CASE FILE COPY

TECANCAI NOTES
MATIORAI ADVISORY COMMITREE FOR AERONAUTICS
30. 762

TES FLOW OF A COMPRESSIBLE FUUID PAST A SPHERE
By Carl Kaplan
Langley Memorial Aeronautical Leboratory

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 762

THE FLOW OF A COMPRESSIBLE FLUID PAST A SPHERE
By Carl Kaplan

SUMMARY

The flow of a compressible fluid past a sphere fixed in a uniform stream is calculated to the third order of approximation by means of the Janzen-Rayleigh method. The velocity and the pressure distributions over the surface of the sphere are computed and the terms involving the fourth power of the Mach number, neglected in Rayleigh's calculation, are shown to be of considerable importance as the local velocity of sound is approached on the sphere. The critical Mach number, that is, the value of the Mach number at which the maximum velocity of the fluid past the sphere is just equal to the local velocity of sound, is calculated for both the second and the third approximations and is found to be, respectively, $M_{c r}=0.587$ and $M_{\text {cr }}=0.573$.

INTRODUCTION

The irrotational flow of a compressible fluid pest a circular cylinder and a sphere was first calculated by Jenzen (reference 1) and by Rayleigh (reference 2). Their method consisted in obtaining a correction term to the in-compressible-fluid solution, but the results were limited to the terms involving only the square of the Mach number. Recently, the author (reference 3) and Impi (reference 4) extended the calculations for the circular cylinder by ineluding the terms involving the fourth power of the Mach number. These higher-power terms, neglected in the earflier calculations, were found to be of considerable impertance as the local velocity of sound is approached on the surface of the cylinder. It has therefore been thought worth while to extend the calculations in a similar manner for the flow past a sphere.

ANALYSIS

Preliminary developmentg.- The flow is assumed to be uniform at a sreat distance from the sphere and the motion to be everywhere irrotational and steady. Then, with

$$
\begin{equation*}
c^{a}=\frac{d p}{d \rho} \tag{I}
\end{equation*}
$$

the equations of motion reduce to

$$
\begin{equation*}
c^{2} \frac{d p}{p}=-\frac{1}{2} d\left(v^{2}\right) \tag{2}
\end{equation*}
$$

Where v is the fluid velocity; c, the local velocity of sound; p, the pressure; and p, the density. Then, assuming the adiabatic relationship between p and p, it follows by integration of equation (2) thet

$$
\begin{equation*}
\frac{1}{2} \nabla^{2}+\frac{\gamma}{\gamma-1} \frac{p}{p}=\frac{1}{2} U^{2}+\frac{\gamma}{\gamma-1} \frac{p_{0}}{\rho_{0}} \tag{3}
\end{equation*}
$$

and fromequation (1) thet

$$
\begin{equation*}
c^{2}=c_{0}^{2}\left[1+\underline{Y}-1 M^{2}\left(1-\frac{\nabla^{2}}{U^{2}}\right)\right] \tag{4}
\end{equation*}
$$

where U is the velocity of the undisturbed stream; po. Po, and c_{0}, the corresponding quantities in the undisturbed stream; $M\left(=J / c_{0}\right)$, the Mach number; and γ, the ratio of the specific heats of the fluid.

Since the fluid motion is irrotational, there extsts a velocity potential ϕ and the equation of continuity nay be written as

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=\frac{\partial}{2 c^{2}}\left(\frac{\partial \nabla^{2}}{\partial x} \frac{\partial \phi}{\partial x}+\frac{\partial v^{2}}{\partial y} \frac{\partial \phi}{\partial y}+\frac{\partial v^{2}}{\partial z} \frac{\partial \phi}{\partial z}\right) \tag{5}
\end{equation*}
$$

Let r, θ, and φ denote space polar coordinates and suppose the origin of r to be at the center of a sphere of radus a and the initial line of θ to be parallel to the direction of the stream. Then, designating by r the
ratio r / a, by ϕ the ratio $\phi / U a$ and, by ∇ the ratio ∇ / U and taking into account the fact that the flows in (5) becomes planes $\varphi=$ constant are similar, equation

$$
\begin{equation*}
\left[1+\frac{\gamma-1}{2} M^{2}\left(1-\nabla^{2}\right)\right] \Delta \phi=\frac{1}{2} M^{2}\left(\frac{\partial \phi}{\partial r} \frac{\partial v^{2}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \phi}{\partial \theta} \frac{\partial v^{2}}{\partial \theta}\right) \tag{6}
\end{equation*}
$$

