5 Case Studies of Long-Term Load Forecasting in 
Select Developing Countries 

Load forecasting is in iterative process that relies heavily on past experiences and learning from 
others best practices. As such, presented here are case studies from other countries to provide 
more background and best practices on load forecasting globally. 

As part of a study by the World Bank, an analysis of the historical accuracy of the demand 
forecasting of 106 developing countries, from 1960 to 2012, was performed. This study 
concluded that "econometric forecasts are highly accurate for most of these countries." It also 
noted that the forecast accuracy of econometric models was significantly higher than that of 
simple heuristic models like assuming a fixed growth rate. Econometric forecast accuracy was 
diminished in countries where "rapid economic and structural transformation or exposure to 
conflicts and environmental disasters makes it difficult to establish stable historical demand 
trends" (Steinbuks 2017). Below are two case studies from countries successfully establishing 
their load forecasting practices based on global best practices. 

5.1 Colombia Case Study 
In Colombia, load forecasting is performed by the National Mining and Energy Planning Unit 
(UPME), which is a Special Administrative Unit attached to the Ministry of Mines and Energy. 
UPME must establish the energy requirements of the population and economic agents of the 
country as bases for its demand forecasts, taking into account the most likely evolution of 
demographic and economic variables and prices of energy resources, and prepare a National 
Energy Plan and the Electric Sector Expansion Plan in coordination with the National 
Development Plan (Ministerio de Minas y Energía and Unidad de Planeación Minero Energética 
– UPME 2018). 

UPME releases annual revisions of Colombia’s plan to expand generation resources and 
transmission networks, based on a mix of past data and projections. The analyzed data include 
types of electricity generation used in Colombia and their proportion, installed power capacity, 
and peak load. Individual projections include the growth of each type of generation, fossil fuel 
prices, regional electricity demand, and total electricity demand growth. 

For projection of national electricity demand, UPME employs a combination of econometric 
forecasts along with multivariate models such as the Autoregressive Vector Model (for vector 
auto regression, or VAR) and the Model of Error Correction Vectors (for vector error 
correction). The inputs of this load forecast are historical energy demand in Colombia as 
reported by XM, the national system operator, macroeconomic data (total GDP) from the 
National Administrative Department of Statistics, demographic data from the United Nations 
(UN), and climatic data from the Institute of Hydrology, Meteorology, and Environmental 
Studies. After the econometric data (historical electricity demand, GDP, population, and 
temperature) are fed into the multivariate models, UPME combines the resulting series into a 
comprehensive forecast.  

To address factors outside the econometric variables, UPME must consider external influences 
on future energy usage. In Colombia these include increased electric vehicle presence and a 
government initiative to promote public transit. Along with usage projections for Colombia’s 



 

18 

This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. 

largest private-sector consumers of electricity, these factors are used by UPME to guide 
electricity demand projections. The results are low, medium, and high usage scenarios that 
represent the boundaries for Colombia’s forecasted load. This forecast is used by UPME, the 
Regulatory Commission of Energy and Gas, the Ministry of Transport, and Ministry of 
Environment and Sustainable Development to plan and approve expansion of generation 
capacity, transmission infrastructure, and distribution lines. 

5.2 Philippines Case Study 
The Philippines Electric Power Industry Reform Act of 2001 established policy objectives aimed 
at restructuring the sector to improve power system reliability and reduce electricity tariffs 
through power market competition. This has introduced several new players to the power sector, 
as the sector moved from a vertical to a horizontal model. With the addition of the Renewable 
Energy Act of 2008, the Philippines has set a course to achieving energy security and clean 
energy generation in the country. Achieving these objectives requires strong power sector 
planning activities that allow the many different actors (generation companies, transmission 
system operators, distribution system operators, among others) to thrive.  

The Philippines Department of Energy (PDOE) considers the preparation of an accurate load 
forecast a crucial first step of power sector planning and a key initial input to subsequent steps as 
this will determine the country’s future power requirements and the necessary investments in 
generation, transmission and distribution to ensure demand is balanced with supply (PDOE 
2017). The PDOE provides a national long-term load forecast used in national power sector 
planning efforts such as the Philippine Energy Plan, Power Development Plan, and Transmission 
Development Plan. As in many power sectors, individual actors also do some independent load 
forecasting for their own planning and/or comparison with the official forecast.  

Load in the Philippine Energy Plan is forecast for different sectors (e.g., industry, residential, 
commercial, and agriculture, fishery, and forestry sectors). Energy demand, in MW, is projected 
using the Simple Econometric Simulation Systems, Expanded software, which is an econometric 
simulation tool add-on application for Microsoft Excel (Yamaguchi 2015; PDOE 2018). To 
refine the load forecasts from Simple Econometric Simulation Systems, Expanded, PDOE 
considers how sectoral road maps (e.g., residential and industrial) and other relevant information 
possibly not captured in the econometric simulation could also affect future demand. Philippine 
Energy Plan Energy consumption (GWh) forecasts are developed based on the peak demand 
projections developed for the Philippine Power Development Plan. The load forecast information 
is combined with least-cost generation system expansion plans to meet demand. Demand is 
separately developed in the Model for Energy Supply Strategies and their General Environmental 
Impacts tool from the International Atomic Energy Agency. The LEAP model from the 
Stockholm Environment Institute was used to consolidate the models into a national energy 
outlook.  

The peak demand forecast for the Philippine Power Development Plan relies on a substantial set 
of data inputs and participation from power sector actors, as shown in Figure 5. Private utilities, 
electric cooperatives, nonutility customers (e.g., those with high enough electricity requirements 
to purchase directly from the transmission system), new industry customers, and generators all 
submit data and plans to allow for a power market assessment. This assessment produces the data 
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inputs, such as historical electricity sales, peak loads, and utility forecasts, to forecast peak 
demand for the system along the planning horizon. 

Forecasting future electricity sales is the first step in forecasting peak demand for the system. 
The baseline electricity sales forecast is calculated with a projection of GDP from the national 
Development Budget Coordination Committee and calculated historical trends of energy 
intensity (i.e., electricity consumption per unit of GDP or GWh/unit GDP), which are used to 
estimate energy intensity elasticities. Historical consumption values considered to be outliers 
resulting from extreme weather events or financial crises are not used to calculate energy 
intensity and elasticities. Gross generation, in GWh requirements are then forecast by adding in 
losses, such as transmission and distribution losses, and generator own-use requirements. A load 
factor (%), which represents the ratio of the forecast demand inMWh to the peak demand in 
MW, is then applied to calculate peak demand. This load factor is a fixed value based on the base 
year calculated load factor. 

 
Figure 5. Peak demand forecast approach for the Philippine Power Development Plan 

Source: (PDOE 2018) 

The long-term load forecast from the PDOE is also used to support the development of the 
country’s Transmission Development Plan. The National Grid Corporation of the Philippines 
(NGCP) is the transmission system operator in the country and is tasked with the development of 
the Transmission Development Plan, which sets the 25-year road maps of the expansion of the 
power grid. The Transmission Development Plan development begins with the submission of the 
long-term load forecast and the generation capacity additional alignment from the PDOE to 
NGCP, which are updated annually by the PDOE. NGCP then breaks down the forecast into 
individual transformer loads and noncoincident substation peak load forecasts to support 
substation extension planning needs (NGCP 2018). 
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6 Dealing With Uncertainties 
Any load forecast requires multiple input parameters, which are frequently dependent on 
additional parameters that are subject to many future uncertainties. This is further complicated by 
the uncertainties that exist with the large number of energy sector players in both regulated and 
unregulated environments. Parameters that face uncertainty, and may affect load in the future, 
are very context-specific, and include (Seifi and Sepasian 2011): 

• Economic growth (or decline) 
• Population growth (or decline) 
• Inflation, depreciation, interest rates, and other economic parameters 
• Fuel costs and electricity prices 
• Technological development, including electric mobility options and distributed 

generation such as rooftop solar PV 
• Regulatory and legal acts 
• Costs for investment, operation, and maintenance of energy systems 
• Resource availability 
• Conflicts 
• Unmet/suppressed demand levels 
• Electricity access rates 
• Social factors. 

Add to this list more recent developments such as the decreased cost of behind-the-meter 
generation and increased electric vehicles, and it becomes obvious that accounting for all 
potential uncertainties in a single load forecast is nearly impossible. This means that there will 
never be a completely accurate load forecast. The purpose of these forecasts is therefore to 
provide information to decision makers and estimate the impact of different technologies and 
policies on future system loads. While load forecasting methodologies are never perfect, there 
are ways to reduce the uncertainty of these forecasts. 

6.1 Scenario-Based Approaches 
Forecasting a single future load does not provide sufficient information to decision makers about 
all the potential future trajectories of load. Considering multiple forecasts allows for more 
exploration of different possible futures. There are two common ways to construct multiple 
related projections: 

• In a scenario-based approach, each scenario is built on parameters that are not within the 
control of the planner but are relevant to future situations, such as economic growth, 
industrial growth, or population growth.  

