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ABSTRACT

The Navier—-Stokes equations can be viewed as an incompletely elliptic
perturbation of the Euler equations. By using the entropy function for the
Euler equations as a measure of “energy” for the Navier-Stokes equations, we
are able to obtain nonlinear “energy” estimates for the mixed initial boundary
value problem., These estimates are used to derive boundary conditions which
guarantee L2  boundedness even when the Reynolds number tends to infinity.
Finally, we propose a new difference scheme for modelling the Navier—-Stokes
equations in multidimensions for which we are able to obtain discrete energy
estimates exactly analogous to those we obtained for the differential

equation.
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INTRODUCTION

For computational problems involving the Navier—Stokes equations, it is
necessary to limit the domain of computation and introduce artificial boundary
conditions. Naturally, we would like these boundary conditions to be stable,
compatible with weak boundary layers, and to remain valid even when the
Reynolds number tends to infinity. Such a set of boundary conditions were
proposed by Gustaffson and Sundstrom in [4]. They used energy estimates on
the linearized Navier—-Stokes equations to obtain boundary conditions of
maximal dissipative type. In this report we define an “energy” in terms of
the entropy function for the Euler equations and obtain fully nonlinear
“energy” estimates from which we are able to extract a family of boundary
conditions with the above properties. An attractive feature of these boundary
conditions is that they are easy to implement and can be expressed in terms of
the physics of the problem.

The Navier—-Stokes equations are an incompletely elliptic perturbation of
the Euler equations —~ which are themselves a hyperbolic system of conserva-
tion laws with entropy functions. It was observed by Mock [5] that by
introducing the gradient of the entropy as a new variable a system of
hyperbolic conservation laws can be reduced to a symmetric, hyperbolic system
in terms of this new wvariable. Further, Harten [5] showed that 1if the
dissipative terms in the Navier—-Stokes equations are rewritten in terms of
this new variable then the matrix coefficients of the dissipative terms have
certain symmetry properties. We are able to show that the augmented matrix
formed from these matrix coefficients is, in fact, negative semidefinite.
This observation is crucial to the energy estimates we obtain for the Navier-

Stokes equations.



This leads us to propose a new difference scheme for modelling Navier-
Stokes equations in multidimensions. We are able to obtain discrete “energy”
estimates =— which are exact analogs of the “energy” estimates we obtained for
the differential equation —— at the semidiscrete level, even for meshes with
unequal mesh widths. Thus we are able to propose boundary conditions and a
difference scheme for the Navier—-Stokes equations which give a priori
boundedness of “energy” for all time.

This report is organized as follows: 1In Section 2 we define the Navier-
Stokes equations and obtain the necessary results to derive the “energy”
estimates of Section 3. 1In Section 4 we propose a family of “stable” boundary
conditions and relate them to the physics of the problem. In Section 5 we
propose a new method for differencing the Navier-Stokes equations in
multidimensions and obtain discrete “energy” estimates for our difference
schene, Finally in Section 6 we obtain stable boundary conditions for the
difference scheme and conclude by displaying some numerical simulations in

Section 7.

2. PRELIMINARIES

We consider systems of hyperbolic conservation laws of the form:

d .
1 —
(2.1) q, + . f (q)x_ = 0.
i=1 i

Here q(x,t) 1is an n column vector of unknowns, fl(q) is a vector valued

function of n components, x = (xl,---,xd) and f = (fl,---,fd).



We can rewrite (2.1) in matrix form:

d .
l —
(2.2) q, + .2 A (q)qx' =0
i i i=1 i
where A7 (q) = fq. The system (2.1) is called hyperbolic if the matrix

d .
(2.3) T ow, A%(q)

has real eigenvalues and a complete set of eigenvectors for all real wy .
Following Mock, a scalar function V(q) 1is an entropy function for (2.1)
if:

i) V satisfies
(2.4) vV f- =F

i : . .
where F(q) 1is some scalar function called entropy flux in the X
direction.
ii) V is a convex function of q.

It follows from (2.4) upon multiplying (2.1) by Vi that every smooth

solution of (2.1) also satisfies:
d i
(2.5) vV + 2 F =0

where F = (Fl,o--,Fd).



The Euler Equations

of Gas Dynamics

Description of
p denotes density,
u denotes velocity
v denotes velocity

w denotes velocity

variables:

in the x direction,
in the y direction,

in the =z direction,

moy Mo, and m ~ are the components of momentum in the X, ¥ and z

directions respectively,

T is the temperature,

p 1is the pressure,

U 1is the thermodynamic entropy,

E 1is the energy,

R 1is the universal

gas constant,

Y 1is the ratio of specific heats.

Note that we shall use (x, y, z) and (Xl’ Xy x3) interchangably to denote

the spatial vector

-
Xe

We shall also need the following thermodynamic relations:

=G =1)

R

o]
I

o
]

log \E

2 2 2
(E._ (mu o+ mw))
p 202

(mi + mi + mi)
(y - D \E - 7

(mz + o+ mz)
u v w
- 7 - Y log p = log p - y log p.

up to an additive constant.



T, p and p will always be restricted to be positive because of obvious

physical considerations. q will always denote the vector:

[ o] o 7]
m pu
qQ=] m | = pv .
m oW
| E | | E _

where

— - - r
pu 7 pv ow T
pu2 +p pvu owu
fl = puv R f2 = pv2 +p | f3 = pWV .
2
puw pvw pw + p
(E + plu (E + p)vj (E + pw

We shall write the Euler equations in operator notation as:

(2.6) Eq = 0.

The Euler equations have a family of strictly convex entropy functions defined

by

V(q) = -ph(U).

The preferred entropy function in most physical applications is:



(mi + mi + mi)
V(q) = -pU = —p log |E - P + yp log p.

The entropy flux functions turn out to be:

! (mi + mi + mi)
F~ = my U= o log |E - 7o + ym, log p
F2 =-m_ U
v
F3 = -m_U.
w

It should be noted that the entropy function V(gq) is strictly convex but may

be nonpositive in general.