Where

$$
\begin{equation*}
\Delta \phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \mu}\left[\left(1-\mu^{2}\right) \frac{\partial \phi}{\partial \mu}\right] \tag{7}
\end{equation*}
$$

and

$$
\mu=\cos \theta
$$

It is now assumed that ϕ can be developed as a power series in M^{2} (reference 4) so that

$$
\begin{equation*}
\phi=\phi_{0}+\phi_{1} M^{2}+\phi_{2} M^{4}+\ldots \tag{8}
\end{equation*}
$$

Since

$$
\nabla^{2}=\left(\frac{\partial \phi}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \phi}{\partial \theta}\right)^{2}
$$

then

$$
\begin{equation*}
\nabla^{2}=\nabla_{0}^{2}+\nabla_{1}^{2} M^{2}+\nabla_{2}^{2} M^{4}+\ldots \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
\nabla_{0}^{2}= & \left(\frac{\partial \phi_{0}}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \phi_{0}}{\partial \theta}\right)^{2} \tag{9a}\\
\nabla_{1}^{2}= & 2\left(\frac{\partial \phi_{0}}{\partial r} \frac{\partial \phi_{1}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \phi_{0}}{\partial \theta} \frac{\partial \phi_{1}}{\partial \theta}\right) \tag{90}\\
\nabla_{2}^{2}= & 2\left(\frac{\partial \phi_{0}}{\partial r} \frac{\partial \phi_{2}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \phi_{0}}{\partial \theta} \frac{\partial \phi_{2}}{\partial \theta}\right) \\
& +\left[\left(\frac{\partial \phi_{1}}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial \phi_{1}}{\partial \theta}\right)^{2}\right] \tag{9c}
\end{align*}
$$

When these expressions for ϕ and ∇^{2} are inserted into equation (5) and the coefficients of the same powers of M on both sides are equated,

$$
\begin{align*}
\Delta \phi_{0}= & 0 \tag{10a}\\
\Delta \phi_{1}= & \frac{1}{2}\left(\frac{\partial \phi_{0}}{\partial r} \frac{\partial \nabla_{0}^{2}}{\partial r}+\frac{1}{r} \frac{\partial \phi_{0}}{\partial \theta} \frac{\partial \nabla_{0}^{2}}{\partial \theta}\right) \tag{10b}\\
\Delta \phi_{2}= & \frac{Y}{2}-1 \\
& \left(\nabla_{0}^{2}-1\right) \Delta \phi_{1}+\frac{1}{2}\left(\frac{\partial \phi_{0}}{\partial r} \frac{\partial \nabla_{1}^{2}}{\partial r}+\frac{1}{r} \frac{\partial \phi_{0}}{\partial \theta} \frac{\partial \nabla_{1}{ }^{2}}{\partial e}\right) \tag{10c}\\
& +\frac{1}{2}\left(\frac{\partial \phi_{1}}{\partial r} \frac{\partial \nabla_{0}^{2}}{\partial r}+\frac{1}{r^{2}} \frac{\partial \phi_{1}}{\partial \theta} \frac{\partial \nabla_{0}^{2}}{\partial \theta}\right)
\end{align*}
$$

From these equations, any given approximation ϕ_{n} clearly depends only on the preceding approximations of which the first one is the solution of Laplace's equation $\Delta \phi_{0}=0$ for an incompressible fluid.

The first approximation- - Equation (10 a) is the ditferential equation for the velocity potential ϕ_{0} for the flow of an incompressible, nonviscous fluid and may be written as

$$
\frac{\partial}{\partial r}\left(r^{2} \frac{\partial \phi_{0}}{\partial r}\right)+\frac{\partial}{\partial \mu}\left[\left(1-\mu^{2}\right) \frac{\partial \phi_{0}}{\partial \mu}\right]=0
$$

The solution of this equation is known to be

$$
\phi_{0}=\sum_{n=0}^{\infty}\left(A_{n} r^{n}+\frac{B_{n}}{r^{n+1}}\right) P_{n}(\mu)
$$

