
A Final Report
Grant No. NAG-l-1073

November 22, 1989 - November 21, 1990

A RESEARCH PROGRAM IN EMPIRICAL COMPUTER SCIENCE

Submitted to:

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665

Attention:

D. E. Eckhardt, Jr.

ISD, M/S 478

Submitted by:

J. C. Knight
Associate Professor

Department of Computer Science
SCHOOL OF ENGINEERING AND APPLIED SCIENCE

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA

Report No. UVA/528334/CS91/101

February 1991

Copy No.

TABLE OF CONTENTS

1. Introduction ...

2. Background and Justification in General 2

3. Statistical Analysis of Experimental Data 4

4. A Paradigm for Experimentation 6

5. Summary of Evaluation Experiment 12

5.1

5.2

5.3

5.4

5.5

Existing Techniques

Phased Inspections

Phased Inspection Support Toolset

Trial Inspections
Conclusions

13

15

16

17

18

Bibliography ... 19

- ii -

1. INTRODUCTION

During the grant reporting period our primary activities have been to begin preparation for

the establishment of a research program in experimental computer science. The focus of research

in this program will be safety-critical systems.

Many questions that arise in the effort to improve software dependability can only be

addressed empirically. For example, there is no way to predict the performance of the various

proposed approaches to building fault-tolerant software. Performance models, though valuable,

are parameterized and cannot be used to make quantitative predictions without experimental

determination of underlying distributions. In the past, experimentation has been able to shed

some light on the practical benefits and limitations of software fault tolerance.

It is common, also, for experimentation to reveal new questions or new aspects of problems

that were previously unknown. A good example is the Consistent Comparison Problem that was

revealed by experimentation and subsequently studied in depth. The result was a clear

understanding of a previously unknown problem with software fault tolerance.

The purpose of a research program in empirical computer science is to perform controlled

experiments in the area of real-time, embedded control systems. The goal of the various

experiments will be to determine better approaches to the construction of the software for

computing systems that have to be relied upon. As such it will validate research concepts from

other sources, provide new research results, and facilitate the transition of research results from

concepts to practical procedures that can be applied with low risk to NASA flight projects.

The target of experimentation will be the production software development activities

undertaken by any organization prepared to contribute to the research program. Experimental

goals, procedures, data analysis and result reporting will be performed for the most part by the

University of Virginia.

-1-

Thisreportis organizedasfollows. In section2,areviewof thebackgroundandthemajor

issuesconcerningempiricalcomputersciencearepresented.Someof thestatisticalissuesfaced

by researchersundertakingexperimentsare discussedin section3. A new paradigmfor

experimentationis outlinedinsection4, andapreliminaryevaluationexperimentis summarized

insection5. Finally,abibliographyof recentpapersonthesubjectis included.Somanypapers

havebeenwrittenthatrelateto thisprojectthatmostarenotcitedindividuallyin thebodyof the

report.

2. BACKGROUND AND JUSTIFICATION IN GENERAL

Many important questions in software engineering remain unanswered because there is

insufficient opportunity for experimental evaluation of issues. There is no national resource for

experimentation in software engineering despite the fact that software is a major industry. There

are national facilities for experimentation in other areas, high energy physics for example, even

though in many cases such areas are not associated with a specific industry.

Some experimentation has taken place at universities but the results, though frequently

useful, do not necessarily apply to industrial environments. Much less experimentation has been

performed in realistic production software developments. An important exception is the Software

Engineering Laboratory (SEL) operated jointly by the University of Maryland, NASA Goddard

Space Flight Center, and Computer Sciences Corporation [22].

The SEL has been operating for approximately thirteen years and has produced a wealth of

important research results during that period. The emphasis of the SEL is efficient development

of ground-based software. The research undertaken has been very varied in nature covering

topics such as measurement of programmer activities to help validate cost models, performance

comparison of programmers using Ada and FORTRAN, and various evaluations of test methods

on production software.

