. | L77
S //6’"7/7>

CT=24350]

A HIGH-ORDER LANGUAGE FOR A SYSTEM OF

CLOSELY COUPLED PROCESSING ELEMENTS

an? B Final Report

NASA Grant NAG-3-232

Stefan Feyock and W. Robert Collins

Department of Computer Science
College of William and Mary

Williamsburg, Virginia 23185

July 1986

—— - — e —— e e

(NASA-CR-177280) A HIGH-ORDEER LANGUAGE DOR ' N86-27930 -
A SYSTEM OF CLOSELY COUPLED PECCESSING
ELEMENTS Final Report {College of William
i, and Mary) 67 p HC AQu/MF 201 CSCL 09B Unclas
G3/61 43226

ABSTRACT

The research reported in this paper was occasioned by the
requirements on part of the Real-Time Digital Simulator (RTDS)
project under way at NASA Lewis Research Center. The RTDS
simulation scheme employs a network of CPUs running lock-step
cycles in the parallel computations of jet airplane simulations.
Their need for a high order 1anguagé (HOL) that would allow
non-experts to write simulation applications and that could be
-implemented on a possibly varying network can best be fulfilled
by using the programming language Ada¥*. We describe how the
simulation problems can be modeled in Ada, how to map a single,
multi-processing Ada program into code for individual
processors, regardless of network reconfiguration, and why scsome
Ada language features are particularly well-sulted to network
simulations.

¥
Ada 1s a trademark of the Department of Defense

Page 1

INTRODUCTION

The need for ever more detailed information about systems
whose sophistication and complexity is continually growing
inevitably places increasingly rigorous demands on the
simulation models on which this information depends. The work
described in this report was occasioned by the efforts of
workers at NASA//Lewis Research Center to develop
high-performance computer hardware to support real-time
simulation of jet engines, both for the purpose of detailled
analysis of system dynamics, and to support the development of
digital controle for such propulsion systems [1)]. The hardware
is structured in the form of a network of communicating
microprocessors running in parallel. The need for a

higher-order language capability for programming such a network

has led to the research described in this report.

HARDWARE CONSIDERATIONS
We will begin by describing the hardware being developed; a

more detailed discussion may be found in [2], on which our

description is based.

Page 2

The development of complex digital electronic controls for
aircraft propulsion systems requires engine simulations that run
in real time and provide a high degree of accuracy and user
interaction. In addition, the wuse of propulsion system
simulations in many hardware-in-the-loop applications adds the

further requirement that these simulations be implemented on

dedicated, portable, and reliable hardware. The advent of
microcomputer technology has made compact, low cost, portable
computing power readily available. Currently available
off-the-shelf microcomputers, however, do not of themselves

possess the nhecessary computational speeds to perform accurate
real-time simulations of complex dynamic systems such as
aircraft propulsion systems. The approach to this problem
adopted by NASA Lewis Research Center in its Real-Time Digital
Simuiator (RTDS) project is fhe use of microcomputers in
parallel. By using parallel processing it i1s possible to retain
the cost, size, and portability advantages of microcomputers and
achleve the accuracy necessary for real-time simulation by

increasing the number of computations per unit time.

As work on this project progressed, it became clear that it
was not necessary for the program model to reflect low—lével
details of the computer hardware on which 1t was to run. By
means of progressive abstraction i1t was possible to create a

high-level model that can be effectively mapped to a variety of

Page 3

hardware configurations, ranging from the lock-step regime

originally envisioned to the more sophisticated data-flilow
architecture that 1is currently being investigated. To lay the
groundwork, we first present the hardware plan as originally
conceived, and then indicate how it can be abstracted to obtain

a more general model of network computation.

The original structure of the simulator is shown in Figure 1
(from [2]). The core of the system consists of a transfer
schema which synchronizes up to 10 16-bit processing elements
(PEs) on a high-speed transfer bus. All but two of the PEs
perform simulation computations. One of the remaining PEs is of
the same architecture but dedicated to input/output functions.
The last PE is a special-purpose processor to link low—épeed.
operator-type functions with the high—speed simulator core. The

Front End Processor provides an operator interface as well as

handling of peripheral communications and other simulator
overhead, such as downloading of programs to the simulator's
PEs.

Page U

e |,
) .
HOST -
LOMPUT o] NPUT/
~jourrwt | &[]
[aop)
i
PROGRAM DOWNLINK |
moNT-D0 | . REAL-TIME
procEssoR | €< 2 S I S
GEP) (Rl?xN) =
B
vy
2
&
=
1 Pt (:) g .
‘ § g |
; wv .
E '
;‘EJ' ALOPPY - . s
1 8OARD DISK 2 .
= g]
5y E .| Pt ¢:’
i

Figure 1

The simulator operation 1s separated into two basic cycles -
a compute cycle and a transfer cycie. During the compute cyéle.
each PE performs the numerical computations for a pre-defined
part of the simulator task. Upon completion of these

computations, the PE sets a transfer flag to indicate that it is

Page 5

ready to enter the transfer cycle. The transfer schema
initiates a transfer cycle when all PEs have set their transfer
flags. Opérator control over the simulator is accomplished via
the Front-End Processor and the Real-Time Executive. Such
functions as simulator programming, mode control, operator
advisories, and commands are provided. The Front-End Processor
handles the peripheral communications for the simulator (CRT,
keyboard, floppy disk, etec.). There 1is also a host computer
interface which allows uplinking and downlinking of data to and

from the host.

Page 6

The Abstract Model

It is immediately clear that several asgpects of this
configuration can be generalized: there is no reason that the
model should remain specific to, say. ten 16-bit processors.

The step to a system of arbitrary processors undergoing a
synchronized series of compute and data transfer cycles under
the supervision of a transfer schema is not difficult to make.
It is less obvious, however, that the transfer schema need not
be an éctual plece of hardware, but may be virtual: the
embodiment within the program model of the data transfer
discipline that is in effect. Once this has been realized, it

becomes clear that the requirement of lock-step cycles can be

relaxed: the program model has been abstracted to a set of
modules specifying the code for each processor, and the
discipline for transferring data among them. A data flow

architecture 1s thus among the possible instantiations of this
model; the data transfer discipline in this case becomes
- begin computation when all required input has arrived;
- transmit data to all specified recipients when computation
of this data is complete.
It is important to keep this "virtuality" of the transfer schema

in mind during the subsequent discussion.

Page 7

PROGRAMMING LANGUAGE CONSIDERATIONS

The use of programming languages of an abstraction level
higher than that of assembly language is now so widespread both
for systems and applications program development that it is
difficult to recall how controversial such use was until recent
Years. The ability of the aééembly language programmer to
maximize program efficiency by means of direct control of
machine operations was deemed more important than the
convenience and programming speed gained by use of high-order

programming languages (HOLs).

The change in programming practice in recent years leading
away from this state of affairs 1s well known. Hardware costs

have dropped drastically, both in absolute terms and with

respect to software development costs. Software systems have
increased in size and complexity, emphasizing the need for code
clarity and maintainability. Finally, the development of

integrated microelectronic digital circuitry has led to the
widespread use of embedded computer systems in military and
aerospace environments that require ' absolute software

reliability.

The result of these developments has been to make the use of

HOLs standard practice in an overwhelming number of software

Page 8

development efforts. The urgency of the requirement for
reliable and maintainable code has prod§ced intensive research
efforts in the area of programming languages and systems, with
the result that modern HOLs not only encourage and facilitate
the development of high-quality software while achieving
effipiency levels competetive with hand-coded assembly language
programs, but can be implemented expeditiously by means of the
powerful compiler construction tools that have been developed in
recent years. The resulting availability of (cross-)compilers
has made programming even quite rudimentary microcomputers in a

HOL common practice.

The advent of networks of microcomputers, however, has
resulted in a software lag once again. While compilers can be
generated for single machines quite rapidly, each configuration

of a network is logically eguivalent to a different computer,
requiring a new compiler to distribute code among the nodes. An
additional problem is the dependence of the HOL itself upon the
network. Allowing the different microcomputers to communicate
among each other is a hardware implementation problem. How the
HOL facilitates the generation of efficient code to provide for
rapid communication and synchronous behavior is a software

problem which is Jjust beginning to be addressed.

Page 9

RESEARCH OBJECTIVES

Any HOL being considered has to satisfy a host of constraints
and requirements necessitated by the general properties of
simulation practices and the particular microcomputer network.
Some of these requirements are:

1. The HOL must be implementable on any computer or
combination of computers. AIn particular, it is useful to
be able to run the simulation on a uniprocessor.

2. The HOL must have the capability for specifying
communicating parallel processes,

3. The HOL must suppbrt the special requirements of

interactive-mode simulations applications.

