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INTRODUCTION 

The final phase of motion of a satellite equipped with 

a system of gravitational stabilization with a magnetic 
damper is studied in this work; after completion of the 

transition process it goes into a stationary state. Then, 
interaction of dissipative and excitation factors are bal­
anced in such a way that further evolution does not occur 
and a stationary type of motion is retained for an indef­

initely long time period (for the assumptions made in this 
work) • 

A system of gravitational stabilization with a magnetic 

damper includes a gravitational rod at whose end the magnetic 
damper is fastened. At a certain stage in motion of the 

satellite, the gravitational rod is opened to form the re­
quired ellipsoid of inertia. 

One of the possible designs for the damper for a gravi­

tational stabilized satellite is described in reference [I). 
It includes a spherical permanent magnet (a damper float) 
placed inside a spherical cavity in the damper housing. The 

gap between the float and the housing is filled with a 
viscous fluid in which dissipation of energy occurs during 
relative motion of these bodies. Another dissipation mechan­
ism is the Foucault currents which occur in the metal housing 
with a relative shift of the float and damper. 

In reference [2) possible perfodi: motions of this 
system are studied in a plane of a circular polar orbit as­
suming that the coefficient of damping is fairly small and 

the permanent magnet of t~le damper precisely follows the 
vector of directivity of the geomagnetic field. It is painted 

ii 



'r"',4.j-=.~~-~II~~~1I_21111~ ~.~."~.II!I'_~~~!!IJII" ~~"aw"~~~~_2£!1!!.I!!!!~ ~~I!\!I'~-"""""""~*~~~'~"~~~~ ~ ... u~!!!!O~" ..... ~~~~ ... _-_~=-~ .... _-~~ _""~~~~_~d~~"'~ ~~ ~~~~ ......... ""'~~_~.~~~-=~~_~-_~~ ~_.~"""'~==~~""'_-_-"~~"'~ -...,..,,~.*~~~-~. _~~"'!!!_!!!!!~~~""'"_!II!!!~.I!!I! __ !!!!!!~!I!!!!~~MI!~~!!!!II~_I!!II!~~ ~-~ ~!I:!!!. ---

tl 
i i 
U 
lc. ~ 

, 
F- . 

out that with these conditions, periodic oscillations and 
periodic rotation with frequency exist commensurate with the 
orbital. In reference [2] asymptotic series which describes 
periodic oscillations produced by stationary solutions of an 
unperturbed system are constructed whic.h converge with fairly 
small values of the coefficient of damping. On the other 
hand, it is clear that when consiaering the problem posed, 

when the floats of the damper track the direction of the 
force lines of a geomagnetic field, with an increase in the 
coefficient of damping, the presence of a strong connection 
between the satellite and the damper causes rotation along 
with the magnetic field of the entire satellite. With in­
finitely large value, the coefficient of damping remains only 
one type of periodic motion, periodic rotation of the satel­
lite together with the vector of directivity of the magnetic 
field. Consequently, all of the other types of periodic mo­
tion disappear with certain finite values of the coefficient 
of damping. Computation of this value results actually in 
finding the radius of convergence of the appropriate power 

series. 

In this work, an estimate is made of this value for 
periodic oscillations of a satellite close to axisymmetric 
produced by a stable stationary point of an unperturbed 
system and an asymptotic formula is obtained which describes 
this motion up to the maximum value. The asymptotics ob­
tained of a bifurcated curve (the curve on which the origin 
of pairs of periodic solutions occurs) agrees well with ell 
allowable values of the parameters and the results of numer­

ical computation. 

In all fields of change of the parameters by a numerical 
method, initial data of periodic solutions were obtained 
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both for an oscillation and for a rotating type. For large 
values of the coefficient of damping, where numerical loca­
tion of initial data of periodic solutions is difficult, 
asymptotic formulas are constructed. 