• An alternative or an option, on the other hand, describes the impacts of policies or other 
interventions that a planner may control.  

Multiple scenarios can be built that consider different potential futures of concern and planners 
can then see how load forecasts and generation expansion alternatives may change in these 
different scenarios (Bhattacharyya and Timilsina 2009; Seifi and Sepasian 2011).  
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As the population growth, economic development path, or other parameters in many developing 
countries may be uncertain, consideration of multiple scenarios can help to understand how load 
forecasts may vary. Developing multiple load forecasts allows for planners to see what 
generation expansion, transmission system, and even demand-side management alternatives may 
be the most robust across multiple possible future pathways. Planners can also identify decision 
points along the power system planning process at which different alternatives may be more 
advantageous for potential scenarios. Many analytical techniques exist to measure the robustness 
of plans and may be scenario-based or probabilistic (i.e., stochastic) risk-based assessments 
(Carvallo et al. 2016).  

Part of scenario-based load forecasting is sensitivity analysis. Some inputs of the chosen load 
forecast methodology may have a greater effect on the resulting forecasts than other inputs. 
Conducting a load forecast sensitivity analysis can help to develop long-term strategies, such as 
integrated resource plans, that can pivot allowing for the plan to adjust to different futures, 
similar to those that consider multiple scenarios. Planners can understand the effect and the 
magnitude of this effect on load forecasts for different inputs, such as population, prices, or 
economic growth, and understand what plan may be best adapted to the load forecast and adapt 
as new information is gathered in real time (Carvallo et al. 2016). 

6.2 Probabilistic Methods 
Probabilistic load forecasting (PLF) methods are augmentations to point forecasting methods. 
Where point forecasting methods produce a single value often coupled to some uncertainty, 
probabilistic methods often provide a distribution of likely values based both on previous 
electricity loads and on different probability estimates for likely events. For example, as VRE 
has expanded, probabilistic methods can help encapsulate the likelihood of different VRE 
outputs using past weather data. Additionally, probabilistic methods can incorporate other 
uncertainties such as system or generator failure into load forecasts. PLF includes a probability at 
each point that can be in the form of quantiles, intervals, density functions, and confidence 
intervals (Hong 2016).  

PLF can be used as a stand-alone method. However, it can also be paired with other forms of 
load forecasting to reduce uncertainty. Additionally, PLF can be used to sample multiple load 
forecasting methods to produce a stronger estimate of future load. By augmenting multiple load 
forecasting methods such as regressions, exponential smoothing, or artificial neural networks 
with PLF sampling, more accurate load forecasts can be built (Xie, Hong, and Stroud 2015). 

PLF methodologies often begin by creating a representative day based on a power system, for 
example, a seasonal representative day that can include weekends, weekdays, and holidays 
through significant weather changes throughout the year. These representative days can be 
produced through load forecasts or historical averages. System uncertainties and probabilities, 
for example, using several decades of weather data, can be used to create a probability density 
function of variables that affect electricity load. From the original representative day, a new 
probabilistic spread can be produced (Hong 2016). As countries utilize this method, the first 
cases should be tested against known data using standard probability metrics (Gneiting and 
Katzfuss 2014; Zhang, Wang, and Wang 2014; Arora and Taylor 2016). 
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6.3 Periodic Updating and Revisions 
The world is in constant transition, and so are the realities that should be considered in any 
planning activity. A load forecast is based on an understanding of the load and potential futures 
at a single point in time. Although the load forecast can be used for planning, its inputs and 
results may become obsolete before it is even finalized. Therefore, it is important that load 
forecasts are not conducted as one-time exercises every 5 or more years; rather, they should be 
updated annually or biennially.  

Load forecasting activities are ideally part of a continual cycle of forecasting, assessing, and 
revising to ensure forecasts are based on the best information available. This aids in ensuring 
integrated resource planning and other power sector planning activities are based on the most up-
to-date and accurate forecasts. This updating process allows for ex-post evaluations of forecasts 
to address the ex-ante unpredictability that input parameters will inevitably have on results, such 
as significantly decreased economic activity or population growth, (Carvallo et al. 2016). 
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7 Load Factor Forecasting 
A power system’s load factor is the ratio between average energy demand over the entire year to 
peak energy demand during the year. The load factor represents the proportion of the generation 
fleet that needs to be online on average and demonstrates how efficiently capital is deployed to 
create generating assets to respond to that peak demand. A low load factor means power plants 
are sitting idle, which is not economical. A higher load factor indicates that the load profile is 
smoother, and that infrastructure is better utilized. 

𝐿𝐿𝐿𝐿𝑎𝑎𝑑𝑑 𝐹𝐹𝑎𝑎𝑐𝑐𝑡𝑡𝐿𝐿𝐹𝐹 (%) =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴 𝐸𝐸𝐴𝐴𝐸𝐸𝐹𝐹𝐸𝐸𝑦𝑦 (𝑀𝑀𝑊𝑊ℎ)

8760 ℎ𝐿𝐿𝐴𝐴𝐹𝐹𝑜𝑜
 ×

1
𝑃𝑃𝐸𝐸𝑎𝑎𝑘𝑘 𝐷𝐷𝐸𝐸𝐷𝐷𝑎𝑎𝐴𝐴𝑑𝑑 (𝑀𝑀𝑊𝑊)

 

While independent variables affecting demand forecasts were covered in Section 2, load factor is 
highly dependent on the value and timing of peak load. The primary drivers of peak load are 
informed by customer sector. For example, residential electricity usage may crest during times of 
high air conditioning, heating, or television use. For example, in Sri Lanka, electricity planners 
account for important cricket matches for predicting peaks. The commercial sector peak demand 
is dependent on business hours. In Pakistan, the ministry of energy mandated a national shift of 
store and office opening hours at one point to help with blackouts due to a power generation 
shortfall. In the industrial sector, upticks in aggregate electricity demand are influenced by such 
factors as:  

• Types of industries and amounts of production 
• Seasonality of that production 
• Single, double, or triple shift workdays 
• Auto-generation (also called captive or self-generation) and shifts of aggregate generation 

equipment installation. 
The peak hour of electricity demand comprises the proportionate shares of these customer 
sectors and may either moderate or exacerbate the value of the peak that planners must meet. The 
ratio of system peak demand and the percentage contribution from each sector (based on 
individual sector peak demand) is known as the “coincidence factor” (Bary 1945). Similar to 
load factors, the coincidence factor helps to quantify how complementary the electrical system 
is. If all consumer sectors have a high-power utilization at the peak hour of demand, then it 
means that their demand is coincident, and more could be done to spread this customer demand 
over the day or year and create a “flatter” electrical load profile. This in turn maximizes 
generation utilization and minimizes capital stock inefficiency.  
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8 Trends That Affect Load and Load Factor 
Electricity demand can be broken down into many different parts. Examples include industrial, 
residential, and commercial demand. Electricity demand can also be separated by geography or 
local climate. In this way, individual trends that affect demand can be examined. If, for example, 
it is assumed that residential homes become more efficient as countries become more affluent, 
then load growth may slow. The speed at which it slows can be estimated by different scenarios 
of the adoption of energy efficiency measures for the residential load, and then integrating the 
results back into the summed electricity demand. Based on literature, case studies, and 
interaction with Moroccan officials, below are provided some trends that may affect demand 
growth in the Moroccan electricity sector that should be examined and potentially modelled in 
future work.  

8.1 Macro Trends 
Typically, as an economy develops, electricity intensity (MWh/GDP) increases. Economies may 
shift from an agricultural base to an industrial base. Agricultural and industrial sectors have flat 
power demand curves and can be met by base-loaded resources. The next economic shift may be 
from an industrial economy to a service economy. In a service economy, a higher percentage of 
total electricity demand is from the residential sector with a more distinct daily profile. There is 
less around-the-clock power demand (i.e., less baseload) and a relative increase in peak demand, 
which negatively impacts the load factor. However, going forward, major shifts in electricity 
trends could impact this load factor relationship, and thus impact the forecasted load factor. 
Some of these trends can benefit load factor and some can exacerbate inefficiency. The net result 
will depend on which trends prevail and to what extent.  

For example, distributed generation such as rooftop solar PV generally implies that net demand 
for power will decrease. This downward effect in the numerator of the load factor equation has a 
negative effect, with a decrease in load factor. However, the extent to which distributed 
generation decreases load factor may change with increased installations of behind-the-meter 
storage. With storage of solar generation, users will be able to shift their peak demand (e.g., in 
response to time-of-use pricing assigns different prices to different seasons and hours of the 
year).  

