General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASATECHNICAL MEMORANDUM

CENTROID AND MOMENTS OF A.N AREA USING A DIGITIZER
by R. W. Patch
Lewis Research Center
Cleveland, Ohio 44135
October 1976

1. Report No. NASA TM X-73528	2. Government Accession No.		3. Recipient's Catalog No.	
4. Titte and Subtitte CENTROID AND MOMENTS OF AN AREA USING A DIGITIZER			5. Report Date	
			6. Performing Orgamation Code	
7. Author(s) R. W. Patch			8. Performing Organization Report No E-8947	
			10. Work Unit No.	
9. Performing Organization Name and Address Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio 44135				
			11. Contract or Gramt No.	
			13. Type of Report and Period Covered Technical Memorandum	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546				
			14. Sponsoring Agency Code	
15. Supplementary Notes				
16. Abstract The Centroid and Moments of an Area program provides the centroid, moments of inertia, product of inertia, radii of gyration, and area of any closed planar geometric figure. The figure must be available in graphic form and is digitized once with chart digitizer (graphic tablet). The digitizer origin may be set anywhere on the digitizer table. After digitizing, fifteen quantities are calculated and displayed: (1) area, (2) moment of inertia of area with respect to digitizer x-axis, (3) moment of inertia of area with respect to digitizer y-axis, (4) product of inertia of area with respect to digitizer axes, (5) first moment of x for digitizer axes, (6) first moment of y for digitizer axes, (7) x coordinate of centroid, (8) y coordinate of centroid, (9) moment of inertia of area with respect to x axis through centroid, (10) moment of inertia of area with respect to y axis through centroid, (11) product of inertia of area with respect to x and y axes through centroid, (12) polar moment of inertia of area around centroid, (13) radius of gyration about digitizer x axis, (14) radius of gyration about digitizer y axis, and (15) variance in the x-direction.				
17. Key Words (Suggested by Author(s)) Digitizer; Centroid; Moment Product of inertia; Radius of ance; Graphic tablet; Desk ca Beam, Column, Mechanics of	of inertia; yration; Variculator, material	19. Distribution Statement Unclassified - unlimited		
19. Security Classif. (of this report) Unclassified	20. Security Classif. fof this pagel Unclassified		21. No. of Pages	22. Price ${ }^{+}$

*For sale by the Nationa! Technical Information Service, Springlield. Virginia 22161

by R. W. Patch

Lewis Research Center

INTRODUCTION

The object of this program is to provide a general-purpose digitizer program for calculating area and first and second moments of any closed planar geometric figure such as a cross section of a beam or column or a spectral line shape that has been closed at the baseline. For simple . figures such as circles, rectangles, or triangles, the area and moments are easily calculated by hand from simple formulas given in handbooks. For figures consisting of two or more simple figures superimposed, the area and moments may be calculated by hand with somewhat more difficulty. The principal application of this program, however, is to complicated or irregular figures such as spectral line shapes, beams, columns, rotating machine parts, statistical distributions, and ship hull sections, which are difficult or impossible to calculate by hand.

In addition to the basic quantities of area and moments, certain derived quantities are also calculated for convenience.

Previous published digitizer programs have merely calculated area or circumference of closed geometric figures.

PROBLEM TASK DESCRIPTION

A closed planar geometric figure of arbitrary shape is shown graphically in figure 1 . The size of the figure is such as to fitt on the sensitive portion of the digitizer table (graphic tablet). The figure is to be digitized by going around it once clockwise with the cursor. Curved portions are to be digitized at closely spaced intervals (hereafter referred to as "continuous digitizing" because the intervals are determined automatically). To improve accuracy, straight portions may be digitised by merely digitizing the two end points.