As is indicated in [2]. at certain values introduced into 
the equation of motion of parameters, it has fairly asYmptotic­
ally stable periodic solutions which correspond to different 
sta~le motions of the satellite with a magnetic damper. Which 
of these motions is realized depends on the initial conditions. 
Therefore, the entire plane of initial values of phase variables 
can break down into those regions so that motion beginning in­
side one of these regions occurs in a uniform type of periodic 
motion. Each of these regions will be called a field of effect 
of a corresponding periodic motion. 

In this work, the problem of breaking down the space of 
initial data into fields of effect of different types of 
periodic motion will be considered. By numerical integration 
of equations of motion of a satellite for certain values the 
parameters introduced into it, the fields of effect of dif­
ferent types of periodic motions will be constructed. 
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1. 

STUDY OF PERIODIC MOTIONS OF A SATELLITE 
WITH A MAGNETIC DAMPER 

by 

Yu. A. Sadov and A. D. Teterin 

Equation of Motion of a Satellite 

: 

In this work, a study is continued begun in the article 
[2]. As in that article here we propose that a satellite 
moves in a circular polar orbit. the magnetic field of Earth 
is modeled by a straight central dipole. and the initial con­
ditions are selected in such a way that motion occurs in the 
plane of the orbit. Also. it is assumed that ~he permanent 
magnet of the damper follows precisely the direction of the 
magnetic force line. This assumption is achieved with ex­
isting hypotheses as to the values of parameters contained 
in the equation of motion of the float of a magnetic damper, 
namely, when assuming the smallness of the ratio of moments 
of inertia of the float and the satellite and the smallness 
of the moment of viscous forces acting on the float in com­
parison with the magnetic moment. 

With these hypot~eses, th~ equation of motion of a 
" 

satellite relative to the center oJ mass will have the fol-
lowing form 

(1) 

where v - is the independent variable of width, 
~ - angle of inclination of the largest axis of the 

ellipsoid of inertia frum the local vertical, 

*Numbers in the margin indicate pagination in the foreign text 
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Q2 inertia parameter, 
2£ dimensionless coefficient of damping, 

2e- AI, 
f!t:AJo 

(2) 

Here A, B, C - are the main central moments of inertia of a 
satellite located in increasing magnitudej Kg - is the co­
efficient of damping; Wo - is the orbital angular velocity. 

We note that the right part of equation (1) was apparent Li 
due to the presence of the damper and introduces excitation 
into the orientation of the satellite. Operation of the sys-
tem of stabilization can be considered as satisfactory only 
in a case where these perturbations are small. Therefore, 
the dimensionless coefficient of damping £ must be fairly 
small. 

For convenience we make a change in equation (1) of the 
variables 

(3) 

Then, for describing plane motion of a satellite with a mag­
netic damper, we find the equation 

(4) 

where differentiation is precisely designated according to T. 
Equation (4) will be the main object of our study. 

As was noted above, parameter £, introduced into equa­
tion (4), is fairly small. This makes it possible to use, 
in this or another form, a method of a small parameter. For 
this adaptation it 1s necessary to know the solution of the 
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unperturbed equation which is obtained from the initial when 
,-0. In this case, the unperturbed equation is presented as 
the well known equation of a mathematical pendulum 

(5) 

Equation (5) has the integral of energy which can be 
written in the form 

., 
_.' B . "S 
v • di -I-Stn T. CDnst (6) 

Using this integral, it is possible to integrate equation (5) 
to its end. The general solution of the equation is expressed 
by elliptical Jacobi functions [3J. 

Where O<v<l, equation (5) describes oscillation motion 
with the period 

r,. SH(lI) Ie'. V • 
d • (7) 

;-, ,.. .-::2 

where K(k) - is the full elliptical integral of the first order. 

When v>l, equation (5) has a periodic solution which de­
scribes rotation with the period 

f /(/1 - • 
V 

(8) 

The case v-I corresponds to motion along the separatrix 
separated from the phase plane (o, s), the field of oscilla­
tions from the field of rotation. 