8.2 Energy Efficiency 
Another trend that will affect load factor is the penetration of energy efficient technologies. 
Regardless of a country’s policy and mandates, energy efficient technology that increases market 
share globally may eventually be pervasive in-country, unless less-expensive, inefficient versions 
exist. For example, in Tunisia, air conditioner installation and use are contributing to a growing 
peak load and steeper load duration curve. The government both set an efficiency standard and 
applied a purchase tax on less efficient units to fund the clean energy transition. However, a 
black market ensued, where electricity customers can purchase unregulated and inefficient units 
at a fraction of the cost. Barring such bifurcated markets, energy efficient technology generally 
decreases baseload demand and possibly flattens the load profile shape, having a beneficial 
impact on load factor. 
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8.3 Industrial Sector Growth 
Patterns of industrial sector growth will influence load factor. As new industries arise and create 
new economic opportunities, it is important to understand their energy intensity and load 
fluctuations. The usage pattern, both seasonal and daily, of various industries can also be a key 
driver. For example, data centers often have a nearly flat energy demand, which has a beneficial 
increasing effect on load factor. Furthermore, industrial demand response programs aimed at 
reducing system peak load can dwarf the effects of residential time-of-use pricing programs 
depending on the proportionate share of each customer sector. Industrial demand response and 
energy efficiency programs, however, can often only provide tens of hours per year at a very 
high capacity. As new industries grow, tailored load forecasting for demand, supply, and 
demand-side management tools as part of a bottom-up load forecast. 

8.4 Electrification and Demand Response 
Referring to end-use devices, increased electrification will impact load factor. In addition to the 
obvious impact of electrifying the transport sector, the electrification of both water and space 
heating systems is likely to impact peak load. Furthermore, even for residential customers, there 
is an increased plug load, despite the fact that appliances are generally more efficient.  

A major interest in electrification are electric vehicles. Electric vehicle policies and the speed at 
which electric vehicles are penetrating the transport sector can largely swing the load factor. At 
the most basic level, electric vehicles may accentuate the evening peak that already exists, as 
workers return home and plug in their cars. However, time-of-use programs can shift that usage, 
especially if there is a prevalence of fleet programs or larger demand customers (Fitzgerald, 
Nelder, and Newcomb 2016; Kapustin 2020). It remains to be seen how utilities may benefit 
from electric vehicles, both for increasing revenue, and ultimately possibly using vehicle-to-grid 
technology for accessing grid services from electric vehicles (Fitzgerald, Nelder, and Newcomb 
2016). 

As part of widespread electrification, customers can also become active participants of electricity 
buying and selling. With the increasing prevalence of Internet of Things, they may utilize 
household automation or blockchain technology to buy and sell their own power, becoming 
market participants. This will impact the load factor. However, the extent of that is very 
dependent on how the economic signals get relayed to and through the individual players. It 
remains to be seen how it will impact the daily and seasonal net load that the utility is tasked 
with meeting. 

Another part of demand response is related to time-of-use pricing. The implementation of time-
of-use pricing is dependent on smart metering, whereby a customer’s visibility into their 
electricity usage (both amount and time incurred) coupled with knowledge of the tariff 
associated with that time period can help shift demand. Ultimately, smart technology can help 
electricity demand match resources available on the grid. Home automation, such as devices that 
automatically detect and adjust for electricity prices, will soon become available and can be 
supported by policy to positively affect the electrical grid, especially for larger energy customers 
(Neukomm, Nubbe, and Fares 2019).  
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In summary, measures can be taken to influence peak load whether seeking to shift the timing or 
to reduce the overall peak. Measures will work best when used in combinations selected to match 
system conditions and the local economy (Hale et al. 2016).  
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9  Load Forecasting for the Morocco Power System 
This section discusses short-, medium-, and long-term load forecasting timescales. Each of these 
timescales provides different information and operational value to energy system decision 
makers (Hahn, Meyer-Nieberg, and Pickl 2009). Long-term forecasts predict how the system 
will change over years and decades, and how that system demand can be met by a portfolio of 
resources some of which may need to be constructed. Medium-term forecasting predicts the next 
months to years of demand with the goal of planning operations such as near-term impacts of 
power plant commissioning, decommissioning, and scheduled outages, as well as reserve 
margins. Short-term planning is concerned with hour to week-ahead forecasts that help to 
produce daily dispatch.  

9.1 Previous ONEE Load Forecasting 
Following the methodology outlined by the International Atomic Energy Agency, ONEE has 
conducted an initial long-term load forecast based on socio-economic factors. This methodology 
uses a scenario-based approach to predict low- and high- growth scenarios, as well as a base 
scenario. Table 2 shows the assumptions that went into the MAED model (“Modelling for 
Analysis of Energy Demand (MAED-2)” 2006). Based on these scenarios, ONEE predicted a 
2030 annual load of 50.3 terawatt-hours (TWh) in the low-growth scenario, 58.6 TWh in the 
base scenario, and 69.3 TWh in the high-growth scenario. 
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Table 2. Long-Term Load Forecast Scenarios 

Scenarios Determining 
Factors 

Assumptions Sources/Comments 

Base 
Scenario 
(3.9% 
Average 
Load 
Growth) 

Economic growth - An annual GDP average growth rate 
of 3% over the forecasting period. 

- Projections provided by the High 
Commission for Planning (HCP). 
supplemented by those of the World 
Bank and International Monetary 
Fund.  
- 3% also corresponds to the average 
GDP growth rate recorded over the 
last 5 years. 

Socio-
demographic 
development 

- The population is expected to 
increase from 35.6 million in 2019 to 
39.3 million in 2030. 
- The number of households is 
expected to increase from 8.3 million 
households in 2019 to 10.4 million 
households in 2030. 
- The urbanization rate should 
increase from 62.9% in 2019 to 67.8% 
in 2030. 

Projections provided by the HCP 
based on the latest general census. 

High-
Growth 
Scenario 
(5.3% 
Average 
Growth) 

Economic growth - A GDP growth rate of 4% over the 
forecasting period. 

Economic growth slightly above 
average. 

Socio-
demographic 
development 

- The same as for the base-case 
scenario. 

Same as Base Case. Projections 
provided by the HCP based on the 
latest general census. 

Low-
Growth 
Scenario 
(2.6% 
Average 
Growth) 

Economic growth - A GDP growth rate of 2.5% over the 
forecasting period. 

Below-average economic growth. 

Socio-
demographic 
development 

- The same as for the base-case 
scenario. 

Projections provided by the HCP 
based on the latest general census. 
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Figure 6 and Figure 7 show the growth of peak system load and annual energy load, respectively, 
as forecasted by ONEE.  

 
Figure 6. Peak system demand growth as forecasted by ONEE 

Source: Data provided by ONEE and figures produced by NREL  

 
Figure 7. Annual energy demand growth as forecasted by ONEE 

Source: Data provided by ONEE and figures produced by NREL  
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9.2  NREL Long-Term Load Forecast for ONEE 
Section 9.1 discussed previous forecasts of load growth from ONEE, which focused on assessing 
three different scenarios of load demand based on different perspectives of economic growth. 
Here, these scenarios are expanded by coupling with an important economic indicator, the GDP. 
Many drivers of GDP are also energy consuming processes. Industries such as manufacturing 
and service can be energy intensive and can drive energy growth (Moral-Carcedo 2017; 
Sangrody and Zhou 2017). Additionally, as a country becomes wealthier, it can also increase 
energy intensity of individuals as technologies such as air conditioning become widespread.  

Historical energy consumption and GDP are used to predict future consumption and GDP with 
two methods: linear regression and logarithmic regression. Linear regression assumes that the 
relationship between the two factors will remain constant into the future. However, logarithmic 
regression can also be used as an alternative where GDP growth may continue, but consumption 

flattens. This flattening may naturally occur as energy intensity for a country flattens with natural 
deployment of more energy-efficient technologies, as well as through government programs such 
as energy efficiency measures and new building codes.  

Figure 8 illustrates the historical GDP of Morocco through 2019 and projects three levels of 
GDP growth through 2030, using ONEE’s projections described in Section 9.1. Figure 9 
illustrates the historical relationship between GDP and both peak load and annual load. With 
only eleven data points, it is hard to discern a dramatic difference between different regressions 
relating the GDP to load, but all regressions illustrate, unsurprisingly, that an increase in GDP 
corresponds to an increase in both annual load and peak demand. 

 

Figure 8. Three projected levels of GDP for Morocco through 2030 
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Figure 9. Linear and logarithmic regression of GDP, peak load, and annual energy consumption 

Figure 8 indicates that the GDP of Morocco is predicted to be between $160 billion and $180 
billion by the year 2030. Figure 10 shows the logarithmic and linear regression values for peak 
load under the Low- Medium- and High-GDP growth scenarios. Although the two regressions 
look similar over historical GDP values, the two regression methods diverge for higher GDPs, 
with the linear regression predicting a 20% higher peak in the High-GDP growth scenario. 
 Figure 11 illustrates a similar trend for the annual consumption regression.  

