
AIAA 98-0960

Design of Three-Dimensional Hypersonic Inlets with
Rectangular to Elliptical Shape Transition

//t-o_- 7/_.L.

M.K. Smart
National Research Council

Hypersonic Airbreathing Propulsion Branch

NASA Langley Research Center
Hampton, VA.

36th Aerospace Sciences
Meeting & Exhibit

January 12-15, 1998 / Reno, NV

For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, Virginia 20191-4344





Design of Three-Dimensional Hypersonic Inlets with Rectangular to

Elliptical Shape Transition

M. K. Smart

NASA Langley Research Center, Hampton, Virginia, 23681.

Abstract TR

A methodology has been devised for the design of u,v,w

three-dimensional hypersonic inlets which include a x,y,z
rectangular to elliptical shape transition. This methodology a

makes extensive use of inviscid streamtracing techniques to 13

generate a smooth shape transition from a rectangular-like 8
capture to an elliptical throat. Highly swept leading edges and 6 °

a significantly notched cowl enable use of these inlets in fixed rl,_
geometry configurations. The design procedure includes a _

three-dimensional displacement thickness calculation and uses y
established correlations to check for boundary layer separation p

due to shock wave interactions. Complete details of the Ix

design procedure are presented and the characteristics of a 0
modular inlet with rectangular to elliptical shape transition and

a design point of Mach 7.1 are examined. Comparison with
a classical two-dimensional inlet optimized for maximum total

pressure recovery indicates that this three-dimensional inlet

demonstrates good performance even well below its design

point.
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mass flow
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dynamic pressure

Reynolds number
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inlet temperature ratio = T_,IT
velocity components
coordinate directions

parameter in lofting procedure
boundary layer cross flow angle

boundary layer thickness

boundary layer displacement thickness

process efficiency
kinetic energy efficiency

ratio of specific heats

density

viscosity
flow turning

Subscrints

B bow shock
c eombustor

ca inlet capture

cb center-body
cc cowl closure

e boundary layer edge
ex exit

I incipient separation
inv inviscid
vis viscous

oo freestream

6 boundary layer thickness

Introduction

The design of efficient inlets for hypersonic vehicles

utilizing airframe integrated scramjet modules is a subject of

interest at NASA Langley Research Center. In these

configurations the vehicle bow shock performs the initial

compression, and the capture shape for the inlet of each

scramjet module is required to form three sides of a rectangle
so that the modules may be mounted side-by-side. Other

requirements are that inlets have good starting characteristics

at ramjet/scramjet take-over speeds (Mach 4-5), operate over
a large Math number range, and be efficient once the vehicle
has accelerated to its cruise condition. To reduce structural

complexity there is also a strong preference for an inlet with

fixed geometry and no requirement for boundary layer bleed.

A further desirable inlet feature for some scramjet applications
is a _s-secfional shape transition from the rectangular-like
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capturetoanellipticalthroat.Theinletmay then be used in

combination with an elliptical combustor, which is superior to

a rectangular combustor in terms of the structural weight

required to contain a specified pressure and the wetted surface
area needed to enclose a specified cross-sectional area. Fluid

dynamic problems associated with hypersonic comer flows are
also avoided with this type of configuration. The
aforementioned inlet characteristics constitute a set of

stringent requirements, some of which will not be able to be
met in a practical vehicle. Hypersonic inlets designed using

fully three-dimensional design methodologies may be able to

satisfy many of these demands.
A number of three-dimensionally curved missile

inlets with circular or elliptical throats were designed and

tested in the 1960's by Hartill j, Kiersey and Snow: and

Kutshenreuter _. These fixed geometry inlets showed good

performance in the wind tunnel and self started at internal
contraction ratio's well above the one-dimensional inviscid

starting limit determined by Kantrowitz'. However the
performance of these inlets was difficult to predict with the

computational tools available at that time. In the mid 1980's
Simmons and Wiedner s produced a thorough literature review

of three-dimensional hypersonic inlet design and described a

conceptual design methodology for inlets with rectangular
capture and circular throat. This methodology was an

adaption of the 1960's design procedures to modular scramjet

configurations, and comprised of a streamtracing technique in

combination with a lofting procedure for cross-sectional shape
transition. No detailed design and testing of inlet

configurations was performed as a result of this study. An

interesting article by Billig # described the design and wind

tunnel testing of a scramjet missile concept at APL/JHU
between 1962 and 1978. This missile included a three-

dimensionally curved inlet based on tracing streamlines

through a Busemann inlet flow-field, and was similar to that
described in Ref. 2.

The aim of a current project at NASA Langley is the

development of a detailed design methodology for three-

dimensional hypersonic inlets. This project has been
undertaken to examine the possible advantages of three-

dimensional inlet geometries relative to more traditional inlets

based on essentially two-dimensional design methodologies.

Extensive use of three-dimensional computational tools is

required for this work and the methodology utilizes many of
the ideas developed in the aforementioned inlet studies TM.

Some preliminary work on this project involving the design of

streamlraced hypersonic inlets was presented in Smart T. The
current article is an extension of this work to hypersonic inlets

in wr_ch the shape of the inlet capture and throat are specified

a priorl,-something not able to be accomplished using
streamtracing techniques alone. In particular, the work
concentrates on inlets with rectangular to elliptical shape

transition _ST). The constraints placed on the inlets

designed in this work are that they must be suitable for

modular scramjet applications, have fixed geometry, be able

to self start at Mach 4-5, and not contain large boundary layer
separations. Complete details of the design methodology are

presented and the characteristics of a REST inlet with a design

point of Mach 7.1 are examined.