The quantities to be calculated require several axes. The digitizer axes x and y may be set anywhere on the sensitive portion of the digitizer table. The closed figure has a centroid whose position is not known initially. Through the centroid are centroidal axes x_{g} and y_{g} parallel to the x and y axes, respectively. Consequently, if the angular orientation of the x_{g} and y_{g} axes relative to the figure is important, the figure should be rotated to the desired angular orientation relative to the digitizer table before doing the digitizing for this program. This rotation may be facilitated by using the cursor and another small program to check the figure angular orientation (ref. 1).

STAR category 09

The following quantities are to be calculated and displayed for each case.
(1) Area of figure
(2) First moment of x with respect to y axis
(3) First moment of y with respect to x axis
(4) Moment of inertia of area with respect to x axis
(5) Moment of inertia of area with respect to y axis
(6) Product of inertia of area with respect to x and y axes
(7) x coordinate of centroid
(8) y coordinate of centroid
(9) Moment of Inertia of area with respect to x_{g} axis
(10) Moment of inertia of area with respect to y_{g} axis
(11) Product of inertia of area with respect to x_{g} and y_{g} axes
(12) Polar moment of inertia of area around centroid
(13) Radius of gyration about x axis
(14) Radius of gyration about y axis
(15) Variance in the x direction

Most of these quantities are defined in reference 2 , but they are also defined in the next section or in the List of Symbols.

METHOD OF SOLUTION
Six basic integrals must be calculated.

$$
\begin{align*}
\mathrm{A} & =\int \mathrm{dA} \tag{1}\\
c_{x} & =\int \mathrm{xdA} \tag{2}\\
c_{y} & =\int \mathrm{ydA} \tag{3}
\end{align*}
$$

$$
\begin{align*}
& I_{x}=\int y^{2} d A \tag{4}\\
& I_{y}=\int x^{2} d A \tag{5}\\
& I_{x y}=\int x y d A \tag{6}
\end{align*}
$$

(Symbols are defined in the List of Symbols.) From these integrals, all other required quantities may be found. To minimize storage requirements the six integrals are found by accumulating 12 sums as the closed figure is traversed with the cursor, assuming for curved portions that the figure consists of a succession of straight lines between digitized points. The six integrals are calculated from the 12 sums at the end of the program.

The area A may be expressed

$$
\begin{equation*}
A=\iiint_{\text {upper }} \mathrm{dy} \mathrm{dx}=\int_{\text {lower }} \mathrm{y} \mathrm{dx} \tag{7}
\end{equation*}
$$

where "upper" and "lower" refer to the parts of the figure for which a perpendicular outward vector is in the $+y$ and $-y$ directions, respectively. Using the trapezoidal rule, equation (7) becomes

$$
\begin{equation*}
A=\frac{I}{2} \sum\left(y_{0}+y_{n}\right)\left(x_{n}-x_{0}\right) \tag{8}
\end{equation*}
$$

where subscripts o and n refer to the first (old) and second (new) points, respectively, of an adjacent pair of digitized points, and the summation is over all pairs of adjacent points all the way around the closed figure. For $x_{n}=x_{0}$ there is no contribution to equation (8).

The first moment of x with respect to the y axis is

$$
\begin{equation*}
c_{x}=\iiint_{\text {upper }} x y d y d x=\int_{\text {lower }} x y d x \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{x}=\frac{1}{2} \sum\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(x_{n}+x_{0}\right)+\frac{1}{3} \sum\left(y_{n}-y_{o}\right)\left(x_{n}^{2}+x_{n} x_{0}+x_{0}^{2}\right) \tag{10}
\end{equation*}
$$

Again, there is no contribution if $x_{n}=x_{0}$.
The first moment of y with respect to the x axis is

$$
\begin{equation*}
c_{y}=\iiint_{\text {right }}^{n} y \mathrm{dx} d \mathrm{y}=\int_{\text {left }} \mathrm{y}=\int_{\mathrm{le}} \mathrm{yx} d y \tag{11}
\end{equation*}
$$

where "right" and "left" refer to the parts of the figure for which a perpendicular outward vector is in the $+x$ and $-x$ directions, respectively. Equation (11) becomes

$$
\begin{equation*}
c_{y}=\frac{1}{2} \sum\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(y_{n}+y_{0}\right)-\frac{1}{3} \sum\left(x_{n}-x_{0}\right)\left(y_{n}^{2}+y_{n} y_{0}+y_{0}^{2}\right) \tag{12}
\end{equation*}
$$