Navier—-Stokes Equations

We shall denote the Navier-Stokes equations in operator notation as:

(2.7) Ng =0

where

Nq = Eq + (-D)q,

3 /3 .
where (-D)q = ) ) A" (q)q .
i=1\ j=1 *3] "1

We can represent (2.7) in the alternative form:

3.
_ 1
Nqg = Eq + 'Z (h™)x,
i=1



where
i 3 ij
bt =} AM(q)q
. X,
j=1 h
and hl, hz, h3 are as follows:
] ]
XX Xy
1 ] 2
h™ = yX sy h™ = Byy
ezx ez
T y
] u+9o v+6 w=k— )
XX yz zZX BXJ | XY
r
0
)
Xz
h3 - eyz
0
zz
6. _ ut+6 _v+o -k —
Xz yz zz
L
where:
Ju Ju Vv ow
= e — - —_— e — —
b = oy " Mo t iyt az
9V au v oW
= =2y — = Af—+ — + ==
eyy 2u oy A(ax oy 9z
ow ou v ow
= =2y == —+ =+ —
ezz 2u 9z A(ax oy 9z
_ - _,.(ou _ v
exy_eyx_ u(W-'-E)x
v aw
= = e e—_—t =—
eyz ezy “(az ay
- (2 du
ezx B exz B “(ax * az)'




Here the parameters p, A and k are as follows:
u  is the shear coefficient of viscosity,
A 1is the second coefficient of viscosity,
k 1is the coefficient of thermal conductivity.
Clearly

_ . 1 2 3
(-D)q = hX + hy + hz.

We write the Navier—-Stokes equations as
(2.8) Ng = Eq + (-D)q

where E 1is the differential operator corresponding to the Euler equations
and D 1is the elliptic perturbation (depending on the parameters y, A and
k) due to the dissipative terms in the Navier-Stokes equations.

The entropy function V(q) = -pU for the Euler equations is not positive
valued in general. Since we wish to interpret the entropy as a measure of
“energy” of the system, we can normalize V(q) and define a new entropy V(q)

which has the properties:
(1) ¥(q) > 0 ¥q
(ii) V(q) =0<=>q-= E- for some fixed a:

For the entropy V 1is not altered by adding to it an arbitrary inhomogeneous

linear function. Hence we define V(q) as follows:



5
(2.9) V(@) = W) - V@ - ] 2 @ - Tp)-
i=1 °d4

The associated entropy flux functions are given by

: . . 3 . :
(2.10) ) = Pl - F@ - ] 2= @E @ - £ @), .
=1 % ]

We choose as our rest state q = (p, Eu, Ev’ m E) such that:

€l
1
<
i
€|
I
o

|
v
o
.

In a later section we shall put further restrictions on E and T. With this

choice of q we obtain:

V@ =p[T-v+ 8L @+ u?) -y + I+ (v - D7
2RT T

+

'f"l(q)=pu[ﬁ—U+LY——_Tl)—(u2 v2+w2)—y+_-T—_‘ .
2RT T

Or more compactly:

#q) = u@@@ - (v - DD
~2 ~ -
F7(q) = v(V(q) - (y - 1)p)
~3

w(V(q) - (y - Dp).

Le5]

~
£

~
1]
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We make the change of variables v = Vq and rewrite the operator Dgq in

terms of v. Here

<
1
0o o
L]

Q.

Substituting these relations in
3
(-D)q = )

yields

where Cij(v) = AlJ(q)qv. Harten [5] observed that the matrix coefficients

cH(v) satisfy the symmetry relation:

ClJ - (le)T.

For the energy estimates we shall derive in Section 3 we need to show that

3 3 . .. . . .
(2.11) 71 ehTciweh covel, e
i=1 j=1

Clearly this is equivalent to proving that the augmented matrix C defined by
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Al 2 13
oot 22 28
Sl B2 33

is negative semidefinite.

Observe that c'J = (CJl)T C 1is symmetric. Hence to check that C is

A

negative semidefinite it is enough to perform an LU decomposition of C and
then check that the diagonal elements of the upper triangular matrix U are

negative. Thus we obtain:

(2.12) (2.11) holds <=> A + p > 0.

Typically, for physical fluids X < 0 and y > O. Further for most

fluids under nonextreme flow conditions the following relation holds:

Here Pr denotes the Prandtl number. So (2.11) holds under these conditions.

3. NONLINEAR ENERGY ESTIMATES
Let Q denote a bounded domain in B and let 3R denote the boundary

of Q. Consider the mixed initial boundary value problem in Q:

(3.1) Ng=0 ¥xe t>0

where N 1is the Navier-Stokes differential operator with initial condition:
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- - B Y

(3.2) aGx, O] g =9, ¥x e
and boundary condition:

-
(3.3) Bg =0 ¥xedQ, t>0
where B 1is a boundary operator.

Define:

~ - -

(3.4) s(t) = [ V(q(x, t))dx.
Q

We claim that S(t) gives us an estimate of the energy of the system at
time ¢t. Note that V(q) is a strictly convex, non—negative function of ¢,
i.e.,

1) V(@) >0
i1) V(q) =0 <=> q=4q
iii) qu > cl where <c¢ > 0, at least in some appropriate physical domain.

In particular, (iii) implies:
. — 2
(3.5) V(q) > allq - ql

for some a > 0. -Hence we conclude that S(t) has the following properties:
i) s(t) >0
- -—
ii) S(t) =0 <=> q(x, t) = q ¥ xe Q

iii) S(t) < k, where k 1is a constant =>
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—2 al\l 1
(f 19(x, ©) - 1 dx)’zs (5) L
Q

if q(?, t) 1lies in a domain where an inequality of the form (3.5) holds.
We wish to study the time evolution of S(t). Recollect that the Navier-
Stokes equations are:
Ng = Eq + (-D)q = 0
where

3 3 L.
(-Dg = [ ] (8@, ), -
i=1 j=1 i i

Making the change of variables v = Vq gives:

33 .
(D)qg=(¢Dv=7 § (cHwv, )
i=1 j=1 *57%

where the matrix coefficients Cij(v) satisfy the condition:

3 3 X .. . . .
(3.6) 7Y e et covel, e
i=1 j=1

This leads us to the following theorem.

Theorem 3.1: Consider the mixed initial boundary value problem (3.1)-

(3.3). Let (;l,oo-,cd) denote the outward unit normal to the boundary 30

and let Fl,-oo,ﬁd denote the entropy flux functions as in (2.10). Then any

piecewise smooth solution of (3.1)-(3.3) satisfies the energy estimate:

ds N U SV R Y
(3.7) &SV B+ 1 1 Voo A (g, | do.
aa\i=1 i=1 j=1 ¢ 3
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Here do 1is an element of surface area.