An evaluation of existing HOLs led to the choice of Ada [3]
as best suitea to these requirements. A discussion of this
evaluation and the considerations influencing this decision is
contained in [4]. In the present report we describe

A. A determination of suitable means of mapping the abstract

structures of Ada into the hardware configuration.

B. A precompiler that performs this mapping.

C. Advantages of using Ada as the programming vehicle for

this project.

Page 10

PROGRAMMING MODEL REQUIREMENTS

A consideration in the esuitability of Adsa for the RTDS
project 1s how well the language allows the expression of a good
programming model of the underlying physical reality. We
imposed several constraints on the programming model itself:

1. The program model must be executable directly on a

uniprocessor. :

2. The program model must be as simple and natural as
possible, since it must be readily programmed by
non-experts and should not, therefore, involve

complicated synchronization concepts.

3. The program model must be safe, that is, modules
contained within should not be able to tamper with or be
affected by other modules' data or execution.

a, The program model should be standardized sufficilently in
order that it can easily be mapped to the individual
programs suitable for the nodes of speciflie distribufed

networks.

Any solution to the problem of modeling sa simulator network
in terms of Ada must fulfill the basic requirements imposed by

the application: it must be efficient and it must be independent

of the particular structure of the network. Ouyr approach was to
tailor the program to reflect the structure of the problem, not
of the hardware. Since the hardware itself is presumably

Page 11

a

designed with efficient execution of this class of problems in
mind, efficiency is a natural consequence of thilis approach. Our
solution fulfills the machine-independence requirement as well:
the resulting program can be run equally well on a time-slicing
uniprocessor, and, by employing the techniques to be discussed,

on the network that 1s the ultimate target machine.

As indicated, our approachh is based on having program
structure mirror problem structure as closely as possible. A
representative case employs concurrent processes running in

parallel to perform the requisite computations, transmit data to

each other when done, and then resume. Our Ada model program

follows this structure exactly: an independent concurrent
program unit corresponds to each independent process of the
problem, and these units follow the compute/transfer cycle just

outlined.

A central 1idea of our model was to collect all information
pertaining to any one processor into a coherent, self-contained
module, allowing a clear gnd elegant notation for specifying
both comﬁutation and data transfers. As will be seen, the Ada
package concept appears tailor-made for this purpose, and the

Ada task concept is a natural implementation of concurrency.

Page 12

Ada Tasks

Processes that can execute concurrently are specified in Ada

by tasks. The process specified by a task begins execution when
the task's declarations are elaborated; in this sense tasks
resemble main programs rather than subroutines. Concurrently

active tasks can communicate with each other by means of entry
calls. An entry of a task 1s specified by means of an accept
statement, which has the (simplified) syntax

accept <entry> (<parameters>) do

<statement_sequence>
end;

A task T1 can call an entry E in another task T2 by specifying
the name of the called task and entry:

T2.E;
The effect of such a call is to force process synchronization:
if T2 has not reached the corresponding

accept E;
statement, then T1 must Qqueue up until T2 does. If, on the
other hand, T2 reaches the

accept E;
statement before another task has called entry E, T2 must w?it

until an entry call to this entry occurs. Once either condition

is satisfied, a rendesvous takes place: the code specified in
<statement_sequehnce> 1s executed, with inter-task data transfer

occurring via the entry parameters. Upon completion of the

Page 13

rendesvous the tasks resume independent concurrent operation.

Tasks are ususally declared as a two-part entity in Ada

programs: the task specification and the task body. The task

specification specifies the names of the task's entries and the
names and types of the paramenters. It constitutes at once sa
"forward declaration'" and a user interface for the subsequent

>

task body.

The task body, in turn, contains the code specifying the
process's activity. OQutside entities may in general communicate
with this code sélely via entries; the task body 1s closed to
them otherwise. Figure 6 gives an example of a task

specification, while Figure 7 contains the corresponding body.

Ada Packages

Data/Process Encapsulation.

N

The prospect of multiple processes running in parallel

involves certain problems with respect to data access. In
particular, obvious difficulties arise 1f two processes are
allowed to update the same data simultaneously, or if one tfies
fo read data that another 41is updating. The need to 1impose

discipline on such contention led to the concept of data

encapsulation. Data subject to contention 1is placed 1inside

Page 114

programming language constructs that force processes to access

the data using a set of strictly circumscribed functions.

Packages are the encapsulation mechanism provided by Ada.
Program resources may be collected into a coherent unit by means
of this facility, and made available to tasks and subprograms
that require access to these resources. It is important to note’
that the ecapsulated resources may include not only type and

data declarations but also subprograms and tasks.

As is the case with other Ada program units, prackages are

specified in two parts: the package specification and the

package body. The package specification contains all the

information that 1s to be accessible ("visible") to the user, in
lparticular the data he may manipulate, and the specifications of
subprograms and tasks he may reference. It should be emphasised
that for tasks it 1s only the task entries that are specified in
the task specification part, which in turn is the only part of
the task that 1s present in the package specification. Figure 4

illustrates a package specification.

A package body contains all the machinery needed to implement

the subprograms and tasks whose specifications are to be found
in the package specification: the subprogram and task bodies, as
well as any variables and types required by this machinery.

Constructs within a package body are in general invisible to the

Page 15

user, who may access only what has been made available to him in
the package specification. Figure 5 depicts a package body
containing the task body for CODE; it also 1illustrates the
mechanism for making a package available to a pro gram unit: the
with statement. In this case it is the package TRANSFER_SCHEMA

that is made available to package body FAN_INLET.

THE ADA MODEL

The Ada model combines the two distinct Ada constructs, tasks
and packages, for the two programming requirements of
concurrency and efficient data transfer. The code for each of
the hardware processing elements is specified by an Ada task,

which we call the hardware task pertaining to that processor.

Using packages and visibility commands, the flow of data between
concurrent processes can be specified and controlled by a single

process, called the transfer schema. ConseqQuently, if the

transfer schema is designed and programmed correctly, then all

communications are correct.

As indicated above, the best way to model the processing
elements is to use a single package for each processing elemént.
The package body (normally invisible to other programming
modules) contains the hardware task which corresponds to the

code to be executed on the processing element. The package

Page 16

specification (or visgible part) contains all the wvariables
needed for 1import/export and the task entries needed for
synchronization. The major benefit of this standardization and
data hiding is that the conversion of the model to a program

suitable for a network is made tractable.

MAPPING THE MODEL TO THE HARDWARE

Many of the advantages of using a suitable HOL in distributed
programming will be lost unless a good way is found to map the
programming model constructed in the HOL to the individual nodes
in the hardware network. There does not exist any compiler that

will translate abstract programming models into code for any

RTDS network. Such a compiler would be expensive to construct
and would have limited utility, for any change to the network
would necessitate major changes in the compiler. If, however, a

single program (or compilation) is written for a network and a
series of programs, one for each node in the network, is
desired, then a solution is to convert the program text for the
whole network into a series of individual program texts suitable
for each processor. At that point a standard compiler for the
HOL for the individual processor may be employed to derive code

for the processor. The conversion from =&a single text to

multiple texts is accomplished by a program called a
precompiler.

Page 17

The elegance, utility, and power of the Ada model
synergistically coupled with especially useful Ada constructs
argue convincing;y in favor of a precompiler with Ada source and
target texts as the best solution po the HOL-network problem.

The expected proliferation of Ada compilers also makes the

Ada-to-Ada precompiler solution attractive, obviating the
construction of code generators for each kind of target
computer. There will be moré Ada compilers available for
different processors than for any other real-time language. The

Ada language itself is particularly well-suited to the
precompiler solution. One of Ada's useful features in

bare-computer, real-time computing is the representation

specification. The programmer is allowed to 1insert machine

dependencies into Ada code: for, example, he may specify the
absolute address of variables or insert assembly language code.
The ability to reach through the HOL virtual computer to the
actual hardware is generally considered harmful because of
potential programmer abuse. However, applications programmers
will not be employing these representation specifications; the
precompiler will use them to convert rendezvous code and other

machine~dependent code 1into the c¢ode necessary to effect bus

communications. Bus communication usually involves knowing
absolute addresses and manipulating bits, both of which.are
difficult or impossible in most HOLs. However, the precompiler
will have no trouble inserting such code, and will still produce

an Ada program rather than an assembly language program.

Page 18

A second feature of Ada well-suited to the precompiler
solution is the pragma, or compiller directive. Programmers may
use pragmas almost anywhere in Ada text for almost any purpose.
Some pragmas are built in the language, for example, the pragma

OPTIMIZE, which takes one of two parameters, TIME or SPACE.

Other pragmas are allowed by particular implementations. If an
implementation does not recoghnize a pragmsa, the pragma is

ignored. We intend that the Ada program model contain pragmas
(for example, CODE_MAP) meant for the precompiler to aid the
precompiler in its execution. These same pragmas will have no
effect when compiled by a uniprocessor compiler, thus allowing
the exact same text to work on a wuniprocessor direétly (with

eimulated parallelism) or on a network after precompiling.