There is no contribution to the last term when $x_{n}=x_{0}$.
The moment of inertia of area with respect to the x axis is

$$
\begin{equation*}
I_{x}=\iint y^{2} d x d y=\int_{\text {right }} y^{2} x d y-\int_{\text {left }} y^{2} x d y \tag{13}
\end{equation*}
$$

or

$$
\begin{align*}
& I_{x}=\frac{1}{3} \sum\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(y_{n}^{2}+y_{n} y_{0}+y_{0}^{2}\right) \\
&-\frac{1}{4} \sum\left(x_{n}-x_{0}\right)\left(y_{n}+y_{0}\right)\left(y_{n}^{2}+y_{0}^{2}\right) \tag{14}
\end{align*}
$$

There is no contribution to the last term when $x_{n}=x_{0}$.
The moment of inertia of area with respect to the y axis is

$$
\begin{equation*}
I_{y}=\iint x^{2} d y d x=\int_{\text {upper }} x^{2} y d x-\int_{\text {lower }} x^{2} y d x \tag{15}
\end{equation*}
$$

or

$$
\begin{align*}
I_{y}=\frac{1}{3} \sum\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(x_{n}^{2}+\right. & \left.x_{n} x_{0}+x_{o}^{2}\right) \\
& +\frac{1}{4} \sum\left(y_{n}-y_{0}\right)\left(x_{n}+x_{0}\right)\left(x_{n}^{2}+x_{0}^{2}\right) \tag{16}
\end{align*}
$$

There is no contribution if $x_{n}=x_{0}$.
The product of inertia of area with respect to the x and y axes is

$$
\begin{equation*}
I_{x y}=\iint x y \text { dy } d x=\frac{1}{2}\left[\int_{\text {upper }} x y^{2} d x-\int_{\text {lower }} x y^{2} d x\right] \tag{.17}
\end{equation*}
$$

or
$I_{x y}=\frac{1}{4} \sum \frac{\left(y_{0} x_{n}-x_{0} y_{n}\right)^{2}\left(x_{n}+x_{0}\right)}{x_{n}-x_{0}}$

$$
\begin{align*}
& +\frac{1}{3} \sum \frac{\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(y_{n}-y_{0}\right)\left(x_{n}^{2}+x_{n} x_{0}+x_{0}^{2}\right)}{x_{n}-x_{0}} \\
& +\frac{1}{8} \sum \frac{\left(y_{n}-y_{o}\right)^{2}\left(x_{n}+x_{0}\right)\left(x_{n}^{2}+x_{o}^{2}\right)}{x_{n}-x_{0}} \tag{18}
\end{align*}
$$

There is no contribution if $x_{n}=x_{0}$ and, if this occurs, each rerm must be set equal to zero to avoid dividing by zero.

The other required quantities may be found from the six basic integrals. The x coordinate of the centroid is

$$
\begin{equation*}
\bar{x}=\frac{\int x \mathrm{dA}}{\mathrm{~A}}=\frac{\mathrm{c}_{\mathrm{x}}}{\mathrm{~A}} \tag{19}
\end{equation*}
$$

The y coordinate of the centroid is

$$
\begin{equation*}
\overline{\mathrm{y}}=\frac{\int \mathrm{ydA}}{\mathrm{~A}}=\frac{\mathrm{c}}{\mathrm{y}} \mathrm{~A} \tag{20}
\end{equation*}
$$

