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INTRODUCTION

The final phase of motion of a satellite equipped with
a system of gravitational stabilization with a magnetic
damper 1s studied in this work; after completion of the
transition process it goes into a statlonary state. Then,
interaction of dissipative and excitation factors are bal-
anced in such a way that further evolution does not occur
and a stationary type of motion is retained for an indef-
initely long time period (for the assumptions made 1n this
work).

A system of gravitational stabilization with a magnetic
damper includes a gravitational rod at whose end the magnetic
damper 1s fastened. At a certain stage in motion of the
satellite, the gravitational rod is opened to form the re-
quired ellipsoid of inertia.

One of the possible designs for the damper for a gravi-
tational stabiiized satellite 1is described in reference [1].
It includes a spherical permanent magnet (a damper float)
placed inside a spherical cavity in the damper housing. The
gap between the float and the housing 1s filled with a
viscous fluld in which dissipation of energy occurs during
relative motlon of these bodies. Another dissipation mechan-
ism is the Foucault currents which occur 1In the metal housing
with a relative shift of the float and damper,

In reference [2] possible periodic motions of this
system are studied in a plane of a circular polar orbit as-
suming that the coefficient of damping is fairly small and
the permanent magnet of tie damper precisely follows the
vector of directivity of the geomagnetic field. It 1is pointed
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out that with these conditions, periodic oscillations and
periodic rotation with frequency exist commensurate with the
orbital. In reference [2] asymptotic series which describes
periodic oscillations produced by stationary solutions of an
unperturbed system are constructed which converge with fairly
small values of the coefficient of damping. On the other
hand, it is clear that when considering the problem posed,
when the floats of the damper track the direction of the
force lines of a geomagnetic field, with an increase in the
coefficient of damping, the presence of a strong connection
between the satellite and the damper causes rotation along
with the magnetic field of the entire satellite, With in-
finitely large value, the coefficlent of damping remains only
one type of periodic motion, periodic rotation of the satel-
lite together with the vector of directivity of the magnetic
field. Consequently, all of the other types of periodic mo-
tion disappear with certain finite values of the coefficient
of damping. Computation of this value results actually in
finding the radius of convergence of the appropriate power
series.

In this work, an estimate is made of this value for
periodic osciliations of a satellite close to axisymmetric
produced by a stable stationary point of an unperturbed
system and an asymptotic formula is obtained which describes
this motion up to the maximum value. The asymptotics ob-
tained of a bifurcated curve (the curve on which the origin
of pairs of periodic solutions occurs) agrees well with 211
allowable values of the parameters and the results of numer-
ical computation.

In all fields of change of the parameters by a numerical
method, initlial data of periodic solutions were obtained
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both for an oscillation and for a rotating type. For large
values of the coefficient of damping, where numerical loca-
tion of initial data of periodic solutions is difficult,
asymptotic formulas are constructed.

As 1s indicated in [2], at certain values introduced into
the equation of motion of parameters, 1t has fairly asymptotic-
ally stable periodic solutlons which correspond to different
stable motions of the satellite with a magnetic damper. Which
of these motions is realized depends on the initial conditions.
Therefore, the entire plane of initial values of phase varilables
can break down into those reglions so that motion beginning in-
side one of these regions occurs in a uniform type of periodic
motlon. Each of these regions will be called a field of effect
of a corresponding periodic motion.