THE OPERATION OF THE PRECOMPILER

The precompller was generated from a LALR(1) grammar for Ada
by the PARGEN parser generator component of the Mystro
Translator Writing System {51 developed at the College of
William and Mary. It employs two passes to delineate preciﬁely
which variables are intended for transfer, which variables must
be placed in absolute memory locations, which constrﬁcts
correspond to the hardware tasks, and so on. Ites final pass
produces a series of text files corresponding to uniprocessor

Ada programs.

Page 19

The precompiler operates on two assumptions. The first is
that the codihg conventions dictated by the programming model
are followed. For example, each separate processing element must
appear in a distinect package, the first task in that package is
the code for the element, all interprocess communication is done
via calls to the transfer controller package, etc. These
conventions are tailored to the }roblem to be solved. Changes to
the conventions may necessitate changes to the precompiler. The
precompiler gan therefore only be used in simulations which
conform to the programming model. This is not unduly
restrictive, since the programming model is general enhough to

encompass a large class of simulations.

The second major assumption is that all processing elements
must gsynchronize after each computation cycle. This
synchronicity 1s exploited to simplify the structure of the
transfer controller package and the loops in. the resulting

single processor code.

The precompiler splits a multitasking program which satisfies
the programming model into a set of single-processor programs.

The two conceptual steps the translator must perform are:

Determine the names of packages that represent processing

elements and the transfer controller.

Page 20

For each processor package that representeg a processing
element, create a procedure to run on a separate processor.
This procedure is formed from information obtained from -the

original processor package and the transfer controller.

The collection of separate programs (Ada procedurecs) produced
by the precompiler must be functionally equivalent to the
original multitasking program. As has been described above, the
original package used to represent a processing element
communicates its values to other packages via a package called
the transfer controller. After splitting, communication must be
accomplished via a bﬁs. The transfer logic resident in the
transfer controller must thus be distributed to the split
procedures. This 1is accomplished by the precompiler replacing
walts for the transfer controller by calls to a bus paékage.
followed Dby a wait in a busy loop. These calls explicitly pass

or receive the values to be transferred and the destination

address.
PRECOMPILER EXAMPLES
Details of how these steps are performed are given in a
subsequent section. We first illustrate these steps for two
sample processing element packages A and B, and a transfer

controller package called TRANSFER_CONTROLLER. These packages

Page 21

are -‘identified to the precompiler via the pragma compiler
directive. We then show the effect of the precompiler on the fan

inlet example of Figures 4, 5, 6, and 7.

Here 1is the original Ada program. This program will run
correctly on a uniprocessor, or can be processed by the

precompiler to produce the split procedures shown below.

pragma code_map(internal => A, actual => "“"CPU_A");:

pragma code_map(internal => B, actual => "“"CPU_B");

-—- the above pragmas tell the precompiler which package

-~ ("hardware task") will be mapped to which actual machine

pragma transfer (TRANSFER_CONTROLLER);
-~ This pragma tells the transfer controller that the data

-- transfers are sgspecified in the package named TRANSFER_CONTROLLER

package A is
X, ¥: integer := 1; -- moved to split procedure

task A_code is

entry START_UP; -- replaced by precompiler
entry RESUME; -- replaced by precompliler
end A_CODE;
end A;

package body A is

task body A_CODE is

begin
accept START_UP; -- replaced by precompiler
loop
X 1= X + y; —-- or any arbitrary computation
TRANSFER_CONTROLLER.SIGNAL; -- signal completion
accept RESUME; -- replaced by precompiler

end loop;
end A_CODE;
end A;

Figure 2.8

Page 22

package B is
X, ¥: integer := 1; -
task B_code is
entry START_UP; -—--
entry RESUME; -
end B_CODE;
end B;

package body B is

task body B_CODE is
begin
accept START_UP; -
loop
X i= X + ¥y, --
accept RESUME; -
end loop:
end B_CODE;
end B;

moved to split procedure

replaced by precompiler
replaced by precompiler

replaced by precompiler

or any arbitrary computation
TRANSFER_CONTROLLER.SIGNAL; --

signal completion
replaced by precompiler

Figure 2.Db

Page 23

task TRANSFER_CONTROLLER 1is
entry SIGNAL;
end TRANSFER_CONTROLLER;

task body TRANSFER_CONTROLLER 1is

No_of_processors: constant = 2;
Signal_count: integer range 0 .. No_of_processors;
begin

-— start up both processes:
A.START_UP;
B.START_UP.

loop N
Signal_count := No_of_prbcessors:
while Signal_count > 0 loop
accept SIGNAL;
Signal_count := Signhal_count - 1;
end loop; ~-- busy wait for everybody to finish
A,y '= B.X; -- moved to split procedure
B.y := A.xXx; -- moved to split procedure
A_CODE.RESUME;
B_CODE.RESUME;
end loop; !
end TRANSFER_CONTROLLER;

Figure 2.c

The packages shown in Figures 2.a, b, and ¢ will run
perfectly well on a uniprocessor, simulating concurrency and

allowing the programs in question to be debugged. When

desired, they can be mapped by the precompiler to Ada code
that will run on separate machines, communicating wvia a
hardware bus. The precompiler produces as output the

following Ada programs:

Page 21

with BUS; use BUS;
procedure A 1is
X, ¥: integer := 1; -- moved from original package

begin
-- the following loop is created and inserted by
-- the precompiler
loop
exit when INPUT_READY;
-- busy loop, waiting for signal
-- corresponds to accept START_UP in original
end loop;

loop
MOVE(TO => y, FROM => x_LOC);
-- MOVE is a bus package procedure. This call is
-— c¢reated and inserted by the precompiler

X 1= X + y;

-— TRANSFER 1s a bus package procedure. This call is
-- created and inserted by the precompiler
TRANSFER(VALUE => x, SEND_TO => B, ADDRESS => y_LOC):

-~ the following loop 1s created and inserted by
-- the precompiler
loop
exit when INPUT_READY:
-- busy loop, waiting for signal
-—- corresponde to asccept RESUME in original
end loop;
end loop:
end A;

Figure 3.a

Page 25

The procedure for B is similar:

procedure B is
X, ¥: integer := 1

begin
loop
exit when INPUT_READY;
-- busy loop, waiting for signal
-—- corresponds to accept START_UP in original
end loop;

loop
MOVE(TO => y, FROM => x_LOC);
X 1= X + Y3
loop

exit when INPUT_READY;
~- busy loop, walting for signal
~~- corresponds to accept RESUME in original
end loop:
TRANSFER(VALUE => x, SEND_TO => A, ADDRESS => y_LOC);
end loop;

end B;

Fig 'vre 3.Db

Page 26

A JET ENGINE SIMULATION EXAMPLE

We now give a more realistic example, representing a portion
of an s&actual Jet engine simulation. Suppose that the code for
the FAN_INLET computations of a jet engine simulation is to be
assigned to hardware processor 1. This assignment is specified
by means 6f the pragma shown in Figure b, The code depilicted
there corresponds to the visible part of the FAN_INLET routine.
The entries START_UP and RESUME are needed for synchronization.
When either is called (like a subroutine), the execution of the
code for FAN_INLET can start or resume. Each of these package

specifications can and should be compiled separately.

Page 27

pragma CODE_MAP(INTERNAL => FAN_INLET,
ACTUAL => "processor 1");
-- Informs the precompiler that
-~ code for FAN_INLET will be
-- on CPU node processor 1
pragma transfer (TRANSFER_SCHEMA);
package FAN_INLET is
-— Here are the declarations of
-- the transfer variables.
-—- They will need addresses for
-—- bus transfer and the data base:
A, B, C : VECTOR; i

-- Here 1s the task specification
~- with synchronization entries:

task CODE is
entry START_UP;
entry RESUME;
end CODE;

end FAN_INLET;
Figure 4

The Ada compilation unit which contains the code for
FAN_INLET 1s- given in Figure 5. The with statement is a
.directive to the compiler that this package body should be
compiled with the specification of thé transfer schema task.
This is necessary since entry SIGNAL of the transfer schema is
called. The body of the package consists of the task body only.
The task body contains three rendezvous which are the Ada

constructs used for communications between tasks.

Page 28

wlith TRANSFER_SCHEMA;
package body FAN_INLET is
-—- Here 1is the body of the task:

task body CODE is

-- Here are local declarations

-- not involved with data transfer.
~-— These will need addrecses:
TEMP : VECTOR;

begin
accept START_UP;
loop
TEMP : A;
A :t= A + B
B t= TEMP - C;

TRANSFER_SCHEMA.SIGNAL;
accept RESUME;
end loop:
end CODE;
end FAN_INLET;

Figure 5

The text for CODE has these semantics: Task CODE is suspended
until it receives a call (from the transfer schema) to the entry
START_UP., The task then enters an infinite loop which consists
of its calculations, a call to an entry of the transfer schema
indicating that its <calculations are done and 1its export
variables are ready for export, and suspension until 1t receives
a call (from the transfer schema) to the entry RESUME indicating
that the variables necessary for the next cycle have been

imported.