The moment of inertia of area with respect to the X_{g} axis is (ref. 2)

$$
\begin{equation*}
I_{g x}=I_{x}-A \bar{y}^{2} \tag{21}
\end{equation*}
$$

The moment of inertia of area with respect to the y_{g} axis is (ref. 2)

$$
\begin{equation*}
I_{g y}=I_{y}-A \bar{x}^{2} \tag{22}
\end{equation*}
$$

The product of inertia of area with respect to the X_{g} and y_{g} axes is (resa

$$
\begin{equation*}
I_{g x y}=I_{x y}-A \overline{x y} \tag{23}
\end{equation*}
$$

The polar moment of inertia of area around the centroid is (ref. 2)

$$
\begin{equation*}
J_{g}=I_{g x}+I_{g y} \tag{24}
\end{equation*}
$$

The radius of gyration about the x axis is (ref. 2)

$$
\begin{equation*}
k_{x}=\sqrt{\frac{I_{x}}{A}} \tag{25}
\end{equation*}
$$

The radius of gyration about the y axis is (ref. 2)

$$
\begin{equation*}
k_{y}=\sqrt{\frac{I_{y}}{A}} \tag{26}
\end{equation*}
$$

The variance in the x direction is (ref. 3)

$$
\begin{equation*}
s_{x}^{2}=\frac{I_{g y}}{A} \tag{27}
\end{equation*}
$$

PROGRAM DESCRIPTION

The program is written in BASIC for a Hewlett-Packard 9830A. calculator and 9864 A digitizer.

The flow chart for MOMENT is given in figure 2. First an initial point. XI, Yl is digitized. Then a loop is entered which is traversed once for each new digitized point. During each traverse the sums T1 and T2 are always added to, but the sums $S 0$ through $S 9$ are only added to if X 2 is not equal to X 3 .

Closure occurs when the operator brings the cursor back sufficiently close to the initial point. To check if this has occurred, two tests are made each time the loop is traversed: (1) has any point been outside the closure distance E from the initial point? (this test prevents closure before we have moved appreciably away from the initial point at the start), (2) is the last point inside the closure distance E from the initial point? E is arbitrarily set at 0.03 inch, and the distances D from the initial point are approximated by

$$
\begin{equation*}
D=\left|x_{n}-x_{i}\right|+\left|y_{n}-y_{i}\right| \tag{28}
\end{equation*}
$$

When both conditions are met, closure is forced by making the new point the same as the initial point, and a last pass is made by the calculator through the upper part of the program loop.

When the last pass is complete, the loop is exited, and the digitizer gives two beeps to signal closure. The six integrals are then calculated from the 12 sums, and the nine derived quantities are calculated. The six integrals and nine derived quantities are then displayed three at a time.