REST Inlet Desil_n Methodology
General Remarks

While computational methods and computer speed

have improved markedly in the past 10 years, full Navier-
Stokes calculations of turbulent three-dimensional hypersonic

inlet flows are not a practical design tool at the present time.

In the current work the inlet design methodology utilizes
three-dinvr_ional inviscid calculations to determine the shock

structure and surface pressure signature of inlet shapes. This

information is then compared with empirical correlations to

check for boundary layer separations caused by shock wave
interactions. If no boundary layer separation is apparent, then

a three-dimensional boundary layer calculation is performed

in order to determine the physical inlet shape which generates
the inviscid flowfield. With the use of current super

computers the cycle time for this process can be reduced to

the point where numerous design iterations can be performed
in a relatively short period.

The complete design procedure may be logically

separated into two sections; (i) determination of the invsicid

inlet shape; and (ii) calculation of the viscous correction. The

inviscid portion of the design procedure is summarized in this

section. A description of the technique used to calculate the
three-dimensional viscous correction to the inviscid shape is

included later. While the inviscid inlet shapes generated

using this methodology do not coincide with the streamlines
through any "known flowfield; i.e. they cannot be called

"'streamtraced inlets", streamtracing techniques form the basis
of the inviscid portion of the design procedure. These will

first be summarized, followed by a description of how

streamtraced shapes may be combined to construct an inlet

with a specified shape transition. The adaption of established

shock wave/boundary layer separation criteria to the types of
shock interactions that occur in REST inlets completes the

inviscid portion of the design procedure.

Streamtraced Inlets

The streamtracing process provides a powerful but

relatively simple technique for determining the inviscid shape
of an inlet with pre-determined capture shape and pressure

ratio. The general steps are as follows:
1. Calculate a desirable compressive flowfield which

has the same pressure ratio as required for the inlet.

In practice this flowfield is usually chosen to be
either two-dimensional or axisymmetric, but it is not
restricted to these.

2. Define a capture perimeter which fits within the
entrance of the compression field.

3. Calculate the path of the streamlines which pass

through the capture perimeter. The stream surface

2



defined by these streamlines constitutes the

inviscid shape of the streamtraced inlet.

The key to the design of efficient streamtraced inlets

is the choice of the compression field through which the
streamlines are traced. Whatever features are contained in this

flowfield will also be a part of the flowfield generated inside
the inlet. The current choice for the form of this flow is an

axisymmetric compression field with a constant radius center-

body. This flowfield, a schematic of which is shown in Fig. 1,

takes advantage of the isentropic compression inherent in

axis3'mmetric corn;. ;ion fields, while the center body

removes the flow region near the axis where shock focusing
can lead to high losses. The compression field chosen for a

particular inlet design is therefore defined by the shape of the

outer surface containing the compression field, the center body
radius and the entrance Mach number.

Once the compression field has been calculated, a
multitude of possible capture perimeters are available to the

inlet designer. The modular application of the current work

requires that the capture shape have parallel sides and a
straight top at right angles to the sides, however the bottom

may be of more general shape. Typically the largest capture
perimeter of the desired shape which fits within the annular

entrance flow is chosen so as to minimize the inlet

length/cross-sectional area ratio. Figure 1 shows the inlet

formed by a rectangular capture shape. Note that streamlines

passing through the capture shape perimeter remain straight
up to the point each encounters the shock surface. Hence the

surfaces of the inlet need not start until the streamlines reach

the shock wave, allowing the side leading edges of the inlet to
be highly swept and the bottom surface to be notched. It is

these characteristics of the current design methodology which

enable the inlet to operate well below its design point by
spilling flow below its bottom surface.

An important step in the current inlet design process

involves calculation of the outer surface profile of the
axis3'mmetric compression field. This profile determines the

character of the compression field (and in turn the quality of
the inlet), which is a trade-off between maximum total

Leading edgeRectangular capture /- ...

M

_SYsTomn estdrlace

Center-body _

finite lip angle

Figure I. Schematic ofa streamtraced inlet based on an

axisymmetric compression field.

I
(a)

I
(b)

Figure 2. Inlet cross-section shape distributions for
different capture perimeters.

pressure recovery, maximum shock strength that will not

produce boundary layer separation, mimmum drag and
minimum exit flow non-uniformity. In the current work a

preliminary profile is determined by reversing an
axisymmetric expansion nozzle profile with center-body
radius, throat Mach number and pressure ratio similar to the

desired inlet. The profile is then shortened by converting the

initial portion to a finite lip angle. Finally, some iteration of

the expansion nozzle center-body radius and throat profile

shape is performed so that significant canceling of the
axisymmetric shock wave occurs at the profile throat. This

process had been found to generate axisymmetnc compression
fields which are suitable for practical streamtraced inlet
configurations.

In the current work the axisymmetric compression

fields are calculated using the NASA Langley program,
SEAGULL, which is an inviscid shock fitting code specifically
designed for supersonic internal flows? Once the

axisymmelric compression field has been calculated, the paths

of streamlines passing through the capture penmeter may be
determined. In the current work the streamtracing routine
built into the plotting program TECPLOT 9 was utilized.

Figure 2(a) shows the distortion of a rectangular capture

perimeter as the streamlines pass through a typical
axisymmetric compression field used in the current work.

