

Feedstock and Catalyst Impact on Bio-Oil Production and FCC Co-Processing to Fuels

> K. Magrini, J. Olstad, B. Peterson, R. Jackson, Y. Parent, E. Christensen, K. Iisa, C. Mukarakate

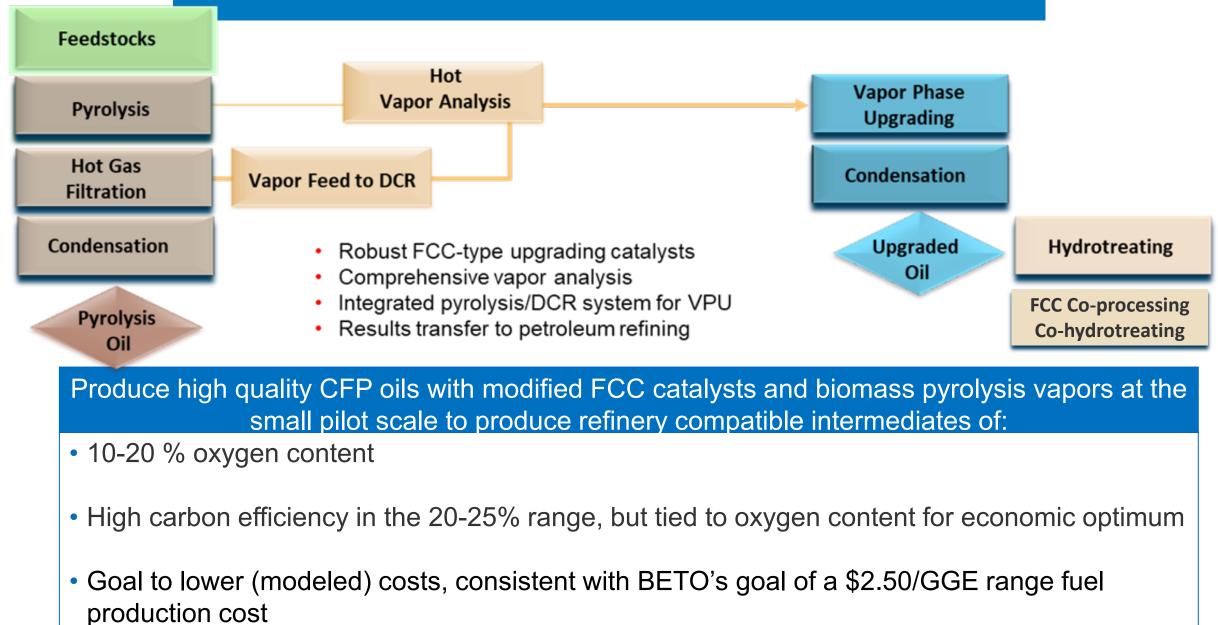
> > April 29, 2021

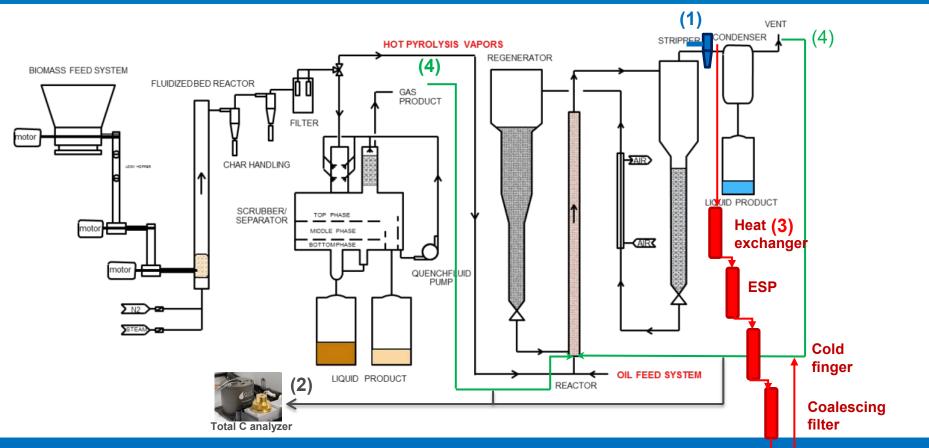
Outline

- Catalytic Fast Pyrolysis (CFP) Oil Production
 - Catalysts and Feedstocks
 - Pyrolyzer/DCR System
 - CFP Oil Composition
- Co-Processing (CP) to Fuels