As can be seen from the models for the hardware processing

elements, a critical cog in the overall model is the transfer

Page 29

schema task. Its specification, given in Figure 6, must be
compiled with the task bodies described in Figure 5. The body
of TRANSFER_SCHEMA, given in Figure 7, must be compiled with the
package specifications corresponding to the processing elements
since the transfer schema task must be aware of the
import/export variables and the synchronization entries.

task TRANSFER_SCHEMA is

entry SIGNAL;
end TRANSFER_SCHEMA;

Figure 6

The._ body of, the transfer schema contains two local
declarations: a constant TOTAL indicating the total number of
processing elements to be synchronized and a counter variable
COUNT to tell when all the processing elements have completed

their calculatioﬁs.

Page 30

with FAN_INLET;
with REAR_DUCT;
with FORWARD_SENSOR;

task body TRANSFER_SCHEMA is

No_of_processors : constant := 3;
Signal_count : INTEGER range 0..No_of_processors;
begin

-~ start up all three processes:
FAN_INLET.CODE.START_UP;
REAR_DUCT.CODE., START_UP;
FORWARD_SENSOR. CODE. START_UP;

loop
Signal_count := No_of_processors:;
while Signal_count > 0 loop
accept SIGNAL;

Signal_count := Signal_count - 1; .
end loop; ~-- busy wait for everybody to finish
FORWARD_SENSOR.W := FAN_INLET. A;
REAR_DUCT. X ° := FAN_INLET.C;

FAN_INLET. CODE.RESUME;
REAR_DUCT. CODE. RESUME;
FORWARD_SENSOR.CODE. RESUME;

end loop;
end TRANSFER_SCHEMA;

Figure 7

The code for the transfer schema has these semantics: all the

hardware tasks are started by calls to the START_UP entry in

each hardware task. Then the transfer schema enters an infinite

loop in which it awaits entry calls from the hardware

indicating that they have finished their computations.
"accept SIGNAL" in the transfer schema 1is matched with
"TRANSFER_SCHEMA.SIGNAL" entry calls in the tasks

rendezvous.

Page 31

tasks

The

the

for

After all the tasks have signaled completion, the transfer

schema transfers the variables.
FORWARD_SENSOR. W := FAN_INLET.A

means that the value of variable A in FAN_INLET 1is to be stored
in the location of the wvariable W 1in FORWARD_SENSOR. In a
uniprocessor, this is a straightforward assignment. In a
network, the assignment will beibonverted to instructions (calls
to a bus handler package) to allow the value of A to be
communicated by the bus to the location of W. After the
variables have been transferred, the transfer schema signals
each hardware task to resume execution by calling the RESUME
entry of the task. Recall that the tasks have been suspended
while the variables were transferéd because of the "accept
RESUME" gstatements. This completes the cycle of execution 1in

the transfer schema.

The Ada program model for a proqessing element in Figures 14
and 5 will be converted by the precompiler to the main program
given 1in Figure 8. The +two busy loops are broken either by
interrupts or a switched bit (depending on the nature of the bus
communications) to synchronize the startup and the import of
data. The system 1library function INPUT_READY may be céded
independently of the precompiler to accomodate changes in the
network configuration or basic design. The system library

procedures MOVE and TRANSFER control the moving of data from the

Page 32

busg depot to their memory locations and the moving of data from
memory to the bus depot and then through the bus itself. The
code for these system library routines may be .high—level Ada
code, assembly language, a call to a herdware procedure, or a
combination of these that moves the export variables to the bus
depot and signals that the import variables have all arrived,
The three routines are located in the package BUS, and may Dbe
named directly because of the "with'" and "use" c¢lauses
preceeding the main program FAN_INLET. The rest of the code

mimices that of the original hardware task.

Page 33

with BUS; use BUS;
procedure FAN_INLET is
A, B, C : VECTOR;
for A use at 16#A0#;:
for B use at 16#A8#:
for C use at 16#BO#;
for TEMP use at 16#B8#:;
-— 16# indicates that the
-- addresses are hexadecimal

begin .
-- the following loop 1s created and inserted
-~ the precompiler
loop
exit when INPUT_READY;
-- Busy loop, waiting for signal
-~ that input arrived at depot.
~-- Corresponds to START_UP.
end loop;

loop

-~ Move variables from bus depot
-~ to their memory locations.
MOVE(TO => A, FROM => A_LOC);
MOVE(TO => B, FROM => B_LOC);
MOVE(TO => C, FROM => C_LOC):

TEMP := A;
A := A + B;
B := TEMP -~ C;

-—- The value of A will be sent
-- to FORWARD_SENSOR to be
-—- stored in the bus depot
~- for variable W there.
TRANSFER(VALUE => A,
SEND_TO => FORWARD_SENSOR,
ADDRESS => W_LOC);
TRANSFER(VALUE => B,
SEND_TO => REAR_DUCT,
ADDRESS => X_LOC);

Page 34

-- the following loop is created and inserted by
-- the precompiler
loop
exit when INPUT_READY;
-- Corresponds to RESUME in original
end loop;
end loop;
end FAN_INLET:

Figure 8

PRECOMPILER CONSTRUCTION TOOLS

The MYSTRO translator writing system [5] was used to
implement the precompiler. Many of the problems encountered in
constructing compilers or, ;n this case, a precompiller, admizt
the same solutions regardless of the specific language being
translated. MYSTRO employs several skeleton ' compilers
appropriate to most programming languages. Except for minor,
clearly-marked areas, ahy skeleton's code can be used to produce
a complete listing, read lines for parsing, produce symbolic
cross~references, and so on. The particular skeleton chosen for
this project also 1includes hashing routines and multi-level

error recovery.

The initial precompiler was generated by the MYSTRO parser

generator PARGEN, whiech computed and merged parse tables for a
complete Ada grammar into the skeleton compiler. Pascal
semantics were included in the input grammar, and automatically
inserted into the SYNTHESIZE procedure, which associates

semantics with the appropriate syntax.

Page 35

U

OPERATION OF THE PRECOMPILER

In order to split the original multiprocessing input program

into separate uniprocessing programs that will run on the nodes

of the network, the precompiler makes two pagses; an
information-gathering first pass, and an output second pass.
While gathering information, the precompiler must Know which

packages represent processing elements and mark sections of
their code. It does this by creating, as part of. its semanticse
for the CODE_MAP bragma, a 1list of the packages that represent
processing elements. Each element of this list holds information

needed to split the program into the intended separate'programs.

Once a processing element package specification is found, the
location of the start of the specification 1s noted 1in that
package's descriptor. The first task specification encountered
after processing the package specification designator is marked
in the descriptor and designates the end of informaticn needed
from the package specification. At this point the precompiler
also records 1in the descriptor the names of all the entries

declared within the nested task specification.
When the body of a processing element package is found, the
package descriptor 1is stacked to allow for package nesting, thus

preventing erroneous location information. The tasKk body's

Page 36

location incside the package body 1is recorded in that package's
descriptor. This task body corresponds to the nested task
specification found in the package specification. Inside thié
task body, the loop and end loop for the outermost loop are both
recorded in the descriptor to allow for the transfer of bus
variables in and out of the simulated processor. Throughout the
task body, entry names found in accept statements are compared
with the entry 1list within *the package's descriptor. The
locations of those that match are recorded and the rest ignored.
These accept statements will be converted to busy loops in the
rewriting phase of the precompiler. The end of the package body
is also recorded as the end of the information needed to

complete this processing element package.

Informatiqn regarding the bus variables and the synchronizing
entries must also be gathered during this first pass; they are
found inside the specification and body of the transfer
controller. Several lists are created during the first pass:
entries declared within the transfer controller's specification,
variables to be moved into each processor at each loop iteration
within the processor, and variables to be transferred to the bus
depot for use in another processor at the end of each loop

iteration.

The information-gathering first pass is by far the more

complex of the two passes. It 1is a straightforward matter to

rPage 37

separate the file containing the input program 1into several

files containing processing element programs.

The complexity of the first pass is mitigated by the fact
that the precompiler is syntax-directed. The Ada grammar
consists of nearly five hundred rules, only a small portion of
which affect the precompiler's task. Each rule is 1like a small
program; the programmer neéd only concern himself with
developing correct semantics for that rule and pascsing
information through the semantics stack to other rules. For
example, the rule

<pragma> ::= pragma <identifier>
can be used to associate with CODE_MAP semantics that enquire
about the identifier. In fact, the SYNTHESIZE procedure contains

the following case:

’

(* <pragma> ::= pragma <identifier> *)

if <identifier>.1id = 'CODE_MAP ' then
<pragma>.flag := true

else
<pragma>.flag := false;

MYSTRO contains utilities to translate notation such as

<identifier>.1d into the appropriate stack references.