In this work, the problem of breaking down the space of
initial data into fields of effect of different types of
periodic motion will be considered. By numerical integration
of equations of motion of a satellite for certain values the
parameters introduced into it, the fields of effect of dif-
ferent types of periodic motions will be constructed.
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STUDY OF PERIODIC MOTIONS OF A SATELLITE
WITH A MAGNETIC DAMPER

by
Yu. A. Sadov and A. D. Teterin

1. Egquation of Motion of a Satellite /8%
In this work, a study 1s continued begun in the article
[2]. As in that artlcle here we propose that a satellite
moves in a circular polar orbit, the magnetic field of Earth
is modeled by a straight central dipole, and the initial con-
ditions are selected in such a way that motion occurs in the
plane of the orbit. Also, it 1s assumed that the permanent
magnet of the damper follows precisely the direction of the
magnetic force line. This assumption is achieved with ex-
isting hypotheses as to the values of parameters contained
in the equation of motion of the float of a magnetic damper,
namely, when assuming the smallness of the ratio of moments
of inertia of the float and the satellite and the smallness
of the moment of viscous forces acting on the float in com-
parison with the magnetic moment.

With these hypotheses, th? equation of motion of a
satellite relative to the center o’ mass will have the fol-
lowing form

(1)
dby e
et Stﬁl’cosz}-ee(—é— - Q
av 1edsin®y “av/’
where v - 1s the independent variable of width,
¢ - angle of inclination of the largest axis of the
ellipsoid of inertia from the local vertical,

¥Numbers in the margin indicate pagination in the forelgn text
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a? - inertia parameter,
2¢ - dimensionless coefficient of damping,

2 28-~A X
d .8—'-—- —l—- .
c ' Pt Fu, (2)
Here A, B, C - are the main central moments of inertia of a

satellite located in increasing magnitude; Kg - 1s the co-
efficient of damping; wp - is the orbital angular veloclty.

We note that the right part of equation (1) was apparent /9

due to the presence of the damper and introduces excitation
into the orientation of the satellite. Operation of the sys-
tem of stabilization can be considered as satisfactory only
in a case where these perturbations are small. Therefore,
the dimensionless coefficient of damping e must be fairly
small,

For convenience we make a change in equation (1) of the
variables : :
9'32}. T'PJ

: (3)
Then, for describing plane motion of a satellite with a mag-
netic damper, we find the equation

. gf . . ___L_- .
6% 5‘”9.5(5'-34'032' 9) ’ (4)

where differentiation is precisely designated according to T.
Equation (4) will be the main object of our study.

As was noted above, parameter e, introduced into equa-
tion (4), is fairly small. This makes it possible to use,
in thils or another form, a method of a small parameter. For
this adaptation i1t is necessary to know the solution of the
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unperturbed equation which is obtained from the initial when
€=0. In thls case, the unperturbed equation is presented as
the well known equation of a mathematical pendulum
.o d‘ .
b+ 2-5in8 = 0. (5)
Equation (5) has the integral of energy which can be
written in the form

¥
v ;% +s¢’/7"§‘2 = const (o' o). (6)

Using this integral, it 1is possible to integrate equation (5)
to its end. The general solution of the equation is expressed
by elliptical Jacobi functions [3].

Where QO<v<l, equation (5) describes oscillation motion /20
with the period

. 8Xrw) -

Te=a KT (7)

where K(k) - is the full elliptical integral of the first order.

When v>1, equation (5) has a periodic solution which de-
scribes rotation with the perilod

y
7":1"_“&-,.(."—’ k/:-;,{ . (8)

The case v=1 corresponds to motion along the separatrix
separated from the phase plane (0, 0), the fleld of oscilla-
tions from the fleld of rotation.

Besides these solutions, equation (5) has two stationary
soiutions

G=0,
6‘”0

9.-0 ('lfcd) . (9)
G=0 (val). (10)
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Equalities (10) def'ine the trough special point of unperturbed
motion., The second special point i1s the center which is de-
scribed by equation (9).

Formulas (6)=(8) lose their meaning when a=0 (an axisym=-
metric satellite). In this case, equation (5) describes a
uniform rotation

9-6',(2'42") ) (11)

The picture of the trajectory, as is seen from equation
(5), is periodic according to ¢, and therefore the phase plane
(e, &) can reduce to a cylinder (-m<0<m; -w=<@<+=), All of the
phase trajectories on this cylinder except for the separatrix
are closed and periodic according to T.