Besides these solutions, equation (5) has two stationary 
solutions 

• e. o. B· 0 
(9) 

(10 ) 

~PJlRODVCIBlLl1'Y 0, mr. 
IGtNAL PAt1r-; T~ Pnflf' • 
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Equalities (10) derine the trough special point of unperturbed 
motion. The second special point is the center which is de­
scribed by equation (9). 

Formulas (6)-(8) lose their meaning when a-O (an axisym­
metric satellite). In this case, equation (5) describes a 
uniform rotation 

(11) 

The picture of the trajectory, as is seen from equation 
(5), 1s periodic according to a, knd therefore the phase plane 
(a, e) can reduce to a cylinder (-w<a~w; --<8<+-). All of the 
phase t~aJectories on this cylinder except for the separatrlx 
are closed and periodic according to T. 

2. Classes of Solutions Generated 
Periodic solutions are of particular interest for studying 

equation (~). Equation (4) is periodic according to the vari­
ables T and e, that is, its form does not change with substi­
tutions 

T+T+2w, 
a+a+2w. 

Therefore, periodic solutions of this equation must satisfy 
the condition 

S('t;"lfm)18{r),,2Jfp (1'7··',2 ..... " .;I.t:/,t2 .... ) (12) 

The trajectory which satisfies this condition for m 
periods according to T circles the phase cylinder (a, e) p 
times and is closed going to the initial point. When £+0, 
such a trajectory changes to a certain integral curve of un­
perturbed motion which 1s called generated for the solution 
oons1dered. Due to the continuous dependence of the solution 
on the parameter £, the generated solution also satisfies 
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condition (12). This makes it possible to oeparate, among 
the solutions of an unperturbed system, those which can be 
generated for periodic solutions of a' perturbed .ystem. 

When Q-O from equations (11) and (12) we find that on 
the generated trajectories one must fulfill the condition 

• p e..- · • hi (3) 

If 3~0, then among the generated solutions one finds station­
ary solutions (9), (10) and also oscillatory (7) and rota­
tional (8). 

Let us consider oscillation solutions which Are defined 
by formula (7). For these, the relationship following is /12 

fulfilled 

and, consequently, 

err""'r,J- 8(r), ".1,2,8, ... (14) 

Comparing (14) and (12) we find that on OScillation traJec­
tories, (12) is fulfilled when p-O, if only 

or 

'r,. 21 J!L · 
11 

For rotational solutions from formula (8) we have 

6'""'11,.) • 8tY)~ IJfh, 11.1, I, , , •.. 

In this way. condition (12) 1s fulfilled, if 

7;-21;'-

(15) 

(16 ) 

(17) 
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Then, in formula (12) p-tn. where the sign for n is selected 
in accurdance with the direction ot'rotation of unperturbed 

motion. 

In reference [2J it is pointed out that periodic solu­
tions do not exist for equation (4). generated by oscilla­
tion solutions (7) of an unperturbed system. Also periodic 
solutions do not exist generated by rotations' (8) toward the 
side opposite the direction of rotation of the magnetic field. 
Rotation (8) in a straight direction can generate slow (wIth 
a frequency no larger than thp. orbital, m~n) nondamped rota­
tions of the satellite. With this rotation at an orbItal 
frequency (m-n) it is possible with all physically allowable 

values of the parameters, (O<a2~3. o~£<.). P~riodic rota­
tions of other types have a very narrow field of existence . 
in the space of parameters of 0, c and, accordingly. a low 
probability of falling into this condition. Stationary so­
lutions of an unperturbed system are generated with stable 
(9) and unstable (10) oscillations. When a-O (an axisymmetric 
satellite) for any £>0, a Single parameter family of stable 
periodic trajectories exists, corresponding to m-p-l: 

(17 t ) 

3. Construction of Periodic Solutions of the Eguation of 
Motion of a Satellite Close to Axi3ymmetric, Generated 
£l. Stationary So]u~lons of an Unpel'turbed Equation and 
~Evaluatlon of the Field of their Existence 1n the 
Space pf Parameters Ct J n). 