Page 38

ADVANTAGES OF ADA

In addition to representation specifications and pragmas, Ada
has a variety of programming features especially suited to
interactive-mode simulation applications. Some of these are

described below.

Safety in the Multi-Programming Mode. Ada encourages two of

the main software engineering fechniques to facilitate the rapid
construction of reliable software for large and complex software
projects. These two technigues, data encapsulation and safe
separate compilation, are employed in the packages that mimic
network nodes. The package body (normally invisible to other
programming modules) conte'ns the hardware task which
corresponds to the code t be executed on the processing
element. The package sgspec fication (or visible part) contains
all the variables needed fo: import/export and the task entries
needed for synchronizaetio:. Finally, use of Ada separate
compilation facilities guarantees that processing elements
cannot communicate directly with each other, that |is, a
programmer cannot make use of the "innards" of o©ne processing.
element when describing the behavior of another. This frees'the
programmer of the responsibility of effecting the Dbus
communications directly and also allows the Ada programs to run

on uniprocessors without any change 1in code. Such orthogonality

Page 39

allows programmers and engineers to concentrate on individual
processing element correctness and efficiency without worrying

about ripple effects on the other processing elements.

Abstract Data Types. Ada's abstract data type capaebility

diminishes the distance between the programming model and the
original simulation applications. Through the generic and
package constructs, new data tybes specific to the application
can be created together with the operations necessary to
manipulate these types. These operations are allowed to have
standard forms such as +, -, <, and so on. For example, in a
package specification we may create a type VECTOR together with
plus operations (all denoted by +) for various combinations or
scalar and vector addition. .It is expected that many packages
particularly suited.to real-time simulation applications will be
‘constructed and sold by conmercial vendors (perhaps in Ada
Package Stores). Conseguently program systems may be partially
built with off-the-shelf components instead of being

hand-crafted each time.

Real-Time Constructs. Ada heas a variety of real-time

features which allow real-time constraints to be employed 1n
simulation applications. These include the ability. to
deactivate a task for a specified period of time, as well as
wait a specified time before aborting a prospective rendezvous.

Moreover, a predeclared package CALENDAR allows arithmetic on

Page 40

wall-clock times and durations, as well as access to the system
clock. One specific application is to monitor lock-step

compute-data cycles.

CONCLUSION

The c¢concept of implementing a higher-order language on a
computer network by means of a precompiler has proven to Dbe
extremely fruitful. Not only was 1t possible to map programs
for the original lock-step network design onto the hardware, but
it now appears feasible to apply this.technique to more general
network designs. Moreover, many of the system facilities
required for interactive-mode simulation can be implemented by
means of precompillation. Our research has demonstrated the
usefulness of this approach both on the original hardware design

and on networks of more general structure.

Page 41

REFERENCES

Krosel, Susan M. and Milner, Edward J., "Application of
Integration Algorithms in a Parallel Processing Environment
for the Simulation of Jet Engines", Proceedings of the 15th

-

Annual Simulation Symposium, Tampa, March 1982, pp. 121-144.

Blech, Richard A. and Arpasi, Dale J., ""An Approach to
Real-Time Simulation using Parallel Processing', NASA Lewis

Research Center, Cleveland, Ohio.

Ichbiah, Jean et al., Reference Manual for the Ada
Programming Language, United States Department of Defense,

July, 1980.

Feyock, Stefan and Collins, W. Robert, "*Ada and
Multi-processor Real-time Simulation", Proceedings of the

16th Annual Simulation Symposium, Tampa, March 1983.
Collins, W. Robert and Noonan, Robert E., The Mystro Parser

Generator User's Manual, Version 6.3, College of William and

Mary, Williamsburg, Virginia, October 1982.

Page U2

APPENDIX

EXAMPLE PRECOMPILER RUNS

ORIGINAL PROGRAM INPUT TO PRECOMPILER

The following program is the result of translating a sample
FORTRAN simulation program furnished by NASA/Lewis into Ada. As
can be seen, the format of thig Ada program conforms to the Ada
model described in the report. It consists of tasks A, B, C, D,
and IOP, and a TRANSFER_CONTROLLER to move data among them. This
program will run on any machine with a full Ada compiler. It was
processed b& the precompiler, which split it into separate

procedures intended to run on the nodes of a network.

Al

Collase

Lina~s

PRIV, I SOE VI SR SORY SRV CTRE N BT SR VITER SN VPR VRN ORI VRIS PR Y e DR VITRS S VY BN AV

for F* Lo) L

s

g

G (g (O 100 G0 Gar 60 T L BNV B PO TO N RO PO N RS PO 0 -0 30 6t -8 s pt pa B2 e

(R IENY BE B A

®¢ 88 6e OS5 se ¢ 0c 66 N6 66 G6 0o Gs G4 @¢ S 66 S0 00 S0 S Ge 0o 8o 6% e oo

- ORIGINAL PAGE iS

OF POOR QUALITY

14336:43

"IgP_thing3®) 3

OR

-

of William snd Mrry Sourca Liztin 27711784
Saurce Line T T ’
prazma codz_mag (internal => &, ~ctual => "cou_A"
pragma coda_map (actuzl => "erou 1Yy internal => 8
gratus cods_map {(Mccu_C",y, internal => ()
pragaa code_mar (internzal => 3,"zpu_020");
pra3aa cods_map (intern»l => I069%, actual =>
pragns transfar (TRANSFIR_CONTROLLER)S
paclkage YIOT2RI s

typz CCOSOTMATE is (X, Y):
typa VECTOR'is'arFé? (CSORTINATE) of FLOAT:
ORIGIN ¢ constan®t YECLTAR = (X => 0.0e Y => 0.0);
function "+ (£, 5 ! VILTI?) ~eturn VECTOR:S
function "=" (Z, T t VELTII) return VECTORS
tunction "= (LY TL2ATY S0 VECTLR) raturn VECT
snd YECTIRSY
Eack=sge hody VEITIRS is

tfunction "+" (2, 02 ¢ VILT22) return VICTOR is
besin

raturn (X => C0X) + 2(X), ¥ => CCY) + J3(Y)):
2na "My
functicen M- (O, 2T U VEITI®) return VZOITGR is
D23in

return (X s> C(X) = 2(X)y, Y => LYY = D(Y))?
epcl LL I | g
Tunction e (T 1 TLTXTY I 2 VECT2?) raturn VECTOR is
nzzin

ratu-n (X => € SUAYy Y o=> € ZCY)DS
and "ty

A.2

36348

[3
.

27711784 14

g 15

OF POOR QUALITY

£t4

ORIGINAL PA

ary

nl

a

‘Willian
‘Source Lira

a ot

»

olle
Lines

~
v

o

v

D

..'
(72}
(¥4
(&)
-
w
1
>

£~
+*
wd
E

N O ey M

[AD]

S RN B

ow

(e}

-4

V.l
“x

SN

i

<L

o

b
-1
[
u.

L4

<

o

-1
0y
!

V-
[]

5

)

(@8]

Lo}

ot
[

)
B 4

..
ﬂ.-.«
«

[
«f
(@)
tt.

43

L0
]
L2
€ o
(=] O
[oad [
Q ©
"t tet
> >
«C C
[[
2 o
+’ +’
o o
| . [
~ ~
[} ()
se r: [
~ [+
[(o (8
C) [T e
~N o b
e}
e -s L]
(4%
Lty o= 14 (S0
[N o) ~s (%
1y
- 0 1 " e
PR J > -4 o™~
[gl i [
’ - -4 =
now <t «t L4}
se ne > o -
bt (& (3]
e te 4 (e
(ER) fet (R4} (FT}
[AedN 2 (&) €
i o« >
[A | C ee 7 «
PR | LA (o] 8]
[I ced Y n “d
40 +°
e »o [% AR ™ +)
[e | n, [
o D [nl
2D +- ~ -
kel (¥
C 1}
R Q
26 ©0 g0 oo o8 ¢ s o ee oe oo
Q e N Y E YD~ O N D
WY UY NN I Ny By Ny iy LY O

C1.0/71%)

(874) % CCY))3

- C(X)) -

(UN

o
=3

>

1]

om

ve

N

0 0

"

~y
RY

¢
Q)
- |
"

Ry
C
R4

[Ve)

B #i

o
()

(30

.\—u
4]

/)

VICoTrs

with

eo o0 o8 oo oo

~s

NG P T

(Y3 BEVR BRYo BV o Y9)

«f

-

[

(4}

(X3

-
[£3)
1
(3
s
?5
.
B)

(7]
o
(3]
"
T
L]
(et
)
(.
*
P
-
[
LI
1
'l
.