Note that this capture shape leads to a convex bottom surface

which is unacceptable for a practical inlet. A capture

perimeter that generates a more suitable cross-sectional shape



distributionthroughoutthecompressionfield is shown in Fig.
2(b). This capture shape still satisfies the modular
requirements of the current work, but the curved bottom of

the capture perimeter leads to a less distorted cross-section at

the inlet throat. The inlet shape represented in Fig 2Co)

typifies the basic streamtraced inlet shape that is adapted in

the current work to allow independent specification of both
capture and throat shapes.

Inlet Shape Transition

Streamline tracing techniques enable generation of
an inlet shape which has almost identical characteristics to a

pre-determined desirable flowfield, but an independently
specified capture shape. Similarly, streamtracing techniques

also enable determination of an inlet shape with characteristics
almost identical to a pre-determined flowiield, but with an

independently specified throat shape. This can be obtained by

simply tracing streamlines back_'ards through the original

flowfield. In the current methodology an inlet with an

independently specified capture and throat shape is

determined by combining a number of streamtraced shapes to
produce a smooth transition from capture to throat. If this

combination of streamtraced shapes is done in a judicious
way, the resultant inlet shape can produce a flowfield with

characteristics only slightly degraded relative to the original
flowfield.

The particular interest of the current work is in the
generation of inlets with transition from a rectangular-like

capture shape to an elliptical throat (REST). The general
steps used to perform this are as follows:

1. Calculate a desirable axis3"rnmetric compression

field which has the same pressure ratio as required
by the inlet.

2. Generate a streamtraced inlet shape using a

rectangular-like capture perimeter such as that

shown in Fig. 2(b); this shape is designated shape A.

3. Generate a second streamtraced inlet shape using a

capture perimeter similar to shape A, but with

radiuses comers; this is designated shape B and a
typical cross-sectional shape distribution for it is

shown in Fig. 3(a).

4. Generate a third inlet shape, this time with an
elliptical throat that has the same throat area as

shape A; this is designated shape C and a typical

cross-sectional shape distribution for it is shown in

Fig. 3(b).
5. Smoothly combine all three inlet shapes to form a

REST inlet which has the capture shape of A, the

cross-sectional shape of B at cowl closure, and the

same throat shape as C.

Smooth shape transition between the three streamtraced inlets

is accomplished in the current work with a mathematical

lofting procedure developed by Barger I°. This procedure
enables smooth transition from an initial to a final shape with

a remaining free parameter that can be adjusted, in this

(a)

(b)

(c)
Figure 3. Cross-section shape distributions for different
inlets.

instance, to optimize the REST inlet for maximum total

pressure recovery or minimum exit flow non-uniformity. For

example, ifflO,) and f:(y) represent the cross-sections of shape
A and ]3 at some intermediate station between inlet capture

(x) and cowl closure (x_), then the cross-section of the
REST inlet at the intermediate station is given by:

Av) = _O')l _-_c_>lf:(,v)l_c_> O)

Where E(x) = (_x-xc' , ),_ ; _ >0
x_-xco

Combination of cross-sections in this way smooths out regions



of high curvature. Furthermore, if cX is small, the

intermediate shape is dominated by f2(y) except near x.,,; and
if a is large, the intermediate shape is dominated by fl(v)

except very close to xu. Values of 1.0 < a > 5.0 have
been found to supply sensible shape transitions for the current
application. Figure 3(c) shows a typical cross-sectional shape
distribution for a REST inlet with a = 3.5.

Once the coordinates of the REST inlet cross-

sectional shapes are known, these are used to generate a

computational grid for calculating the flowfield generated by
the inlet. It is noted that while the on-design performance of
a streamtraeed inlet is already pre-determined as part of the

design procedure, determination of the REST inlet on-design

performance requires the use of fully three-dimensional
computational methods.

_hoclt Wave/Bounda_ Layer Inter_actions

It is of considerable importance to include some

treatment of shock wave/boundary layer interactions in the

inviscid portion of the inlet design procedure. Shock induced
boundary layer separation can produce significant losses

within the inlet, and may cause inlet unstart. Large separated

regions also invalidate the use of the boundary layer equations
for calculating the viscous correction needed to determine the

physical shape of the inlet. Established incipient separation
criteria are adapted in the current work to determine the

maximum shock strength allowable within the inlet. In

practice it is the desire to inhibit boundary layer separation
that usually sets a limit on the minimum length of an inlet.

Shock wave/boundary layer interactions are generally

separated into two categories:
1. Two-dimensional interactions such as those that

occur at a straight compression ramp or when a

planar oblique shock reflects at a surface. These

interactions, by definition, generate no crosswise or

lateral turning of inviscid flow.

2. Swept interactions, such as the interaction produced
by a planar oblique shock wave as it sweeps across

a flat plate from a perpendicular fin. These

interactions are inherently three-dimensional, but

only involve turning of inviscid flow within planes
parallel with the upstream surface (when separation
does not occur).

Incipient separation criterion for turbulent boundary layers

have been established for both these types of interactions,
most notably by Korkegi tl. These con-elations indicate that

swept interactions give rise to somewhat earlier separation
than two-dimensional interactions. Korkegi u suggested that
this is due to the fact that the surface streamlines are forced to

undergo complete reversal in direction in the two-dimensional

interaction, whereas surface streamlines in the swept

interaction only undergo a small direction change associated

with lifting offthe surface along a swept back separation line.
The shock wave/boundary layer interactions that

occur in the inlets designed using the current methodology do

not belong to either category. These involve reflection of

curved shocks at smoothly curvcxl surfaces, where the line of
reflection is generally swept back with respect to the on-

coming flow. In a typical REST inlet the incident shock
surface reflects at the crotch of the cowl, sweeps across the

bottom and side surfaces and undergoes significant

cancellation upon striking the top surface at the throat. While

it is probably reasonable to treat the shock wave/boundary

interaction on the top surface as approximately two-
dimensional (i,e, put it in category 1), the interactions on both
the bottom and side surfaces exhibit characteristics of both

categories. Given this, an approximate procedure for
predicting the incipient separation of "mixed" interactions has

been developed.