-
Proof: We prove it here for the case q(x, t) 1is “smooth enough.” We

have

3
(3.8) Ng=q + J £, +
i=1 i i

3.
A (q)q ) = 0.
1 (jzl *5) %

o~ W

Premultiplying (3.8) by Vq we get

w
w

~ ~ i ~
Vg + J V(E(@)x + ] V
L togar 9

3 ..
ij _
Z A (q)qx. )x. 0.
j=1 i/ 1

By (2.4), this reduces to

. 3 3. (3
(3.9) Vot z Fro+ Zl v I A J(q)qx_ %, = 0.

ds 3 ~i 3 3 j
S==-f1Y F o+ 7V Y A7 (q)q dx.
de o (i=1 *i i=1 4 j=1 xJ =1
or
3 3 3
-§—§=-I{ ) F}l{ + 3 VT< ) CJ(V)V )x dx.
oli=1 ™i i=1 j=1 i/ %

By the divergence theorem

a-ln.
|

3 ~i 1 3 3 T i 1j
= - f z F- g~ + z 2 vig  C J(V)V do
. . . X.
an\i J



-15-

But by (3.6)

Hence we obtain

ds 3 ~i i 33 . i ,1ij
(3.7) ac < = f z Fmgm + 2 z V 70 A7 (q)q do.
- L Lo q X,
i=1 i=l j=1 j

Remark: Estimate (3.7) is a fully nonlinear “energy” estimate which
holds for a broad class of solutions of the mixed initial boundary value
problem (3.1)=(3.3). 1In fact (3.7) is simpler to obtain and broader in scope

than the linearized energy estimates in current use.
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4, STABLE BOUNDARY CONDITIONS FOR THE NAVIER-STOKES EQUATIONS

082

Figure 4.1

Since the Navier—Stokes equations are rotationally invariant, we can
consider a moving coordinate frame (x, y, 2z) where X points in the
direction of the inward normal and y and =z are tangential to 23Q. Of
course, we reorient u, v, and w so that u 1is the component of velocity in
the x direction, v in the y direction, and w in the 2z direction. Let
¢z denote the outward unit normal to 39. Clearly ¢ = (-1, 0, 0).

Then the nonlinear energy estimate (3.7) takes the simpler form:
ds 1 3 1j
(4.1) =< [ (FP e Y T oA g Jac
j=1 1 3

or
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(4.2) By
3

where

v, hl=—(Y;l) 0, T T "(%'é °
RS A
u(g—;"‘g_:
2y g: A( ay gz
oA DR A DAL -]
or,
) th1=k(Y;l) (_%__% %_(Y_R%_l_) (2u+x)ug—i+x(2;+gz)
+ uv(-—— + = ("" MY

So finally we obtain the needed “energy” estimate:




~18-

Bf u@- - Do+ [ KD IT) A,
an af RT T
N O] du, . (3v a_w>
(4.4) gn — u((Zu + A o7 )‘(ay + az) do

o -V v Buy, _ o, (Y- 1) 3w Bu
£9 RT lax * oyl gn RT "l * 3200

where

(4.5) u(V—(Y-l)E)=pu[ﬁ—U+(Y—:_ﬁ(u2+v2+w2)—y+_E]
2RT T

and

(4.6) \7=p[ﬁ—u+(Y_'Q(u2+v2+w2)—y+§]+(Y—1)E.

2RT T

So far we have left T and .E vaguely defined. We are now going to
specify T and p, but first we have to make a few assumptions about the

solution q(i, t) to the mixed initial boundary value problem (3.1)-(3.3).
Assumptions:
. —
i) 3 Pmin > 03p(x, t) 2 Prin ¥xe@, t>0
in3p(x, t) < Pmax X e §, tZ }

(4.7) 1) 3 o 2 Py

2 o A A
iii) 3 T in > 03T(x, t) Z_Tm. ¥xeQ, t2>0. )

in



-19-

Assumptions (i)-(iii) exclude cavitation, freezing of the fluid, and such
esoteric phenomena as the formation of black holes. Further, it should be
noted that if (4.7) is valid V(q) is strictly convex and hence, then we are
able to obtain boundary conditions which ensure that S(t) remains bounded,
i.e.,

S(t) <k ¥t >0 where k is a constant; then by the discussion
following (3.5)

- - 1
=> (f hg(x, t) - qll?' d?)/2_<_ C (another comstant) ¥ t > 0.
Q

Hence we obtain L2 boundedness of the solution for all time.

Choose 0 < p < p_. such that
min
(4.8) V-(y-1p>0

and 0 <T<KT. such that
min

(4.9) U-U<0

¥ q staisfying (4.7).

It is easy to see that this can always be done. For by (4.6)

'\\'I(q)Zp[ﬁ—U-Y+g}+(Y-l);
T
or

V@ > p{w ~ 1) log (&) - v + L~ log @J N
p T T
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Clearly

Hence we get

V() > p|(y = 1) log (B) =y + 1|+ (v - p.
P

Thus if »p Z-pmin > 0 we can choose ;-< Pmin such that

Y(q) - (v - Dp > 0.

Hence (4.8) holds.
Now

T-U=(-1) log (&) - 1og (;).
. P T

If (4.7) is valid then

— p .
U-U<(y ~-1) log (—225) - log ( mln).
We can choose 0 < T < T_. such that
min
pmax min
(y = 1) log (—=) - log (—) < 0.
p T

Hence (4.9) holds.

The Navier—-Stokes equations are:

(4.10) Ng = Eq + (-D)q = 0
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where E 1is the hyperbolic differential operator corresponding to the Eﬁler
equations and D is the incompletely elliptic perturbation, depending on the
parameters, u, A, and k, due to the dissipative terms in the Navier-Stokes
equations., It is assumed that 1y, A, and k are proportional to a small
parameter ¢ > O, Thus the Navier-Stokes equations may be viewed as an
incompletely elliptic perturbation of a system of hyperbolic equations.

The question we are concerned with is: for which boundary conditions are
the solutions of the perturbed problem (i.e., € > 0) well defined in some

time interval 0 <t < and are bounded in an appropriate norm as ¢ + 0.