Catalysts and Feedstocks

Feedstocks

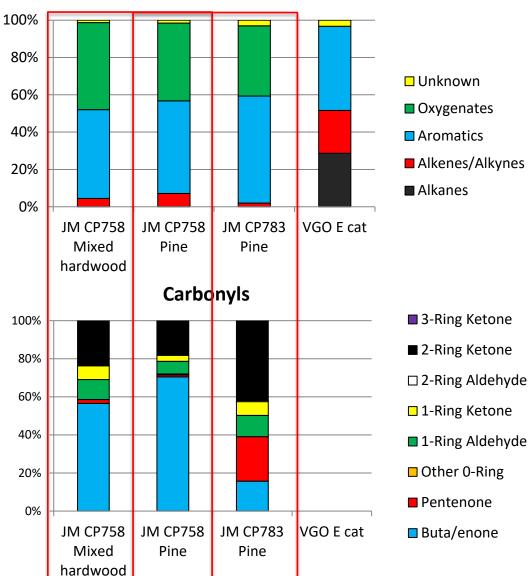

- Miscanthus
- Pine residues
- Debarked clean pine


Johnson Matthey Catalysts

- HZSM-5 (SAR = 30), 25 and 40% [HZSM-5]
- Ga-HZSM-5

CFP Oil Production and Qualities

Pyrolyzer/DCR Modifications for CFP and CP


(1) Stripper cyclone addition returns entrained catalyst to the stripper

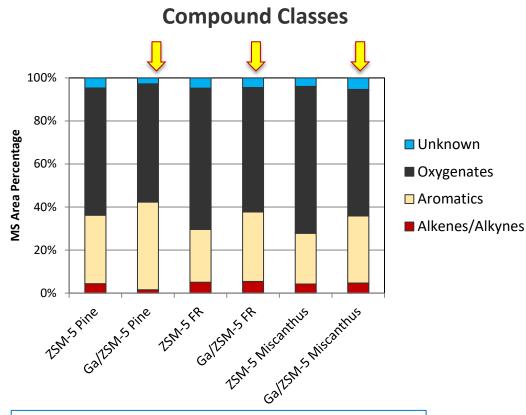
- (2) PolyArc total carbon detector: total C content of feed/product gases simplify C mass balance
- (3) Fractional condensation train: improve product recovery
- (4) Developed multi feed, independently heated nozzles for co-processing

Improvements provide a feedstock flexible (vapors, liquids, co-feeds) DCR FCC system

Catalyst and Feedstock Impacts 2D GC² TOFMS Oil Analysis

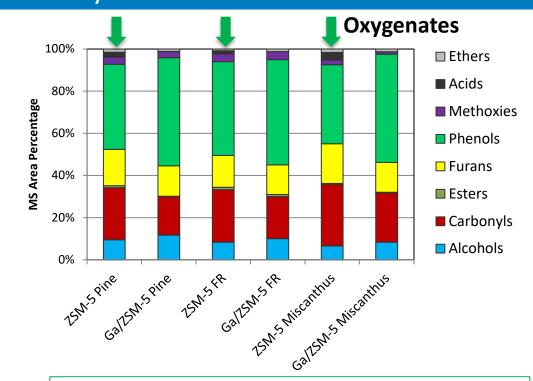
Compound Classes

Feedstock Impact: Pine vs. Oak


- + Alkenes, aromatics
- + Buta/enone

Possibly due to differences in lignin/hemicellulose/cellulose contents

Catalyst Impact: CP783 vs. CP758 (25, 40 % zeolite/same binder – possibly ketonize) + aromatics, – alkenes/alkynes


- + 1-, 2-ring ketones, pentenone
- buta/enone

Catalyst and Feedstock Impacts 2D GC² TOFMS Oil Analysis

<u>Catalysts</u>

- ZSM-5
- Ga/ZSM-5
 - increased aromatics, phenols
 - reduced oxygenates (furans, carbonyls: cellulose deoxygenation)

Feedstocks

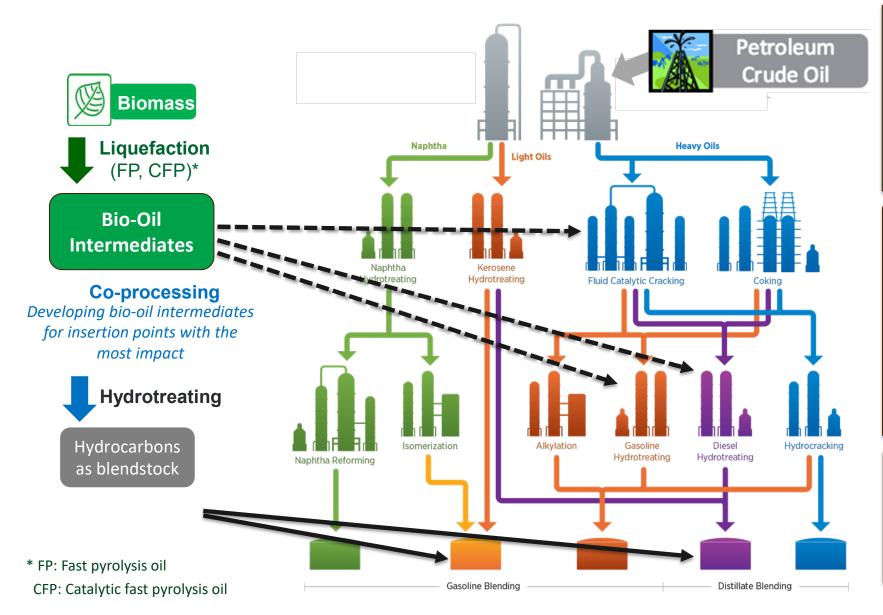
- Pine and pine forest residues (FR)
- Miscanthus
- Pine, FR and Miscanthus
 - Pine and FR similar oxygenates
 - Miscanthus: reduced phenolics (less lignin), enhanced carbonyls and furans