 

Figure 10. Peak load versus GDP regression for low, medium, and high growth 
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 Figure 11. Annual energy consumption versus GDP regression for low, medium, and high growth 

Table 3. GDP Base Load Forecast for 2030 

Growth 
Scenario 

2030 GDP 
(Billion USD) 

Peak Demand 
Linear (MW) 

Peak Demand 
Log (MW) 

Annual 
Consumption 
Linear (TWh) 

Annual 
Consumption 
Log (TWh) 

Low (2.5%) 159.4 9,685.0 8,894.3 61.38 56.02 

Medium (3%) 168.9 10,417.2 9,361.5 66.31 59.16 

High (4%)  189.7 12,004.1 10,289.1 76.98 65.38 

Understanding that energy intensity (kWh/$GDP) can be nonlinear, this GDP-based regression 
can help assess how changing lifestyles can affect electric load growth nonlinearly as Morocco’s 
economy and per capita GDP grow.  

The reason for the logarithmic cases is to suggest the value of energy efficiency measures. This 
logarithmic trend can occur through energy efficiency measures, where the economy can 
“decouple” economic growth from energy consumption. For example, in the mid-case scenario, 
the peak system demand difference between the linear and logarithmic projections is 1,056 MW. 
While it requires significant additional analysis to suggest the time this peak may occur, energy 
efficiency measures could prevent building this additional system capacity (Weron 2006). This 
helps to suggest the overall value of energy efficiency measures (Hahn, Meyer-Nieberg, and 
Pickl 2009; Sangrody and Zhou 2017). 
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9.2.1 Normalized Annual Curves 
After computing the peak and annual energy consumption, the goal of demand forecasting is to 
better understand how to meet future system needs for planning asset procurement. A prediction 
is built of the annual load curve on the monthly and hourly basis using simple normalization 
techniques, understanding that this methodology is simplified but provides a basis for more in-
depth analysis (Hong, Wilson, and Xie 2014). Importantly, there is a major difference in load 
curves between weekend and weekday load shapes, but this is often ignored in long-term load 
forecasting and is more explicitly examined in medium-term load forecasting. 

For this section, historical load shapes for Morocco are analyzed and then the same load shape is 
assumed to persist in the future even under higher consumption levels. Although this approach 
neglects significant changes that energy demand may face in the future, it is still useful for 
providing a basis for more a more detailed, bottom-up approach. Figure 12 shows the hourly load 
for the Morocco system as a 3D surface plot. The plot indicates that daily peak load occurs in the 
evening, regardless of season. A secondary peak also occurs at midday. July and August show 
the highest overall load, with lowest load being in December and January.  
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Figure 12. 2018 hourly load data for Morocco 

A normalized load curve was tested and averaged for 2008–2017 by creating a projected hourly 
curve for 2018. By multiplying the normalized curve by the peak system demand for 2018 (6,310 
MW) with the projected curve shown in red and the actual curve shown in blue. The average 
error for this projection is 6.60% and the standard deviation of error is 5.04%, but the maximum 
local error is 47.8% meaning the estimate misses key hours but is a reasonable starting point. 
Extending this method to 2030 using the low, medium, and high GDP predictions by ONEE, 
three new curve shapes can be built, as shown in Figure 13.  

𝐿𝐿(2030, 𝑡𝑡) = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) ∙ 𝑃𝑃(2030) 

where the predicted 𝑃𝑃(2030) has a low, medium, and high value in conjunction with the 
predicted linear and logarithmic growths based on GDP, as shown in Figure 13.  
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Figure 13. 2018–2030 Low (Green), Medium (Blue), and High (Red) hourly load curves derived from 

normalized and averaged 2008–2018 data 

As discussed above, full hourly annual normalization contains high errors at many data points. 
Understanding seasonal effects on electricity load can also be important and is essential for 
proper planning and operation of the power system (Hong, Wilson, and Xie 2014). Monthly 
averages are examined, and peak curves normalized in a similar fashion for a more focused 
period of time. Previously, ONEE has conducted analysis that looks at peak demand days in 
winter, spring, summer, and autumn. This analysis is furthered by examining average and peak 
demand days by month. 

The monthly and peak electricity load are defined as 𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑙𝑙𝑙𝑙(𝐷𝐷,ℎ) and 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑙𝑙𝑙𝑙(𝐷𝐷,ℎ), 
respectively. Here m represents the month and h represents the hour in a day. 

𝐿𝐿𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑙𝑙𝑙𝑙(𝐷𝐷,ℎ) 

𝑤𝑤ℎ𝐸𝐸𝐹𝐹𝐸𝐸 𝐷𝐷 = [𝐽𝐽𝑎𝑎𝐴𝐴,𝐹𝐹𝐸𝐸𝑏𝑏,𝑀𝑀𝑎𝑎𝐹𝐹, …𝐷𝐷𝐸𝐸𝑐𝑐] 𝑎𝑎𝐴𝐴𝑑𝑑 ℎ ∈ ℤ 𝑤𝑤ℎ𝐸𝐸𝐹𝐹𝐸𝐸 0 ≤ ℎ ≤ 23 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑙𝑙𝑙𝑙(𝐷𝐷,ℎ) 

The “average monthly load curve” is calculated by averaging the same hour (1 through 24) 
across every day in the month. The “peak load day” is the load curve for the day with the highest 
demand for any single hour in the month. The averages of each month can be taken across years 
or within a year, depending on the known factors affecting load each year. For example, yearly 
average temperatures can significantly vary across years and can impact which year should be 
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chosen as a representative. 2018 was used as a representative load year and normalized by 
month, as shown in Figure 14. 

 

Figure 14. 2018 normalized monthly load curves for Morocco 

These normalized load curves are then multiplied by the peak system load based on the 2030 
medium GDP growth scenario to produce an initial estimate for 2030 monthly average load and 
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peak load, as shown in Figure 15. This estimate is crude but provides a first step in estimating 
2030 monthly loads. 

 
Figure 15. 2030 projected monthly load curve  
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These curves give a glimpse into the current Moroccan power system and how it may evolve into 
the future. Firstly, they indicate how “peaky” the system may be, which underscores the 
importance of flattening the curve to preserve load factor efficiency to minimize an over-build or 
under-build of capacity in the future; however, it is important to emphasize that the load curve 
will likely not remain the same shape in the future, given the rapidly industrializing nature of 
Morocco. Many economic effects could change the shape, such as mass adoption of air 
conditioning or deployment of electric vehicles. While the above scenarios would drastically 
reshape the load curve, it also shows that government programs, such as time-of-use rates or 
energy efficiency programs, can have a significant impact on the load shape and are very 
important to consider. 

9.2.2 Impact of Solar Energy on Net Load Curve 
Using estimated solar output and forecasted load curves, the impact of different future solar 
energy capacity penetration levels can be estimated. Morocco, which has a good solar resource 
given its location, has multiple options for solar energy deployment (Kousksou et al. 2015). In 
particular, solar PV and concentrating solar power are two solar technologies already being 
deployed in the country. In this section, the impact that significant PV deployment in Morocco 
may have on the shape of load is analyzed. Global Solar Atlas data was used from the World 
Bank to create monthly average solar load curves (“Global Solar Atlas” 2020).3 Using these 
monthly average solar predictions developed, along with the 2030 mid-load case, a range of GW 
for potential PV deployment in Morocco is analyzed (1, 3, 5, and 7 GW), shown in Figure 16. 
With these predicted ranges, the net load is calculated, or demand minus contribution from PV in 
this case (Figure 17), percentage PV penetration, and monthly maximum ramping rate over an 
hour. Morocco has a goal of 52% renewable energy by 2030; therefore, the percentage of energy 
that comes from solar PV and its effect on system behavior is an important consideration. 

Figure 16 and Figure 17 indicate how solar from PV can dramatically change the shape of net 
load, which has been well-documented in other areas of the world (Denholm et al.). In particular, 
solar PV generation creates a new low net load level in the middle of the day, which might 
require backing down other sources of generation as well as dramatic evening ramp-up when the 
PV generation decreases, and the native load continues to increase beyond the daylight hours. 
These net load shapes may present new challenges for the operation of the Moroccan power grid 
and should continue to be evaluated as Morocco moves forward with its renewable energy 
generation goals. These curves speak to the need to do detailed analysis of potential wind and 
solar resources in the country through long-term monitoring and data weather history to produce 
a more accurate view of the impact of VRE expansion on the Morocco electricity system. 

 
3 Other sources of PV resource data exist as well. PVWatts is a tool developed at NREL that uses international 
historical weather data to predict solar direct normal irradiance output and a linear correlation based on installed 
capacity to estimate PV output (“PVWatts Calculator” 2021). An analysis of PVWatts data shows much more 
variation in generation than just monthly averages, which makes it a valuable tool for understanding key weather 
days, such as partly cloudy days or days with very low solar output.  
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Figure 16. Monthly average forecast load curves and projected solar output based on 
installed capacity 
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Figure 17. Monthly average forecast load curves and forecast net load based on installed solar 
capacity 

9.3 NREL Medium-Term Load Forecast for ONEE 
Medium-term load forecasting generally seeks to predict electrical load peaks and behaviors for 
the next 12 months. Based on these predictions plant closures, maintenance, and commissioning 
schedules can be decided. Additionally, decisions regarding seasonal reserves and new 
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procurement can be informed. At the time of writing, only load data from 2008 to 2018 were 
available. Currently, ONEE does not perform medium-term load forecasting with an annual time 
horizon. The purpose of this section is therefore to provide example medium-term load forecasts 
that can be implemented and advanced by ONEE. To demonstrate the accuracy of these methods 
2008–2017 data were used and tested against 2018 load data to estimate an approximate error. 
These methods can then be updated with 2019 data to forecast 2020 load and be updated 
regularly after that. Two methods were employed for this medium-term forecasting: hourly 
regressions and load clustering. 

