


CORRELATION OF MAP UNITS

LIST OF MAP UNITS

- Colluvium (Quaternary)—Sand, silt, and gravel on hillslopes; grades locally to younger alluvium
- Older alluvium, undivided (Quaternary)—Dissected sand and gravel of alluvial fans and terraces in
- Older alluvium (Quaternary)—Older materials of alluvial fan on west side of San Felipe Valley
- Older alluvium (Quaternary)—Younger materials of alluvial fan on west side of San Felipe Valley
 - Older alluvium (Quaternary)—Coarse alluvium beneath slide or thrust of crystalline rocks in the east
- Older alluvium (Quaternary)—Alluvium at southeast end of Rodriguez Canyon composed of boulders
- of tonalite of Granite Mountain Landslide deposits (Quaternary)—Landslides, slumps, and debris flows; arrows indicate direction
- Leucocratic dikes (Cretaceous)—Dikes consisting of pegmatite, alaskite, aplite, and leucogranite Kgm Tonalite of Granite Mountain (Late Cretaceous)—biotite-hornblende tonalite; hornblende-biotite tonalite
- and lesser granodiorite; minor quartz diorite. Medium- to coarse-grained; weak to mylonitic foliation.
- Cuyamaca Gabbro (Early Cretaceous)—Interior of large plutons: hornblende-bearing troctolite; anorthositic gabbro \pm amphibole \pm opx \pm olivine; amphibole-olivine gabbronorite; minor hornblende diorite, leucodiorite \pm pyroxene \pm biotite. Fine- to medium-grained smaller bodies, marginal zones of large plutons: hornblende gabbro \pm opx \pm cpx \pm biotite. Moderately to strongly foliated
- KJem Quartz diorite of East Mesa (Cretaceous and Jurassic)—Fine- to medium-grained, gneissic biotite-hornblende tonalite and quartz diorite; and fine-grained (quenched), locally porphyritic biotite-hornblende quartz diorite and tonalite; lesser diorite, granodiorite, quartz monzodiorite, and gabbro. Texturally and compositionally heterogeneous. Strongly foliated to mylonitic. Some rocks contain hypersthene \pm clinopyroxene
- Granodiorite of Cuyamaca Reservoir (Jurassic)—Biotite- and hypersthene-biotite granodiorite and tonalite ±actinolitic amphibole ± hornblende. Contains sphene, ilmenite, allanite. Fine- to medium-grained, gneissic, locally mylonitic. C.I. = 16-30
- Jhc Harper Creek Gneiss (Jurassic)—Biotite granodiorite and tonalite, lesser monzogranite; mylonitic rocks are quartz-rich granitoids. Contains graphite, muscovite, tourmaline, ilmenite, sillimanite (mostly fibrous habit), corderite, garnet. Fine- to coarse-grained, gneissic to mylonitic. Average C.I. is 22
- Julian Schist (Jurassic and Triassic)—Interlayered, intergradational semi-pelitic, pelitic, and quartzitic schists; calcsilicate-bearing feldspathic metaquartzite; and minor small-pebble metaconglomerate, metatuff, and orthoamphibolite; metamorphosed to amphibolite facies. Protoliths interpreted as turbidites deposited on submarine fan complex that received intermittent basaltic flows and sills

EXPLANATION OF MAP SYMBOLS

- Contact—Solid where well located, dashed where approximately located, dotted where concealed, queried where location is questionable
- - High-angle fault —Solid where well located, dashed where approximately located, queried where probable, dotted where concealed; bar and ball on downthrown side; arrow shows direction and amount of dip of fault plane; diamond symbol shows direction and amount of plunge of linear features on fault plane or gouge zone; arrows indicate sense of lateral displacement
 - **Low-angle fault or glide plane** —Dashed where approximately located; teeth on upper plate

Lineament, possible fault

Incipient slump, hachure indicates direction of possible movement

- Strike and dip of small fault or gouge zone (≤ 25 cm thick) —Diamond symbol shows direction and plunge of linear features on fault plane Inclined Vertical
- Strike and dip of mineral foliation in crystalline rocks
- Vertical
- Strike and dip of overturned bedding in metasedimentary rocks
- Direction and plunge of lineation within plane of foliation 77
- Small fold (wavelength ≤ 1 m) showing fold profile—Vergence (double arrows indicate steeper limb), direction \pm amount of plunge
- Syncline (Isoclinal) Anticline (Chevron)
- Landslide—Arrows indicate direction of movement
- Spring or seep

Geologic Map of the Julian 7.5' Quadrangle, San Diego County, California