Searchable Database of Process Conditions, Catalysts, Feedstocks, Oil Compositions

 Data comprises process, operating, feed and product compositions, BC content per refinery pathway (FCC, HT/HC)

 Similar to petroleum database http://www.crudemonitor.us/

 Database is searchable, to be linked with FCIC feedstock database (LabKey), and to be published for refiner use


 Potential users: 136 US refineries, multiple catalyst and instrument manufacturers, research community

Home	Search	Glossary	ID Key	Legal	Contribution f	orm	Contact	Account		
		earch by ID								
Cata Co- Hyd	ess : Pyrolysis alytic Fast Pyrolysis processing (bio-oil and rotreating rothermal liquifaction		Ag He No Pe	edstock Type riculture Res rbaceous ovel Feeds troleum Fee aste Streams	sidues ds	↑ ↓	Cle Lol Jur	dstock ean Pine blolly Pine dgepole Pine hiper aple	<u>↑</u>	
Uns	at	↑	01 01 01 FE	alysis L: GC x GC / L: Proximate L: Ultimate EDSTOCK: M QUEOUS: Phy	2	↑ ↓	Los Nat Pac	ional Hi-Tech Re ional Renewable	Il Laboratory (USA) search Program (Chi Energy Laboratory (ational Laboratory (SA)	
									Search	

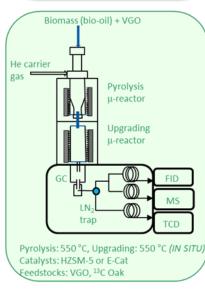
Mockup of the final LabKey User Interface for the website of the published database. Potentially link with the FCIC feedstock database.

Co-Processing: FCC co-processing of bio-oils leverages existing refining infrastructure leverages with billions US\$ in CAPEX and 5 million bpd of crude refining

Objective: Produce fungible bio- oils that can be coprocessed in petroleum refineries to produce biogenic carbon containing fuels

Outcome:

- Tailoring CFP oil composition for refinery insertion
- Modified refinery compatible FCC catalysts
- Co-processing strategies to refiners


Impact: Faster introduction of renewable fuels into the transportation sector to reduce GHG by 2030

Catalyst Impact to Fuel Chemistry: FCC Co-Processing

FCC of VGO, oak or CFPO, and 10% oak—90% VGO mixture over E-Cat and Johnson Matthey CP758 at 550 °C, product analysis with

С %

Products identified by GC-MS,

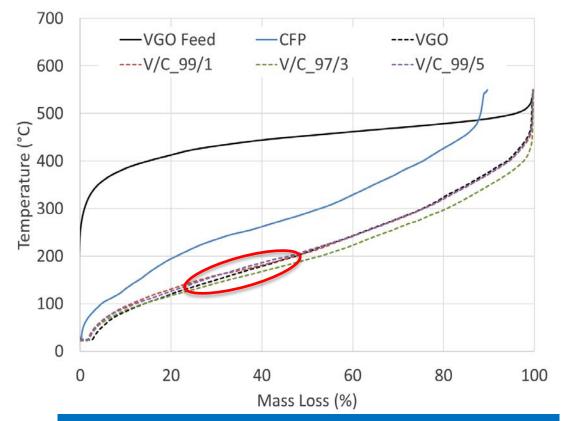
Targeted FCC catalyst development produces bio-oils for varied refinery insertion points

E-Cat	Feed	Catalyst	% Bio-based Carbon (%C _{bb})*	(%C _{bb})product/ (%C _{bb})feed	Wt.% coke	Breakthrough Mass % Liq.
80 – CO Alkanes Alkenes	VGO	E-Cat	0.0	NA	2.75	NA
Aromatics	VGO/CFPO	E-Cat	9.7	1.01	1.09	6.03
60 - Oxygenates	VGO/CFPO	E-Cat/MFI 5 wt9 Mn	[%] 7.3	0.76	0.83	5.19
40	VGO/CFPO	E-Cat/MFI 5 wt9 La	9.2	0.96	0.62	0.49
	VGO/CFPO	E-Cat/MFI 5 wt9 Ca	[%] 5.5	0.57	0.68	5.39
20-	VGO/CFPO	E-Cat/MFI no meso	10.4	1.08	2.8	4.25
	VGO/CFPO	E-Cat/MFI meso	o 8.8	0.91	1.1	1.88
0	VGO/CFPO	E-Cat/HZSM-5	5.4	0.66	0.23	1.80
E-Cat co-processed product has:	VGO/CFPO	E-Cat/HZSM-5	5.9	0.72	Nd	2.33
• Enhanced aromatics, CO, CO ₂	La/MFI and MFI zeolites optimized product					
 Reduced alkanes 	%BC, wt% coke, oxygenate breakthrough					