Where $P_{n}(\mu)$ is Legendre's polynomial of order n and A_{n} and B_{n} are arbitrary constants. In the case of a sphere of radius a, supposed fixed in a stream of uniform velocity U, the boundary conditions to be satisfled are as follows:
$-\frac{\partial \phi_{0}}{\partial r}=$ normal velocity $=0$, at the surface of the sphere
and

$$
-\frac{\partial \phi_{0}}{\partial r}=-\cos \theta, \text { at infinity }
$$

These conditions limit the form of the solution to

$$
\phi_{0}=\left(A_{1} r+\frac{B_{1}}{r^{2}}\right) \cos \theta
$$

Where $\cos \theta=P_{1}(\mu)$. Inserting the boundary conditions,

$$
A_{1}=I \text { and } B_{1}=I / 2
$$

and, therefore,

$$
\begin{equation*}
\phi_{0}=\left(r+\frac{1}{2 r^{2}}\right) P_{I}(\mu) \tag{11}
\end{equation*}
$$

(9a), The second approximation.- From equations (11) and

$$
\nabla_{0}^{2}=1+r^{-3}+\frac{1}{4} r^{-6}+\left(-3 r^{-3}+\frac{3}{4} r^{-6}\right) \mu^{2}
$$

or since $P_{0}(\mu)=1$ and $P_{2}(\mu)=\frac{3}{2} \mu^{2}-\frac{1}{2}$

$$
\nabla_{0}^{2}=\left(1+\frac{1}{2} r^{-6}\right) P_{0}(\mu)+\left(-2 r^{-3}+\frac{1}{2} r^{-6}\right) P_{2}(\mu)
$$

Then, by a simple calculation, it is found from equation

$$
\begin{align*}
& \Delta \phi_{1}=\left(-\frac{18}{5} r^{-7}+\frac{9}{4} r^{-10}\right) P_{1}(\mu) \\
&+\left(3 r^{-4}-\frac{12}{5} r^{-7}+\frac{3}{4} r^{-10}\right) P_{3}(\mu) \tag{12}
\end{align*}
$$

Where

$$
P_{3}(\mu)=\frac{5}{2} \mu^{3}-\frac{3}{2} \mu
$$

Now, a particular integral of the equation

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cdot \frac{\partial \phi}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \mu}\left[\left(1-\mu^{2}\right) \frac{\partial \phi}{\partial \mu}\right]=r^{m} P_{n}(\mu)
$$

is

6 N.A.C.A. Technical Note No. 762

$$
\phi=\frac{r^{m+2} P_{n}(\mu)}{(m+2)(m+3)-n(n+1)}
$$

Hence, the solution is given by

$$
\begin{equation*}
\phi=\sum_{n=0}^{\infty}\left[A_{n} r^{n}+B_{n} r^{-(n+1)}+\frac{r^{m+2}}{(m+2)(m+3)-n(n+1)}\right] P_{n}(\mu) \tag{13}
\end{equation*}
$$

except when

$$
m=n-2 \text { or } m=-(n+3)
$$

Accordingly, the solution of equation (12) is

$$
\begin{aligned}
\phi_{1} & =\left(A_{1} r+B_{1} r^{-2}\right) P_{1}(\mu)+\left(A_{3} r^{3}+B_{3} r^{-4}\right) P_{3}(\mu) \\
& +\left(-\frac{1}{5} r^{-5}+\frac{1}{24} r^{-6}\right) P_{1}(\mu) \\
& +\left(-\frac{3}{10} r^{-2}-\frac{3}{10} r^{-5}+\frac{3}{176} r^{-5}\right) P_{3}(\mu)
\end{aligned}
$$

Since ϕ_{0} already satisfies the necessary boundary condiions of the problem, the hither approximations. ϕ_{2}. ϕ_{2}, \ldots must satisfy the conditions

$$
\frac{\partial \phi_{1}}{\partial r}=0, \quad \frac{\partial \phi_{2}}{\partial r}=0, \quad \cdots
$$

for both $r=1$ and $r=c$. Hence, after a simple cal cu-
lotion,

$$
A_{1}=A_{3}=0 \quad \text { and } \quad B_{1}=\frac{1}{3}, \quad B_{3}=\frac{27}{55}
$$

Therefore,

$$
\begin{align*}
\phi_{1}= & \left(\frac{1}{3} r^{-2}-\frac{1}{5} r^{-5}+\frac{1}{24} r^{-8}\right) P_{1}(\mu) \\
& +\left(-\frac{3}{10} r^{-2}+\frac{27}{55} r^{-4}-\frac{3}{10} r^{-5}+\frac{3}{176} r^{-8}\right) P_{3}(\mu) \tag{14}
\end{align*}
$$

