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Motivation
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Np ~ 109-1012

– CFD-DEM – balance between computational cost and modeling closures
– Goal: Achieve simulations of industry relevant granular flows
– Specifically, increase performance of well-established CFD-DEM solver, MFIX
– MFIX – Multiphase Flow with Interface Exchanges

– Developed at National Energy Technology Laboratory
– MFiX-Exa – being developed as part of DOE Exascale Computing Project

Scale-up to 
industrial systems 

Np ~ 104-107

TFM CFD-DEM DNS

Computational cost

Less closure models



Current approaches for particle advance 
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• 2nd order explicit-Verlet scheme

• �⃗�𝑣𝑖𝑖
𝑛𝑛+1/2 = �⃗�𝑣𝑖𝑖

𝑛𝑛−1/2 + Δ𝑡𝑡 �⃗�𝐹𝑖𝑖
𝑛𝑛

𝑚𝑚𝑖𝑖

• �⃗�𝑥𝑖𝑖𝑛𝑛+1 = �⃗�𝑥𝑖𝑖𝑛𝑛 + Δ𝑡𝑡 �⃗�𝑣𝑖𝑖
𝑛𝑛+1/2

• Constant time step size for all particles
• Collisional time scale determined by solid phase properties

• Challenge with constant time step

• Fluid residence time scales with system dimensions
• Particle time scale is intrinsic to phase properties

• For large-scale systems computational cost increases

• More number of particles
• More number of time steps
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Adaptive time stepping - idea

Particle 
clusters

Dilute 
regions

• Particle clustering is common in 
industrial systems

• Reduce overall computational cost with 
localized time stepping method

• Adaptive time stepping approach

• Identify particle clusters
• Advance particle subsets with local 

timescale
• Lower costs for dilute regions

• Identify dilute/clustered regions?

• synchronization in a global fluid time 
step?

• Collision misses?
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Mathematical model and numerical methods
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Computational model

Continuous phase 
equations solved by 
SIMPLE/projection 
schemes

Discrete phase 
equations solved 
using 2nd order 
velocity-verlet
scheme

Interaction term

Viscous and 
pressure drag

Collisional term

• Continuous to discrete coupling through void fraction and 
momentum interaction term

• Discrete to continuous coupling through viscous and pressure drag
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Code base – MFIX-Exa

• Slimmed down version of 
multiphase code – MFIX

• developed at LBNL, NETL, 
NREL and CU, Boulder

• Test bed for performance 
optimizations

• uses adaptive-mesh 
refinement library, AMReX

• Decomposition of domain 
into boxes

• Boxes distributed 
among processors

• load balancing
• Space filling curve
• knapsack
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Tasks in a coupled time step 

Integrate fluid equations for Δ𝑡𝑡𝑓𝑓

Update particle drag forces

Perform Δ𝑡𝑡𝑓𝑓/Δ𝑡𝑡𝑝𝑝 subiterations

For each box owned by processor
{

Update collision forces
Advance velocity and position with 
time step Δ𝑡𝑡𝑝𝑝

}

Update neighbor list every few steps 

Deposit particle data on grid

Update ghost particles

Fluid 
update

particle 
update
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Orthogonal Recursive Bisection (ORB) method

Classic explicit scheme Explicit ORB scheme

• Find global minimum time step, dtmin
• N_subit = dt/dtmin
• Update neighbor data
• Perform N_subit sub iterations

• Loop over each box
• Compute forces
• Advance using explicit 

scheme

• Build the ORB tree
• Update neighbor data
• Loop over each box 

• Find minimum time step, dtmin
• N_subit=dt/dtmin (can be 1!!)
• Perform  N_subit sub iterations

• Compute forces
• Advance using explicit scheme



While 
(𝑡𝑡𝑝𝑝𝑖𝑖 < Δ𝑡𝑡𝑓𝑓)

Update collision forces
Advance velocity, position 
with time step Δ𝑡𝑡𝑝𝑝𝑖𝑖

Update neighbor list

𝑡𝑡𝑝𝑝 = 𝑡𝑡𝑝𝑝 + Δ𝑡𝑡𝑝𝑝𝑖𝑖

Deposit particle data on grid

yes

Reduce neighbor exchange errors – strategy 1

For each box 𝑖𝑖 do:

For n in nsubit do:

no

• Advance in smaller timestep chunks

• Particle update to fluid time 
level happens in a few 
iterations of smaller time steps

• This will increase number of 
neighbor updates

• More number of updates will 
increase accuracy

• Algorithm tends to constant 
global timestep method for 
large number of sub-iterations
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First pass
• Redistribute, Update neighbor list
• Do adaptive time stepping for time Δ𝑡𝑡𝑝𝑝𝑝𝑝
• Store particle position and velocity 

• Compute error between first and second pass
• 𝑡𝑡𝑝𝑝𝑖𝑖 = 𝑡𝑡𝑝𝑝𝑖𝑖 + Δ𝑡𝑡𝑝𝑝𝑝𝑝
• If error is large Δt𝑝𝑝𝑝𝑝 = Δ𝑡𝑡𝑝𝑝𝑝𝑝/2

second pass
• Repeat 2 times

• Redistribute, Update neighbor list
• Do adaptive time stepping for time Δ𝑡𝑡𝑝𝑝𝑝𝑝/2 

Δt𝑝𝑝𝑝𝑝 = user defined sub time step 

While (𝑡𝑡𝑝𝑝𝑖𝑖 < Δ𝑡𝑡𝑓𝑓)

• Two-pass error correction method

• Adaptively change particle 
update time step based on an 
error metric

• Advantages

• Detect time stepping failure
• Reduces neighbor update MPI 

communication events
• Temporal locality in Cache

• Repeated usage of 
memory

• Disadvantage

• More floating point
operations

Reduce neighbor exchange errors – strategy 2
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Results
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Test case 1 – Homogenous cooling system (HCS)

• Decay of total particle energy with time
• Viscous and collisional losses

• Initial conditions – random velocity and position distribution

• Analytic solution – Haff’s law1 predicts decay of non-dimensional temperature  

1Haff, P., “Grain flow as a fluid-mechanical phenomenon,” Journal of Fluid Mechanics, Vol. 134, 1983, pp. 401–430. 
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Test case 1 – Homogenous cooling system (HCS)

• 300 particles,16 ORB leaves, 8000 cells
• Single processor run

• Initial guess for adaptive timestep = 10 𝜇𝜇𝜇𝜇
• Collisional time step = 0.3 𝜇𝜇𝜇𝜇

• Speed-up of 1.6x obtained with adaptive 
time stepping
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Test case 1 – Homogenous cooling system (HCS)

• Multi-processor HCS run with 40,000 particles with 128 ORB leaves

• Improvements are more pronounced at larger processor counts
• Less MPI communications with respect to neighbor communication
• ~ 3X improvement seen with 64 processors

• Retrieves identical solution with respect to constant timestep case

Ad
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  Δ
𝑡𝑡 1.3X 

speed-up

3X 
speed-up
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Test case 2 – Riser flow

flow

• Case set up
• Lateral wall boundaries
• Constant y pressure gradient
• 51200 cells, 14000 particles

• Better strong scaling observed with 
adaptive timestep

• Less MPI communications

• Average speed solutions are very similar

1.4X speed-up
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Test case 3 – Settling due to gravity

gravity

• Case set up
• Top/bottom walls
• Gravity along -y direction
• 64000 cells, 100,000 particles

• Lower MPI overhead for adaptive 
timestepping

• Less performance improvement due to 
execution overhead

• Average particle speed solutions match 
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Conclusions and future work
• Conclusions

• Developed an adaptive time stepping algorithm
• Using Orthogonal recursive bisection
• Local time steps for subsets of particles at the ORB leaves
• Two-pass error correction method to reduce collision misses

• Performance improvement
• Significant performance improvement for parallel cases

• Reduces MPI communication overheads

• Future work

• Other decomposition methods
• K-means clustering

• Currently studied 3 canonical DEM cases
• Application to realistic systems

• What is the correct error tolerance for different DEM systems?
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