] 11}
0 et
P :

(¥]
",
(18
W e
. 3
3 -~
kY] 8]
LW (&}
O <)
0O
«
)
es o se
e m o
r~ r~

X RO

PRECEDING PAGE

~

A.3

48

38

27711784 14

3ting

Source Li

= el
ahfnd

Lines

L3 LLd
ol <.
[L
(&) v
(2] ' (3]
o u
(§] (&) g
' <
"] ()
[.o (4]
or o [y
&y G . [<3 €
[N &) [IR %] (&)
- b , [ST
. O W ! [GNS} .]
, 0w \ [Y T A} R .o
- - > > .
[S ¥%
*s oo es oo Cr Q3
.s .. t~ .
0. o Q. oo LW (&
D e . ol) ee - XA TN) e
[IIF (o] It) > > [1Y
[T St ! Q. - T 0. w v o T
- o D > A D > 2 ee s 0 D)
<« U R, B 7,) TRV,
P 1D s L4 = 11 o= - s Pee f3] U? =t e u
o Ve 3 &TL [IS I 4V U & C. e G, [T I P wt
(g% vt C [&] (] W [0) 774 € [
> >0 ~“ 0 o [- N N 0. [O o> (SRR N~ N o Q
I S S > > I S S ~ ! (% [I S Sy 3]
LR S S | n LU T TN | [P24 () 1) - [o TR | [
CoCoer - ® . C cov - il O [= ol |
Xoooo Q) W X o om mn e e > [N oMo
tnh) e ™. L v} o e Y Tr n T e ™ (5] 37 ee “e
Q& [| W T K Coay H <00 . W <O © i3 C [
4] R A4 + o M X + 1] = Y o -~
kY] 0 k) 8] o O < [¢]
[od 1G5 : C 3 c (M C ‘G
L] 183 o Q o 0 o] 23

0% 68 99 0% 09 S0 OO0 28 PO CE 4O 4% se IO 96 ye 6O % 9 VO G ¢p 0 66 op 20 e os ce L6 op 0 06 T8 s ce o0

Fe) TV OO e O O 2 1A D P 00 DD o O (N F LY D I VN O g 0 O o UN 0 P D O 4N D)
Pt B) MW QW W MM NN NN (NN C O 0 0O e et vt v
L I B B I e B B B DR B B BRL DR L B

A4S

(AL

AR O

ORIGINAL PAGE (S
OF POOR QUALITY

e e e e e e meeiis e m e eemane mt o~ ae s ae s e e m AR s e ees e

Coliege of . Wwillism zna Mary Scurce Li

ting 27/711/84 14:35:48

Lineasx Sdurte'Line'

~—

Xo:NXxzZ ¢ Vs

(@)
-4
(o]
pA)

task IZF_T27% is
entry—Sflﬁ urs
antry RzZSU™MEZ:
end ICP_CO3%:
and 1273

ot s P a e gt s B e b B B B b

P BB B DU W LWL Wt R NI RN RO N R PO RS e

U =) O UL & o O Ww =~ 0w

tagh ToINSFZI9_CCNTTICLLER is
entry >SIGMALY

ance TR2HSSIA_CONTRIOLLZIR:

sacKkaz: Hody A Is

[
pre
]
ry
_l
G
X

~<
)
o

.
(W)
e
(™
o

Wl w

tOR - O WV~ W e WO WO ~NOWm

i
1 bggin
1 azcegt START_U®S
i locz
1 COXFHX2 ts XHPD 4 4, 04 4mXonN:
i AERAD GtEM STRIVATIVIOXPNX2)
1 TRANMNEFZO _ZCNTRZOLLER.CIGNALS
1 azceout SISUMER
1 i loon:

~n

[H]

[o
e 3 C

-
U
pJ]
[9]
~
iV
ul
G
vy
<
33
<
2]
[
['H

6s @6 #° 0o 86 8% 88 00 63 0° 66 ee Sa 8% G0 6 OS¢ G4 es PO 04 S Be BV 6% NS GG S8 SV L BT BT @5 ST B3 Be s Oe

i task hooy 3_C2I7 is

i bzgin

is TsocEnt dTIIV_US

145 o2

A NS w0 T 4 1 [3nd R (NONN 4 XPANP) S
11 (TINX ot TETRIVATIVEC(ONX):

1%k TELMNSTEIO_TONTITLLTR S IAnAL:

P}
o]
e
[SS

-
-
po

[S T O T S R e O e S I el e R e L B T N R S o R O SN
WL CIuU O G ~l~d~d~N~N N~~~ OO EWMWL UV LW AinW

D WO P U R OWO O R WS QUL WE W O

-0 e

NRANS &

®

$ 9

L~ O\

N

o6 ®c s8 88 §¢ @c 8a @8 44 B gs S5 58 54 90 0 4p G4 O 66 46 04 6 Gs % 08 B9 0% os Cs 05 90 60 B e we e e

of Wwilliam ard “ary

<

Source Lins

accept TESLMIN
end lcops
and Z_CG0Z3
2nd 23

task body £_C02Z ig
pa3in
accapt START_U?S
loco
XN o8 .
X2 e v
TRIANS! L
acg2p
andd loop
2nyg C_C20%
znd L1
zackzza body T is
task body T_C22% is
tajin
accext STATT_U=,

100

Xue 1=
XTH? 1=
TIANSEE
rccept
2nd loar!

A.6

ir

< M
“I

» 3
‘L

2

¥

-

27711784 14:36:43

SaHsCXPON = 2,0%XPONP);
2OXN)
L32.STGMaLS

48

3%

14

27711784

ORIGINAL PAGE- iS

OF POOR QUALITY

and

william

o0llaeszs ot
Line#

~
-

i
Io¢eLEaAT)

s
()
[2] .
- os o e oo I
o} [so ~
(SR <t I [N I + o=
(S48 2 [@ . b oD I.
(L] o -J Pudbeida & ~ 0]
— 3 0, w < 0. 0 4 IR + ot
P || " > DT N .-
Y] LT SRR (% L] ~) N
3 [eJs} [[¢4 vd [98 (R}
=2 oo . " [TalN VAl I] v (Y4 2 (9] P)
WM C oee e N . [e | vy v (9] -
[t o) e f11 €V O (42 [T P N’ > e - c
[SE] 4 O Y 0N 1 Q . i1 € > | ol 72 o
[T [] ¢ Uy W -4 O e v C ¢ . [29
i o e e o 5 T o JRLE R { B [ST Y] nn -
[WEE 24 . s » ol > 00 oo 7 (It e oo + ¢
1) v 18 H o e [XS (¥4 D (3 ¢ = °n oo W
X N ' Y os \s s (TR T T VA o W W] ~ TN |
[] us ’ DTS e U 2} ot ™~ -4 (e Wa S L4 ¢
[T - (N - D ™ D e (x (e -t e b #7 .
SO 0y =0 43 5. VI = L) e + AL e 4 s N LY .o h
[i [G S & 1 [} + L. “ 9 (3] oo e Dot oes v
] P R S & [V [T ol o B B UL i I B) 0. [P ol SR SN IS I g
5o e U e £ es tit e @ UY LN DT T B (%] O s T O s
tyore + 19 [I NP W § U oW [e e X t= b= O (N
o oy e o6 ss ws O AU U D> 0 ¢ > e rmt 20 st 2D DI e) 2
¥ Y : LAY I o2l >0 b od - N ~ n oo, N
v LU g - (SR L & EVIE L T & KSR >
5o) i e T c O™ o cCHAan €4 oo Xl
o 2 e [ZaB I T LU TR T R (AN o T S & W [o
£ e o
[C e
Kal ~ 2
kY] "
C "
a. .

ee %0 58 69 se S6 8 e OS¢ 9B S S8 06 ee 0% 96 o6 G4 P °F B e SO OL 48 O° s8 8 P e e 8 % L0 e o0

M PN O M N O A M F N0 PO NN -2 0D I~ 0N D) -y Y)Y e R
.1p7ﬁ704n7.790PJCOO.UrJnU..Unbll1..&111ﬁa.L.LﬁL22.4..._./_.._..._
...111111?_7._?.27.27..4227.27.2./.2.4./_7.?.?.?_2./..4_.‘7.7...,.

68

$36

14

277117846

Listing

Sourca

[&)]
Q

r~

3

Lin

our

Lined

C.
(oA}
(]

us=2

223

.o

v)

o

o

(%}

(V]

|33

O

o

o

Q.

!
u.
o

L}

(&
e T
u, .

L]
[b}
..