The third approximation.- Substituting from equations (qa), (Ob), (11), and (12) into the risht-hand side of equation (10c), it follows after a straightforward calcuration that

$$
\begin{align*}
\Delta \phi \mathrm{e}= & (\gamma-1)\left[\left(-\frac{27}{35} r^{-7}+\frac{9}{4} r^{-10}-\frac{351}{140} r^{-1} 3+\frac{117}{140} r^{-16}\right) p_{1}(\mu)\right. \\
& +\left(-\frac{4}{5} r^{-7}+\frac{15}{4} r^{-10}-\frac{57}{20} r^{-13}+\frac{23}{40} r^{-16}\right) p_{3}(\mu) \\
& \left.+\left(-\frac{10}{7} r^{-7}+\frac{3}{2} r^{-10}-\frac{9}{14} r^{-13}+\frac{5}{56} r^{-16}\right) p_{5}(\mu)\right] \\
& +\left(-\frac{147}{25} r^{-7}-\frac{1944}{385} r^{-9}+\frac{28323}{1540} r^{-10}+\frac{11178}{1925} r^{-12}-\frac{27441}{1540} r^{-13}+\frac{23367}{6160} r^{-16}\right) p_{1}(\mu) \\
& +\left(\frac{53}{15} r^{-4}-\frac{244}{75} r^{-7}-\frac{936}{55} r^{-9}+\frac{112}{5} r^{-10}+\frac{3411}{275} r^{-12}-\frac{12631}{660} r^{-13}+\frac{929}{330} r^{-16}\right) p_{3}(\mu) \\
& +\left(-\frac{10}{3} r^{-4}+\frac{108}{11} r^{-6}-\frac{20}{3} r^{-7}-\frac{720}{77} r^{-0}+\frac{253}{28} r^{-10}+\frac{261}{77} r^{-12}-\frac{997}{231} r^{-13}+\frac{1615}{3696} r^{-16}\right) P_{5}(\mu) \tag{15}
\end{align*}
$$

The complete solution of this equation is obtained by means of equation (13) together with the boundary conditions $\frac{\partial h^{\prime}}{\partial r}=0$ for ooth $r=1$ and $r=0$ and is as follums:

$$
\begin{aligned}
& \phi_{c}=(\gamma-1)\left[\left(-\frac{3}{70} r^{-5}+\frac{1}{24} r^{-8}-\frac{13}{560} r^{-11}+\frac{13}{2800} r^{-14}\right) P_{1}(\mu)\right. \\
& +\left(-\frac{1}{10} r^{-5}+\frac{15}{176} r^{-8}-\frac{57}{1960} r^{-11}+\frac{23}{6800} r^{-14}\right) p_{3}(\mu) \\
& \left.+\left(\frac{1}{7} r^{-5}+\frac{3}{52} r^{-8}-\frac{9}{1120} r^{-11}+\frac{5}{8512} r^{-14}\right) P_{6}(\mu)\right] \\
& +\left(-\frac{49}{150} r^{-5}-\frac{243}{1925} r^{-7}+\frac{1049}{3080} r^{-8}+\frac{5589}{84700} r^{-10}-\frac{3049}{18480} r^{-11}+\frac{7789}{369600} r^{-14}\right) P_{I}(\mu) \\
& +\left(-\frac{53}{150} r^{-2}-\frac{61}{150} r^{-5}-\frac{156}{275} r^{-7}+\frac{28}{55} r^{-8}+\frac{1137}{7150} r-10-\frac{12631}{64680} r-11+\frac{929}{56100} r^{-14}\right) p_{3}(\mu) \\
& +\left(\frac{5}{42} r^{-2}-\frac{6}{11} r^{-4}+\frac{2}{3} r^{-5}-\frac{60}{77} r^{-7}+\frac{253}{728} r^{-8}+\frac{87}{1540} r^{-10}-\frac{997}{18480} r^{-11}+\frac{1615}{561792} r^{-14}\right) p_{5}(1) \\
& +B_{2} r^{-2} P_{2}(\mu)+B_{3} r^{-4} P_{3}(\mu)+B_{5} r^{-6} P_{5}(\mu)
\end{aligned}
$$

$$
\text { N.A.C.A. Technical Noto No. } 762
$$

where

$$
\begin{aligned}
& B_{1}=0.03566(\gamma-I)+0.32614 \\
& B_{3}=0.02268(\gamma-1)+0.74107 \\
& B_{5}=-0.18261(\gamma-1)+0.21216
\end{aligned}
$$