2. Classes of Solutions Generated

Periodic solutions are of particular interest for studying
equation (4). Equation (4) is periodic according to the vari-
ables T and 6, that is, its foru does not change with substi-
tutions

T+T+27,

0+0+2n.
Therefore, periodic solutions of this equation must satisfy
the condition

Ol Am)sOE)2ID (193020 e, .- D20 22,0) (12)

The trajectory which satisfies this condition form
periods according to T circles the phase cylinder (0, 0) p
times and is closed going to the initial point. When e-0,
such a trajectory changes to a certain integral curve of un-
perturbed motion which i1s called generated for the solution
considered. Due to the continuous dependence of the solution
on the parameter e, the generated solution also savisfies

/11
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condition (12). This makes it possible to separate, among
the solutions of an unperturbed system, those which can be
generated for periodic solutions of a perturbed system.

When a=0 from equations (11) and (12) we find that on
the generated trajectories one must fulfill the condition

6,2 . (13)

If a0, then among the generated solutions one finds station-

ary solutions (9), (10) and also oscillatory (7) and rota-
tional (8).

Let us consider oscillation solutions which are defined
by formula (7). For these, the relationship following is
fulfilled

0(t+T;) = o(t)

and, consequently,

BrnT)= O(T), netl2,s,... (14)
Comparing (14) and (12) we find that on oscillation trajec-
tories, (12) is fulfilled when p=0, if only

For rotational solutions from formula (8) we have

Ore ) =8(r)22r

or

EnT})e6)2oxn, net\2,d

oo

(16)
In this way, condition (12) is fulfilled, 1if
1l
va|.21,§?_' (17)

™~
[
o

ie
|
B
3

-]
j
i




R L o L L LIl o i el D L . A

Then, in formula (12) p=in, where the sign for n is selected
in accurdance with the direction of rotation of unperturbed
motion.

In reference [2] it is pointed out that periodic solu-
tions do not exist for equation (4), generated by oscilla-
tion solutions (7) of an unperturbed system. Also periodic
solutions do not exist generated by rotations (8) toward the
side opposite the direction of rotation of the magnetic field.
Rotation (8) in a straight direction can generate slow (with
a frequency no larger than the orbital, m>n) nondamped rota-
tions of the satellite. With this rotation at an orbital
frequency (m=n) it is possible with all physically allowable
values of the parameters, (0<u213; O<e<w), Periodic rota-
tions of other types have a very narrow fleld of existence
in the spaée of parameters of a, ¢ and, accordingly, a low
probabllity of falling into this condition. Stationary so-
lutions of an unperturbed system are generated with stable
(9) and unstable (10) oscillations. When a=0 (an axisymmetric
satellite) for any ¢>0, a single parameter family of stable
periodic trajJectories exists, corresponding to mspsel:

= e esinvT-weosn (1)
OrrelE v et e

3. Construction of Periodic Solutlons of the Equation of
Motion of a Satellite Close to Axisymmetric, Generated
by Stationary Solutions of an Unperturbed Equation and
an Evaluation of the Fleld of their Existence in the
Space of Parameters (e, a).

Having used the smallest values of parameter e, one can
construct the asymptotic formulas wh ' ~h describe periodic
motion of a satellite, genecrated by stable (9) and unstable
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(10) stationary points of unperturbed equation (5). As is
pointed out in reference [2], they have the following form

9-2@[4. ia—,r(—r"l‘] J,,j"#%é“ (18)
9:3’-25[ OZ—%‘_})] = JJZ/'I;(%%)_‘"”' (19)

for all physically allowable values of the inertia parameter
a(0<ax/3),

With the proposed posing of the problem (when the float
of the damper follows the direction of the force lines of
the magnetice fileld) 27 - periodic osclllations (18) and (19)
will exlist not for all values of a dimcnsionless coefficient
of damping ¢, but only for 0O<c<ecy, where the value of ¢, de-
pends on a. Actually, for falrly large values of ¢, the
presence of a strong connection between the satellite and the
damper float causes rotation along with the magnetic field of
the whole satelllite. Rotation of m:n=1:1 1s a unique type of
periodic motion in this case.