-2-

(i)

(2)

Experimentation in software engineering is limited for three major reasons:

It is expensive.

Any effort to perform experiments in the area of software engineering involves building

software and that is expensive. Worse still, for results to be believed, they should come

from a statistically valid sample of data. That might involve repeating the same software

engineering activity several times in order to acquire adequate data. The expenditure of

sufficient resources to perform these experiments with professional programming staffs and

equipment is beyond the capacity of industrial software development organizations. It is for

this reason that many of the experiments that are performed take place in universities using

student programmers and teaching equipment.

It requires flexibility in the development process.

The approach to experimentation employed in the SEL reduces the cost substantially by

using production software development as the target of experimentation. With this method,

a piece of software that is actually needed is produced with designated funds but the process

of production is observed and measured as the target of experimentation. This process is

not perfect in that it is not possible to control all the independent variables in the way that a

researcher might prefer. For example, the total staff assigned to the development cannot be

changed, the programming language and target computers cannot be changed, and the

overall software development method cannot be changed. However, the approach does

offer considerable opportunities for useful experimentation and some relaxation of the

restrictions just outlined are possible by performing some experiments separately from

development. For example, new concepts in testing can be explored by taking the software

as it is produced and testing it in an experimental manner in parallel with the conventional

testing performed by the development team.

Unfortunately, even the approach used by the SEL is not without cost. Any

-3-

experimentationinvolvingobservationdisturbsthe subjectbeingobserved.In orderto

performexperimentsonproductionsoftwaredevelopmentactivities,thoseperformingthe

activitiesmustbepreparedto beobserved,thecostof observationmustbemet,andthe

disturbanceto thedevelopmentoperationresultingfromtheobservationmustbetolerated.

Industrialsoftwaredevelopmentactivitiesare typically performedundercontractand

accordingto a prescribedschedule.Oftenthe disturbanceassociatedwith evenlimited

experimentationis sufficientthatindustrialorganizationsarenot willing to participatein

suchexperimentseventhoughtheyadmittheirvalue.

(3) Industrial software development often has restricted access.

Although some industrial organizations are prepared to undertake experiments in software

engineering, it is often not possible because the software that would be the subject of

investigation is either classified or proprietary.

Much of the software development undertaken by NASA and its contractors is free of the

various restrictions outlined above. The very nature of the agency includes a desire for research

and experimentation, and where obstacles are present that would normally inhibit

experimentation, there is a desire to remove the obstacles to promote better and more extensive

research. The disturbance resulting from experimentation mentioned above is inevitable but

likely to be tolerated within NASA provided it is not excessive. In addition, much of the

software produced is neither classified nor proprietary yet it is completely realistic allowing

meaningful experimentation.

3. STATISTICAL ANALYSIS OF EXPERIMENTAL DATA

The basic goal of a research program in empirical computer science is to determine which

tools and techniques can be depended upon to support the development of software for safety-

critical systems. As noted in section 1, many of the results that must be obtained can only be

-4-

obtained empirically. Virtually none of the significant results depend upon simple constants.

Rather they depend on the comparison of random variables. For example, an important question

is whether a formal specification technique will permit systems to be built with higher reliability

than informal specification techniques. This cannot be determined definitively by a simple

comparison of single systems built using the two specification methods. The degree of difference

between the two is a random variable and what is required is information about its distribution.

The most appropriate way to perform such a comparison is with a statistical hypothesis

tests. Such tests allow conclusions to be drawn of the form "method A is better than method B"

with a certain probability, or confidence, that the conclusion is correct. Such hypothesis tests

allow higher levels of confidence to be used if more dataarc available about the underlying

populations. In the limiting case, where all the population data are available, clearly the

confidence level is 100%.

Obtaining confidence levels that are usefully high implies having a large set of data points

from the two distributions being compared. In the context of the experimentation being discussed

here, this means that observations of several development activities need to be observed, some

using the original method and some using the proposed new method. Unfogunately, such

experimentation is out of the question in software engineering. More importantly, even

experimentation in which a single control project is available for comparison with a single project

using a new technique is obviously very expensive. Funding for control studies is very unlikely

to be available.