- to be tested for FCC CP

FCC Co-Processing

High biogenic C incorporation demonstrated

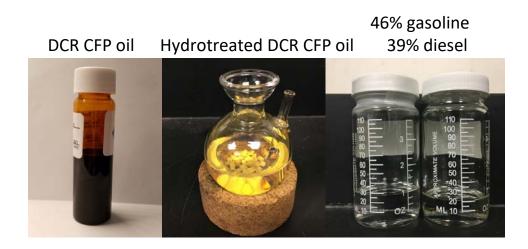

Co-processing in FCC

Product ID	VGO (vol %)	CFP Oil (vol %)*	% BC* in CFP/VGO	% BC in HC Product
VGO	100	0	0	
V/C_99/1	99	1	0.8	na
V/C_97/3	97	3	3.0	na
V/C_95/5	95	5	3.8	3.1

Rcn. T, P = 520°C, 25 psig; Feed rate = 1.2 liter/h CP758 Johnson Matthey zeolite catalyst Pine CFP oil in VGO * Biogenic carbon measured by ¹⁴C analysis

>80% biogenic carbon incorporation in fuel products for:

Woody CFP bio-oils with VGO Potential for MSW-derived biomass feedstocks



Simulated distillation shows similar BP range (expected at the low CFP concentrations)

Hydrotreated CFP Oil: 100% Biogenic Fuels

DCR conditions:

- CP758 zeolite, 550°C
- Residence time ~1s,
- 20% carbon efficiency with 500°C pine pyrolysis vapor at a 1:1 biomass:N₂ ratio.
- Hydrotreating:
- 400 °C
- LHSV 0.20h⁻¹ for ~90 h

	Net Weight (g)	Percent	Volume
Boiler Initial	51.53	100%	60
Lights	1.68	3	
Gasoline (71-182)	23.91	46	
Diesel (182-320)	20.20	39	
	Fraction Recovery	45.79	89%
	Total Recovery	49.97	97%
	Losses	1.57	3%
Gasoline: RON	74		
MON	69		
AKI	71		
P _{vapor} , psi	1.8		
Diesel: CN	22		

- Challenges: fuel composition
- Low octane numbers due to naphthenes (cycloparaffins)
- Low cetane numbers due to multi-ring compounds
- Ring opening and/or C-C coupling required, less hydrogenation for gasoline

Summary

- Consistent quality CFP oils produced with a coupled pyrolyzer/FCC system
- Feedstock impact on oil composition:
 - Pine enhances aromatics, alkenes and buta/enone compared to oak, possibly due to lignin/hemicellulose/cellulose content
 - Pine and pine FR CFP oils are similar
 - Miscanthus produces less phenolics (less lignin)
- Catalyst impact on oil composition:
 - Ga addition to HZSM-5 increases aromatics as does increased [HZSM-5]
 - Ga increases phenolics, reduces carbonyls
- Biogenic carbon in hydrocarbon fuels from CFP oil co-processing with VGO approaches 80%
- Hydrotreating pine CFP oil produces gasoline, jet and diesel hydrocarbons

Acknowledgements

Bob Baldwin Earl Christensen Kristiina Iisa Rebecca Jackson Calvin Mukarakate Jessica Olstad Yves Parent Brady Peterson Glenn Powell Reinhard Seiser Mike Sprague Anne Starace

Huamin Wang Miki Santosa Igor Kutnyakov Cheng Zhu Oliver Gutierrez Matt Flake Yuan Jiang Sue Jones Jal Askander Charlie Doll Andrew Plymale Corinne Drennan

Pacific Northwest

NATIONAL LABORATORY

Zhenghua Li James Lee Douglas Ware Thomas Geeza Oleg Maltseve Jacob Helper

Los Alamos

SDI Program: Liz Moore, Jim Spaeth

Industrial Collaborators Casey Hetrick (BP America) Jeff Lewis (Equilibrium Catalysts) Gordon Weatherbee (WR Grace) Mike Watson, Andrew Heavers, Luke Tuxworth (Johnson Matthey) Larry Doyle, Chris Brown, Sean Murray (Zeton) Kevin Stup (Vacuum Analytics)