0
Michelson [8] suggests boundary conditions of the type given below for

the singular perturbation problem:

(4.11a) Ba = S({(eD)%} _,5 X €30, £ 20, € >0) = 0
where
[0 o a a
(eD)* = €|a| plp?p?3 Dt4
X %y Xy

and o = (al, Ggs G, a4) is a multi-index in some finite set A ¢ Zﬁ.

It is well known that a singular perturbation problem of the type we are
considering exhibits a boundary layer phenomenon. We wish to choose boundary
conditions in such a way that a strong boundary layer does not develop. For
the boundary conditions to be compatible with a weak boundary layer, we need a
condition of the sort given by:

(4.11b) Bl o a=S({(em®} 3 X edq, £>0, g=0)=0
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gives a well-posed boundary value problem for the hyperbolic part of the
Navier—-Stokes equation:

NIE=O q=Eqg=0
(see [81).

Further, from Strikwerda”s work on initial boundary value problems for
incompletely parabolic systems, we know that the number of boundary conditions
which should be imposed for the Navier—Stokes equations to obtain a well-posed
problem are:

5 boundary conditions for inflow boundary and
4 boundary conditions for outflow boundary.
At the same time the unperturbed hyperbolic system requires:
5 boundary conditions for supersonic inflow,
4 boundary conditions for subsonic inflow,
1 boundary condition for subsonic outflow, and
none for supersonic outflow,

The boundary conditions we are going to impose will be of the form:
(4.12) ER%%+ Sq =g

where R 1is a matrix of rank at most 4.

To get a set of boundary conditions that also works for e =0 S must
be chosen in such a way that Sq = g is a proper set of boundary conditions
for the unperturbed hyperbolic problem. If Sq = g gives too many boundary
conditions for the unperturbed hyperbolic problem, the solution will contain

boundary layer components of the form exp(-x/e) for e + 0; (see [4]).
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We now proceed to suggest a set of wmaximal dissipative” boundary
conditions for the Navier—-Stokes equations which are compatible with weak

boundary layers.

OQutflow Boundary Conditions

We need to specify 4 boundary conditions for the perturbed problem. For
supersonic outflow (-u > ¢ > 0) we need not specify any boundary conditions
for the unperturbed hyperbolic problem, while for subsonic outflow (c > -u >
0) we need to specify only one. From (4.4) we have
k(y - 1) T = T, 3T

T E{-do

=< ul@ - (y - 1pddo + |
1y 90 RT

- ol u((Zu + A) —g%+ A(%;—'+ -g—:))do

(v - 1) 9v . du (y - 1) W ., 9

By (4.8)

f u(V - (y = Dp)do < 0.
1Y)

The boundary conditions we suggest which give a decay of energy are:
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k(y = 1) 3T _ -
R ax %117 8> 0 20
9u oV | ow
Gt D Gy rg) T et g 020
(4.13)
av | du _
ugx *+3y) T3 v T ey a3 2 0
3w ., du
et 52) "o VT g o 2 0.

It should be noted that if we put a; = 0 we must also put g = 0 for
i = 1,eee¢,4, Since we want (4.13) to be compatible with the preceding

discussion, we end up with the following set of maximal dissipative” boundary

conditions:

Supersonic outflow

k(y = 1) 3T

R ax =0
Ju av A
(2u + ) ax+>\(a—y-+a—z-)—0

(4.14)

ou v
“(ay X 0

3w , oJu
Wt 32 = O
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Subsonic Outflow
k(y - 1) 3T _ 0
R X
Ju 9V ow _
Qu+n) e+ aGyrgg) —pug 920
(4.15)
v Jdu
—_—t —) =
“(ax ay) 0
W Ju
u(-é—}-{- + a_Z 0
Inflow Boundary Conditions
By (4.9)
f pu[U - —ﬁ]do <0
1Y)
Subsonic Inflow
Since ¢ > u we have u~ < yRT. Hence
- 2 -
f (L—:_l—) (pu)u” do _<_f ﬂ___l)_ (pu)yRTdo
N 2RT N 2RT
av ,
az

(L.Ejl u((2u + A) -gi + A(a
Q RT x Y

G- D v((pu) v - u(-g—:%+g—;-)do

+
gn RT 2
(y - 1) ((pu)w 9w , du )
+ - pl—+ d
'Brﬂ RT 2 (ax az)

Je

1
+ —[
2 T T R 9x

(T-T) k(y = 1) 8T _ (" -y + 2)
2

(pu)T]do.
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The boundary conditions we could specify are:

pu = g
au v ow
2y +2) o A(E 32) = 0
9v , du
4, —_t =) - =
(4.16) Wz v ay) " v T g
aw _ duy _
Wax *5) "% VT8
k(y = 1) 3T _ _
R ax % T 8-
Here we must impose the conditions
ay > gl/2
a, > g1/2
(% - Y +2)
ac > 5 g, + ¢ for some suitable ¢ > 0

depending on T,
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Supersonic Inflow

ds = (y = 1) [(pu) du v , oW
— < [ pu[U - Uldo + [ — u[ u - @2ptA) ot At
dt * ) Pa— 2 3% 3y | 3z

N RT

a2 RT

bp 4= v[<pu> v - w2 3—“)d0]+ [ 4-b w[(pu) - (@

2 ax 93y 2 9x

1[(T-1) x(y - 1) oT ]
+ - — + (pu)T|do.
'gn T[ T R 90X

The boundary conditions we could specify are:

pu = g,

du v, W _
(2y + 1) T + Afs; +-3;) a, u =g,
dv . du _
(4.17) u(s; + 5;) a3 vV = gq

u(ﬁ—+a—z)—a4w=g4

Here the following conditions must hold:

81
Oy, Gg5 &y > 7

and ag > g te for some suitable ¢ > 0.

I
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Discussion of the Boundary Conditions

The outflow boundary conditions we have proposed are of the following

type:

(4.18) 3T . o,

(4.18) says that the computational boundary corresponds to an insulated wall

and there is no conduction of heat across it.
(4.19) ) =9 =0 =0

(4.19) asserts that there is no shearing of the fluid either in the normal or
tangential direction against the computational boundary.
For an inflow boundary one of the boundary conditions we have specified

is:
(4.20) pu = g.