Having uged the zmullest v3lues of parameter t, one can 
construct the asymptotIc formulas wi;' ·~h describe periodic 
motion of a satellite, generated by stable (9) and unstable 

6 
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(10) stationary pointe of unperturbed equation (5). Ae 1s 

pointed out in reference (2). they have the following form 

[' - Clllif J 'ii"nif 
8-111(:'-1: Y('~ f') ~2I:J.' {J!' ft I· ... OB) 

.(2 -~] .~ J,sl"ir 
Sa"-2E1dif,JlqI1/) ~2£ ,., J'fj~ f.t' .. ·· 09 ) 

for all physically allowable values of the inertia parameter /14 

Q (0< a!,l3) • 

With the proposed posing of the problem (when the float 

of the damp~r follows the direction of the force lines of 
the magnetic field) 2w - periodic oscillations (18) and (19) 
will exist not for all values of a dimensionless coefficient 

of damping t, but only for O!,t<c •• where the value of t. de­
pends on Q. Actually, for fairly large values of c, the 
presence of a strong connection between the sat~111te and the 
damper float causes rotation along with the magnetic field of 
the whole sa~elllte. Rotation of m:n-l:l Is a unique type of 
periodic motion in this case. 

Numerical values of c. result actually in finding the 
radius of convergence of series (18) and (19). This problem, 
as a rule, is extr~mely cumbersome, that Is, it requires com­
putation of the common member of the series (18) and (19) 
which in the case of nonlinear equatilJns presents considerable 
difficulty. Therefore, we will attempt to attain certain 

estimates of the value of c •• Fur this, actualJy we will con­
struct a periodic solution ~eneratcd by the statl,. position 

of equilibrium (9) in a case when the iner~ia parameter a Is 
3mal!. Then one C'-:'l expect that the critical val'.le of t:. also will 

be small and one' can '..lS~ 35ymptot 1 c methods 1"1 r,ht up to till s 

7 
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value. Here, however, it is impossible to use asymptotics 
of (18), because the amplitude of oscillation when £ is 
close to £. is large. On the other hand, angular velocity 
0, as one sees from the integral of energy in unperturbed 
motion (6) remains a small value on the oI'der of a. 

Therefore we assume 
(20) 

Then 
Po. d sln8=L( 4' _ «rpl \ • 

" . d S -Itlls!" '/ 
(21) 

We assume 
(22) 

and rewrite system (20), (21) in the form 

{ 
8= Vi' IIp. . . , 

o ./':'f( f ~ Ii. ~ p-re. - - -St118 -en 
If S-3cos'{ If I'" 

(23) 

Finding the solution of this sytem in the form of the series 

according to the power 1£ 

{ 

S'So#{i'B,,.esz +£""8, • It. • 

p-p(/Yep, .'p" # ef'~,,.... I 

(24) 

we find the following eq~ations for sequential approximations 

J
Bo.o, pD-O; 
• • f If Ii· 8 . 
~'·"'Po' P'=,i'S-3cosr - ~- ~'n 0, (25) 

l 
~.IIPI' ,002--: 8,cost-:~Ptl ~ 
n LJ • II 1'1 Ii ~l • 1'1 ,,, • 
u.·~'Pi/.' P'--7; EJo2CDSr7,.\-I- g(J/st.na.-,.", .. ' 

. . .' 

Using the solution of the equations of a zero approximation 

B '" Co = CQnst, Po =J) • .. CDI1St , 
(I . 

(26) 

8 
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we find in the first approximatio.n 

.; 4-N4T ~c" P,'!~A~t/(2'fjf)3 :;:rSLnC,lJJ;;' . (27) 

where 

(28) 

For this, so that solution (27) would correspond to periodic 
oscillation, it is necessary and adequate that 

. (29) 
If . 

sine •• ~ . 