The listing of MOMENT is

$1 \emptyset$	$E=.03$	220	$Q=Y 3 * Y 3+Y 2 * Y 2$
$2 \emptyset$	$\mathrm{Fl}=\emptyset$	230	$\mathrm{N}=\mathrm{Q}+\mathrm{Y} 2 * \mathrm{Y} 3$
30	$F 2=\emptyset$	240	$\mathrm{Tl}=\mathrm{Tl}+\mathrm{B} * \mathrm{G}$
40	ENTER (9,*) X1, Y1	256	$\mathrm{T} 2=\mathrm{T} 2+\mathrm{G} * \mathrm{~N}$
50	$\mathrm{X} 2=\mathrm{XI}$	266	IF $\mathrm{X} 2=\mathrm{X} 3$ THEN $42 \emptyset$
60	$\mathrm{Y} 2=\mathrm{Y} 1$	276	$F=x 3-\mathrm{x} 2$
70	$\mathrm{S} \emptyset=\emptyset$	$28 \varnothing$	$H=X 3+x 2$
$8 \emptyset$	$s 1=\emptyset$	290	$I=Y 3-Y 2$
$9 \emptyset$	$\mathrm{s} 2=\emptyset$	$3 \emptyset \emptyset$	$\mathrm{M}=\mathrm{X} 3 * \mathrm{X} 3+\mathrm{X} 2 * \mathrm{X} 2$
106	$s 3=\emptyset$	310	$\mathrm{L}=\mathrm{M}+\mathrm{X} 3 * \mathrm{X} 2$
110	$s 4=\emptyset$	$32 \emptyset$	$S \phi=S \phi+B * F$
$12 \emptyset$	S5 = \emptyset	330	$\mathrm{S} 1=\mathrm{S} .1+\mathrm{G} * \mathrm{H}$
130	S6 $=0$	340	$\mathrm{S} 2=\mathrm{S} 2+\mathrm{I}$ *L
14D	$s 7=\emptyset$	350	S3 $=\mathrm{S} 3+\mathrm{G} * \mathrm{~L}$
150	$s 8=\emptyset$	360	$\mathrm{S} 4=\mathrm{S} 4+\mathrm{I} * \mathrm{H} * \mathrm{M}$
$16 \emptyset$	S9 $=\emptyset$	376	$\mathrm{S} 5=\mathrm{S} 5+\mathrm{F} * \mathrm{~N}$
$17 \varnothing$	$T 1=\emptyset$	386	$\mathrm{S6}=\mathrm{S} 6+\mathrm{F} * \mathrm{~B} * \mathrm{Q}$
$18 \emptyset$	$\mathrm{T} 2=\emptyset$	390	$\mathrm{S} 7=\mathrm{S} 7+\mathrm{G} * \mathrm{G} * \mathrm{H} / \mathrm{F}$
190	ENTER (9,*) X3, Y3	409	$\mathrm{S} 8=\mathrm{S} 8+\mathrm{G} * \mathrm{I} * \mathrm{~L} / \mathrm{F}$
$2 \emptyset \emptyset$	$\mathrm{B}=\mathrm{Y} 2+\mathrm{Y} 3$	410	$\mathrm{S} 9=\mathrm{S} 9+\mathrm{I} * \mathrm{I} * \mathrm{H} * \mathrm{M} / \mathrm{F}$
210	$\mathrm{G}=\mathrm{Y} 2$ * $\mathrm{X} 3-\mathrm{X} 2$ * Y 3	$42 \emptyset$	IF $\mathrm{F} 2=1$ THEN 550

```
430 x2 = x3
44% Y2 = Y3
45d D = ABS (X3 - XI) + ABS (Y3 - YI)
46\emptyset IF D > E THEN 480
476 GOTO 4C\emptyset
480 Fl = 1.
49| IF D < E AND F1 = 1 THEN 51\varnothing
50d GOTO 190
516 F2 = 1.
520 X3 = X1
530 Y Y = Y1
540 GOTO 2\emptyset\emptyset
55% WRITE (9,*)
560 WAIT 36d
57\emptyset WRITE (9,*)
580 A = Sd/2
590' Cl = S1/2 + S2/3
6\emptyset\emptyset I2 = s 3/3 + S4/4
61| C2 = T1/2 - S5/3
620 I1 = T2/3 - S6/4
630 I3 = S7/4 + S8/3 + S9/8
649 G1 = C1/A
659 G2 = C2/A
660 I4 = I1 - A * G2 * G2
670 I5 = I2 - A * G1 * GI
```

```
680 I6 = I3 - A * G1 * G2
69\emptyset J = I4 + I5
7\emptyset K1 = SQR(II/A)
710 K2 = SQR(I2/A)
72\emptyset V = I5/A
73D FIXED 2
746 DISP "XAVE"; GI; "VAR"; V; "A"; A
756 STOP
76\emptyset DISP "IX"; I1; "IY"; I2; "IXY"; I3
77\emptyset STOP
780 DISP "IGX"; I4; "IGY"; I5; "J"; J
79\emptyset STOP
8\emptyset\emptyset DISP "IGXY"; I6; "CX"; C1; "CY"; C2
81\emptyset STOP
82\emptyset DISP "KX"; K1; "KY"; K2; "YAVE"; G2
83\emptyset END
The storage capacity required is 818 words.
```