In other words, we specify the momentum influx across the computational
boundary.
For the temperature component of the state vector, we have the boundary

condition:

k(y - 1) T _ )
(4.21) R ax % I =&
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(4.21) has an interesting physical interpretation. For injection through a
porous wall into the main stream (sometimes called transpiration) the injected
fluid may be, say, a coolant at a temperature considerably different from the
wall, and one needs to consider an energy balance at the wall. A good
approximation for coolant injection is to use the boundary condition proposed

by Roberts [in Truit (1960, chapter 11)].

4.22 j i : — -
( ) Injection k 9x Py Yw Cp(Tw Tcoolant)
where P Yy is the momentum flow of coolant per unit area through the wall,

T is the temperature of the wall, T is the temperature of the

W coolant
coolant and %%-w is the temperture gradient at the wall, (For more

information refer to [12, chapter 1.4].)

By choosing g and gg appropriately (4.21) can be geared to satisfy
(4.22). The physical effect of such a boundary condition would be to make the
temperature of the fluid within the computational boundary stabilize at
Tcoolant over time. When we discretize the boundary conditions, however, we
can choose gg so that the discretized version of (4.21) is of extrapolation
type. This has the effect of allowing the system to evolve as if there were
no boundary.

For the velocity component of the state vector, the boundary conditions

we have specified are:
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du v ow
P du oV oWy -
(2u 1) 9x + A(ay * 3z ey ¢ V)
dv , du _
(4.23) Wax T o) T vt g

For one—-dimensional fluid flow the boundary conditions (4.23) would take
the simple form:

au _
(4.24) (2p + 1) " %y U= gy

For perfectly diffuse reflection of a gas or fluid against a solid wall
we have the boundary condition (after Maxwell in 1879):

(au

(4.25) u %

w_

where u is the velocity of the fluid at the wall, g is the mean free path

W
of the gas or fluid at the wall and (%%)w is the velocity gradient at the
wall (see [12]).

By choosing gp; and a, appropriately we can choose (4.24) to satisfy
(4.25). Since we want the boundary conditions to be nonreflecting, however,
this would be a bad choice indeed. If we let the computational boundary move
with the same velocity as that of the fluid at the boundary interface, we
should not have any diffuse reflection. And, in fact, we can discretize
(4.24) to achieve this exactly. The discrete boundary conditions so obtained

are of extrapolation type and the effect of the computational boundary is

minimized.
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A last remark is that the boundary conditions proposed are of maximal

dissipative type and such boundary conditions are intrinsically radiative.

5. STABLE SEMI-DISCRETE DIFFERENCE SCHEMES FOR THE DIFFERENTIAL EQUATION

The stable difference scheme we are going to propose is valid for the
Navier—-Stokes equations in multidimensions. However, to avoid getting drowned
in notation we restrict the discussion that follows to Navier-Stokes equations
in one space dimension.

Consider the incompletely parabolic system obtained from a hyperbolic

system of conservation laws with entropy:

(5.1) q, + f(q)x + (A(q)qx)x = Q.

Let V(q) be a normalized entropy function as in (2.9) for the

hyperbolic system of conservation laws:

(5.2) q, + f(q)x =0

and let vT = Vq.

We can rewrite (5.1) as:

(5.3) q f(q)x + (C(v)vx)X =0

where we assume C(v) < O.
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Divide the x axis into a mesh of points {xi} N where x; = idx
ie
and Ax 1is the mesh width,

Let qj(t) = q(xj, t). Consider the semidiscrete difference
approximation to the hyperbolic system of conservation laws (5.2):

dq,

1 4 Az ces =
(5.4) T Ax (h(qj—r’ ’qj+s) 0

where r and s are integers > O and h(qj_r,---,q ) 1is the numerical

jts

flux function corresponding to the flux function f£(q), i.e., h(qj_r,-o-,qj+s)

satisfies the consistency condition:

(5.5) h(q,+++,q) = £(q).

Let the order of accuracy of the semidiscrete difference approximation be g«
where we can take a > l.

Further, suppose (5.4) satisfies a semidiscrete entropy inequality:

UCTD RN
(3.6) TF tax By Pl <0
where H(qj_r,--o,qj+s) is the numerical entropy flux function corresponding

to the entropy flux function F(q), i.e., H(qj_r,oo-,qj+s) satisfies the

consistency relation:

(5.7) H(g,*+*,q) = F(q).
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We propose the following semidiscrete approximation for the Navier-Stokes

equation (5.1):

dq. A,V
_J 4 A= A= L A
(5.8) dt * Ax (h(qj-r’ ’qj+s)) * Ax (C(vj+-yé) Ax ) =0
where
v, + v,+1
V.. 1. = J Jr .
jtth 2

It is easy to see that the order of accuracy 8 of (5.8) is given by
B = min(a, 2). Hence if (5.4) is a second-order accurate approximation to
(5.2) then (5.8) is a second-order accurate approximation to (5.l). In any
case, (5.7) is at least a first-order accurate approximation to (5.1).

Remark: The only second-order accurate semidiscrete difference scheme
for a hyperbolic system of conservation laws which satisfies an entropy
condition of the type (5.6) of which we are aware of is one proposed by Osher

in [10].

Lemma 5.1: The semidiscrete difference approximation (5.8) to the

Navier—Stokes equations (5.1) satisfies the entropy inequality:

av A- V3 A
(5.9) T () + 3% [H(qj_r,.--,qj+s)] + 5 b (C(Vj+-y§) ZE")-i 0.

