

A New Generation of Innovation

Huyen Dinh, Director of HydroGEN, NREL 9/1/2021, Virtual
Hydrogen Energy Earthshot Summit
Advanced Pathways Panel

NREL/PR-5900-81046

DOE Strategy for Green Hydrogen Challenges

Make

Move

Store

Use

Consortium **Approach**

Crosscutting:

- Analysis
- Manufacturing
- Codes & Standards
- · Prog. Mgmt

HydroGEN is advancing Hydrogen Shot

Website: https://www.h2awsm.org/

target <\$2/kg

HydroGEN is advancing Hydrogen Shot goals by fostering <u>cross-cutting</u> innovation using theory-guided applied materials R&D to advance all emerging water-splitting pathways for hydrogen production

HydroGEN Energy Materials Network (EMN)

https://www.h2awsm.org/capabilities

HydroGEN Materials Capability Network (Materials Theory, Synthesis, Characterization & Analytics)

Diverse HydroGEN Leadership and Community

Director Huyen Dinh (NREL)

Research

LTE Technology Lead

Bryan Pivovar/ Shaun Alia (NREL)

HTE Technology Lead

Gary Groenewold/ Dong Ding (INL)

PEC Technology Lead

Francesca Toma/ Adam Weber (LBNL)

STCH Technology Lead

Tony McDaniel/ Andrea Ambrosini (SNL)

Cross-Cutting Modeling Lead

Tadashi Ogitsu/ Brandon Wood (LLNL)

Ecosystem Enables Collaboration, R&D Acceleration, and Diversity, Equity, and Inclusivity (DEI)

STEM Work Force Development Example

NSF DMREF – DOE EERE HydroGEN Inter-agency Collaboration: PSU – NREL PEC Project

Experimental Validation of Designed Photocatalysts For

Solar Water Splitting

Cathy Badding
DOE SULI Awardee (2018)
Goldwater Scholar (2019)

Catherine Badding,¹ Ismaila Dabo,²
Raymond E. Schaak,³ Héctor D. Abruña¹
¹Chemistry and Chemical Biology, Cornell, ²Materials
Science. Penn State. ³Chemistry. Penn State

Collaboration enabled development of a screening procedure (with co-validation between experiment and theory) to expedite the synthesis, characterization, and testing of the computationally predicted, most attractive materials.

HydroGEN is a nationwide, inter-agency, collaborative consortium working to advance early-stage materials R&D and build a DEI community

Community Approach to Benchmarking and Protocol Development for AWS Technologies

- **%**
- Kathy Ayers, Proton OnSite (LTE)
- **₽**
- Ellen B. Stechel, ASU (STCH);
- **3**/8
- Olga Marina, PNNL (HTE);
- -,0,-
- CX Xiang, Caltech (PEC)

Accomplishments:

- 3 Annual AWS community-wide benchmarking workshops
- 36 test protocols drafted and reviewed
- 40 additional protocols in drafting process
- Engaged with new HydroGEN projects and lab experts
- Disseminated info to AWS community

Development of best practices in materials characterization and benchmarking: critical to accelerate materials discovery and development

"Energy Material Network Data Hubs: Software Platforms for Advancing Collaborative Energy Materials Research"

NREL Authors: Robert White, Kris Munch, Nicholas Wunder, Nalinrat Guba, Kurt Van Allsburg, Huyen Dinh, and collaborators.

Published in: International Journal of Advanced Computer Science and Applications, 12(6), 2021. http://dx.doi.org/10.14569/IJACSA.2021.0120677

- Have proven capable of effectively leveraging geographically dispersed equipment resources and scientific <u>expertise</u>
- Enabled consortium in making significant advancements in their research and disseminate them the community.

Collaboration Results in High Impact Publication and Accelerates All AWS Technologies

G Zheng, TA Pham, S Vanka, G Liu, C Song, J Cooper, Z Mi, T Ogitsu, FM Toma Development of a photoelectrochemically self-improving Si/GaN photocathode for efficient and durable $\rm H_2$ production. Nat. Mater. 20, 1130–1135 (2021). https://doi.org/10.1038/s41563-021-00965-w

Experiments

Theory

Highlight

Understanding the observed exceptional stability (> 3000 hr) is crucial for a commercial use of PEC hydrogen production.

-,0,-

P

Acknowledgements

This work was fully supported by the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Hydrogen and Fuel Cell Technologies Office (HFTO).

Ned Stetson

Katie Randolph

David Peterson

James Vickers

William Gibbons

Eric Miller

Interagency collaboration between NSF-DMREF projects and HFTO HydroGEN EMN John Schlueter, Program Director, NSF-DMREF, Divisions of Materials Research