Assuming for explanation purposes that flow is
inviscid, the clear physical difference between the two shock

interaction categories is the direction of flow turning relative

to the upstream surface. Two dimensional interactions contain

no flow deflection in the plane of the upstream surface,

whereas swept interactions involve lateral deflection in the
plane of the upstream surface only. A mixed interaction such

as occurs at a swept ramp or in a REST inlet contains flow

deflection both parallel and normal to the upstream surface.
Inviscid flowfield solutions of REST inlets are determined as

part of the current design procedure, hence the inviscid flow

deflection through a shock interaction is known. Knowledge

of the inviscid flowfield, together with the availability of
different separation criterion for lateral and normal turning

(categories 1 and 2 respectively), enables an estimate for the
separation limit of a mixed interaction to be established by

breaking the inviscid flow deflection into components normal

and parallel to the upstream sLu'face.

The incipient turbulent boundary layer separation

criterion for swept interactions (category 2) proposed by
Korkegi" is simply:

M0 t = 0.3 (radians) (2)

This criterion shows good correlation with experimental data

up to Mach 6 for Re 6 > l0 s. For standard swept interactions

this criterion may be expressed in terms of pressure rise as

PJP = 1.50. For mixed interactions the criterion must be

left in terms of M and 0 i, as the relationship between the
pressure rise and lateral flow deflection that occurs through
the interaction depends on its mixed nature. Equation (2)
then becomes a local criterion and can be calculated for each

surface streamline in an inviscid flow calculation. In general
the lateral flow deflection in a mixed interaction is associated

with a larger pressure rise than flow deflection in an

equivalent swept interaction, so mixed interactions separate at

a higher pressure ratio than standard swept interactions.

The incipient turbulent boundary layer separation

criterion for two dimensional interactions (category 1)
proposed by Korkegi tl is:



P,/P = 1.0 + 0.3M: M < 4.5 (3a)

PilP = O.17M zs M _ 4.5 (3b)

This criterion shows good correlation with experimental data

up to Math 8 for Re b > 10s. The two-dimensional
interaction is the least likely of any interaction type to be

separated by an imposed pressure rise, hence equation (3)
defines an upper limit for all interactions. Mixed interactions

with sweep lines nearly normal to the on-coming flow

generate little lateral flow deflection, so the swept separation
criterion of equation (2) may not be accurate. Equation (3)

supplies a maximum upper limit on the pressure rise a mixed

interaction can withstand, regardless of the magnitude of its
lateral flow deflection.

Based on the aforementioned ideas, the following

three step procedure for predicting incipient separation of

mixed interactions is proposed:
1. Determine the lateral flow deflection through the

interaction.

2. Check for separation using equation (2).
3. If separation is not predicted by equation (2),

perform a further check against equation (3).

If neither equation (2) or (3) indicate separation, then the inlet
boundary layer is expected to proceed smoothly through the

interaction. This separation prediction procedure is included

as part of the REST design test case described in the next
section.

In'viscid Desilln of a Maeh 7.1 Inlet

Design Parameters

The inviscid portion of the design methodology

described in the previous section is applied in the current

article to a scramjet inlet module mounted beneath a Mach 7.1
cruise vehicle. The vehicle is assumed to travel on a constant

dynamic pressure trajectory of q = 50kPa. In combination
with a 6* forebody compression, the inlet is required to supply

%
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Figure 4. Required pressure ratio's for a Mach 7.1 inlet.
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Figure 5. Axisymmetric compression field used to design
the Mach 7.1 REST inlet.

the scramjet eombustor with flow at a mean pressure of

"Pc = 50/LPa. The inlet and overall pressure ratio's required
in this instance for flight between Math 4 and 8 are plotted in

Fig. 4. At the Mach 7. l design point, flow enters the inlet at

M = 6.00 and the required inlet pressure ratio is PR = 13.50.
All calculations performed for the current article assume air

flow at constant ratio of specific heats _/ = 1.4.
Pressure contours in the axisymmetric compression

field calculated for this case _e shown in Fig. 5. In this
instance a lip angle of 4* and a center-body radius of

ra, IR o = 0.10 were used. These values result from a
compromise between minimum length and the requirement for
no boundary layer separation. The throat profile and its

position were chosen to perform the maximum amount of
shock cancellation, leading to relatively uniform flow exiting

the inlet, The properties of streamtraced inlets that are

generated using this flowfield would be very close to those
shown in Fig.5. The properties of a REST inlet constructed

using this flowfield will depend on how the different

streamtraced shapes are combined to form the required shape

transition. After some iteration involving the geometry of the

bottom edge of the capture perimeter, the radii of the corners
at cowl closure, the aspect ratio of the throat, and the ats used

in the lofting procedure, the REST inlet shown in Fig. 6 was

generated. This iteration required the use of the fully three-

dimensional computational methods described in the next sub-
section, Note the significant sweep of both the side and top

leading edges of the inlet capture, the extensive notch in the

cowl and the vansition from a capture shape with pronounced

Figure 6, Pictorial view of the Mach 7.1 REST inlet.
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corners to a throat with elliptical cross-section. The quick

transition to a rounded shape immediately after capture

minimizes hypersonic corner flow problems. The overall

contraction ratio for this inlet is CRTt_re = 5.92, with an

internal contraction ratio of CR/im,= 2.34. This inlet shape
is typical of those obtained using the current design
methodology.