The results of this situation are:

(1) It is unlikely that statistically valid conclusions about the effect of a new technique, method,

or tool could ever be drawn. Thus statements of the form "method B provides an

improvement of Y% in quantity Q over method A with confidence C" are unlikely ever to

-5-

bepossible.At best,observedvaluesof somequantitywill beavailableandreported.This

is aseriousyet unavoidableproblemandforcestheuserof suchresultsto drawinformal

conclusionsandhopetheyarevalid. Thisdoesnotmeanthatsuchexperimentsshouldnot

be performed.It meansthat trustworthyquantitativeconclusionscannotbe drawn.

However,datacollectionundersuchcircumstancescangive greatinsight andpermit

informalconclusionstobedrawnthatarealmostcertainlyright.

(2)

(3)

On the brighter side, a single data point is sufficient to reject certain hypotheses and this can

be very useful. For example, a hypothesis of the form "method B provides an improvement

of Y% in quantity Q over method A" can be rejected if an experiment with a control does

not obtain a Y% improvement. Of course, if a Y% improvement is obtained, the hypothesis

cannot be accepted.

An area where good results can be obtained is feasibility. At this stage in our

understanding, there are many proposed techniques that have not even been shown to be

feasible. For example, the use of formal specifications on a project involving many

programmers has never been shown to be a realistic approach. An experiment in which the

question of feasibility were investigated could obviously permit positive conclusions to be

drawn.

4. A PARADIGM FOR EXPERIMENTATION

In the area of dependable computing, we find ourselves in the same situation that faced the

general software engineering community when the Goddard SEL was formed. It is tempting,

therefore, to establish a program of experimentation to support dependable computing using the

SEL as a model.

Upon closer examination of the SEL program, it is clear that some changes have to be made

before the SEL model can be used. As noted above, the cost of experimentation in the SEL is

-6-

keptwithin manageablelimits by, for themostpart,usingproductionsoftwaredevelopmentas

thetargetof observation.Whileprovidingthegreatbenefitof reducingcost,thisalsolimits the

rangeof experimentthat can be undertaken.Experimentsinvolving the developmentof

productionsoftwaremust be relatively low risk or they might jeopardizethe successful

completionof theproduct.Thusanexperimentthatwishedto useatotallynovelanduntriedtool

or techniquewouldbevery hardto perform. In thecontextof theSEL,this is not a major

limitationsincethereareso manyimportantbut low-riskexperimentsthat canbeperformed.

This resultslargelyfrom thefact thatanestablishedandextensivedevelopmentmethodis in

placeandgeneratingproductionsoftwareontimeat NASAGoddard.A characterizationof the

SEL experimentationprocessis shownin figure1. Note that the emphasisis on technique

selectionratherthanthecreationof newtoolsor techniques.

The situationwith development methods for safety-critical systems is such that a

conservative approach to experimentation cannot be taken. There is no corresponding established

approach to software development to which a program of experimentation could add technique

selection or modification. In the area of safety-critical software development, many completely

fundamental questions remain. For example, a central issue is the role of formal methods and,

specifically, whether an entire development method based on formal methods could offer a route

to the routine development of software with adequate dependability. The experiments required

are driven by questions that are associated with substantial risk.

The paradigm for experimentation that is proposed, therefore, is one in which production

software is built in a laboratory setting but is subjected to industrial constraints. The

development would, however, involve new and untried methods or methods that have not been

tried previously in an industrial setting. The risks would be high in that useful products might not

be produced. This is precisely why such experiments are required since resolving the risk is a

step that must be undertaken before more detailed information on methods can be obtained and

.7.

Software

Development

Projects

Concepts

Measurement

Technique Selection

(Ada, Reuse, OOD, Cleanroom)

Analyze
&

Draw

Conclusions

Fig. 1 - GSFC_A.IMd SEL Operation

before the methods can be applied routinely with confidence in industrial production

development.