Numerical values of €4 result actually in {inding the
radius of convergence of series (18) and (19). This problem,
as a rule, 1s extremely cumbersome, that i1s, 1t requires com=-
putation of the common member of the series (18) and (19)
which 1In the case of nonlinear equations presents considerable
difficulty. Therefore, we will attempt to attain certain
estimates of the value of e¢4,. For thls, actually we will con-
struct a perilodic solution generated by the statle position
of equilibrium (9) In a case when the inercia parameter a 1is

N
bt
&=

small. Then one cun cxpect that the critical value of ¢4 alsowill

be small and one can use asymptotic methnds right up to this




value. Here, however, it 1s impossible to use asymptotics
of (18), because the amplitude of oscillation when e is
close to e, 1s large. On the other hand, angular velocity
é, as one sees from the integral of energy in uﬁperturbed
motion (6) remains a small value on the order of a.

ARG

Therefore we assume e‘_d.p .

(20)
Then L /1
5o sin@e £/ 4 - |
Py sinb=g ( 5-3cosT -p) - (21) 4
We assume
Ae w/E (22)
and rewrite system (20), {21) in the form -
é‘ ﬁ”p' ’ t
(23)

5V (L 4 _ X sins)-
P ﬁ( K 5-3cosT 4 .s‘me) P -

Finding the solution of this sytem in the form of the serles
according to the power ve

8:6,VE6,+ €6, 460, ¢+ - (21)

PP VED 8Pt VD e

we find the following equations for sequential approximations
8,20, P,=0;

) S A K o .
8Py PrsTieos o e
eel‘k'ph p.aa—qig'coséa~/;)d »

i 8, KPar ﬁ,---g—gzcasg‘.v -;—’9,%'!:”9.'[74 ’ " .t

(25)

P

Using the solution of the equations of a zero approximation

9,-C,=const , Pp=Du=coMst (26)




we find in the first approximation

2
E2k,T+C,, p, Aecg(é a)-c——TsmC' 5 (21
where /16
Qdx ¥ Syt
A:ctg(étjz) jé’-.?cos.t ¥ ,54 3d (28)

For this, so that solution (27) would correspond to periodic

oscillation, it is necessary and adequate that
: _ (29)
D=0, sinCyo= = -
The latter condition can be fulfilled only when k>2.
For the calculation of (22) this result can be formulated as:
when -

2
&xg’ad’ (30)
&

does not exist of periodic solutions of equation (4), gener-
ated by a stable stationary point. The value of e', defined
by formula (30) gives an estimate above the boundary of e
of the fleld of existence of periodic solutions of the type
considered (eg<e').

The constants C; and D; entering into (27) are determined
from the condition of periodicity of the solution of equations
of the second approximation

8 2{A2ct3(2z3‘r)dx--7 nm,sua =z

== _C_O_S_L_ 4/\’D1T‘C:t . (31)
2J§J‘3‘ Jzﬂ/ 3
,qa=-.—l,-£',cos€,+ﬂ¢
L
From this we find

) 9

G=0, Di=0. (32)




In a completely analogous way, the conditions of period- /17
icity for all sequential approximations give an equation for
determining the additive constants of the preceding approxi-
mation. These equations are linear and solved when cos0g#0;
therefore, construction of the series (24) 1s possible for

all ¢, which satisfy the inequality

P 5' (33)

The dependence of e¢' on a 1s graphically shown in Figure 1.
Here, along the axis of
the ab'séissa, the param-
eter a=al/4 is applied
and e'(a) is expressed
by a dashed straight
line, The solid line in-
dicates the boundary of
the field of existence
of the solutions con-
sidered, obtained using
numerical calculations
described in the follow-
ing paragraph.