Qat
4+
C c
[11}
4 L
Ul
C o
au
[I Al

L
o -

o
(VoI)
134
) e~
[Va)
L™
ur oz
WD
N
Mo L
a. 10

[
R
cr o
s
€ ra
Z o
e ae
™
€0 0y
[IR

231n

.
LY

«~
o)
™~

loop

1.‘."‘!.

in

for &

ae o

[LA TN 4
" m
oy

O
o)
[gV]

(A}

~m
«~l

(R
m
o

"CeXDNT

.o

(o]

o
~

240
2641

« XPZIHX S

11

]

«XPONP

[R

XPZTHX23

~
el

[AV]
~1
[a¥]

43
244

«~

e XPINXIS

A

"

LoXPNX2S

246

247

e ee s& S
i

o}

(%]

ETH

(¢4

L]

Vel tar tid 118
[N ANAN %]
cy ey MO
LW oL

f v 1
LI P S
e e *& o
N N D ot
IS 2% BEYVA N IaY
(o BV BN I N |
-~

od
Ay
g

.o
v
G
(o]
v
vy
th O
[S N o]
5 C
O e
4]
1O
[15
[el
I
-
o I |
(13 ML
e O
b,
| S Iy)
Pt BV
o IS
[90 IRat 24
) e
_:- [p4]
~J 8]
- @ O
PR R I 1)
W !
[T I 5
wy I
en ce s
~ 0
[EANRVARRTAY
TES SN BN}

.
*

1

INTY

U

-~
1

[}
>t
[7a]

+-
Uy

m
wn
o~

ve

in
«}

[
&
~

i

(&)

«}

2IrcT2NAr?

c
wi
r
F
P
I3
£
-
-
!
[
-
]
| S]
ed
in
s
-U
es o oo
LV BELS BN 4
MY D N
LAV BN AN IS

s,

[TA}
o
(a3}

OUTPUT OF THE PRECOMPILER

The following Ada procedures A, B, C, D, and IOP were

produced as output by the precompiler Aprocessing the previous

program. The intent is that ° each of these procedures be
assigned to a processor of the network, as specified by the
pragmas of the original program. Note that the the precompiler

has replaced the data transfers specified in TRANSFER_CONTROLLER

by c¢calls to the MOVE and TRANSFER entries of the bus package.

A.9

ORIGINAL PAGE- IS
OF POOR QUALITY

2

euursz

procsidurzy

pro

ol
(S
b
[0
=
1]
.o
.
“ €
n,
[N
LY RS}
"o
Te
ae oo
o)
>
IO
~y N
n >
~
-
LAY]
4 <
£
PR}
> =

loop

hajin

-
‘.

ot
in

loop

enii
loap

(1

X2,

NI

-
-

Luz

2

-

TRANSFER(QY

LOO0R

1

«:
«f
Ly e

ol

D

GQ.

L3}

o

2]

exit w

-~

sun

c

*+o

<

loo:
A.10

)l

.
+
.
)

<

¢

4

1

-=Corrasnondgs

~~3usy
and¢ loor

entd

o
L

end

OF POOR QUALITY

ORIGINAL PACE IS

3

is
1

-
-

X2IHX
axit w

"2
1 -
000

"X,

Dro:eduré
grocedura
XPHh

wagin

..
~ .o
e oo
~NuuNnNQ
o P
[0 J B &y}
(S T N e o
- I N 4 .- PR ” -
fu ™
c O C
(X1 [s
i L ed]
n o t
(. .
[S g t
(s t mn (T
b b - e N e 4. =
N) >-)
e « i
I AN A L B S A
Kaling! "oon [T
+ (47
w! O Coen ti O
W [V - 0G4
B L | X3 Do
[t DV . v
-~ A A e
©C INUNE) v
o0 > 1) ad 00
0 % w cC oo
r4on o Yoea N
m s i "
>N .. " SN (L ee ae
wm oL Q v m L2 Q
30 0O [V ALY I FY I SR - = <30 00
"M O N D> e e T M) e ot “t w40 00
1~ OCIOo6 a o e Koot el
[| [BRSOl S V- [a Mo
S o o] U o
c o o c
D ~ 3 VI)
o)
fe)
C
w

A.11

prrocadura £

W

ORiGINAL 15
OF POOR QuUALITY

D v
ARE

praocedurs C is
LizZ, XPIu K22NC ¢ VELTIR:
ATy X0 $OVELT2Y = SR ISING
begin -
loon
sxit wnen IMFUT_STA0YS
~~-2ysy locpy waiting tor siznal
~=-Zorra2sgcnds to STAGT_UP
end loops
loop
AECVECTD => X2, FROM => YX22NM_L0OC)¢
MIVE(CTY = XPCMNP, ERCM => X2ZN”_LCCT)
HIVE(TC = Xiz 23, FRIM = Xn23_LC)¢
XN tz XNPZT = 1,30 INEIN - Z47%XPINPY S
X2 v= ZETRIVATIVIOXN)G
TRANSFIA(VALUSE =D XTh.
SIEC_TS => T,
ATTZRESS => XDNPZ2_LAT)t
TOANSFEA(VALLS => XM,
SIND_TD => 3,
£23AT8S => XMPI_LISC)
TRANSEIR(VALUT =) XM,
SIND_TI => £, .
1305338 => XNP2_LOC D
loosz '
gxit wher IMPUT_SE32Y3
--Zusy loon. wai4tin: for sianal
--cerrasgonus to ITSUME

an:
end

loows
lo0pt
4 T

en

CRIGINAL PREE 5
.. OF POOR QUALITY

- . . . e -
[e et e i 2 e o et s S ettt 4o e @ e 2o e 1t e rten e st 22t o T w o woe o e e
' - AN i
prosacure, & 13
, ~ 3 -~ §a
croc2eura o 13
s - s~ o
A./F’»"v'gg o232 Y ESTLA
Sy e - mAaya
Xihir DONIIIIN 1= ZRIST

n2agin
loop
¢

--corr=2

enc!
loop

X314 w

-iusy

locie

MaveE(T
vz {7
A2 =
LTF
72

(W]
-

endc

>
)

OO0 C A+

i

!
v O
U

[P}
Oy
-

Nen

p |

TO03)

J =
~ -—
3=

X4
-~
ibalV d
- AY

v Vv Vv
A1 Ly

Te 0 << L2 &

3051 pe (D) o0 B

[IR
N e

-3
n

r-
oy

—~

J

k)
o

[}

[IR

)

¢

3poncs

> m

AL

=

™=
(=]

(8]

vy -4

vy -

e)

[]

A

2
I BN = T

VYV V VYV VL

EICv => XINP2
TAM => XNo2_L
e BT X2N92

<

KA ITT
-

O M
-

S
w
'Y
—
7y
3
s
-

All3

1

[]
~ O
-

(4

-

[I ad

procacure

-

procaauure

.o
(AN
(]
—
v
1

{2hLXe

e
o
o

(&)

S

-1
)

S |

1,
..

-
o2

e

»-

)--
L
o

)

~
-

irray (le.f!

» -
. <

Xv

()

[
4

T

loop

in ...

-
EY

for

i 3n2l

‘or

(4]

ol

wal

“JCDy

Y

--3usy

"0

"
e
[V

XTY)

-,

loow
AVv(CSl

e N

(&3]

0

N/

- -

w

LA

L]
"n.

i

N

-4

tn
~/

~,
-

N
-t

Lol
N

.e

N

N

~~

&
.’
~
-

i

-4
wy
L)

P

o)

vt

[Za]

i3

1o0:s

g}

[4]

et

Lol]

A.14

MDD I

is

Y <

uT{Tve(

loo0p:

b
&

eclura
#nd

Sroc

RUN OF THE PRECOMPILER OUTPUT ON A SIMULATED NETWORK

The procedures output by the precompiler were run on a
network simulated by a set of Ada tasks running on a WICAT
computer on which a large subset of Ada is implemented. Each
task of the following program represents a processor node of a
network.

After the original program was split by the preprocessor, the
components weré moved to the WICAT and all non-supported Ada
features were removed (manually). The components were then
recombined 1n§o the following program, compiled using the WICAT

Ada compiler, and run.