Figure 2 shows the proposed paradigm for experimentation. It focuses on innovation in

tools, techniques, and methods. It admits that such concepts might result from observational

experiments, and that they will need to be evaluated empirically. Thus a major aspect of the

paradigm is to seek new concepts, pose research questions concerning the feasibility, relevance,

or performance of the concept, and to then design and carry out experiments based on these

questions.

-8-

...._[Research Questions

"-[_ Experiment Designs
I

 oftwareDeve opmnt _
t,,,,,,, e

_ !!_:!::iii:!i:':!'_i_ii.-':._-_:.._.:.'..!:.:..._:!:.:.:..:.:_:::.`.:!:_:_:::_;_...._.::i::.`.._.:.`:._-ii:.:.?iiiiiiiiii.!iii..`..ii_!!.i.-'!_i_iii_.: _i_ i.:ii.:'i:""i"_i'ii/

li::i::i::i_ Software Development _ii::iiiiiiii::ili::ii?:iiiiiiii!iiii::ili_!!ili!_ili_iiii::i::i::l
[iii_iii Environment _iiiiiii_iii!iiiiiiiiii_ii_iiii!!iiiiiiiii!iii_iil""""-_

I: :::/iiii: ::::.,.::..::::::::...._:-::::.-._.-._.-..,.t:_.,_:_..,..,...:::_..,..:_.,.: .,.:.,...-::.,...-_:_::-.,.::.,..,._..,:..-"i!iii !_!!i!g!!:_!!!!_!i! "i_i"_

Data

Subjective /_
Assessment

Analysis

Concepts

- Methods

- Tools

- Techniques

Insight
Needs Assessment

Quantitative Performance

Fig. 2 - Paradigm For Experimentation

Within the general paradigm of experimentation, there are essentially three types of

experiment that can be performed. They will be referred to here as fully controlled, semi-

controlled, and non-controlled.

Fully controlled experiments are just that, fully controlled. All of the independent variables

having influence over the outcome and all quantities affecting the statistical results can be set by

the researcher. A predefined application is developed in a statistically significant number of

replicates by separate staffs carefully selected to eliminate statistically meaningful differences in

experience, abilities, education, etc. The individual staffs would use all the same techniques and

-9-

toolsbutoneto developtheapplication.Theresultingsoftwarewouldbeanalyzedto determine

whetheranyof thedifferingtechniquesproducesbetter results according to some metric. For

example, an experiment might develop software with two different programming languages,

showing whether one language better lends itself to producing reliable code.

Fully controlled experiments are expensive, but very desirable. A fully controlled

experiment could be used, for example, to explore the benefits of using formal specifications

versus informal specifications. Informal specifications for a predefined application would be

rewritten in various formal notations. Groups of programmers, carefully selected to minimize

differences in experience and ability, would develop software independently from the different

forms of the specifications. During the development process, measurements and observations

would include:

(1) Tools required during the development process.

(2) Acceptability of the formal specifications to the programmers.

(3) Questions that arise about the specifications (formal and informal).

(4) Tools required to write formal specifications.

(5) Errors found in specifications (formal and informal).

The experiment would ultimately compare the reliability of software developed from formal

specifications with software developed from informal specifications.

Semi-controlled experiments control some but not all aspects of the development process.

Those factors that are not controllcd vary under whatever influences usually operate, and the

results of the experiment are conditional on the values that the non-controlled independent

variables take. The extents and types of change that will be tolerated by the development

- 10-

environmentdeterminetowhatdegreethesetypesof experimentscanbedone.