From ecuations (11), (14), and (16), it may be easily calculated that the velocity of the fluid at the surface of the sphere is given by

$$
\begin{aligned}
& -\frac{1}{r} \frac{\partial \phi}{\partial \theta}=\frac{3}{2} \sin \theta+\frac{1}{7040}(989 \sin \theta-1215 \sin 3 \theta) M^{2} \\
& \quad+(0.10572 \sin \theta-0.16008 \sin 3 \theta+0.06434 \sin 5 \theta) M^{4} \\
& \quad+(\gamma-1)(0.01168 \sin \theta-0.02475 \sin 3 \theta+0.02582 \sin 5 \theta) M^{4}
\end{aligned}
$$ The appropriate value of γ for air being $\gamma=1.408$, this equation can be written

$$
\begin{align*}
& -\frac{1}{r} \frac{\partial \phi}{\partial \theta}=\frac{3}{2} \sin \theta+\frac{1}{7040}(989 \sin \theta-1215 \sin 3 \theta) M^{2} \\
& +(0.11048 \sin \theta-0.17018 \sin 3 \theta+0.07489 \sin 5 \theta) M^{4}+\ldots \tag{17}
\end{align*}
$$

The critical value of the Mach number for the
sphere.- When the velocity of the fluid equals the velocity of sound at any point in the field, a chance in the trpe of flow occurs and potential flow may no longer exist. It will, therefore, be of interest to determine the value of $\mathrm{U} / \mathrm{c}_{0}$ at which the velocity of the fluid just equals the local velocity of sound in the field of flow past a sphere. This velocity is first attained on the sphere at the point of minimum pressure or of maximum velocity. Accordingto equarion (in), with $\theta=\pi / 2$, the variation of the maximum relocity with the Mach number $M\left(=U / c_{0}\right)$ is given by

$$
\begin{equation*}
\nabla_{\max }=1.5+0.31307 \mathrm{M}^{2}+0.35555 \mathrm{M}^{4}+\ldots \tag{18}
\end{equation*}
$$

Now, desionating by c^{*} the velocity of sound at a point; where the velocity of the fluid is equal to the local relocity of sound; that is, at a point where

$$
v=c=c^{*}
$$

$$
\text { N.A.C.A. Technical Note No. } 762
$$

it follows from equation (4) that

$$
\begin{equation*}
c^{*^{2}}=\frac{2 c_{0}^{2}}{\gamma+1}\left(1+\frac{\gamma-1}{2} M^{2}\right) \tag{19}
\end{equation*}
$$

It is to be noted that this oquation is essentially Bernoulli's equation and does not depond on the shape of the body immersed in tho fluid.

In conformity with the usage in this paper, c^{*} is replaced by $\frac{c^{*}}{U}\left(=\nabla^{*}\right)$ and the equation (19) becomes

$$
\begin{equation*}
\nabla^{*^{2}}=\frac{2}{\gamma+1} \frac{1}{M^{2}}+\frac{\gamma}{\gamma}+\frac{1}{I} \tag{20}
\end{equation*}
$$

The so-called critical value of $\mathrm{U} / \mathrm{c}_{\mathrm{O}}\left(=\mathrm{M}_{\mathrm{cr}}\right)$ for the flox past a sphere is then obtained by putting $\nabla_{\text {max }}=\nabla^{*}$. Tables I and II show, respectively, the values of $\nabla_{\text {max }}$ and ∇^{*} calculated from equations (18) and (20) for various values of the Mach number. These values are alsó shown in figure l, and the points at which the curves intersect give the corresponding values of the critical Mach number Mor. The critical values are, respectively, for the second and the third approximations, $M_{c r}=0.587$ and $M_{c r}=$ 0.573. The corresponding critical values of M for the case of an infinitely long circular cylinder are $M_{c r}=$ 0.420 and $M_{c r}=0.409$ (reference 3).

The velocity and the pressure distributions.- If po. Po, and co are the pressure, the density, and the velocity of sound in the undisturbed stream, then the density pirof the fluid at a point where the velocity is ∇ is given by

$$
\begin{equation*}
\frac{\rho}{\rho_{0}}=\left[1+\frac{\gamma-1}{2} M^{2}\left(1-\nabla^{2}\right)\right]^{\frac{1}{\gamma-1}} \tag{21}
\end{equation*}
$$

and the pressure p at this point is
or

$$
\begin{equation*}
\frac{p}{p_{0}}=\left(\frac{\rho}{\rho_{0}}\right)^{\gamma}=\left[1+\frac{\gamma-1}{2} M^{2}\left(1-\nabla^{2}\right)\right]^{\frac{\gamma}{\gamma-1}} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\frac{p-p_{0}}{\frac{1}{2} \rho_{0} U^{2}}=\frac{1}{\frac{\gamma}{2} M^{2}}\left\{\left[1+\frac{\gamma-1}{2} M^{2}\left(1-\nabla^{2}\right)\right]^{\frac{\gamma}{\gamma-1}}-1\right\} \tag{23}
\end{equation*}
$$