Fix At > 0, Let

*Gar) =q, -2 5 - ))
9 9 " Ujmp> 2954577

Let qE(t) denote the solution to the semidiscrete difference scheme
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E
49 ¢ A” pig® Leee Y =
(5.10) ac *ax Blagopeeriagg) = 0

. ,
with q?(O) = q;+ Then q_(at) = q?(At) + 0(at?). Since (5.10) satisfies the

entropy inequality:

dV , By , A-
-d_t (qJ) + A_X [H(qj—r""’qj+s)] S 0

¥  sequence {Atk} 3at, > 03 a sequence {g } 3¢ »0 and the discrete

k
entropy inequality:

V(a)at)) - Vay)

(5.11) .
Atk Ax j-r ]

holds.
We now define a discrete difference approximation for the Navier—Stokes
equation:
J
Ax ) -

— _ ok At
qj(At) qj(At) e A (C(vj+_yb)

Let qj(t) denote the solution to the semidiscrete difference scheme:

dq. A+ v,

j . A- A- Jy =
T o (h(qj_r,... )) + = (C(Vj+-UQ) = ) = 0.

dt *U5+s

Then it is obvious that ES(At) = qj(At) + O(Atz). Define an approximate

entropy function

A, v,

T At +

—_ ~, %
W(qj(At)) = v(qj(At)) - v, — A - (C(v

j Ax )

N
j+ l/2 Ax )'
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By (5.11)
5 At,
Wlq, (A )) < V(q) = =8 = [H(gy_p,eeesa5,0)]
At AL v,
_.T k + 3
Vi (GO )t e At
or
w(q. (At ) - ¥(q.)
J k J - A—— LR N ]
(5.12) a, A A LI CHNLILT FR)
T
i i
- AX [C(Vj+ b& ) AX ] + Eko
By a Taylor series argument:
- ~ 2
W(qj(At)) = V(qj(At)) + o(at”).
And since g, (at) = q,(4c) + o(ac?) =>
T
~ v AL v
av - A= . N t 3]
ac (49 &gz [Hlayooeeay O] - g0 8 - (€O, —5)

by letting At, > 0 4in (5.12).

Define a discrete version of the energy S(t) by:

(5.13) S(t) =
j

ho~12

AxV(q.).
, X (qJ)

We can now easily obtain a discrete version of the energy estimates of Section

by h.; and

2. (Henceforth we shall denote h(qj_r,o--,q. i

j+s’
)

H(qj—r’...’qj+s) by Hj-
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Theorem 5.1: Consider the semidiscrete difference approximation:

_J . -4 - A= ]
(5.8) dt Ax [hj] Ax [C(Vj+~yé) AX ]
and let
N ~o
S(t) = § AxV(q.).
j=1 ]

Then the following “energy” estimate holds:

AL v A+ VN

ds T + 0 T
(5.14) -<E—<— Hy + v C(v 1/2) T} - [HN + Yy C(VN+ 1/2) x|

Proof: By Lemma 5.1

dv(q.) A, v
J _ A= T + 3
@t < Wy vy e OOy 5
Hence
ds N dV(q.) N N A, v
—= ) Ax < ¥ o a-[H)- ) v,a-][cv,, 1,) ]
dt j=1 dt j=1 3j j=1 i+t AX
N A, v
= 45 - T S+
> 55 < Hy HN+jZIA+vj C(vj+l/2) i
AL v AL v
T + 0 T +
+ - e——
vy ¢y 1/2) e Ve SO 1) TR

using summation by parts. Since

N T A+ v,
= + < 0.
c<0=> jzl A v C(vj+1/2) —le <
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Hence
A, v A, v
ds T + 0 T + N
— + _ - + .
i < HO Vj C(Vl/z) e :l [HN Vel C(VN+ 1/2) "
Remark: The generalization of this theorem to multidimensions is
obvious,

We now extend these results to uneven meshes, though restricting (5.4) to

the Godunov scheme,

The Godunov Scheme

Congider a grid of points {x.}. and define Ax, = x, - X.. Define
8 P { J}J€]N I £

Xj—l + xj ij_1 + ij
xj_ 1/2= — and ij = .
Ax, Ax
j-1 3
r ':‘ -
I | !
— 1 |
| : :
I
: qj-l qj I qj+l '
*5-1 N *3+ 1, *j+1
= Ox
h|

Figure 5.1
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(Consider the hyperbolic system of conservation laws:

qt + f(Q)x =0

(5.15) < with Riemann initial data:

] for <0
qJ X

q(X, t)|t=o =
\ qj+l for x>0 .

Then the Godunov flux fG(qj, q = f? is defined as:

417
(5.16) £°(a;, q4y)) = £alx = 0, £ = 0))

where q(x, t) is the solution to the Riemann problem (5.15).

The semidiscrete version of the Godunov scheme is:
dq.
—J 4 Az 46 -
(5.17) ac tax (a5, qj+l)] 0
where fG(qj, qj+l) is defined in (5.16). The semidiscrete Godunov scheme

satisfies the entropy inequality:

dV(qj) A=

G
(5.18) 5t 5 [F (a5 qj+1)]_5 0

where FG(qj, qj+1) = F? is the numerical entropy flux for the Godunov scheme

and is defined as:
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where q(x, t) 1is the solution to the Riemann problem (5.15).

A natural modification of (5.8) for uneven meshes is:

dq. A, v,
A- G A= — _Jy =
(5.19) EEJ'+ E}—{-j--(f (qj, qj+l)) +-3;; (C(Vj+-bé) ax. ) = 0.

Clearly (5.19) is a first—order accurate semidiscrete difference approximation
to (5.1). We claim that (5.19) satisfies the entropy inequality:

d¥(q.)

i A- G T A-
(5.20) 3t + ij (F (qj, qj+l)) + Vj EE; (C(v

A+ vj
AX,
J

)

j+ 1/2 ) S 0.

The proof is exactly the same as in Lemma 5.1.

Define a discrete version of the “energy” S(t) for the uneven mesh

N
(5.21) s(t) = 7}

6x, V(q.).
; Xy (qJ)

1

Then we obtain the following theorem.

Theorem 5.2: Consider the semidiscrete difference approximation:

A+
) Ax, )
J

dqj _ _ A= .Gy _ A-

dt 6x.
J

and let

N
s(t) = ¥

6x. V(q.).
j J qJ

1
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Then the following “energy” estimate holds:

ds G T
(5.22) E_(_ FO + v C(v 1/2) F. + v C(VN+ 1/2) el I

A+vel [g 1 A+ vy
N ON+L N

Proof: The proof is exactly as in Theorem 5.1.
Remark: Theorem 5.2, though a simple extension of Theorem 5.1, will prove
very wuseful in proposing stable boundary conditions for semidiscrete

difference approximations to the Navier-Stokes equations.