In the contextof assessingthe performanceof formal specifications,a semi-controlled

experimentcould be usedto indicatehow difficult is it to developsoftwarewith formal

specifications.Informalspecificationsfor anexistingapplicationwouldberewrittenin aformal

notation.Programmersassignedtothedevelopmentwouldthenusetheformalspecifications.In

suchanexperiment,theapplication,thestaff,the languageandcomputersusedwouldnotbe

controlledby the researcher,but the resultsmight revealusefulinformationsuchaswhether

using formal specificationsis feasiblein a productivedevelopmentenvironment,what

programmertrainingisrequired,whattoolsmightbeuseful,etc.

Experimentsnot controlledby a researcherinterfere very little with the existing

developmentprocess.Thesetypesof experimentsobserveandmeasurethedevelopmentprocess,

providingveryusefulinformationabouttheeffectivenessof thedevelopmentprocess.However,

it is virtuallyimpossibletogetmeaningfulquantitativedatafor comparativepurposesfromsuch

efforts.

Whilenon-controlledexperimentsonexistingapplicationsdonotcontrolthedevelopment

process,theydodisturbit becauseof theinevitableintrusionresultingfromdatacollection.How

datacollectionis donedependsonwhatdata areavailableandinwhatform.Forexample,arethe

specifications,thecostestimates,theexpectedcodesize,thestafflevels,theapplicationdetails,

the developmenttools, and the developmenthardwareavailable?Many times even non-

controlledexperimentsfail becauseevenminimal datacollectionis not performedby the

developmentorganization.

Interferencewith thedevelopmentprocesscanbereducedbyautomatingthedatacollection

asmuchaspossible.Howmuchautomationis possibledependsonwhetheraccessto codeand

otherdocumentsinelectronicformisprovidedandwhethermodificationsto theoperatingsystem

-11-

usedfor thedevelopmentarepossible.

Removingcodeandother artifacts from the development environment for testing and

analysis at the laboratory can also reduce the disturbance of experimentation and provide

opportunities to perform more controlled, desirable experiments. Of course, the laboratory has to

be made aware of any special purpose hardware required by the code and artifacts that might

restrict analysis.

Considering once again the example of assessing the benefits of formal specifications, If a

non-controlled experiment is all that can be achieved, useful results can still be obtained. An

experiment could determine, for example, the feasibility of formal specifications. Using non-

development staff, an attempt could be made to rewrite informal specifications for an existing

application in various formal notations in parallel with the production development. Such an

experiment would indicate whether formal notations could be prepared that are adequate to

describe the kinds of applications currently being developed. Specific quantities that might be

measured even in a non-controlled experiment with minimal impact on the development

organization include:

(1) Resources expended in developing formal specifications.

(2) Errors in the formal specifications.

(3) Tools for supporting formal specification development.

(4) Acceptability of such specifications to programmers.

5. SUMMARY OF EVALUATION EXPERIMENT

In order to evaluate the proposed paradigm for experimentation, we have carried out a

preliminary evaluation experiment. We performed this experiment to gain experience with the

-12-

advocated paradigm and determine its practicality. In this section only a summary of the

experiment is presented. A complete report will be supplied under separate cover [23]. The

experiment is in the category of fully controlled since all aspects were under our control.

The topic we chose to study was software inspections. We chose inspections because there

is substantial evidence that they are highly effective at locating defects in software when carded

out carefully. However, we suspected that improved techniques might be possible, and that

determining the suitability and performance of new ideas in this area could only be determined by

inspection. The experimental procedure we followed was to:

(1) study an industrial implementation of software inspections,

(2) define a radically different approach to inspections that we hypothesized would be an

improvement,

(3) define a toolset that supports the advocated procedure,

(4) implement a prototype version of the toolset for evaluation,

(5) perform a set of trial inspections using the revised inspection approach supported by the

prototype toolset,

(6) revise the process and the toolset based on the results of the trial inspections,

(7) seek industrial partners to assess the technology in a practical context.

5.1. Existing Techniques

Software inspections have been employed for a long time in various forms. They have been

referred to variously as walkthroughs, code readings, inspections, Fagan inspections [13] and

audits. They have been applied to all work products that are generated during software

development including requirements specifications, designs, source code, and test plans. By far

.13.

themostpopularapplicationof inspectionsis theexaminationof sourcecode.