$$
\text { N.A.C.A, Technical Note No. } 762
$$

For an incompressible fluid, $M=0$ and expression (23)
reduces to reduces to

$$
\begin{equation*}
\frac{p-p_{0}}{\frac{1}{2} \rho_{0} U^{2}}=1-\nabla^{2} \tag{24a}
\end{equation*}
$$

and, for a compressible fluid with $\gamma=1.408$ and $M=$
0.5%,

$$
\begin{equation*}
\frac{p-p_{0}}{\frac{1}{2} \rho_{0} U^{2}}=4.372\left\{\left[1+0.06628\left(1-\nabla^{2}\right)\right]^{3.45}-1\right\} \tag{24b}
\end{equation*}
$$

The values of ∇ to be used in equations (24) are obtained from equation (17). Thus, for the incompressible
fluid

$$
\begin{equation*}
\nabla=\frac{3}{2} \sin \theta \tag{25a}
\end{equation*}
$$

and, for the second and the third approximations to the compressible.fIuid with $M=0.57$,

$$
\begin{align*}
& \nabla= 1.54564 \sin \theta \tag{25b}\\
& \nabla=1.55731 \sin \theta-0.05607 \sin 3 \theta \\
&+0.007404 \sin 3 \theta \tag{25c}\\
& \nabla \sin 5 \theta
\end{align*}
$$

Table III lists the values of V computed from these formulas and table $I V$ sives the corresponding values of $\frac{1}{\frac{1}{2} P_{0} U^{2}} \underline{p}_{0}$ obtained from equations (24) Figures 2 and 3 show, respectively, the graphs of the velocity and the pressure distributions of tables III and IV.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., May 4, 1940.

REFEREPCES

1. Janzen 0 .: Beitris zu einer Theorie der stationaren Stromung kompressibler Flussigheiten. Phys. Zeitschr., 14. Jahx ., Nr. 14, 15. July 1913, S. 639-64.7.
2. Rayleigh, Lord: On the Flow of Compressible fluid past on Obstacle. Pail. Mas., ser. 6, vol. 32 , no. 187, July 1916, pp. 1m6.
3. Kaplan, Carl: Two Dimensional Subsonic Compressible Flow nast Elliptic Oylinders. T.R. No. $\hat{6} 24$, N.A.C.A., 1938.
4. Imai, Isao: On the Flow of a Compressible Fluid past a Circular Cylinder. Proc. Phys. Math. Soc. of Japan, ser. 3, vol. 20, no. 8, Aug. 1938.

TABITEI

M	$\nabla_{\max }$	
	$\begin{gathered} \text { Second } \\ \text { approximatior } \end{gathered}$	$\begin{gathered} \text { Mhixd } \\ \text { approximation } \end{gathered}$
0	1.5	1.5
. 1	1.50031	1.50317
. 2	1.51252	1.51309
. 3	1.52818	1.53105
. 4	1.55009	1.55919
. 5	1.57827	1.60049
. 5	1.61271	1.65878
. 7	1.6534	2.73877

TABIE II

M	0.1	0.2	0.3	0.4	0.5	0.6
∇^{*}	9.1228	4.5753	3.0656	2.3152	1.8686	1.5737

TABLE III

$\begin{gathered} \theta \\ (\operatorname{deg}) \end{gathered}$	∇		
	Incompressible	Second approximation	Third approximation
0	0	0	0
5	. 13074	. 12021	. 11991
10	. 26048	.24036	.23946
15	. 38823	. 36039	. 35835
20	.51303	. 48008	. 47630
30	. 75000	. 21675	.70857
40	. 96419	. 94496	. 93420
50	1.14906	1.15599	1.14851
60	1.29905	1.33857	1.34183
70	1.40954	1.48046	1.49903
80	1.47722	1.57073	1.60285
85	1.49429	1.59392	1.63005
90	1.50000	1.60172	1.63925

N.A.C.A. Technical Note No. 1762

N.A.C.A. Technical Note No. 762

Figs. 1,2,3

Figure 1.- Critical value of the Nach number for a sphere.

Figure 2.- Velocity distribution on the surface of a sphere.

Figure 3.- Pressure distribution on the surface of a sphere.