51'

0.75——--—-- ————————— -

e e e o > - - — " ——— — — - a—

S
b
QY

W

_§ o 't '
a o5 030 095 0.60

A total of the con-
Figure 1 stants C, and D; in form-
ula (31) gives us

C}"QS'—T -0,7328 , .De’a- (34)
Jrd3
Consequently, with small values of o, the periodic solutions
sought can be written in the form of a series

- T = cosjT
gaaecsmjf -&e JZ'-J:;/ «0(e”). (35)
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4, Numerical Finding of Periodic Solutions

In a broad range of values of the parameters a and ¢,
periodic solutlons are found by numerical integration of equa-
tion (4). The problem amounted to a selection of the initial
conditions 06, ® when T=0 so that at the moment T=2m the fol-
lowing relationship is fulfilled

8(2%)=86(0) , Blox)=b(0). (36) /18

In this way, periodic oscillations were calculated, generated
by stable and unstable stationary points and also periodic ro-
tations of the type m: =1:1, Computation encompassed a range

of values a=aZ/4 from 0 to 0.750. The latter number corresponds
to the boundary of physically allowable values of the inertia

parameter.

The values of the initial conditions of integration ob-
tained from computation 0(0)26(0) and 8(0)=8(0) depend on the

two parameters a and ¢
(37)

6 6"%a,e), 6°6"la,e)
and are shown in Figure 2. 1In this drawing, three series of
curves are visible. Each of the curves is the geometrical lo-
cation of the initial conditions of periodic solutions with a
fixed value of the parameter a and a change in e from 0 to ey.
In each series, it is expressed on the three curves correspond-
ing to a=0.3; 0.6 and 0.75.

Curves in the upper part of the drawing when é(°)>l cor-
respond to rotation, then when 9(°)>0, stable rotations are
obtained; when el0)co - they are unstable. Such motions ex-
ist with all values of e and therefore the curves of each
series begins when e€=0 and are completed in general for each
of the series at a point corresponding to e+=. In this maxi-
mum case, the satellite like the float of the damper rotates

11
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Figure 2

along with the force lines of the magnetic field and such mo-

tion does not depend on gravitational moments. The numerical /19
location of the solutions with large values of € are diffi-

cult but 1in this case one can construct asymptotic formulas:

[ p? 2-ap 7
| *f(z;)' £ table (38)
. g ) - for unstable
_Qraleﬁ%q-g*O(é), rotation,
r
o _, R+ap !
& =J(-——é—'—"‘o(gt)- : - for stable (39)
- o) 3+1,'a~aap g4 rotation
e =2-—"“¢Té“"0 U

In these formulas p is constant

e L(9€n3-13€r2)= 2,338 (40)

12
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For obtaining asymptotic formulas (38), (39) we rewrite
equation (4) in the form

R
Solution of equation (41) will be found in the form of a
series: ' —_
821G (01 LOre L gy Emem., (42)

By substituting (42) in equation (41) and equalizing the co-
efficients of uniform powers of the parameter e, we find that
the function ei(T),'i=0,l,2,... must satisfy the following
equations: ‘

- -—-_4_——_ ,

Sl oo prvr (43)

6,=-4,-asin8, , (44)
9;.-.~.é;-d9/co.$9¢ ’ ' (45) /_2_ A

G o-B,-a(Brc058s- £ 8'5inBs) s - » (46)

Then for any value of T one must satisfy the condition

Qr2Xm)=ByTe 20N, B(T+2T)= (D), ity mettttm (U

Integréting equation (43), we have in a zero approxima-
tion

o S 'z-
Oa(r)-eﬂrcg@zyg)wf 7*%% Jf‘f’;& +Co - (48)

The zero approximation describes the motion of the satellite
when e=w=, that is, when 1t rotates along with the force lines
of the magretic field.