The basicideabehindall of these techniques is for human readers to examine a work

product and look for algorithmic defects. Procedures differ and the members of an inspection

team differ according to the particular approach being applied, but all rely on human examination

of a paper version of the inspection target.

Empirical evidence has emerged showing that such activities, as part of a systematic

software development process, can have considerable benefit [13]. Most of the benefit that

accrues is a lowering in the rate of faults in the deployed software. Since inspections typically

take place before any form of verification, they can be highly cost effective because they

eliminate algorithmic defects very early in the lifecycle.

Despite this success, many major difficulties remain. We summarize three important ones

here. First, inspections are in no sense rigorous. This leads to situations in which, although a

work product may have been inspected, it is not possible to specify the precise benefits achieved.

In a statistical sense, inspections produce valuable results but a given inspection does not

necessarily ensure that a work product has any specific quality.

A second important difficulty is that the human resources involved are not used effectively.

The process known as Fagan inspections, for example, includes a step in which the author of a

work product presents an overview of the product to the inspection team. This is quite

inappropriate since it suggests that vital design or implementation information about the product

is conveyed to the inspectors verbally. Such information should be readily available in associated

documents. As a second example, anecdotal evidence also suggests that inspectors often use

inspection time ineffectively by discussing essentially trivial difficulties with the work product.

A third difficulty is the dependence of traditional inspection methods on human effort with

essentially no computer support. It is possible to supplement the inspection process considerably

.14.

withcomputerresources.Thispermitsfarmoreefficientuseof humantimeandmorecomplete

coverageof itemsthathavetobeinspected.

We takethepositionthatinspectionsshouldbeviewedasanapproachto informalproof

thataworkproductpossessescertainproperties.Further,weconsiderthatestablishmentof these

propertiesshouldbeundertakenwithanapproachthatpermitsassurancethatthepropertiesexist

for agivenworkproductafteraninspection.Thereshouldbeaslittle dependenceonstatistical

chanceto achieveresultsaspossible.Thisamountstomakinginspectionsarigorousprocessand

by doing so we suggestthat they would be a far morevaluableelementof the software

developmentprocess.

5.2. Phased Inspections

We have defined a new approach to inspections termed phased inspections. Phased

inspections are intended to ensure, to the extent possible with this technology, that work products

possess certain useful properties. These properties are not limited to freedom from algorithmic

defects but include properties such as freedom from programming practices that tend to be

associated with high rates of defects even if specific instances turn out to be correct. Other

example properties include important elements of program style that are known to improve the

maintainability of software. The goal with phased inspections is to make the process rigorous,

repeatable, as efficient as possible, and as dependent on computer support as possible.

The concept of phased inspections is simple. It is only summarized here because of space

limitations. A phased inspection consists of a series of partial inspections termed phases. Each

phase addresses one or a small set of related properties that it is deemed desirable for the software

to have. Phases are conducted in series with each depending on the properties established in

preceding phases. Each inspector associated with each phase is required to sign a statement after

the phase that the software possess the prescribed property to the best of his or her knowledge.

- 15-

Eachphaseiscarriedoutbyanindividualor teamandthegoalis to establishthepresence

of thedesiredpropertyin theworkproduct.Totheextentpossible,checklistsareusedto ensure

thattherequiredpropertyhasa precisedefinition.Someof the latterphasesof an inspection

involve establishingcorrectnesspropertiesand thesecannotbe basedon staticallydefined

checklists.Suchpropertiesaredefinedto theextentpossibleby checkliststhatarederivedfrom

theworkproductitself. Forexample,correctnessin thedefinitionanduseof internalinterfacesis

basedonchecklistsdevelopedaccordingto prescribedrulesbytheauthor of the work product.

5.3. Phased Inspection Support Toolset

Computer support for phased inspections is supplied by a set of tools that are presently in

prototype form. The toolset provides service in three areas:

(1) Support for management in controlling the inspection process.