9.3.1 Hourly Regression 
In the long-term forecasting, the normalized load is assumed and multiplied by the projected 
system peak was a reasonable method to produce the 8760-load curve for the year 2030. While a 
simple starting method, this method assumes that all hours of the year grow linearly with system 
peak even in the logarithmic load growth scenario. It is important to note that this simple starting 
methodology is inadequate for sophisticated load forecasting. Two key variables include ambient 
temperature and weekday/weekend dates. This can be implemented by adjusting for the first 
weekend in January across all years or creating seasonal representative weekdays and weekends. 
Other key variables could also be layered on top of ambient temperature and weekday/weekend 
variables. These enhancements should be viewed as important next steps in medium-term load 
forecasting. 

Beginning with the simplified methodology, Figure 18 takes a sample day of the year and shows 
plots of all 24 hours across years. 
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Figure 18. June 1 24-hour data across available years 

An alternative method is to use linear and multivariable regression on each hour across years, 
allowing each hour of the year to grow at its own rate (Abu-Shikhah, Elkarmi, and Aloquili 
2011). There are multiple regression shapes that could be selected. Linear regression is of course 
wrong, but also reduces the variance that can come from higher-order polynomials. Another 
source of error for this method is that important data, such as weekends, become lost, as no 
awareness is trained into the algorithm between years. Although there are several sources of 
error, the first attempt at medium-term forecasting was done using a first, second, and third order 
polynomial regression for 2008–2017 data using the forms: 

Linear (first order): 𝐿𝐿(2018, 𝑡𝑡) = 𝑎𝑎(𝑡𝑡) ∙ 𝑦𝑦 + 𝑏𝑏(𝑡𝑡) 

Second order: 𝐿𝐿(2018, 𝑡𝑡) = 𝑎𝑎(𝑡𝑡) ∙ 𝑦𝑦2 + 𝑏𝑏(𝑡𝑡) ∙ 𝑦𝑦 + 𝑐𝑐(𝑡𝑡) 

Third order: 𝐿𝐿(2018, 𝑡𝑡) = 𝑎𝑎(𝑡𝑡) ∙ 𝑦𝑦3 + 𝑏𝑏(𝑡𝑡) ∙ 𝑦𝑦2 + 𝑐𝑐(𝑡𝑡) ∙ 𝑦𝑦 + 𝑑𝑑(𝑡𝑡) 
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Figure 19. June 1 24-hour data across available years with linear regression 

In line with the simplified nature of this brief analysis, the regressions shown above does not 
include in its equations either ambient temperature or weekday/weekend bifurcation. Next steps 
to this work would be to include increased multivariable regressions. 

In Figure 19, each regression has a unique slope. These slopes can very often be very similar but 
can also vary wildly. By using individual hour regressions, it gives the freedom for key and peak 
hours to scale differently across years. The average and maximum errors were compared across 
the three polynomial interpolations and to the long-term load forecasting. 
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Table 4. Regression Errors 

Method Average 
Error 

Error Standard Deviation 
(over 8760 samples) 

Maximum 
Error 

Linear regression 6.22% 6.42% 60.6% 

2nd order polynomial regression 7.84% 7.48% 65.7% 

3rd order polynomial regression 12.2% 10.3% 89.4% 

Normalized load curve (Section 9.2.1) 6.60% 5.04% 47.8% 

Table 4. shows that the regression analysis offers little improvement over normalizing and 
scaling the load curve as done in Section 9.2.1. However, as was cited in the literature, other 
regression shapes, such as exponential or logarithmic, could be used. Additionally, important 
variables, such as weekends, were not considered in this regression and should be examined for 
this method to be more accurate. Sometimes the wrong polynomial shape can drastically increase 
the variance and error if regressed over too short of a time frame and extrapolated to long-term 
data. This method, while not a significant improvement for now, could become more valuable 
and accurate with additional analysis. 

9.3.2 Load Clustering and Load Duration Curves 
Understanding the relationship between peak and average demand is important to understanding 
generation assets and energy efficiency programs that can be implemented. A method for this is 
to establish load duration curves that sort the 8760 hourly demand in a descending order, as 
shown in Figure 20 (Scott et al. 2019). The purpose of this clustering is twofold. First, to produce 
a graph showing the flatness of the load duration curve. In an optimized system, this curve would 
be relatively flat so that the peak-to-average ratio is low, showing an efficient allocation of 
generation assets and a good optimization of generation asset capacity. Second, this curve can be 
normalized to the annual peak load to show whether the “flatness” of the curve is increasing or 
decreasing. As can be seen in Figure 21 where the load duration curves are normalized across 
years, the relative flatness of the curve is not changing significantly, meaning there may be 
significant opportunities to match generation and demand to further increase the efficiency of the 
system. 
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Figure 20. 8760 Load duration curve  

 

Figure 21. Normalized load duration curves across years 

Load duration curves are especially useful in comparison to other electricity systems. In Figure 
22, the Moroccan energy system is compared to the Texas system to compare the efficiency and 
ratio of peak to average load. Texas, being its own synchronous grid at similar latitude as 
Morocco and having similar solar resources, is a useful comparison point, albeit with a 
somewhat different load mix (near-universal air conditioning and significant commercial and 
industrial demand, in addition to residential). Figure 22 illustrates the normalized load duration 
curve for 11 years in Morocco and one year for Texas.  
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Figure 22. Normalized load duration curves across years with Texas comparison 

The Texas curve, shown in Figure 22, is useful for several reasons. For approximately 6,000 
hours per year, the Texas electricity system has a mostly flat curve. Meaning during this time, 
the structure of the Texas electricity system and market can provide insights into efficiently 
managing their power system. However, for the highest 2,000 hours, the Texas electricity load 
becomes quite “peaky” and could do more to significantly level load. The Moroccan power 
system shows no such major change and demonstrates during the peak hours of the year gradual 
increase. For load duration curves, it is important to emphasize that these hours are not 
contiguous. Next steps for this analysis include examining the peak 3-hour average ramp-rate. 
Using Texas as an example for this work could help Morocco compare its peak and examine 
what mitigations to rapid ramping are successful and unsuccessful in other jurisdictions. Some of 
techniques could be considered and adapted for the Morocco power system.  

A metric commonly used in medium-term planning with load clustering is ratios of the 
maximum to minimum demand. This can be done on the daily, seasonal, or annual basis (Scott et 
al. 2019). Table 5 shows the ratio for each year. Although the slope of the normalized curve 
shown in Figure 22 does not show a significant decrease, the ratio of peak to minimum power is 
steadily decreasing in the Morocco energy system, which demonstrates progress in terms of 
resource and system optimization. System optimization such as this can increase the capacity 
factor of different energy resources. Increased capacity factor of efficient energy resources can 
reduce overall system cost by increasing the value of capital investments. 
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Table 5. Ratio of Maximum to Minimum Loads 

Year Minimum Demand (MW) Maximum Demand (MW) Ratio 

2008 1,552 4,160 2.68 

2009 1,635 4,312 2.64 

2010 1,714 4,745 2.77 

2011 1,774 4,909 2.77 

2012 2,054 5,248 2.56 

2013 2,346 5,464 2.33 

2014 2,529 5,628 2.23 

2015 2,495 5,800 2.32 

2016 2,681 6,027 2.25 

2017 2,691 6,170 2.29 

2018 2,800 6,310 2.25 

Texas 2018 27,139 73,308 2.70 

9.4  NREL Short-Term Load Forecast for ONEE 
Short-term electricity load forecasting is important for planning day-to-day power generation 
scheduling, electricity pricing, and transaction planning. Further, economic dispatch of power 
plants and ensuring reliability of the system are guided by short-term load forecasts (Kyriakides 
and Polycarpou, n.d.). Short-term load forecasting horizons vary from a few minutes to several 
days; geographic extents can vary from the whole country to small regions. Short-term electricity 
demand is mainly influenced by weather conditions, daily and weekly cycles, holidays, and 
special events.  

Numerous techniques have been used for the short-term demand forecasting (Suganthi and 
Samuel 2012). Mainly, these techniques can be categorized into classical statistical methods and 
machine learning methods (Vu et al. 2017). The statistical methods are transparent and can 
interpret behavior of variables and their influence on the underlying model. Meanwhile, machine 
learning methods capture the nonlinear patterns of the demand and can handle additional 
complexity. Statistical methods for time series data analysis such as auto regressive models, 
ARIMA, and SARIMA are popular in short-term demand forecasting. Some common load 
forecasting software also selects historical demand curves matching the parameters for the 
following days in terms of temperature and day type. On the other hand, machine learning 
techniques such as support vector machine, neural networks, and neural network combining with 
other techniques such as wavelet analysis and fuzzy functions have been used for several studies. 
Less transparency of the machine learning techniques leads to problems in understanding 
relationships of variables, as well as increased complexity (Weron 2006). 