The latter condition can be fulfilled only when k~2. 
For the calculation of (22) this result can be formulated as: 

when 
(30) 

does not exist of periodic solutions of equation (4), gener­
ated by a stable stationary point. The value of E', defined 
by formula (30) gives an estimate above the boundary of E. 
of the field of existence of periodic solutions of the type 
considered (E.<E'). 

The constants C1 and Dl entering into (27) are determined 
from the condition of periodicity of the solution of equations 
of the second approximation 

. *i - /. 0%') 1.2 1) I'r 

Bit=t? SA '2ctO\2fji a:z:-2 T + II' ,f[.4o '-, = 
Do. • _ I 

=-2 ~ C()S'.f +2E Ti:iT 4oll'.D,rt' + C'''' , 
J#f jl.J' jaf J ·3 

·lIf Pit-- ~C,ClJsCtl +lJ;J. • 

From this we find 

C',= 0, .1), = 0 . 

(31) 

(32) 

9 



In a completely analogous way, the conditions of period- /17 

icity for all sequential approximations give an equation for 
determining the additive constants of the preceding approxi­
mation. These equations are linear and solved when coseo~o; 
therefore, construction of the series (24) is possible for 
all £, which satisfy the inequality 

, 
c ~ £. • 

(33) 

The dependence of e' on a is graphically shown in Figure 1. 

~ ---------------

II.#S 
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I 

DoiS 11.10 II/IS 11.1, 11.11 

Figure 1 

a 

Here, along the axis of 
the abs:e1ssa, the param­
eter a=a 2/4 is applied 
and £'(a) is expressed 
by a dashed straight 
line. ~he solid line in­
dicates the boundary of 
the field of existence 
of the solutions con­
sidered, obtained using 
numerical calculations 
described in the follow­
ing paragraph. 

A total of the con­
stants C2 and D2 in form­
ula (31) gives us 

(34 ) 

Consequently, with small values of a, the periodic solutions 
sought can be written in the form of a series 

(35) 
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4. Numerical Finding of Periodic Solutions 

In a broad range of values of the parameters a and t, 

periodic solutions are found by numerical integration of equa­
tion (4). The problem amounted to a selection of the initial 
conditions a, 0 when T=O so that at the moment T·2~ the fol­
lowing relationship is fulfilled 

8(2.11)=8(0) , " . 
8('?I). 8(()) • (36 ) 

In this way, periodic oscillations were calculated, generated 
by stable and unstable stationary points and also periodic ro-

t'} 

tat ions of the type m: =1:1. Computation encompassed a range 
of values a=a 2/4 from 0 to 0.750. The latter number corresponds 
to the boundary of physically allowable values of the inertia 
parameter. 

The values of the initial conditions of integration ob­
tained from computation 9(0);9(0) and 0(0);0(0) depend on the 
two parameters a and t 

"(01 .(., 
8 =8 (a,l) .. 

and are shown in Figure 2. In thi. drawing, three series of 
curves are visible. Each of the curves is the geometrical lo­
cation of the initial conditio~s of periodic solutions with a 
fixed value of the parameter a and a change in £ from 0 to £*" 

In each series, it is expressed on the three curves correspond­
ing to a=0.3; 0.6 and 0.75. 

Curves in the upper part of the drawing when 0(0»1 cor­
respond to rotation, then when a(o»o, stable rotations are 
obtained; when 9(0)<0 - they are unstable. Such motions ex­
ist with all values of £ and therefore the curves of each 
series begins when £=0 and are completed in general for each 
of the series at a point corresponding to £~~. In this maxi­
mum case, the satellite like the float of the damper rotates 

11 
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along with the force lines of the magnetic field and such mo-
tion does not depend on gravitational moments. The numerical /19 
location of the solutions with large values of £ are diffi-
cult but in this case one can construct asymptotic formulas: 

In these formulas p is constant 

12 

- for unstable (38) 
rotation, 

for stable (39) 

rotation 

(40) 
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For obtaining asymptotic formulas (38), (39) we rewrite 

equation (4) in the form 

" _ (} • .t (S·I>t1$1.'nS). (41) 
.f - Jcos'l £ ,." 