-4]~-

6. STABLE BOUNDARY CONDITIONS FOR THE DIFFERENCE SCHEMES

Ax' Ax A% Ax Ax'
LE e Ll R
y 1
\ 1
| i
< ¢ I 2
< 4 [ 3
£ ¢ —f{
— ¢
%o ¥ %2 x5 X341 ¥-1 N T

Figure 6.1
Suppose we have the boundary condition at x = O:
oT . :
B i T =g where B8 can be arbitrarily small.

Then a discrete version of this boundary condition would be:

(T, = T,
1~ 70 ~
B——__A_)ZO_-——TO_g

BT, — gAx
> T = 1 0
0 is+Ax05 *

So if Axo >> B => TO + — g and hence could give rise to a steep “numerical

boundary layer.” To avoid this we should have Ax of the same order of

0
magnitude as B or smaller., If, however, we choose an even mesh this becomes
computationally infeasible since 8 can be arbitrarily small.

To overcome this difficulty we propose the following: Divide the
interval [xo, XN+1] into N + 2 points Xgs X| st Xy, Xgige As before let

AX_ =X - X Choose

J J+1 J*
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AX

1l
[
P

]
(=%
»

Axi Ax for i = 1l,ee¢e¢ N-1

where we may choose Ax” << Ax. (See Figure 6.1.) So the mesh points are
evenly spaced in the interior, but x5 is close to x) and =xy;q 1s close
to XNc

Define §&x = Ax T Ax . Henceforth we shall restrict q to be

2
T
q= (D, mu) E) .

The semidiscrete difference approximation for the mixed initial boundary

value problem is tailored according to (4.19):

d4;  p- ¢ 1 At A+ vy
Tt [£7(q;,q,)] * 55 [€Gyy) — - c(vl/2 ) —_75?7—] = 0
dq A+ v
J A- G A- J
—_— + — —— = j= ese -
dt Ax [f (qJ’qJ+l)] Ax [C(VJ+-LQ ) AxJ ] 0 for j=1, N-1

- (.G 1 A+ vy At vy
_dt + 5_X [f (qN’qN+1)] + G_X C(VN+ 1/2) A% - C(VN_ 1/2) “-_AX-_:I =0

with initial condition:
(6.1)

q;(0) = Q,
and boundary conditions:
B(qy, 9,5 4,) =0 ¥t

Blay_p» ay» dyep) = 0 ¥

where B and B are boundary operators.
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In general, B and B may be an underdetermined set of boundary

conditions. For example, B(q., q,, q9,) may be of the form:
0 1 2

u =U1
=1

and Po is unspecified.

If B 1is a “legitimate” boundary operator we can connect q; to qg by just
two waves, say a 2- contact and a 3- shock or rarefaction, such that
B(qo, 9 q2) = 0 holds. We make this statement more precise by examining
the boundary Riemann problem.

Suppose we have a boundary (a wall) given by x = st. We want to give a

number, m, of nonlinear boundary conditions depending on q at the boundary:

ST

h: B » B, heC”
(6.2)

and initial condition:

q(x, t)lt=0 =q, (a constant state) for x > 0.

The underlying differential equation is

(6.3) q, + f(q)x = q, + A(q)qx =0

where
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S
A(q) = 35 °

We want to construct similarity solutions for this initial boundary
problem, Clearly, for the problem to be well-posed we have to choose q, so

that

xl(qr) ool Ak(qr) <s < Ak+1(qr) <o el An(qr)

where Ai(q) are the eigenvalues of the matrix A(q) and m = n - k.
We can connect q, to the boundary by n - k waves. The rarefunction

and shock curves of the jEE- family determine a wave curve:

j
R(q,, €., €5 >0

j
W (qr, ej)

SJ(qr, ej), ej <0

where wi is twice continuously differentiable in both its arguments (see
(2.

Given q, and sufficiently small parameters €] """ 2E, Ve define

states En,---,5k+l inductively by:
~T n
¢ =WA(q., e)
EJ_I = WJ(qJ, ej) for j = n,see,k + 2,

Set:

¢ ceee )
q qra €k+1’ )En .

Ne
o
"
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Then the boundary condition h(q) = O becomes m equations in the n - k

unknowns see g

Extl? n
h(ql(qr’ Ek‘}‘l’...’en)) = 0-

By the implicit function theorem we will be able to solve for in

Ext12 "8y

terms of q, in a ¢? manner if m=n - k and the Jacobian %% has rank

m. Differentiating we get the local solvability condition:

| |
(6.4) Q%_ LREELLN has rank m = n - k
aq | | q=q

where r;y in the LEE eigenvector of the matrix A(q) corresponding to the

eigenvalue Aye The construction is described in Figure (6.2).

Figure 6.2
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(6.4) is also a necessary condition for the linearized initial boundary value
problem to be well-posed.

We relate this now to the boundary operator B(qo, q;> q2) = 0. Let q,
denote g and q, denote q;. Then B(qo, q; q2) = (0 corresponds to

the m boundary conditions:
(6.5) h(Q)|X=0 =0
and the initial condition for the initial boundary Riemann problem (6.2) is:

q(X, t)|t=0 =q = ql-

So B(qo, dp» q2) is a “legitimate” operator if (6.4) holds. Assuming that
it is, we can connect q to a state 9 such that B(qO’ q> qz) =0
holds.

Returning to the difference scheme (6.l1) we can now define the Godunov
flux fG(qO, ql) using this construction. Suppose at t =0 ql(x, t) = q
and we have the boundary operator B(qo, qy» q2) = 0.

Consider the Riemann initial boundary value problem:

alx, | 5 = q
and boundary condition:
h(q) = 0 for x = x5 corresponding to B(qo, q;» qZ) =0

as in (6.5).
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Ax/2

—»
dx = Ax+Ax’ A
2 .

Figure 6.3

Then if (6.4) holds we can join q; to a state g 1in a small enough
neighborhood of q; so that B(qo, q;» q2) = 0.

In general, the number of boundary conditions, m, specified by the
boundary operator B will be more than the number of boundary conditiouns
needed for the hyperbolic Euler equations since we are solving the Navier—
Stokes equations, i.e., m > n ~ k. Hence, when we connect q; to a state
qp 1lying to the left of the line x = x%& some of the waves will lie in the
region x < }(%Q . This corresponds to letting waves be radiated at the
boundary.