From equation (44) we find the first approximation

13
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6,(T)=- 4 4 ﬁﬂ”__r
¢ S-3cosT aacasq&r K4 *

40:¢'ﬂ€}[§2‘-§4@ctg(£{y§)]+c, .

4 4 §-9¢cosT
Foacast "3 A0 b =g+

ne [Z_8 5 ST .
40’3(”‘;[3 -’J;z;ﬁ— #c,.

From the condition of periodicity (47) it follows that

(49)

sinC°=0,

that 1is,
c;m' o, [;(”-Jf. (50)

The first value of the constant Co corresponds to unstable
rotation, and the second to stable.

The second approximation we find by integrating equation /21

(45): . .
___12sint sin®
&u(7)= -300ST)" ¢8acosC, FcosT

catesc$t- $etpty 3] -

g
4 R2rd-Scasx 2
+3 aﬂ 5-3c08X &J-Jcas.z- d'r'q’ :

(51)

The condition of periodicity (47) for 0,(T) takes on the fol-
lowing form

an

2K . cosC. 4 2(3-8cosx 2 L

3 T8y a;.‘f—acos:c e”!-.?cos.t dzs 0'_ (52)
Having used formulas 4.413 (3.4) [5], we find

C‘;-aJacasC", . (53)
where p is determined by formula (40).
14
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The constant C, in (51) we will define from the condition
of periodicity for the third approximation. It appears equal

to zero:

C‘.oo

Thus, for adequately large values of e, equation (4) has
two 2n-periodic solutions of a roatating type (unstable and
stable, respectively) which according to formulas (42)=(54)

can be presented in the form

afr)aex)mg@gz )s ‘/; S eafp- &Nmr]

128inT &mnr
“(5- 3cosT)? 5-3cos2' -

2 [e(, r-arctyley L)
ffcosx 3 & .f-3cosa: dx]} . 0(_1 )

S-3cos x

W o

B(r)e4 /! _4sing ( - )
(1)=& “3cost | € 5-3cost \S-scost GJ*
A fe(é-scost-acos?)‘ 8a(StosT-3)
6" ($5-3cost)? I¢X -.?cost)‘

| (P T off);

[ 6tr)xe2hecty(2ty ] )._[ F-a(p- 20 2327),

{ f2sint _ 8asinf |
“gt (6‘-3:05?)‘ 5-3¢osT

¢ ae[P{ 37- ;Aectg(éz‘g E-T)) "

i Esmt 0 Sl off),

5 4 / 4siny

61t)- 5'-3:05? é 5-3008T ( S-3cos? a)*
12(6- ScosT-3¢os'T)  galScosT-3) _

e‘ (5-3¢0s7)? (5=-3c0s7)?

o2 5cosT-3 (P //&7 5—30082'2] 0(5')

{ o’ -3ecosT

N
N
n
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When T=0, from (55) and (56) we find asymptotic formulas (38)
and (39).

In the lower part of Figure 2 when 8(°)<0.4, there 1s a /23

series of curves corresponding to oscillation motion of the
satellite. Each curve consists of two branches -- stable and
unstable. These branches occur when e=0 respectively from
the stable and unstable stationary points of ar unperturbed
system, With an  increase in e, the points shown for stable
and unstable periodic solutions move along their branches
and when e=e,(a) they merge at the branching point. With large
values of €, 2n-perlodic oscillation solutions do not exist.
The bifurcated curve on which merging of two periodic solu-
tions occurs is shown in Figure 2 by the dashed line. The
critical values of ¢, depending on a are shown by the solid
line in Figure 1. This curve, for all physically possible
values of the parameter a colncide fairly well with straight
line

€=a, (57)

defined by asymptotics (27).

The fields of existence of two types of periodic solu-
tions according to the parameter e are considerably narrower.
For example, when c-% (a=0.616) UYn-periodic rotations cor-
responding to m:n=2:1, it can be successfully obtained numer-
ically only when €<0.0035.