Three-Dimensional Inviscid Flow Calculations

The three dimensional inviscid flowfields generated

by the inlet shown in Fig.6 have been calculated using the
CFD code GASPv3. n This code utilizes cell centered, finite

volume, upwind method_ to solve the three dimensional,

unsteady, compressib! ' _'requations. A mixed topology

grid was found to be me most suitable for REST inlet

calculations. This grid consisted of 545 planes normal to the
freestream direction with each plane containing a central

37x37 H-type mesh constructed within a peripheral 17x109

C-type mesh as depicted in Fig. 7. This type of grid allowed
for a smooth transition from the comered entrance plane to the

elliptical exit without unsatisfactory cell distortion. It can also

be easily refined at the wallsfor any subsequent Navier-Stokes
computations. Typical CPU times of 14 minutes were

obtained on a Cray C-90 for space marching calculations with

4 orders of magnitude convergence. It was found that results

were obtained most efl'lciently by space marching the solution
with a first order scheme in the streamwise direction, and

using a third order Roe flux difference splitting scheme

incorporating a Spekreijse-Venkatakrishnan limiter to solve

each plane. Use of higher order schemes in the marching
direction led to oscillations behind the shock that could only

be removed by performing a fully elliptic calculation. For the

present calculations the inlet is assumed to be mounted
underneath the vehicle and between identical modules. Flow

spillage upstream of the notched cowl is modeled by using an

extrapolation boundary condition for boundary cell faces

ahead of the leading edge.
Inviscid flow field calculations have been performed

at the Mach 7.1 design condition as well as at Mach 5.5 and

Figure 7. Schematic of the grid used for computations.

4.0. A comparison of the results of these calculations supplies

some insight into the development of the inlet flow structure

as the vehicle accelerates to cruise conditions. Figures 8(a),

(b) and (c) show - pressure contours in the symmetry plane of
the inTet at Math 4.0, 5.5 and 7.1 respectively (with the

vertical scale magnified to aid visualization). At Mach 4.0 the
inlet shows considerable spillage below the notched cowl and

the cowl shock can be seen to strike the top surface well
upstream of the throat. Minimal shock cancellation occurs in

this instance and an extensive shock system can be seen
downstream of the throat. At Math 5.5 the shock waves in the

flow are swept further downstream, leading to considerably
less spillage than at Math 4.0. Some shock cancellation does

occur at the inlet throat, however significant flow non-

uniformity persists at the inlet exit. At the Math 7.1 design

point the leading shock wave passes only slightly upstream of
the cowl and the cowl shock is almost canceled at the throat.

Minimal spillage occurs in this insk/m_ and the flow structure,
while not being identical to the original compression field, is
only sIightlydegraded in terms of exit flow non-uniformity and

total pressure recovers,. Given the significant shape transition
of the inlet, reduction of flow degradation relative to the

original compression field to the level observed here is

considered to be a significant achievement.

Pictorial views of the on-design flowfield within the
Mach 7.1 REST inlet are shown in Figs. 9(a) and (b). Figure

9(a) shows pressure contours on the surfaces of the inlet,

while Fig. 9(b) shows pressure contours at a number of flow

cross-sections along the inlet length. Note that upstream of
cowl closure the shock wave generated by the inlet is almost

axisymmetric, even though the inlet has comers. Also note

that the top surface pressure distribution contains very little

lateral variation upstream of the throat, indicating that it does

not see any swept shock waves. Swept shock wave/boundary
layer interactions involving the top surface boundary layer

(which has been ingested from the forebody) are a

considerable problem in side wall compression inlets 13.In the
current configuration only the side and bottom inlet surfaces

encounter savept shock waves. These interactions have a less

significant effect on the overall performance of the inlet as the
boundary layer thickness is considerable less than on the top

surface. Checks for boundary layer separation have been
= =

made for the shock wave/boundary layer interactions

associated with this flowfield using the procedure outlined in

the previous section. These indicated that the swept

interaction on the bottom surface may induce some level of
separation, while interactions on the top and side surfaces are

below the incipient separation limit. Boundary layer

separation on the bottom of the inlet generates a weak vortical

structure that will be swept across the bottom and side
surfaces as it flows downstream. This type of separation,

involving the thin bottom surface boundary layer, is not

consideredtoposeasignificantproblemforpraeticalinletoperation.
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(a) Mach 4.0

(b) Mach 5.5

p_l I | _l I i_._
IJ 2.S _.$ 4J l.$ e.& 7_ |_ 9.S 10.S 11,5 12,5 15.$ 14J

(¢) Maeh 7.1

Figure 8. Symmetry plane pressure contours in the Mach
7.1 REST inlet.

Table I lists some mass flow weighted properties of

the inlet flowfield at x/R o = 8.0, including mass capture

percentage (m c), compressionratio (DR), temperature ratio (TR)
and exit Mach number (M,_). These properties were
calculated by converting the non-uniform flowfield at

x/R o = 8.0 to an equivalent one-dimensional flow with the
same total enthalpy, stream thrust, area and mass flow. The

(*)

Pn,_ I I I I l I I ,I
t,S 2,S 3.5 4.15 S_ 8_ 7.S |,S 9,5 10.S 11,5 t2.1 1315 14.5

(b)

Figure 9. Pictorial views of the on-design Mach 7.1 REST
inlet flowfield.

listed property variations correspond to half the maximum

property range about the equivalent one-dimensional value.