This element of the toolset is designed to deal with configuration management of the work

products, allocation of staff to the various inspection phases, and management information

conceming the state of various inspections.

(2) Support for inspectors.

Various tools are available to support the actual process of examining the work product.

Some examples include a general display, scrolling, and searching facility that allows

textual work products such as source code to be reviewed rapidly, a facility to permit

inspectors to note their conclusions electronically, a syntax-based highlight mechanism that

permits various important syntactic structures to be made readily visible, and a display of

the checklists, their associated background and justification information.

(3) Support for compliance.

Where items are to be checked by human inspectors, it is essential that the checks be

complete. Every instance of the item to be checked must actually be checked by the

-16-

inspector.Thecompliancesupportfacilitymonitorstheinspector'suseof thetool andthe

checklists,andensures,to theextentpossible,thatthe inspectoris achievingcomplete

coverage.

5.4. Trial Inspections

The key research questions initially with phased inspections were practical. First, it had to

be determined whether the basic concept provides a useful benefit to software developers.

Benefit is defined to be a cost-effective improvement in some aspect of software quality. The

only way to answer this question is by experimentation.

The second important research question was the degree to which the concept met its major

goal of establishing rigor in the inspection process. In principle it does. The issue was whether

this can be carried through to practice and so, once again, the way to answer this question is by

experimentation. Many other research questions exist and all are best addressed in whole or in

part by observing and measuring the ideas and tools in practice.

We performed an empirical study of phased inspections in order to get information on the

feasibility and performance of the concept and the toolset. Development of the concept to the

point where it can be applied readily to production software development requires extensive data

on the feasibility of various aspects of the concept and performance data on the whole process.

The preliminary experiment was limited by the available resources.

Trial phased inspections were conducted by graduate students at the University of Virginia.

The subject of the inspections was the source code for the phased-inspection toolset and the

experiment focused on the feasibility of the process and the toolset. The results of this

preliminary study led to extensive enhancements to the toolset and minor changes to the process.

.17-

Theresultsof the trial inspections led to extensive revisions to the toolset concept and

minor changes to the process of phased inspections. We have begun to develop a tailored

phased-inspection process and toolset for Science Applications International Corporation (SAIC).

This activity is in support of SAIC's work in Ada reuse, and will lead to an inspection process in

which the reusability of Ada software components is determined. We will be using this activity

to gather preliminary data on the use of phased inspections in an industrial setting.

5.5. Conclusions

The evaluation experiment is ongoing. The prototype toolset is being developed and plans

are proceeding for industrial assessment of the technique and the toolset. The most significant

conclusion that can be drawn at this time is that experimentation that attempts to define and

evaluate new tools and techniques is workable and very beneficial. At this stage, phased

inspections appear to be a substantially better technology than those already existing, and the

toolset designed to support this technology appears to be highly successful.

- 18-

BIBLIOGRAPHY

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

Kemmerer, Richard A., "Testing formal specifications to detect sign errors", IEEE
Transactions on Software Engineering, Vol. 11, No. 1, January 1985, pp. 32-43.

Weiss, David M., "Evaluating software development by analysis of changes; software

engineering laboratory data", IEEE Transactions on Software Engineering, Vol. 11, No. 2,

February 1985, pp. 157-168.

Hayes, Ian J., "Applying formal specification to software development in industry; case
study, IBM's CICs", IEEE Transactions on Software Engineering, Vol. 11, No. 2, February

1985, pp. 169-178.

Shen, Vincent Y., "Identifying error-prone software; empirical study", IEEE Transactions
on Software Engineering, Vol. 11, No. 4, April 1985, pp. 317-324.

Urban, Susan D., "Utilizing an executable specification language for an information

system", IEEE Transactions on Software Engineering, Vol. 11, No. 7, July 1985, pp. 598-
605.