OPERATING INSTRUCTIONS

```
Assuming the program is recorded on file \(\varnothing\) of a cassette, the following is a check list for operating MOMENT:
1. Turn on calculator and digitizer.
2. Insert cassette.
3. Line up axes of figure (if any) with axes of digitizer.
4. Press SCATCH A EXECUTE.
5. Press LOAD \(\varnothing\) EXECUTE.
6. Set origin.
```

7. Press RUN EXECUTE.
8. Place cursor at initial point of figure (anywhere on figure will do).
9. Press C on cursor to start continuous digitizing.
10. Move cursor around curve clockwise back to initial point.
11. Get two beeps to indicate closure.

12, Press C on cursor to turn off continuous digitizing.
13. Read $\overline{\mathrm{X}}, \mathrm{s}^{2}, \mathrm{~A}$.
14. Press CONT EXECUTE.
15. Read $I_{x}, I_{y}, I_{x y}{ }^{\circ}$
16. Press CONT EXECUTE.
17. Read $I_{g x}, I_{g y}, J_{g}$.
18. Press CONT EXECUTE.
19. Read $I_{g x y}, c_{x}, c_{y}$.
20. Press CONT EXECUTE.
21. $\operatorname{Read} k_{x}, k_{y}, \vec{y}$.
22. Go back to step 6 or 7 for another case.

If the figure contains a straight segment, approach the segment in the continuous C mode, press C to turn off the digitizer at the beginning of the segment, go to the other end of the segment by any path desired, press C to turn on the digitizer at the end of the segment, and proceed around the rest of the figure. The corners of a polygon may be digitized one at a time by pressing S once at each corner.

A test case is given in figure 3, but should be laid out with drawing instruments. The correct results in appropriate powers of inches are

XAVE	1.00	VAR	0.67	A	8.00
IX	34.00	IY	13.33	IXY	14.67
IGX	7.11	IGY	5.33	J	12.44
IGXY	0.00	CX	8.00	CY	14.67
KX	2.06	KY	1.29	YAVE	1.83

However, do not expect to obtain accuracy to two decimal places on all quantities because the digitizer is only accurate to 0.01 inch and there is additional error in positioning the cursor.

APPENDIX - SYMBOLS

BASIC name	Display name	Mathematical symbol	Description
A	A	A	Area
B			$y_{0}+y_{n}$
CI	CX	c_{x}	First moment of x with respect to y axis
C2	CY	c_{y}	First moment of y with respect to x axis
D		D	Distance from initial point
E		E	Closure distance from initial point
F			$x_{n}-x_{0}$
F1			Flag to indicate if any point outside of closure distance
F2			Flag for last pass
G			$y_{0} x_{n}-x_{0} y_{n}$
G1	XAVE	\bar{x}	x coordinate of centroid
G2	YAVE	$\overline{\mathrm{y}}$	y coordinate of centroid
H			$\mathrm{x}_{\mathrm{n}}+\mathrm{x}_{0}$
I			$y_{n}-y_{0}$
I1	IX	I_{x}	Moment of inertia of area with respect to x axis
I2	IX	I_{y}	Moment of inertia of area with respect to y axis
I3	IXY	$I_{x y}$	Product of inertia of area with respect to x and y axes
I4	IGX	$I_{g x}$	$\begin{aligned} & \text { Moment of inertia of area with respect to } \mathrm{x}_{\mathrm{g}} \\ & \text { axis } \end{aligned}$
I5	IGY	I_{gy}	$\begin{aligned} & \text { Moment of inertia of area with respect to } y_{g} \\ & \text { axis } \end{aligned}$