It is interesting to note that the pressure rise generated by the
fixed geometry REST inlet remains relatively constant even

well below its design point. This would allow a flight vehicle

to accelerate along a reduced dynamic pressure trajectory if
desired. Also of interest is the Math 4.0 mass capture of

84.4%, meaning that less than 16% of (.he mass flow

compressed by the inlet is wasted, Of the three Mach
numbers examined, exit flow non-uniformity is greatest for the

Math 5.5 case. Although the Mach 4.0 case is farthest from

the design point, the greater wave angles associated with the
lower Mach number flow produce considerable wave

cancellation to occur by x/R o = 8.0.

Mach 4.0 Mach 5.5 Mach 7.1

mc 84.4% 94.0% 99.6%

PR 14.7 +/- 3.0% 13.8 +/- 19.1% 13.6 +/- 9.8%

TR 2.18+/-2.2% 2.15+/-5.8% 2.14+/-6.4%

• M,n. 1.77 +/- 2.7% 2.83 +/- 5.3% 3.76 +I- 4.2%

Table 1 -Mach 7.1 REST inlet characteristics.

Comparison with a two-dimensional Inlet
In order to gauge the effectiveness of the current

REST inlet its performance can be compared with a classical
two-dimensional inlet optimized for maximum total pressure

recovery. Figure 10 shows a schematic of the 2-D, 3 shock

inlet configuration used for comparison, which is assumed to

have shock angles optimized for maximum total pressure

recovery and perfect shock reflection. Performance

properties for the REST inlet (including the forebody shock)
are listed in Table 2. These may be directly compared with

the performance parameters for a 2-D inlet that generates the

same pressure rise at the same Mach number, listed in Table

3. It would appear that the REST inlet has better performance

than the 2-D inlet in terms of total pressure recovery (Pr),

Kinetic Energy Efficiency (rift) and Process Efficiency (q_)

even well below its design point. This is a satisfying result as

a 2-D, 3 shock inlet optimized in this way is generally

Figure 10. Schematic of the 2-D inlet used for

performance comparison.



consideredto have good performance. It important to note,

however, that the values listed in Tables 2 & 3 are only based

on inviscid calculations and do represent actual performance
levels.

Mach 4.0 Mach 5.5 Mach 7.1

Pr 0.944 0.900 0.867

_q_r 0.995 0.995 0.996

_]rn 0.990 0.982 0.978

Table 2 - REST inlet performance parameters.

Math 4.0 Mach 5.5 Mach 7.1

Pr 0.769 ...... 0.759 0.726

rigr 0.976 0.986 0.991

rim 0.955 0.956 0.953

Table 3 - Two-dimensional inlet performance parameters.

Viscous Correction Calculatlons

General Remark.s

The final stage of the design procedure involves
calculation of a viscous correction to the inlet shape. Without

enlargement of the inlet to allow for boundary layer growth,

the overall pressure ratio generated during actual operation

will be considerably higher than that predicted with the
inviscid calculations. In the current work involving three-

dimensionally curved inlets, the viscous correction is required
to include some treatment of three-dimensional effects.

However, full calculation of the corner flows at the entrance

to the inlet or the shock wave/boundary interactions that occur

throughout the inlet flowfield is not practical or desirable

within a design procedure. In this instance we simply wish to
obtain a smooth correction to the inlet shape such that the

actual inlet flowfield contains a core region which is similar to

that predicted with the inviscid calculations. Consequently, the

viscous correction performed in the current work neglects

corner flows, smooths any abrupt changes in the boundary
layer displacement thickness due to shock interactions, and

makes general use of the assumption that flow direction within

the boundary layer does not vary greatly from the local
inviscid flow direction. The comers are quickly smoothed out

in a REST inlet, so the decision not to specifically model

corner flows does not degrade the accuracy of the viscous

correction. Furthermore, smoothing the abrupt displacement

thickness change that occurs at shock interactions is a

necessity for the design of any practical hypersonic inlet.
Finally, the assumption of small cross flow is considered to be

reasonable for hypersonic REST inlets, except in the local

Figure 11. Streamline based coordinate system.

region surrounding shock wave interactions (with the usual

caveat for large separations). As the details of the shock
interaction region are smoothed out as part of the general

viscous correction procedure, this deficiency is not significant.

Small Cross Flow Equation_

Two useful concepts for the study of three-
dimensional turbulent boundary layers are streamline based

orthogonal coordinate systems and the analogy between the

axisymmetric and small cross flow boundary layer equations.

Figure 11 shows a representation of a boundary layer on a
curved surface where the x coordinate curves are formed by

the projection of the external streamline onto the surface, the
zcoordinate curves remain on the surface and are orthogonal

to the x curves, and the y coordinate is always normal to the

surface. When using this system of coordinates, the u velocity

component is called the streamwise velocity and the w velocity

component is called the cross flow. In general, flow in the

boundary layer differs from the inviscid freestream by the
cross flow angle [3 = tan -1 (w/u). In many high speed flows

where separation does not occur, 13is everywhere small and

the small cross flow assumptions may be used to simplify the
full three-dimensional boundary layer equations. These

assumptions are:
1. w _ u

2. Cross flow derivatives, _/Oz, are small compared to

other terms in the governing equations.