A.15

ORIGINAL PAGE |
OF POOR QUALITY :

This

sU2a

Aarogram consists

e e st A imemus e e sew emurrn s td

compilation units

and compiles

~-- This Ada program consists of szvaral compilation units and compiles

-=_.on the Wicat Ada .compiler. . - e e e e e

-=- It was produced by running the orecomoller wrltten by Laurxe King

-=- 9n the filz 2Another.acda which contzirns ths source (almost) equivalent to
-- the Ada program crijinally run 2t L(CAST. o

-- After sglitting the program ths componznts were moved to the Wicat and all
-- .non-supportad_Ada.featurss were ramovald.. .. The components were_then

-- recombinz2d and coapilaoa. Two discrepencies from tha ICASE~-correct version
-- were disceocvered and corrzcted: Yarizbla2s were miétyped resulting in

-- othar_program variaklz npames. .

with globali usa2 glob2l:
with vecgtorss. use _vsctors,. __ B . - -
with bus; uyse Hus:
WITH TIXT_LZls wus2 TIXT_I23%
A-_---'..'IT-J INTZICZIE_TI3, N
-=-FLTAT_I2CELZATYS
Use intejer_1osfloat_io:
- FProcedure_main._is_. _ - e e
task &4 1s end;
task 3 1is end<;
task € 1s. sandy . N
ask 2 is end;:
task I2P 1is end: .
task body A is
XWPZy XP3K : VECTSR
CXPNRYZy XPODNXZ2 U VEILTOR 1= CRIGIMNG .
Lezin
ioop
2x1lt when INPUIT_CTZTA2Y! .
X -=-2yucy_loopy waiting for sijnal
-=-corrscsgonds %o START_UP
end looo:
ioo0p
MOIVIZOXPZi, XP2NHN_LZC0)
A.l6

[/

\‘

cmrm s e e msedaes esesmen « e e A et o —— T RS Tt pomm g e st s e % e it e e . - . a—— e

-~ This Ads program consists of sever:zl comsil=ation units and compiles

Dut , ne("‘")

P
(8]
<
m
~
P
«Z
v
r
-
>
=

PZ_LCC D)4 o o

XPHX2 = OXMPZ 4 “.0““ (3':
XPOMX2 $= DIRIVATIVI(XAHNAL2).:
CTRANSEZT(XANXZy (o

IfP_tack,

XSHX2_L3Z)3
TRANSFIR(XPTHX2,

C_tas <y

X205 _LoC :
TRANSFEZ2(XP2NX2 v

3] _t sl

XPDN_LGC)3
TRANSFZRIXPDNX 2y .-

2_taslk,

XPSH_L2C)

2x1it wnen INPUT_ REA?Y:
-=3uzy loopy wsltln; tor sziana!l
.. ..-=corraessonds._to 2ES
end loces
end loop;
N . A e e e

task body 2 1is

AMP2 A?:N. KX2OH2 L VECTSa
APNXy X92uX PoVICOTor 1= nETGING

begin
loop
exit when INPUT_KSS29Y: -
-=3usy .loop, waitiny for siznal
-=-corraespends to START_U?
end locgs
_-ooo .
gve (X’Duy X’“h L’C b
QUg_llne("""):
e MOVI(XADONE, X2ZHP_L2C)

KOVI(XNP2, XN22_LSC)
XPHY 1= XNP2 4+ 1.53%Hz(X22M + Y ODMP);

CRIGINAL PAGE: IS
OF ‘POOR GUALITY

”ﬂ o —— . —— e .t ——— b cer o

-- Tnis 4cda proz;ran consists of savaral compilation units and compiles

- o e e e e e v e m raman mam . moeeee = e ot f mme e e s 4 e et e S cimis == mas e aee = = e ——

® . XPONX ¢= DERIVATIVE(CXPNX)
"“nm.”_u~~JR’NS&S“(lRLX,*_mmmwu“m_mwﬁwm_u“mm””mwwumw““”_mmw.“Nm
tasky

LoL D3

(]
9

[
=

beidi g |
[y

—
3
i
>
wn
™
i
A
)
N .

b)

(S I WRPTR
o
U@ X U

w
I~ e |
3 i
S !
{
1
v
{
i
1
1
1
.
i

‘v ol
[Ragheid

v e TRANSFERC

l
1
i
'
}
'
'
|
1
t
t

b

“

><m><><m‘x><H

ul
™
<)
()
()

-

e loop — N
axit mhen INPUT_R
L --3usy loopny. waiti
i i ivem=corrasponds _to RZ
end loog:
L end loog:
T ...end_3;

RASK, BOUY o Cod B oo

XNP3y XPIN, XPDKR? I NVILTIRQ
5 KONy XN POVECTCR 1= ORIGIMG

begln
iy loop
e AX1t when IMPLIT_TEZ
--3uay loopg, waitil
» -=-correspeonds to S
.end loop; |
loop

'

for 51:na~
RT_U?P

D 0l ‘J

&
n:
T

MOVECXPON,, XEON_LCC D25
PUT_LINE ("r")'

£
C
"
()
>
v
L)
<

<
=

<<
HOW
~™ "0

i

U oee ee!

0

D0 20 v
0
' ()

1

2_L8C D) o
1.5%H#(XPON = 3.0%XPONP);
)3

7y © =

o
,-—4><)<

LN
P
8 t= DERI
_ TRANSFERCXDN, . . o — . .

D_tzsk,

y XOMP2 L0)

y

- ' . | e - ._.:‘.'_.,.4. R R

® e o6 & & o

@

@

TRANSFIZCXY,
S xme

SEZRCXN

.y
IR

s

loop .
_exit . wnan. INPU
~--3Zusy loopy w
—-=¢corressonis
.end loop,.
end loops

roe

end T,

task Ledy 2 1is

XDHP2, XMP3 ¢ VECITIR
XtpP ¢VELCTOR
. hegin..
loo0p
exit whep InNey

”::"!I" [k
Sy
MIVI(XKNPZ, XHT3_L3IC)3
XNP 1= XiNe2 +
TRANSFZR(XNLG,
. T _tas
XT3
TIANSEI XD,
r +-o s
T xmez
looy
- ..o2xit when. INFY
-=~32Usy 100U, w
-—Zorrasseonas
H
Eg——

-
i

-
, 3

<
-
+

(@]

L)
-~ This Ada progra=w consists

)

th

.2 _taska_. ..

.
.
:
ter zlonc
Y Bt
T
It
.
:
for sign=
-» "o
[
.
*
Yy e
= P
DN .
N2z
.
A
tor s1gna
X
Mz

- gr—

]

L4 T

-

ORiGiWPL PLRE iS
OF POOR QUALITY

-- This Ada program consists of zzvarzsl compilation units and compiles

end loop:
e e oend. Yoopi_. L.) e e
encd 5, ’

tJSK booy I ° is
XFHRX '
- . XPNX2..:L VICISRL. - e

S1 ¢ INT=E5Z8 1= 1

e TINCL BLEAT = .05 o - . e S -
TV ¢ array (1..500) of FL2AT)
Xy ¢ array (1..500) of ZL2A7T:

begin
loop
@ X 3 % when (INPUT_RIAD R
-=-3usy loo0py waiting for sianal
-—-corrasponds to STARY_UP
e oo end . loop.. I . U
-—accegt FzSuMsz
TVCOL) o= TINS
e =TRANSEZR_COHTIEOLLER L SIGNEL S .

e tor I dnl.eb locon. .) . e e el
PUT_LINE("?")
--accent RESUMES
MOVI(XPNXZ, XPHXZ2_L2C)
MOVE(XPHX, XPNX_L2C)

loop

-%usy loozy waiti
-=corrasconids 2
~end loops. ___
Xv(s1) =
XV{S1 + 1) =
e oo o oif X D01 .%he
TV(S1) &=

-

wo
-
W
"
id
3
o)
ot

(Xe WX):
(X2NX2)s
[+ DU R
TV(SYT - 1) + H3
and ity

- ——— . . - Ct T e m e AR N RN RS SN PR EIMNORIC T ST
- -

. wwe -
B

9

‘\’

@

@

N

S e ————— whas § a3 $om e wn hew

e & 0

N
Pad s

-=- This Ada gzrozram consists of ssveral comapil=tion units and compiles

TY{(S1 + 1) :
i 1 :
end loogp:
PUTCH) ¢
Ltext _1c PUT_LINS(ME™)S -
for I in l..MN ¢+ 1 loop

PUTCTIVCID DY
PUTAXNYCId S
text_19.P0T7_LINZ (" ")‘
end loop
end IC?, .

begin
NULLS. e e e et e
PUT _ INECOXXXT) S put llnn("“ﬁ* ")
gnd main;

»
— __._ORIGINAL PAGE IS
OF POOR QUALITY
dith globals us>s jglobal:
"With globkal; use glonal:
With vectors: use_vectorss . . . — e
package £US is

INPUT_READY : boolean := trus; -

*and 3US:

vitn text_107 use _taxt_ic:
paclkage body 3US is

e —procedure_ MCVE (TG ¢ ocut VECT2R: .. e s -
CFRTm T 2YT_LIDR) is

_kegin o
put_lins('mova"):
PUT _LINEZ(ULn)
ClTOLTE BUSYCERANYT
PUT_LINECTL") ’
end mova;

procedure ToAMIFTR (viLU s VEIToRS
SINI_TC ¢ TASK_NEME:
— —..ADDRESS ¢ RUS_APIR) ies .

bajin
put_lin2("transfar")!

.. . . e e e . . . A 22 T S s iy,
b . . MR .

[RPBPRRS Y O T R e

Aith gloical,

use global:

NI <1V 5 5 Sh S

ZYUSVCACTDORESS)

ands
end 3US;. i

o oo e T aerme s o o

PRECEDING PAGE BLANK NOT FiLiED