5. Flelds of Effact of Different Types of Periodic Motion

As one sees from reference [2], besides the periodic so-
lutions studied above, with certain values of the parameters
a and e, equation (4) has other types of asymptotically
stable periodic solutions which correspond to different
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established motion of a satellite with a magnetic damper. /24
Which of these motions is realized depends on the initial con-
ditions. Therefore, the entire plane of the initial values of

@, © can be divided in these fields so that motion, beginning
inside one of the fields results in a uniform type of periodic
motion.

Let us determine the transformation of the phase plane of
0, O for a period like this transformation, in which a given
point ©, & 1is the point (6(27), 8(2%)) of the trajectory of
equation (4) which occurs at the moment T=0 through (6(0),
6(0)). By virtue of the 2n-periodicity of equation (4) ac-
cording to the T properties of the trajectory, corresponding
to point (0(0), 8(0)), like the initial, are invariant with
such a transformation. The invariant, in particular, is broken
down in the field of effect. The 2n-periodic solution of
equation (4) corresponds to immovable points of the transfor-
mation considered. It 1s clear that asymptoticaliy stable
stationary points belong to the field of effect on the periodic
solution determined by them, Invariant curves which pass through
unstable stationary points are the separatrixes of a given
transformation; they divide the field with qualitatively dif-
ferent behavior of the invariant curves. In particular, the
sum of the separatrixes divide the fileld of effect. Therefore,
the problem of finding the fieids of effect leads to calcula-
tion of the separatrix of transformation of the phase space
caused by a shift in the period along the trajectory of
differential equation (4).

As one sees from what has been presented above, such a
transformation for any fixed values of the parameters a=al/4
and ¢ (0<az<0.75; O<e<ey(a)) has four stationary points (Fig-
ure 2): two stable and two unstable. Computation of the
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separatrix began in the environment of unstable stationary
points. Close to such a point, the transformation of the phase
plane 18 close to linear. The intrinsic vectors of this linear
transformation indicate the direction of the branches of the
separatrix, which pass through a given stationary point. The
intrinsic vector which has an intrinsic value in absolute size
larger than one corresponds to outgoing branches of the separ=-
atrix and the intrinsic vector with intrinsic value according
to the model smaller than one corresponds to the incoming
branch. For constructing the separatrix, the initial condi-
tions are selected lying in the environment of unstable sta-
tionary points in a direction determined by the intrinsic
vector and numerical integration i1s made of the system with
these initial conditions. The points of the trajectory cor=-
responding to the moment of time T=2kn, k=1l,c,..., belongs

to the appropriate separatrix., For this, in order to obtain

in this way the incoming branches, integration must be done

in a direction of decrease of the independent variable (T=2kr,
k=1,-2,...). Obtaining the sequence of points when moving away
from the initial stationary point becomes very rare and does
not give the correct concept of the behavior of the separatrix.
For obtaining a more detailed picture, one must follow the in-
dicated procedure more than once, selecting as the initial dif-
ference of the point one or another branch in the environment
of the unstable stationary point.

Figure 3 shows the breakdown of the phase plane obtained
in this way corresponding to a=0.750, e=0.1. In this case,
as has already been indicated, we have four periodic solutlons:
two stable and two unstable., In Figure 3, the four stationary
points correspond to it. At each of the unstable stationary
points, the separatrixes converge along four branches: two
incoming and two outgoing. These curves break down the phase
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eylinder in four parts., One of these parts shaded in Figure
3 forms the field of effect of the rotating periodic motion,
the t..ee others belong to the fleld of effect of oscillation
motion. One of the latter three sectlions corresponds to the
trajectory beginning in the field of reverse motion with nega-
tive values of 6. The trajectorles from the remaining two
sections begin in the fleld of forward rotation and end with
perlodic oscillations; they differ from each other in that
the trajectory from one section (in Figure 3 it corresponds
to the broader nonshaded band in the upper part of the draw-
ing) separate only rotation around the phase cylinder in com-
parison with the other trajectories,

Figure 3. (a=0.75; e¢=0.1)

From Figure 3 it is apparent that the "ield of effect /26
of a rotational periodic condition is fairly narrow and is
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located as a whole in the field of forward rotation when &>1,
Therefore, one of the methods to avoid capture of the satel-
lite in rotation consists of imparting to it a certain initial
twist in rotation opposite the direction of orbitgl motion.