Solution of equation (41) will be found in the form of a 
series: 

(42) 

By substituting (42) in equation (41) and equalizing the co­
efficients of uniform powers of the parameter £, we fl11d that 
the function Si(T), i=0,1,2, ••• must satisfy the following 
equations: 

. " 8.= s- 3cos*(' 

8, =-~-asiI18o ' 

.... 

Then for any value of T one must satisfy the condition 

(45) 

(46) 

(47) 

Integrating equation (43), we have in a zero approxim~-
tion 

(48) 

The zero approximation describes the motion of the satellite 
when £=~, that is, when it rotates along with the force lines 
of the magnetic field. 

From equation (44) we find the first approximation 

• 

txmrt=-

.. ~" 

; . 
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• 

(49) 

From the condition of periodicity (47) it follows that 

that is, 
,.(11 
"'0 • 0 , 

(50) 

The first value of the constant Co correspon~s to unstable 
rotation, and the second to stable. 

The second approximation we find by integrating equation 

(45): Bdr)=- 12sll1f ,.8acosf!. .sil1f" + 
IZ (S-Jcosr)' D S-3~os'{" 

~ ac,cosc;,[f f - : A~tij(R'J J)] + 
r . 

. ,: 'I a' rJ-ScoS Z en 2 d~+ C'. 
.3 J 5-Jcosz S-.Jcosz ~ • 

( 51) 

II 

The condition of periodicity (47) for 02(T) takes on the fol-

lowing form 

Having used formulas 4.413 (3.4) [5J, we find 

C, -apctls C'o • 

where p is determined by formula (40). 

14 
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The constant C2 in (51) we will define from the condition 
of periodicity for the third approximation. It appears equal 
to zero: 

c. • 0 . 
(54) 

Thus, for adequately large values of £, equation (4) has 
two 2n-periodic solutions of a roatating type (unstable and 
stable, respectively) which according to forl'P'llas (42)-(54) 

can be presented in the form 

• 

15 
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When T-O, from (55) and (56) we find asymptotic formulas (38) 
and (39). 

In the lower part of Figure 2 when e(0)<0.4, there is a /23 
series of curves corresponding to oscillation motion of the 
satellite. Each curve consists of two branches -- stable and 
unstable. These branches occur when t-O respectively from 
the stable and unstable stationary points of an unperturbed 
system. With an . increase in t, the pOints shown for stable 
and unstable periodic solution~ move along their branches 
and when t-£I(a) they merge at the branching pOint. With large 
values of E, 2~-periodic oscillation solutions do not 
The bifurcated curve on which merging of two periodic 
tiona occurs is shown in Figure 2 by the dashed line. 

exist. 
solu­
The 

critical values of £1 depending on a are shown by the solid 
line in Figure 1. This curve, for all physically possible 
values of the parameter a coincide fairly well with straight 
line 

(57) 

defined by asymptotics (27). 

The fields of existence of two types of periodic solu­
tions according to the parameter £ are considerably narrower. 
For example, when ~-~ (a-o.6l6) 4~-periodic rotations cor­
responding to m:n=2:l, it can be successfully obtained numer­
ically only when £<0.0035. 

5. Fields of Efr~ct of Different Types of Periodic Motion 

As one sees from reference [2J, besides the periodic so­
lutions studied above, with certain values of the parameters 
a and £, equation (4) has other types of asymptotically 
stable periodic solutions which correspond to different 
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established motion of a satellite with a magnetic damper. /24 
Which of these motions is realized depends on the initial con­
ditions. Therefore, the entire plane of the initial values of 

• a, a can be divided in these fields so that motion, beginning 
inside one of the fields results in a uniform type of periodic 
motion. 