The seasonal auto regressive, moving average with the external variables method is used for 
Morocco electricity load forecasting. The details of the SARIMAX model are discussed in 
Section 3.1. The Morocco SARIMAX model captures the past values of hourly electricity 
demand, temperature, and seasonal effects of the variables. 
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Figure 23 shows three patterns of daily demands of the Morocco 7-day week. Days of the week 
can be binned by categories that often depend on country-specific cultural reasons4. Friday and 
Saturday have approximately equal demand profiles that are lower than the other four days of the 
working week. Meanwhile, Monday, Tuesday, Wednesday, and Thursday have similar daily 
demand profiles, and Sunday has a different profile than the rest of the days of the week. 
Furthermore, the electricity demand of special holidays has been removed. A single-season 
SARIMAX model is used for the daily demand prediction. 

 

Figure 23. Hourly electricity demand of the Morocco Year 2018, December 

Four years (2015, 2016, 2017, 2018) of hourly data are used for model training. Hourly 
electricity load and temperature data were divided into training (85%) and testing (15%) for time 
series data modeling. SARIMAX model training is carried out using all 4 years of data, as well 
as only using 2018 data. First, the autocorrelation function (ACF) and partial autocorrelation 
function (PACF) of the data series (Figure 24) were analyzed. ACF and PACF is the basis for 
determining p and q values of the time series model, where PACF gives significant auto 
regressive terms p and ACF gives number of moving average terms q. High correlation of first 
few lags of electricity demand demonstrates daily seasonal characteristics. In addition, 168th lag 
has slightly higher correlation than other higher order lags, which demonstrates weekly seasonal 
characteristics, as well. 

 
4 Morocco’s dominant religion is Islam. Religious observances on Friday and Saturday affects the electricity 
demand. Sunday is not a working day but is also not considered unique as a religious day.  
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Figure 24. Hourly time series load data series for 2015–2018 demonstrates significant (a) 
autocorrelation and (b) partial correlation to the few lag hourly data electricity demand. 

To select the parameters of SARIMAX model (p, d, q, P,D,Q), Akaike information criterion 
(AIC) and Bayesian information criterion (BIC) are used. AIC and BIC guarantee the goodness 
of fit, while discouraging the overfitting of model with increasing number of parameters. AIC is 
calculated using maximum value of the log likelihood function and number of parameters of the 
model. BIC is calculated using number of data points, log likelihood function, and number of 
parameters. Better models have lower AIC and BIC values. 

9.4.1 Building of SARIMAX Models 
The SARIMAX is a powerful model for forecasting time series data; however, the tuning of 
model parameters is calculation-expensive. Hence, model parameters are fitted by the 
Auto.ARIMA tool while comparing the AIC and BIC values. The pyramid.arima package of 
python programming is used for building the forecasting models. The Auto.ARIMA function of 
the pyramid.arima package: 

1. Builds the models for given parameter values  
2. Calculates the AIC and BIC values 
3. Selects the best fit model with the lowest AIC and BIC values (Table 6.).  
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The same procedure for three categories of days is conducted, for 2015–2018 and only 2018 
hourly electricity demand and temperature data. The same procedure is repeated without 
temperature data to compare the improvement forecasting accuracy. Altogether, 12 SARIMAX 
models were built for three categories of days. Training and testing errors of the four forecasting 
models for each category of day is compared. 

Table 6. Building a SARIMAX Model for Monday, Tuesday, Wednesday, and Thursday Using 2015–
2018 Hourly Load and Temperature Data 

(p,d,q) (P,D,Q,S) AIC BIC 

(1, 0, 1)  (0, 1, 1, 24) 128351 128395 

(0, 0, 0)  (0, 1, 0, 24) 144436 144458 

(1, 0, 0)  (1, 1, 0, 24) 128691 128727 

(0, 0, 1)  (0, 1, 1, 24) 135596 135632 

(1, 0, 1)  (1, 1, 1, 24) 128350 128401 

(1, 0, 1)  (1, 1, 0, 24) 128688 128732 

(1, 0, 1)  (1, 1, 2, 24) 128343 128401 

(0, 0, 1)  (1, 1, 2, 24) 135504 135555 

(2, 0, 1)  (1, 1, 2, 24) 128342 128408 

(2, 0, 0)  (1, 1, 2, 24) 128343 128401 

(2, 0, 2)  (1, 1, 2, 24) 128200 128273 

(3, 0, 3)  (1, 1, 2, 24) 128196 128284 

(3, 0, 3)  (0, 1, 2, 24) 128202 128282 

(3, 0, 3)  (2, 1, 2, 24) 128188 128283 

(3, 0, 3)  (2, 1, 1, 24) 128183 128271 

(3, 0, 3)  (1, 1, 0, 24) 128571 128644 

(2, 0, 3)  (2, 1, 1, 24) 128180 128260 

(2, 0, 2)  (2, 1, 1, 24) 128187 128260 

(1, 0, 2)  (2, 1, 1, 24) 128253 128319 

(2, 0, 3)  (1, 1, 1, 24) 128200 128273 

(2, 0, 3)  (2, 1, 0, 24) 128192 128265 

(2, 0, 3)  (2, 1, 2, 24) 128182 128269 

(2, 0, 3)  (1, 1, 0, 24) 128567 128633 

(1, 0, 3)  (2, 1, 1, 24) 128185 128258 

9.4.2 Comparison of Model Result 
The forecasting results of four SARIMAX models, which were built using the different data sets, 
are not unique and overlapped in their load forecasting estimation. The best fit SARIMAX models 
from different years of load and temperature data combination are also different from each other 
(Table 7). Results indicated Monday–Thursday forecast from the model built from longer period 
(Figure 25 (a) and (b)) are closer to the actual comparison to the forecasts from the models of 
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2018-only data (Figure 25 (c) and (d)). On the other hand, Sunday’s 24-hour forecast from the 
2018 load data model is closer to the actual than others (Figure 25 (d)). However, it is hard to 
conclude which model is better than others because overall error of various SARIMAX models is 
in the same range (Table 8). Nevertheless, error values show some pattern, according to the data 
selection. Error percentage is calculated as the difference of actual load and forecasted load divided 
by the actual load. More than negative 50% of error values indicated that the models of 2015–2018 
data forecast are generally higher than the actual load. On the other hand, models from 2018 data 
forecast less than actual, and more than 50% error values are positive.  

Importance of regional-level sensitivity of temperature to the load is highlighted from the result. 
Substantial improvement of the result from the models with average temperature data cannot be 
noticed. Electricity loads vary with temperature in both positive and negative ways over the 
seasons. For example, summer air conditioning load is increased for higher temperatures, and 
winter heating load is increased for lower temperatures. Consideration of spatial and temporal 
temperature variation and sensitivity to the load might improve the short-term load forecast.  

Table 7. Time Series Models Built Using Temperature and Load Data of Different Years 
Combination 

Data for Training the Model MTWR FS Sunday 

2015–2018 T&L* (2,0,3) (2,1,1,24) (4,0,2) (1,1,2,24) (1,0,1) (2,1,2,24) 

2015–2018 L**  (1,0,0) (2,1,1,24) (2,0,3) (2,1,1,24) (1,0,1) (2,1,2,24) 

2018 T&L* (4,0,2) (0,1,1,24) (1,0,3) (1,1,1,24) (2,0,3) (0,1,2,24) 

2018 L** (3,0,2) (0,1,1,24) (2,0,2) (1,1,2,24) (1,0,1) (2,1,2,4) 

T&L*: temperature and load data are used, L**: load data is used 

Table 8. Error Percentage Between Actual Load and Forecasted Load From Different Models  

Data (a) 2015-2018 T&L (b) 2015-2018 L (c) 2018 T&L (d) 2018 L 

Mean  -2.42 -2.69 2.09 1.28 

Std 5.13 5.28 3.72 3.82 

Minimum -25.82 -23.71 -7.64 -8.16 

25% -4.00 -4.69 -0.52 -1.3 

50% -1.62 -1.63 2.88 1.9 

75% 0.44 0.42 4.54 4.18 

Maximum 6.26 7.25 12.77 10.05 
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Figure 25. Forecasting of seven days ahead using three models of SARIMA for Monday to 
Thursday (MTWR), Friday and Saturday (FS), and Sunday, built with (a) 2015–2018 hourly 

temperature and load, (b) 2015-2018 hourly load data, (c) 2018 hourly temperature and load, and 
(d) 2018 hourly load 
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Figure 26 Forecasting error distribution for three models (MTWR, FS, Sunday) built using (a) 

2015–2018 hourly temperature and load, (b) 2015–2018 hourly load, (c) 2018 hourly temperature 
and load data, and (d) 2018 hourly load 
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10  Additional Considerations for ONEE Load 
Forecasting 

Morocco’s goals for the future include reducing dependence on foreign energy imports and 
reducing emissions from the electricity sector while enabling technologies such as air 
conditioning and electric vehicles to become widespread (“Morocco Gets Closer to 2020 
Renewable Energy Objective” n.d.). In this section, several considerations are examined for 
factors influencing load forecasting beyond the techniques discussed in the previous section that 
may help guide Morocco to meeting these goals. The discussion includes utilizing additional data 
to establish relationships, utilizing advanced mathematical methods, and incorporating how 
certain technologies, such as energy efficiency and electrified vehicles may impact future loads. 
These considerations are potential extensions of this work.  