Neglecting higher order terms in w and alaz, the three-

dimensional boundary layer equations for turbulent

compressible flow can be shown to reduce to:

1 0(puh2)+ _y(p-'_) = 0 (4)hlh2

o. &' + -_ o. :
h I ax ay

10P O. Ou _ pu-_v') (5)
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pu Ow + _ puw K 2 + pu 2Kl :
hi & pv-_-

pu OH

h I 0x

az - pw'v')

-d-¢OH
---- + p -_.- =

(6)

0 ,, OT _ cpp_v/ Ou _ pu-_v:)] (7)-TyV Ty + .(.-fly

In equations (4)-(7), h I and h 2 are the metric coefficients of
the surface streamlines (which are functions ofx and z only)

and K I and K 2 are their streamwise and lateral curvatures,
defined by:

1 0hi 1 Oh:
K,= ; ....

h I h20z h_ h20x

It is important to note that the cross flow velocity ( ) only

appears in the cross flow momentum equation (equation (6)).
Consequently the continuity, streamwise momentum and

energy equations are decoupled from the cross flow and may

be solved independently. Noting that 1/hlO/Ox = d/c3s
(where s is the distance along the streamline), equations (4),

(5) and (7) become:

] 0 (pub2)+ = 0 (8)h 20s

Ou -- Ou

+ pVTy :

OP _y (_ Ou+ Ty - P""') (9)

OH + _ OH
P"T, -fig=

0 ,, OT T/v--"'7 Ou
- +"( Ty - p.,v')] oo)

Equations (8)-(10) are analogous to the turbulent,

compressible, axisymmetric boundary layer equations with h:
in place of the radius of the axisymmetric body. Interestingly,

neither of the curvature terms appear in the equations,

indicating that streamline curvature has only a second order
effect on the boundary layer in this instance It is also

important to underscore the physical significance of h:.

Simply stated, if Oh2/Os > 0, then streamlines diverge; if h2
is constant, then streamlines arc parallel and the flow is locally

two-dimensional; and if Oh:/Os < 0, then streamlines
converge. The inlet flowiields of interest in the current work

include substantial variations in h2, hence use of a two-
dimensional boundary layer calculation would results in a poor

estimate of the inlet boundary layer.
Given the geometrical properties of the inviscid

streamlines and a closure model for the turbulent terms,

equations (8)-(10) may be solved along each streamline using

a space marching finite difference boundary layer code. If
desired, the cross flow momentum equation can be

subsequently solved along each streamline in order to
calculate the cross flow velocity distribution. It is noted that

both curvature terms will effect the cross flow velocity.
Solution of the cross flow momentum equation was not

attempted in the current work.

Finite Difference Calculations

The finite difference boundary layer code described
in the book by Cebeei and Bradshaw 13was adapted in the

current work for non-isentropic edge conditions. This code

uses an implicit iterative method due to Keller t4 to solve the
transformed mass, momentum and energy equations for two-

dimensional boundary layers. Solution of the axisymmetric

boundary layer equations, or in our case, the small cross flow
equations, was obtained by incorporating the Mangler

transformation into the standard Levy-Lees transformation

used in the code. A simply eddy-viscosity turbulence model
due to Cebeci and Smith 15was utilized. In this model a two

layer formulation is used for the eddy viscosity and transition

from laminar to turbulent flow is calculated using an

intermitancy factor. The position at which transition begins
must be supplied as input to the code.

In the unmodified code, the full edge conditions are
input at the starting station, whereas the edge conditions in the
remainder of the calculation are determined within the code

using the imposed pressure distribution and the assumption of

isentropic flow. In the current work the code was modified to
read in both the pressure and velocity at the boundary layer

edge along the full length of the calculation. Furthermore, the

standard substitution of p u,Ou/as for the -OPJOs term in
the streamwise momentum equation was by-passed. These

necessary changes required some small additions to the

standard code, however its overall computational structure
remained unchanged.

Viscous Correction.to the. Mach7.1 REST Inlet
The Mach 7.1 REST inlet described in this article is to be

tested at its design point in a Mach 6 blow down wind tunnel

at NASA Langley (Mach 7.1 flight corresponds to Math 6.0

entering the inlet). An inlet model with a capture width of 152
mm is planned and typical freestream tunnel conditions for the

tests are M, = 6.02, P = 2032 Pa and 7" = 63 K, which

correspond to Re= = 2.6 × 10v/re. The tunnel maybe run for

up to five minutes at these conditions, hence the viscous
correction used to design the inlet model was calculated

assuming adiabatic wall conditions. It is intended to trip the

boundary layer approximately 12 mm downstream of the inlet
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leading edges. Some results of the boundary layer calculations
performed for this viscous correction are described in the

following paragraphs.
The inviseid calculations of the Math 7.1 REST inlet

flowfield are used to determine the paths of strearnlines used

for boundary layer calculations. Unfortunately, the tangency
boundary condition used by the CFD code GASPv3 causes an

anomalous entropy layer to form at the wall downstream of
shock/surface interactions. This defect becomes obvious in
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Figure 12. Boundary layer properties along streamlines

starting from the midpoints of the top, bottom and side

leading edges of the inlet.
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Euler calculations, and is typical of modem CFD codes written

specifically for solution of the Navier-Stokes equations. The
extent of the flow area contaminated by this error can be

minimized by grid clustering near walls, but can only be

removed by using a more complicated tangency boundary

condition formulation. To mitigate the errors associated with

the aforementioned anomalous entropy layer, significant grid
clustering is employed (see Fig. 7) and flow properties from

the 7th node away from the wall were superimposed on

adjacent wall nodes. Streamlines were then traced in the
boundary surfaces of the inlet grid using the ;I'ECPLO'I _

streamtracing routine.