When increasing the coesfficient of damping ¢, the field
of elfect of the rotational condition 1s expanded and at cer=-
tain values of ¢ the separatrix going away from the point
corresponding to unstable oscillation falls at a point cor=-
responding to unstable rotation. After this, the picture of
breakdown of phase space in the fleld of effect changes
qualitatively. In the fleld of effect of the stationary ro=-
tational condition there is a band passing into the fileld of
reverse rotation. Thus, for example, when a=s/2 and ¢=0.4,
one can find the initial conditions in the field of reverse
rotation leading to statlonary rotation of the satellite. A
further increase in e results in a larger contraction of the
fleld of effect of the osclllation condition which dlsappears
when e=cy,(a) and rotation along with the magnctic field re=-
mains the single type of established motion.

.
(4%}
~

Conclusions

In this work, periodic motion of a gravitationally
stabilized satellite with a magncetlc damner In the plane cf
a circular polar orblt is studied. Inthesystem considered,
besides the small establlshed rotations of the satellite
relative to the oriented position, also small 7i:ith frequency,
not large orbital) undamped cotations are also possible.,
Then, rotation with the orbital frequency 1s possible for all
physical values of the inertia parameteyr and for all values
of the coefficlent of damping. The periodic rotations of
other types have a very narrow fleld of effect and, correspond-
ingly, a low probability of falling intc this condition.
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With large values of the coefficient of damping due to
the strong connection between the satellite and the float
of the magnetic damper, a constant magnet which precisely
tracks the force lines of the magnetic field, the satellite
also vegins to rotate along with the float. Therefore, per-
iodic oscillations of the satellite around the oriented posi-
tion exist only for values of the damping coefficient which
do not exceed a certain maximum value depending on the value
of the inertia parameter.

In the work, an evaluation is obtained higher than the
maximum values of the coefficient of damping for a satellltc
close to axisymmetric (at low values of the inertia parameter).
The results of numerical calculation showed that the value
obtained corresponds well to the actuality for all physically
possible values of the inertia parameter. From {he evalua-
tion it follows that for coefficients of damping :»0.75,
periodic oscillations of the satellite do not exic® nor at
such physical values of the inertia parameter as a(0<a<0.75).

At certain values of the parameters a and ¢, the equa- ,gﬁ
tion of motion of a s~telllte has severui ao,mntotically
stable periodic solutions which correspond to diffevent
stabilized motions of the satellite with a magnetlc Jamper.,
Which of these motions is realized depends on the initlal
conditions. Therefore, the entire plane of initilal values
of phase variables can break down in the fleld of effect
of different types of periodic motlions, that is, into those
fields where motion beginning inside one or another fleld re-
sults in a uniform type of periodic motion. In the work, a
breakdown of the phase plane in flelds of effect for values
of the parameter ad)QTéD, ¢=0.1 15 obtained, 1In thls case,
the equation of motion has two asymptotically stable 2n-
periodic solutions; one 1s osclllatory and the other is
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rotational. As 1s seen from the breakdown, the field of
effect of the rotational periodic condition is fairly narrow
and 1s located as a whole within the field of forward rota-
tions. Therefore, one of the methods to avoid capture of the
satellite in rotation is to impart to it a certain initial
twist in a direction opposite the direction of orbital motion.
With an increase in the coefficient of damping e, the field
of effect of the rotational reriodic conditions 1s increased
and the oscillalory is decreased and when e=ey(a), the field
of effect of the oscillation periodic condition disappears.
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