10.1  Data Requirements 
Incorporating known variables that affect electricity demand is a well-established technique for 
increasing the accuracy of load forecasting. Several examples of known variables include 
weather data, population, and known load anomalies such as holidays and weekends. 

Weather is particularly important for load forecasting because some of the largest aggregated 
loads come from weather-dependent appliances such as air conditioning (Steinberg et al. 2020). 
Additionally, weather events can also affect thermal power plant operations. On the supply side, 
traditional thermal generators such as coal, natural gas, and nuclear power plants often reject heat 
to ambient heat sinks. These sinks can include bodies of water or the air. As the ambient 
temperature rises, these power plants’ thermal efficiency decreases, meaning at high 
temperatures thermal plants can have reduced output (Sa 2011; Miara et al. 2017). Weather data 
should not only include temperature data but also solar radiation and wind speed and direction. 
In the medium and short terms, this data can be incorporated into decisions for the next few 
months and the day-ahead market (El Mghouchi, Ajzoul, and El Bouardi 2016; Fay and 
Ringwood 2010; Taylor and Buizza 2002; Sharma et al. 2014). For long-term planning, 
incorporating all weather-related impacts may impact investment decisions. When high-
resolution weather data is not available locally, there are multiple smoothing functions and 
artificial intelligence methods to use available data to produce the best possible load forecast 
(Singh and Khatoon 2012). 

Understanding holidays, weekends, and major events that significantly affect electricity demand 
can also help increase the accuracy of load forecasts (Song et al. 2005). For instance, weekends 
and some holidays do not fall on the same date each year. A large chunk of error in the 
normalized load models provided in this report are likely because all days were regressed with 
no knowledge of these inconsistencies, except in the case of short-term modeling.  

10.2  Advanced Mathematical Algorithms 
The majority of this report employed relatively simplistic algorithms for either single or 
multivariable regression. Additionally, when AI and neural network algorithms were applied, 
they lacked some of the large data sets to produce a truly robust load forecast that could span 
across all timescales. Some of the advanced algorithms that could be pursued by research 
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institutions in the future for more robust and advanced load forecasting are summarized in this 
section.  

Load forecasting techniques that have been applied for years in the utility space include both a 
smoothing and iterative techniques. Smoothing techniques focus on taking historical data, taking 
specific timesteps (such as seasonal), developing a standardized “smooth” curve, and then 
updating the curve as the time period shrinks or more data becomes available (Broadwater et al. 
1997; Infield and Hill 1998; El-Keib, Ma, and Ma 1995). A similar approach includes iteration 
on data and finding additional ways to reduce error. These algorithms often include some sort of 
automating and weighting of forecasts to reduce error. As part of bottom-up load forecasting, 
individual loads with the largest error and their relationship to, for example, weather events can 
be weighted to produce a more accurate forecast (Singh and Khatoon 2012).  

Building on these traditional techniques are modifications that incorporate both novel concerns 
of the power system and the increased computing power that has been developed since the 
creation of centralized power systems. Several techniques can include auto regressive, stochastic, 
and adaptive. These modified methods include algorithms to produce load forecasts on the short 
term. Using measurements and automated systems, these algorithms can incorporate the most up-
to-date data, assess current errors, and adjust regression parameters dynamically (Gross and 
Galiana 1987; Lu et al. 1989; Grady et al. 1991; Paarmann and Najar 1995; Huang 1997; 
Barakat, Al-Qassim, and Rashed 1992; Chen, Wang, and Huang 1995).  

The final category of load forecasting methodologies that will be mentioned in this report are 
artificial intelligence, machine learning, neural network algorithms, and genetic algorithms. In 
load forecasting today, machine learning algorithms are hailed as a major advancement. 
However, it is very important to understand where these methods do and do not work. The 
unifying aspect of this category of algorithms is that they can take in large amounts of data and 
correlate a system’s behavior, especially when there is not a clear connection between physics 
and the system. Genetic algorithms are a good example of this. In genetic algorithms, an initial 
approach is identified, and a measure of success is defined (such as minimizing the error). The 
algorithm then attempts to correlate all the data and then is allowed to mutate in some small way 
but in an automated fashion. Many algorithms are tested, and the most successful is allowed to 
propagate and mutate (Singh and Khatoon 2012; Lee, Lee, and Chang 1997; Ma et al. 1995). In 
the case of all these methods, the actual correlation between the large data sets and the system 
behavior is a partial black box, and how the computer arrives at an optimum method is unknown 
to the programmer. Such methods are very well suited to the large data sets of today, but also can 
produce erroneous results that cannot be well interrogated, especially when the data set is too 
small. Therefore, such methods should be used with caution and by modelers with a thorough 
understanding of developing such algorithms. 
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11 Load Forecasting Methodologies for ONEE 
Aside from the load forecasting methodologies described above, there were several special 
considerations for the Moroccan electricity sector based on the country’s state long-term energy 
goals. Below are described special considerations in load forecasting for incorporating country 
policies and goals for energy efficiency, transportation electrification, and per capita energy 
intensity changes over time. 

11.1 Impacts of Energy Efficiency in Long-Term Load Forecasting 
Utilities are treating energy efficiency like traditional power procurement in many of their long-
term planning models. Importantly, target energy efficiency and demand side resources can be 
used to balance the system at key times and at key geographies, particularly if forecasting 
predicts specific load assets such as transformers will be overloaded for several hours a day 
during one season. Energy efficiency and demand-side resources can be used to shape the load so 
the system peak can be minimized without changing overall consumption or can be targeted to 
individual sectors that are stressing infrastructure. Energy efficiency measures can be offered by 
the utility, implemented as appliance or building standards, or incentivized through government 
rebate programs to help offset the initial costs (Sanstad 2014). In terms of load forecasting, 
energy efficiencies are often treated exogenously, or ex poste based on econometric load 
forecasts. In Section 9.3.2, load clustering was applied by arranging from highest to lowest, 
which gives insight into the ratio of peak to average demand. This can provide insight into 
potential methods to balance the system to reduce this ratio, which can require costly, rarely used 
capacity. 

Several large-scale studies of the potential value of energy efficiency have been conducted to 
estimate the capacity and value of employing energy efficiency measures. A detailed analysis of 
the value of energy efficiency includes the potential energy efficiency that could be gained based 
on locally employed technologies, such as air conditioning, the policies that would enable a 
widespread adoption of those technologies (e.g., building codes, appliance codes, and awards 
programs such as energy start certification are examples of government enabled adoption of 
energy efficiency technologies), and finally a cost to implement that results in a $/kW and $/kWh 
estimate of the value of energy efficiency. In this way, energy efficiency can be treated and 
compared to traditional generators, and often is evaluated to be one of the most cost-efficient 
options for balancing system supply and demand (Hostick 2012; Hostick et al. 2014).  

Historical Morocco data can be used from Table 9 to provide an estimate the impact of energy 
efficiency programs. Several studies examined the impact of specific appliances on the overall 
demand curve in different regions of the United States (Li and Just 2018; Sanstad 2014; 
Gumerman and Vegh 2019). The energy efficiency programs modeled produced anywhere 
between 1.7% to 25% energy reduction of household loads.5 Similar reductions are applied in 
Morocco to gauge the impact—specifically, examining the potential impact of 5%, 10%, and 
20% annual overall household demand reductions starting in 2010. Table 9 summarizes the 
impact of these reductions on overall annual energy consumption and uses a reference price of 
$0.02 USD/kWh to estimate the value of energy efficiency, which is within the range of 

 
5 There were some additional studies that examined upwards of 40% energy efficiency (Sanstad 2014), but these 
“aggressive” outliers are excluded here.  
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estimates (Wilson et al. 2017). This cost can be compared to the avoided cost of additional 
energy generation capacity to establish a net present value of such measures.  

Table 9. Effect of Household Energy Efficiency Measures on Overall Annual Energy Consumption 

Overall % Annual Household Energy Efficiency  
Reductions Beginning in 2010 

2019 % Overall Annual  
Reduction 

Energy System Cost 
Reduction at $0.02/kWh 

5% 3.51% ~ $5.4 million USD 

10% 7.01% ~ $10.7 million USD 

20% 14.03% ~ $21.4 million USD 

11.2  Electrifying Transportation 
Electrifying transportation can have many positive impacts. Electric transportation can reduce air 
pollution, interact positively with the electric grid, reduce consumer’s overall transport costs, and 
reduce dependence on fossil fuels for transportation. Electric vehicles come in many forms, such 
as taxis, scooters, electric bikes, rented vehicles, personally owned vehicles, or electrified public 
transport such as buses and trains. Each of these technologies comes with its own set of trade-
offs and impacts that should be carefully considered in both electric, urban, and regulatory 
planning.  