We know that we can connect q; to a state qg such that B(qo, 9
q2) =0 if qg and q; are sufficiently close. We chose an uneven mesh
precisely for this reason. We set Ax0 = AxN = AX” and Axi = Ax for
i=1,eee¢,N~-1 where Ax" could be arbitrarily small. In fact, by choosing
Ax” small enough we can make qg 1lie as close to q) as we want., This has
the effect of making the waves in the cell bounded by x = x3 and x = x|

very weak and hence we conclude that

G G ~
F (q0: ql) ~ F (qla ql) = F(ql)-
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Recollect that the energy estimate we obtained for an uneven mesh was of

the form:

+
2§ A A

0
at ]

G T
<[Fags a)) +v) C(Vl/z) —
(6.6)

A+ v

N

]

G T
- + _—
[F (O Oyep? * Ve C(VN+-UQ) AX”

Since qp * 47 as AXx” » 0 the estimate (6.6) reduces to:

A+ A+ ay

ds
AxX” ]

E0)
It ]

< [Flq)) + v, (ay)Adqy) - [Flqy) + LA CIPZICIY
for sufficiently small Ax”.
One further point that should be noted is that when we take a fully

discrete version of our semidiscrete scheme the CFL condition we have to

impose to prevent wave interactions is:
+ Ax”
(6.8) ata(a) ¢ Ax T AX

where A(A) is the spectral radius of the matrix A(q). Clearly (6.8) is not
an unduly restrictive condition.
For the numerical simulation presented in the next and last section, we

nondimensionalize the Navier-Stokes equations.

Let L be a reference length, P @ reference density, and uy a
reference velocity. Define:
*
x = x/L,
*
t = tuf/L,
*

u = u/uf,
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* 2
P = P/og ug,
* 2
T = TR/u,
*
p = p/pf9
* 2
E = E/pf uge

We also need the following parameters, which occur extensively in fluid

dynamics:
c
Pr = uRy " p
k(y - 1) k

pg ug L

u

Here Pr and Re are abbreviations for the Prandtl number and Reynolds
number respectively. Henceforth we drop the Tk for notational
convenience. For our numerical simulation we use Stokes” assumption:

The nondimensionalized Navier—-Stokes equations then take the form:

P * (pu)x =0

N

X

4 3, du y 2% T
I (

)+ .
Y 3% (Y = 1)Pr Re 8x2



-50-

Rewriting the dissipative term (-D)q 1in terms of our new variable vy

we obtain:

0 0 0 ] 0T

_ =4T -4uT 3 u

(C(v)vx)x 0 3Re 3Re 3% T
0 =4uT —4u2 T _ yTz -1
3Re 3Re (y = 1)Re Pr T ]

Our nondimensionalized boundary conditions take the form:

Supersonic Outflow

Ju

-V
3T _
dx 0

Subsonic Qutflow

§%E-%§-— @, u =g, where a, >0
-0
Subsonic Inflow
pu = g,
g—}‘:=o

3T _

2
5 S (y =y +2)
Re Pr 9x

&g 2 g1

aq T = 83 where
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Supersonic Inflow

pu = g,
4 3u _ =
3Re 3x X2 ¢ Y]

y 9T 8]

% 77 ox %3 T = 83 where a, > 7= s Oy > g1+

We now propose a discrete version of these boundary conditions which are
of extrapolation type and hence minimize the effect of the computational

boundary.

Supersonic Outflow

We can connect qg to q; without any waves at all by putting

po = pl'

Subsonic Outflow

The boundary conditions proposed for supersonic outflow would work
equally well for subsonic outflow. This corresponds to choosing a, = 0 in
the subsonic outflow boundary conditions. If we choose ay > 0 the
discretized boundary conditions would be:

s (v T Y) _
3Re  Ax~ Gy U T8
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where we could put

Then
) (4/3Re) - a, Ax )u1 -8 Ax

Yo (4/3Re) .

Clearly ug * u; as Ax” » 0, We choose o by joining q; to qg

wave interactions.

Subsonic Inflow

L3

(pu)g = g = (pu); = T [(pw), = (pu)]

Y (Tl - TO) Y (Tz 1

Re Pr AKX —oa3 Ty =83 = gopr AX - ay Ty

Here ay > (Yz -y + 2)g1/2.

Supersonic Inflow

(pu)y = g; = (pu), - %%L [(ou), = (pu),]

s Cop = ug) _ _ 4 (uy = up) _
e AX 0y U1 T 8 T IRe AX Gy Yy
(T1 - TO) y (T2 - Tl)

Re Pr Ax” T 03 Tl = 83 T Re Pr AX - a3 T2'

by two
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Here o, > (gl /2, ay > g.
As mentioned earlier all the boundary conditions are such that 94 * 9
as Ax” » 0 and they are a discretized version of the boundary conditions for

the differential equations, i.e.,

3q

ax
It is easy to verify from (6.7) that for Ax” small enough we get bounded
growth of the discrete version of the emergy S(t) 1in time by choosing a,

and ag appropriately.

7. NUMERICAL RESULTS

Throughout the simulations we use the following parameter values:

Pr = 0.7
Yy = l.4
Ax = 0.1

Ax” = 0,000001
At = 0.01.

Simulation l: For the first simulation we use a very large value of the

Reynolds number

We run the program with Riemann initial data:
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L= 1.0
u = 3.0
P = 1.0
and
PR = 0.4734821
up = 2.1393370
PR = 0.3333333.

At the 1left boundary our boundary conditions correspond to supersonic
inflow. At the right boundary we have supersonic outflow boundary conditionms.

The solution to the Euler equations with initial data corresponding to
the above Riemann problem is a 3 shock moving to the right with a speed
= 3.,774567.

The numerical simulations bear this out very well. The boundary
conditions are radiative and allow the shock to pass through. Further for

long time the solution stabilizes to a constant state.
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Simulation 2: We use a low Reynolds number:

Re = 500,

Once more we run the program with Riemann initial data:

P = 1.0
uL = 1,0
Py = 1.0
and
PR = 1.625000

u, = 0.3798263

PR = 2.000000.

At the 1left boundary we have subsonic inflow boundary conditions and at
the right boundary the boundary conditions correspond to subsonic outflow,

The solution to the Euler equations with the above Riemann initial data
is a 1 shock moving to the left with a speed = 0.6124516.

The numerical results, once again, have all the desirable properties we

observed in Simulation 1.
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