Let us determine the transformation of the phase plane of 
a, a for a period like this transformation, in which a given 
point a, a is the point (a(2w), a(2w» of the trajectory of 
equation (4) which occurs at the moment T-O through (e(O), 
a(o». By virtue of the 2w-periodicity of equation (4) ac­
cording to the T properties of the trajectory, corresponding 
to point (e(O), a(O», like the initial, are Jnvariant with 
such a transformation. The invariant, in particular, is broken 
down in the field of effect. The 2w-periodic solution of 
equation (4) corresponds to immovable pOints of the transfor­
mation considered. It is clear that asymptoticalli stable 
stationary points belong to the field of effect on the periodic 
solution determined by them. Invariant curves which pass through 
unstable stationary points are the separatrixes of a given 
transformation; they divide the field with qualitatively dif­
ferent behavior of the invariant curves. In particular, the 
sum of the separatrlxes divide the field of effect. Therefore, 
the problem of finding the fields of effect leads to calcula­
tion of the separatrix of transformation of the phase space 
caused by a shift in the period along the trajectory of 
differential equation (4). 

As one sees from what has been presented above, such a 
transformation for any fixed values of the parameters a=a 2 /4 
and £ (0<a~0.75; O<£<£.(a» has four stationary points (Fig­
ure 2): two stable and two unstable. Computation of the 
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sepal"atr1x began in the environment of unstable stationary /25 
pointa. Close to such a pOint, the transformation of the phase "~ 

plane is close to linear. The intrinsic vectors of this linear 
transformation indicate the direction of the branches of the 
separatrix, which pass through a given stationary point. The 
intrinsic vector which has an intrinsic value in absolute size 
larger than one corresponds to outgoing branches of the separ­
atrix and the intrinsic vector with intrinsic value according 
to the model smaller than one corresponds to the incoming 
branch. For constructing the separatrix, the initial condi­
tions are selected lying 1n the environment of unstable sta­
t10nary points in a d1rection determ1ned by the 1ntrinsic 
vector and numerical integrat10n is made of the system with 
these init1al cond1tions. The po1nts of the trajectory cor­
responding to the moment of time T-2kw, k-l,~, ••• , belongs 
to the appropriate separatr1x. For th1s, 1n order to obtain 
1n th1s way the 1ncom1ng branches, 1ntegrat1on must be done 
in a direction of decrease of the 1ndependent variable (T-2kw, 
k-l,-2, .•• ). Obta1n1ng the sequence of points when moving away 
from the 1nitial stationary point becomes very rare and does 
not give the correct concept of the behav10r of the separatrix. 
For obtaining a more detailed picture, one must follow the 1n­
d1cated procedure more than once, selecting as the 1nitial dif­
ference of the point one or another branch in the environment 
of the unstable stationary point. 

Figure 3 shows the breakdown of the phase plane obtained 
in this way corresponding to a-0.750, £-0.1. In this case, 
as has already been indicated, we have four periodic solutions: 
two stable and two unstable. In Figure 3, the four stationary 
points correspond to it. At each of the unstable stationary 
points, the separatrixes converge along four branches: two 
incoming and two outgoing. These curves break down the phase 
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cylinder in four parts. One of these parts shaded in Figure 
3 for-:-:"" the field of effect of the rotating periodic motion. 12,~ 

the t .... ·ee others belong to the fh·ld of effect of oscillation 
motion. One of the latter three sections corresponds to the 
trajectory beginning 1n the f1eld of reverse motion with nega­
tive values of a. The trajector1es from the remaining two 
sections begin in the field of forward rotation and end witt 
periodic oscillations; they differ from each other in that 
the trajectory from one section (in Figure 3 it corresponds 
to the broader nonshadcd band in the upper part of the draw-
ing) separate only rotation around the phase cylinder in com­
parison with the other tI1jectories. 