BASIC name	Display name	Mathematical symbol	
I6	IGXY	$I_{y x y}$	Product of inertia of area with respect to and y_{g} axes
J	J	J_{g}	Polar moment of inertia of area around the centroid
K1	KX	k_{x}	Radius of gyration about x axis
K2	KY	k_{y}	Radius of gyration about y axis
L			$x_{n}^{2}+x_{0}^{2}+x_{n} x_{0}$
M			$x_{n}^{2}+x_{0}^{2}$
N			$y_{n}^{2}+y_{o}^{2}+y_{o} y_{n}$
Q			$y_{n}^{2}+y_{o}^{2}$
So			$\sum\left(y_{0}+y_{n}\right)\left(x_{n}-x_{0}\right)$
S1			$\sum\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(x_{n}+x_{0}\right)$
S2			$\sum\left(y_{n}-y_{0}\right)\left(x_{n}^{2}+x_{n} x_{0}+x_{0}^{2}\right)$
S3			$\sum\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(x_{n}^{2}+x_{n} x_{0}+x_{0}^{2}\right)$
S4			$\sum\left(y_{n}-y_{0}\right)\left(x_{n}+x_{0}\right)\left(x_{n}^{2}+x_{0}^{2}\right)$
S5			$\sum\left(x_{n}-x_{0}\right)\left(y_{n}^{2}+y_{n} y_{0}+y_{0}^{2}\right)$
S6			$\sum\left(x_{n}-x_{0}\right)\left(y_{n}+y_{0}\right)\left(y_{n}^{2}+y_{0}^{2}\right)$
S7			$\sum \frac{\left(y_{0} x_{n}-x_{0} y_{n}\right)^{2}\left(x_{n}+x_{0}\right)}{x_{n}-x_{0}}$

BASIC		
name	Display name	Mathe- matical symbol

S8

S9

$$
\sum \frac{\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(y_{n}-y_{0}\right)\left(x_{n}^{2}+x_{n} x_{0}+x_{0}^{2}\right)}{x_{n}-x_{0}}
$$

$$
\sum \frac{\left(y_{n}-y_{0}\right)^{2}\left(x_{n}+x_{0}\right)\left(x_{n}^{2}+x_{0}^{2}\right)}{x_{n}-x_{0}}
$$

T1

T2

$$
\sum\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(y_{n}+y_{0}\right)
$$

$$
\sum\left(y_{0} x_{n}-x_{0} y_{n}\right)\left(y_{n}^{2}+y_{n} y_{0}+y_{0}^{2}\right)
$$

V	VAR	$\mathrm{s}_{\mathrm{x}}^{2}$
$\mathrm{XX}, \mathrm{Y} 1$	$\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$	Variance in the x direction
$\mathrm{X} 2, \mathrm{Y} 2$	$\mathrm{x}_{\mathrm{o}}, \mathrm{y}_{0}$	Coordinates of initial point
$\mathrm{X} 3, \mathrm{Y} 3$	$\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}$	Coordinates of new point
	x, y	Digitizer coordinates or axes
	$\mathrm{x}_{\mathrm{g}}, \mathrm{y}_{\mathrm{g}}$	Coordinates with respect to centroid or axes through centroid

REFERENCES

1. Fairman, Seibert; and Cutshall, Chester S.: Engineering Mechanics. Second ed. John Wiley \& Sons, Inc., 1946.
2. Dixon, Wilfrid J.; and Massey, Frank J. Jr.: Introduction to Statistical Analysis. Second ed. McGraw-Hill Book Co., Inc., 1957.
3. Hewlett-Packard 9830A Calculator 11272B Extended I/O ROM, Operating Manual. Chapter 6, Hewlett-Packard, Calculator Products Division, 1972, pp. 6-3 to 6-4.

FIGURE I. -CLOSED PLANAR GEOMETRIC FIGURE TO BE DIGITIZED, SHOWING DIGITIZER AXES AND CENTROIDAL AXES. THE FIGURE MAY BE ANY SHAPE.

FIGURE 2.-FLOWCHART FOR 'MOMENT'.
RMERODUCIBHITY U ORIGINAL PAGE IS POE

FIGURE 3. - TEST CASE (ALL DIMENSIONS IN INCHES).