Several studies were conducted in the United States to look at the emissions reductions achieved 
by electric vehicle adoption with no change to customer behavior, as well as forecasts that look 
at hourly demand, assuming some level of utility control or pricing over charging (Kapustin 
2020; Fitzgerald, Nelder, and Newcomb 2016; Wu et al. 2015). 

In large economies with developing urban regions, 2–3 wheeled vehicles can account for 
between 5%–20% of fuel demand (Kapustin 2020). In contrast, in the United States, the personal 
vehicle fleet is approximately 60% light-duty vehicles that are often the focus of personal vehicle 
electrification (Hostick 2012). One approach to correct for this is to use the vehicle miles 
travelled of a country and multiply the projected percentage adoption of electric vehicles by the 
miles per kWh efficiency and electric vehicle adoption.  

𝐸𝐸𝐴𝐴𝐸𝐸𝑐𝑐𝑡𝑡𝐹𝐹𝑖𝑖𝑐𝑐𝑖𝑖𝑡𝑡𝑦𝑦 𝐷𝐷𝐸𝐸𝐷𝐷𝑎𝑎𝐴𝐴𝑑𝑑 ≈ % 𝐸𝐸𝐸𝐸 𝑎𝑎𝑑𝑑𝐿𝐿𝑎𝑎𝑡𝑡𝑖𝑖𝐿𝐿𝐴𝐴 × 𝐸𝐸𝐸𝐸 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑐𝑐𝑖𝑖𝐸𝐸𝐴𝐴𝑐𝑐𝑦𝑦 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴 𝐸𝐸𝑀𝑀𝑉𝑉 

This approach could potentially exclude several key factors. For instance, it assumes that 
behaviors stay constant as electric vehicles are adopted. Additionally, there is a large range of 
efficiencies based on routes travelled, highway vs. urban driving, etc. One study placed the 
energy efficiency of electric vehicles in terms of their miles/kWh between 2.8–5.2 miles/kWh 
based on daily routes and weather, with an average estimate for interstate driving at 3.7 
miles/kWh (Wu et al. 2015). This difference can be significant under millions of vehicle miles 
travelled. An additional complication is that many customers prefer plug-in hybrid electric 
vehicles where there is both a battery and internal combustion engine to alleviate some of the 
range anxiety associated with electric vehicles over a 100% battery-powered vehicle (Kurani, 
Sperling, and Turrentine 1996), which implies only some fraction of vehicle miles travelled rely 
on electricity. Finally, the charging location of the electric vehicle affects electricity demand 
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significantly. If electric vehicles are encouraged in rural vs. urban environments, the daily miles 
driven can be significantly different than the percentage of electric vehicle adoption. 

A detailed demand study for United States estimated an electric vehicle saturation at 40% of 
light-duty vehicles by 2050, with annual energy consumed by electric vehicles of 350 TWh 
(Hostick 2012). Applying similar studies to Morocco will require a deep understanding of 
customer behavior, urbanization, current transportation usage, electric adoption, and policies to 
encourage both electric vehicle adoption and off-peak charging behaviors. Additional 
consideration needs to be considered for publicly available infrastructure to support electric 
vehicles. Electric vehicles can be charged at home, over several hours at level 2 public parking 
such as shopping centers and workplaces, and over and hour at a level 3 fast charger. The policy 
of charging infrastructure deployment and domestically available electric vehicle models all 
affect transportation electrification (Jadun et al. 2017; Hostick et al. 2014; P Denholm and Short 
2006; Sears, Glitman, and Roberts 2014). 

11.3 Impacts of Other Technology Deployment in Long-Term Load 
Forecasting 

Individual energy intensity is the per capita energy consumption, and it can also be used to 
estimate a per household energy consumption.6 As countries increase their wealth, citizens often 
increase their energy intensity through lifestyle choices, such as the adoption of air conditioning. 
This trend has been observed in other countries and can benefit from existing data and by 
identifying where on the energy intensity curve the average and median Moroccan lies.  

As an example of this, in 2018, the annual consumption of electricity in the United States was 
10,970 kWh/household compared to 992 kWh/household in Morocco (“Frequently Asked 
Questions (FAQs) - U.S. Energy Information Administration (EIA)” 2019; “Form EIA-860 
Detailed Data with Previous Form Data (EIA-860A/860B)” 2019). A significant portion of 
household electricity consumption in the United States comes from air conditioning load. For 
instance, in the West South Central region of the United States, which has a similar climate to 
Morocco, the average annual cooling consumption is 4,000 kWh/household (“Residential Energy 
Consumption Survey (RECS) - Energy Information Administration” 2015; “Form EIA-860 
Detailed Data with Previous Form Data (EIA-860A/860B)” 2019). The per capita energy 
demand in Morocco is substantially lower than in the States. However, the United States has 
much larger penetration of air conditioning appliances which clearly increases the per capita 
demand. An increased deployment of air conditioning (or similar technologies) in Morocco may 
lead to an increase in the intensity. 

 
6 Note that, strictly speaking, energy intensity refers to total energy or primary energy. However, in this context, it 
refers to electricity energy intensity.  
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12  Conclusions and Recommendations for 
Future Work 

This report provides an overview of load forecasting methods and initial analysis for load 
forecasting within the Moroccan electricity sector, along with several recommendations for next 
steps. The techniques and considerations in this report detail practices that may be useful for 
future efforts in load forecasting in Morocco, in addition to efforts already underway at ONEE.  

Firstly, identified below are considerations for three temporal facets of load forecasting: 

• Long-term load forecasting (here, through 2030). ONEE’s own analysis as well as 
GDP-coupled projections predict significant increases in the annual energy consumption 
in Morocco through 2030. GDP growth is generally accompanied by a growth in 
consumption, although some countries have decoupled this relationship to some degree 
through energy efficiency measures and alternative technologies that decrease energy 
intensity. However, the deployment of certain technologies (such as air conditioning, 
electric vehicles, and customer-owned solar) may impact long-term load, as well as daily 
load shapes. The factors that influence the diffusion rate of these technologies into 
society is complicated and dependent on consumer behavior, technology development, 
and even subsidies and rate design. So, a bottom-up analysis of load forecasts, 
incorporating some of these complicated factors, may provide additional insight. 

• Medium-term load forecasting (a year into the future). The analysis of medium-term 
forecasting methods shows useful several regression methods and the associated error. 
These forecasting methods attempt to capture some of the season variation that can occur 
at each hour of the year, and the individual growth rates of each hour. These regression 
methods may be useful for medium-term load forecasting in Morocco. Additionally, by 
clustering the load days by their peak demand, a measure of the flatness of the energy 
system when comparing peak to average and peak to minimum load can be obtained. An 
electricity system with a high peak to average and peak to minimum ratio can suggest an 
inefficient electricity system where some capacity is only called on a handful or few 
dozen hours a year. This capacity is the costliest and can likely be displaced or better 
utilized by flattening the energy demand. Policy decisions such as energy efficiency 
measures and time-of-use rates can be low-cost pathways to flattening, among other 
mechanisms. 

• Short-term load forecasting (minutes, hours, or days into the future). Several 
machine learning, auto regression, and neural network applications were used to predict 
electricity load over the next 24 hours and tested based on historical data. In particular, 
weather patterns, Morocco’s current and projected future population, city load centers, 
and bottom-up load decomposition data was identified as important data sources which 
may increase robustness of the short-term load forecasting. There is significant 
opportunity for Moroccan energy authorities to become a leader in this space due to 
country size and high dependence on weather of both electricity demand and production. 
Increasing the data collection and availability as described in each load forecasting 
section would allow more entities to examine and experiment on different load 
forecasting algorithms. While several algorithms were applied to construct short-term 
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load forecasting models, others such as genetic algorithms and support vector techniques 
that have been successfully applied by other authors should be investigated. Although 
often sufficient for short-term load forecasting, as bottom-up data becomes more 
available, these data-intensive techniques can be expanded. 

In addition to the discussions on short-, medium-, and long-term load forecasting, several options 
for potential work were identified. These include collecting additional data (such as high-
resolution weather data) and more complex computational methods (such as those employing 
artificial intelligence or neural network algorithms). Given that Morocco has significant 
ambitions for its renewable energy deployment, valuable areas for future work include the 
expansion of tools such as the Renewable Energy Data Explorer. Also detailed were several 
considerations which could dramatically impact future loads, including energy efficiency and 
electric vehicles. There exists ongoing work in the field of technology diffusion, which may help 
frame possible future scenarios for Morocco’s power system.  

As Morocco undergoes many changes in their energy system over the coming decades, it will be 
important to consider both technologies and policies that support a reliable, affordable, and 
sustainable electricity sector.  
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