Figure 12(a)-(c) show the calculated displacement

thickness (8"), skin friction (C/) and imposed pressure
distribution (P,/P_ along three streamlines starting from the
midpoints of the top, side and bottom leading edges. The

pressure distributions in Figs• 12(a) and (b) climb steadily
until the throat region, where both jump quickly to a level

approximately equal to that at the inlet exit. Displacement
thickness on these top and side surface streamlines initially

grows quite quickly, due in part to the convergence of

streamlines, Interestingly, this growth halts at the throat, dips

slightly, then continues at a slow rate over the remaining inlet

length. The sudden change in the 8 °growth observed at the
throat is due to both the rapid pressure rise and cessation of

streamline convergence that occurs in this region. The skin

friction distributions along these top and bottom surface
streamlines are of similar form to that which occurs on a fiat

plate. However, the extremely low value of Cf reached at the
exit of the inlet (C/= 0.0004) is a consequence of the
substantial streamline convergence that has occurred along

their lengths. Generally speaking, streamline convergence

leads to a larger 8 ° and a reduced C/relative to a fiat plate
under the same pressure distribution.-The pressure level on

the bottom surface streamline (Fig. 12(c)) begins at a much

higher value than on the other two streamlines, and rises

quickly to the level exiting the inlet. The region over which
streamline convergence occurs is also concentrated just
downstream of cowl closure. These factors lead to almost

linear 8 ° growth along this streamline and a C$ distribution
with shape and exit value similar to a flat plate under the same
conditions.

Smoothed 8" distributions calculated along 36

streamlines starting at the top, side and bottom leading edges

were added to the inviscid shape of the inlet to obtain its

viscous corrected shape. The cross-sections of the resultant

inlet are shown in Fig. 13. No boundary layer calculations
were instigated at the inlet comers, so the coordinates

corresponding to the "comers" of each cross-section were

calculated by extrapolation from adjacent points. Only subtle

differences between the inviscid and viscous corrected shapes

were apparent, however the overall contraction ratio of the

inlet has reduced to CRTvr s = 4.67, with an internal

contraction ratio of CRI vls _ 2.12.
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Figure 13. Cross-section shape distributions of the viscous
corrected inlet.

With the completion of the viscous correction a more

realistic estimate of the inlet performance parameters may be
made. The flow exiting the inlet consists of approximately

60% boundary layer by area. Equivalent one-dimensional

mass flow weighted performance parameters obtained by
combining the boundary layer and core flows of the REST

inlet are PR = 0.458, rl_ = 0.975 and fir D -- 0.899. Note
that the estimated total pressure recovery for the actual inlet is

significantly reduced from its inviscid level of PR = 0.854,

as are the estimates of lqre and rl_. These performance
levels, while lower than the inviscid values, correspond to
those of a very efl]cient inlet at Math 7.1. Figure 14 shows a

comparison of the REST inlet performance with some mass

flow weighted Pn values from a number of wind tunnel tests
of three-dimensional inlets reported in Refs. 1,3 and 6. Also

included in Fig. 14 is the equivalent one-dimensional PR
value for a Mach 8.33 Busemann inlet tested by Molder et al. _7

in a gun tunnel. While comparison of inlets with different

contraction ratio's, mass capture percentages and design Mach

numbers is somewhat arbitrary, Fig. 14 does indicate that

REST inlets designed using the current procedure promise

1.0
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Figure 14. Performance comparison of hypersonic inlets.

higher inlet performance than similar fixed geometry

configurations designed and tested in the 1960's. This

superior performance is thought to be mainly due to the
inclusion of the three-dimensional boundary layer correction

in the design procedure, and to a lesser extent on the
optimization of the inlet shape transition afforded by the three-

dimensional CFD. Neither of these steps were included in the
design of the inlets described in Refs. 1-3 and 6. The

Busemann inlet tested by Molder et al? 7, which included a

viscous correction as part of its design, exhibits the best
performance of all the inlets included in the Fig. 14. This inlet

requires some form of variable geometry to enable starting,

and is included to give some appreciation for the performance

penalty paid for the utility of a fixed geometry inlet.

Conclusions

A methodology was presented for the design of
three-dimensional hypersonic inlets with rectangular to

elliptical shape transition. These fixed geometry inlets

included highly swept leading edges and a significantly
notched cowl to allow self-starting at ramjet/scramjet take-

over speeds. The inviscid portion of the design procedure
made extensive use of streamtracing methods and a

mathematical lofting technique to determine an
aerodynamically efficient shape transition. Furthermore, the

surface pressure signature of the inlet flowfield was compared
with established correlations to check for shock induced

boundary layer separation. The final step in the procedure

involved a simplified three-dimensional turbulent boundary
layer calculation for determination of the physical inlet shape

which generates the desired inviscid flowfield. This design
procedure utilized currently available computational tools and

high speed computers to perform the numerous cycles needed
to complete a design.

The characteristics ofa Mach 7.1 inlet designed with

the current methodology were described. Inviscid flowfield

calculations indicated that this inlet exhibited good on-design

performance while generating a relatively uniform exit flow.

This was considered to be a significant achievement given its
substantial shape transition. Examination of the off-design

inviscid performance down to Mach 4.0 indicated an increased

level of exit flow non-uniformity and a minimum mass capture

of 84.4%. However its performance remained above that of

an optimized two-dimensional inlet down to Mach 4.0.

Completion of the viscous correction allowed performance

estimates of P R : 0.458, qrzr : 0.975 and ilr o = 0,899 for
the actual inlet. If realized in practice, these levels correspond

to a highly efiqcient inlet for scramjet applications. This work
clearly shows the performance advantages that may be gained

through the use of three-dimensional inlet geometries relative

to more traditional inlet configurations designed using two-
dimensional techniques.
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