Figure 3. (a-0.75; ,-0.1) 

From Figure 3 it is apparent that the rield of effect /26 
of a rotational periodic condit1on 1s fairly narrow and 1s 
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located as a whole 1n the f1eld of forward rotat1on when 9>1. 
Therefore, one of the methods to avoid capture of the satel­
l1te in rotation consists of imparting to 1t a certain 1nit1al 
tw1st in rotation oppos1te the direction of orb1tal mot1on • 

• 

When 1ncreasing the coeff1cient of damping t, the f1eld 
of e:r~~t of the rotational condition 1s expanded and at cer­
tain values of c the separatrix going away from the point 
corresponding to unstable oscillation falls at a point cor­
responding to unstable rotation. After this, the picture of 
breakdown of phase space in the field of effect changes 
qualitatively. In the field of effect of the stationary ro­
tational condition there is a band paSSing into the field of 
reverse rotation. Thus, for example, when a-1f/2 and (-0.4, 

onp. can find the initial conditions in the field of reverse 
rotation leading to stationary rotation of the satellite. A 
further increase 1n £ results in a larger contraction of the 
field of effect of the oscillation condition which disappears 
when ,-,,(a) and rotation along with the magnetic field re­
mains the Single type of established motion. 

Conclusions 

In this work, periodic motion of a gravitationally 
stabilized satellite with a macnC'~,j(· d~Mncr 1n the plane of 
a circular polar orbit is studied. Inthesystem conSidered, 
besides the small established rotations of the satellite 
relatlve to the oriented p(l~itioll, also small ~~:ith rrequency, 
not large orb1tal) undamp0,! ~otat1ons are also possible. 
Then, rotation with the orbital f'requer.cy is pOt'sible fer all 
physical values of the inertia paraMeter and for all values 
of the coerricient or damping. The periodic rotations of 
other types have a very narrow field or effect and, correspond-
1ngly, a low probability of falling into this condition. 
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With large values of the coefficient of damping due to 

the strong connection between the satellite and the float 
of the magnetic damper. a constant magnet which precisely 
tracks the force lines of the magnetic field. the s~tellite 
also ~egins to rotate along with the float. Therefore. per­
iodic oscillations of the satellite around the oriented posi­
tion exist only for values of the damping coefficient which 
do not exceed a certain maximum value depending on the ':alue 

of the inertia parameter. 

In the work, an evaluation 1s obtained higher than the 
maximum values of the ~oerficient of damping for a 5atelllt~ 
close to axisymmetric (at low values of the inertia parameter). 
The r~sults of numerical calculation showed that the value 
obtained corresponds well to the actuality for all physjcally 
possible values of the inertia parameter. From the evalua­
tion it follows that for coefficients of damping ~>O.75, 
periodic oscillations of the satellite do not exi~~ nor at 
such physical values of the inertia parameter a~ a(O~a~O.75). 

At certain values of the par~meters a and c, the equa- /28 
tion of motion of a s~tellite has severbi d~i~~totically 
stable ppr1od1c 50lt..t-.10n5 which correspond to diffE:~ent 
stabll1zf~d motions of t>.t.' satellite with a r.1ac;netlc l'amper. 
Which of thc~e mot1ons 1s realized depends on the initial 
conditions. Therefore, ~he entire plane of initial values 
of phase variables can break down in the field of effect 
of dIffcrent types of pcrjodlc motions, thnt Is, Into those 
fields where motion beginning ins1de one or another field re­
sults 1n a uniform type of periodic motion. In the work, a 
breakdown of the ph~5e plane in fields of effect for values 
of the paramett!r al(). 7fJJ, ,-0.1 1::; obtained. In this case, 
the equation of motion has two asymptotically stabl~ 2~­
periodic solutions; one is oscillatory and the other is 
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rotational. As is seen from the breakdown, the field of 
effect of the rotational periodic condition is fairly narrow 

and is located as a whole within the field of forward rota­
tions. Therefore, one of the methods to avoid capture of the 
satellite in rotation is to imp~rt to it a certain initial 
twist in a direction opposite the direction of orbital motion. 
With an increase in the coefficient of damping €, the field 
of effect of the rotational periodic conditions is increased 
and the oscillatory is decreased and when €=€*(a), the field 
of effect of the oscillation periodic condition disappears. 
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