Chi, Uli H., "Formal specification of user interfaces; comparison and evaluation of four
axiomatic approaches", IEEE Transactions on Software Engineering, Vol. 11, No. 8,
August 1985, pp. 671-685.

Okumoto, Kazuhira, "Statistical method for software quality control", IEEE Transactions
on Software Engineering, Vol. 11, No. 12, December 1985, pp. 1424-1430.

Cavano, Joseph P., "Software management approach to achieving high-confidence
software", IEEE Transactions on Software Engineering, Vol. 11, No. 12, December 1985,

pp. 1449-1455.

Knight, John C., "An experimental evaluation of the independence assumption in
multiversion programming;", IEEE Transactions on Software Engineering, Vol. 12, No. 1,

January 1986, pp. 96-109.

Dunham, Janet R., "Experiments in software reliability for life-critical applications' ', IEEE
Transactions on Software Engineering, Vol. 12, No. 1, January 1986, pp. 110-123.

Card, David N., "Empirical study of software design practices", IEEE Transactions on
Software Engineering, Vol. 12, No. 2, February 1986, pp. 264-271.

Basili, Victor R., "Experimentation in software engineering", IEEE Transactions on
Software Engineering, Vol. 12, No. 7, July 1986, pp. 733-743.

Fagan, Michael E., "Advances in Software inspections", IEEE Transactions on Software
Engineering, Vol. 12, No. 7, July 1986, pp. 744-751.

Bloomfield, Robin E., "Formal methods applied to assessment of high-integrity software
for nuclear reactor protection", IEEE Transactions on Software Engineering, Vol. 12, No.

9, September 1986, pp. 988-993.

- 19-

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Rombach,H. Dieter, "Impact of softwarestructureon maintainability;controlled
experiment'', IEEE Transactions on Software Engineering, Vol. 13, No. 3, March 1987, pp.
344-354.

Card, David N., "Evaluating software engineering technologies; methodology and
evaluation of various technologies on 22-project sample", IEEE Transactions on Software

Engineering, Vol. 13, No. 7, July 1987, pp. 845-851.

Selby, Richard W., V.R. Basili, and F.T. Baker, "Cleanroom software development; an
empirical evaluation", IEEE Transactions on Software Engineering, Vol. 13, No. 9,
September 1987, pp. 1027-1037.

Baker, C. T., "Effects of field service on software reliability", IEEE Transactions on

Software Engineering, Vol. 14, No. 2, February 1988, pp. 254-258.

Yu, Tze-Jie, "Analysis of software defect models using data from large commercial
projects", IEEE Transactions on Software Engineering, Vol. 14, No. 9, September 1988,

pp. 1261-1270.

Munoz, Carlos Urias, "Testing large software products using combination of techniques",
IEEE Transactions on Software Engineering, Vol. 14, No. 11, November 1988, pp. 1589-
1596.

Lew, Ken S., "Software complexity and its impact on software reliability", IEEE
Transactions on Software Engineering, Vol. 14, No. 11, November 1988, pp. 1645-1655.

Software Engineering Laboratory, "Collected Software Engineering Papers: Volume VII",
SEL-89-006, Goddard Space Flight Center, Greenbelt, Maryland, November 1989.

Myers, E.A., "Phased inspections and their implementation", M.S. Thesis, University of
Virginia, Depamnent of Computer Science, March 1991.

- 20 -

1-3

4-5*

6

7-8

9- 10

11

12

DISTRIBUTION LIST

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665

Attention: D.E. Eckhardt, Jr.

ISD, M/S 478

National Aeronautics and Space Administration

Scientific and Technical Information Facility

P. O. Box 8757

Baltimore/Washington International Airport

Baltimore, MD 21240

National Aeronautics and Space Administration

Langley Research Center

Acquisition Division

Hampton, VA 23665

Attention: Richard J. Siebels

Grants Officer, M/S 126

E. H. Pancake, Clark Hall

J. C. Knight, CS

A. K. Jones, CS

SEAS Preaward Administration Files

*One reproducible copy

JO#3690:ph

