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Using Prediction Uncertainty Analysis to Design 
Hydrologic Monitoring Networks: Example Applications 
from the Great Lakes Water Availability Pilot Project 

By Michael N. Fienen, John E. Doherty1, Randall J. Hunt, and Howard W. Reeves 

Abstract 

The importance of monitoring networks for 
resource-management decisions is becoming more 
recognized, in both theory and application. 
Quantitative computer models provide a 
science-based framework to evaluate the efficacy and 
efficiency of existing and possible future monitoring 
networks. In the study described herein, two suites of 
tools were used to evaluate the worth of new data for 
specific predictions, which in turn can support 
efficient use of resources needed to construct a 
monitoring network. The approach evaluates the 
uncertainty of a model prediction and, by using linear 
propagation of uncertainty, estimates how much 
uncertainty could be reduced if the model were 
calibrated with addition information (increased a 
priori knowledge of parameter values or new 
observations). The theoretical underpinnings of the 
two suites of tools addressing this technique are 
compared, and their application to a hypothetical 
model based on a local model inset into the Great 
Lakes Water Availability Pilot model are described. 
Results show that meaningful guidance for 
monitoring network design can be obtained by using 
the methods explored. The validity of this guidance 
depends substantially on the parameterization as 
well; hence, parameterization must be considered not 
only when designing the parameter-estimation 
paradigm but also—importantly—when designing 
the prediction-uncertainty paradigm. 

1Watermark Numerical Computing and Australian National Centre for 
Groundwater Research and Training 

Introduction 

When designing groundwater monitoring and 
modeling programs to support resource management, 
hydrogeologists are faced with choices about what 
kind of monitoring network can most efficiently 
support the management decisions needed. The 
network of data is constrained by factors such as 
budget and access. In fact, budget and access can 
become such a central focus of the management 
effort that their importance for modeling can become 
primary. The end result is a model that is simply 
calibrated to “available data” and then applied to a 
prediction of interest, regardless of how well suited 
the model is for the prediction. An alternative 
approach is to formally assess the value of each type 
and location of potential calibration datum in a 
proposed or existing monitoring network for 
enhancing the certainty of specific predictions to be 
made by the model. Constraints such as cost and 
access can either be incorporated into the 
calculations or be considered separately. 

Network design that is based on the specific 
predictions needed for specific management 
questions can help realize the greatest value from 
limited resources available on a project because 
possible locations and types of field data can be 
quantitatively compared and ranked. In this context, 
although the uncertainty of a prediction is quantified, 
the focus of the analysis is the difference in 
uncertainty with or without certain knowledge (for 
example, knowledge about likely parameter values 
prior to model calibration, or the collection of 
calibration data). This difference, in turn, indicates 
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the relative worth a certain piece of knowledge (data) 
contains for the prediction of interest. 

Data worth can be calculated either through the 
addition or subtraction of potential information 
(Beven, 1993). The information resulting from these 
two broad approaches is different and, in this report, 
we focus on the addition of potential information. 
This approach is most applicable to early stages of an 
investigation. Moreover, subtracting established 
locations from a monitoring network is expected to 
be a less common occurrence: collection of data at 
existing sites may have unanticipated future value as 
predictions of interest change; thus, these data may 
be worthwhile to retain even if of negligible value for 
a current prediction. 

A synthetic model, based on a local inset model 
constructed using properties from the Lake Michigan 
Basin (Hoard, 2010), is used to demonstrate this 
analysis. Two predictions are considered: a head 
prediction and a flux prediction. Both predictions are 
made in response to the placement of a new stress—a 
high-capacity pumping well—near a headwater 
stream. The predictions are meant to represent the 
evaluation of ecological low flows in the stream and 
the impact due to operation of a new well. 
Monitoring for this type of impact is expected to be 
of increasing interest as urban development and 
water use increase. 

An important aspect of designing the model is 
deciding the structure and number of parameters used 
to represent unknown natural-world input values to 
the model (Hunt and others, 2007). Parameterization 
can have important ramifications for the model’s 
ability to receive the information of the calibration 
dataset and, thus, the model’s ability to simulate the 
system. Parameterization can also affect the 
determination of data worth obtainable with that 
model. The example used in this study involves 
refinement of surface-water features in a detailed 
local model inset within a very large regional model. 
In such a case, finer discretization (relative to the 
regional model) and the more detailed representation 
of streams enhances representation of 
groundwater/surface-water interaction. However, 
generating a local model also creates an opportunity 
to refine the level of parameterization. Indeed, local 
system detail that is unimportant and simplified on 
the regional scale commonly becomes important on 

the local scale. Moreover, the opportunity to refine 
parameterization provides an excellent chance to use 
network-design tools to determine how best to 
prepare the new model for its decision-making 
purpose. Thus, we discuss various parameterization 
options in the context of exploring their impact on 
network-design decisions. 

Purpose and Scope 

The purposes of this report are (1) to evaluate the 
results of data worth and network-analysis design by 
using publicly available tools and (2) to explore 
several scenarios in a realistic modeling context 
reflecting decisions supporting the early stages of a 
network-design application. Two main suites of tools 
are currently available to practitioners to make the 
calculations required for this type of analysis. A 
prediction uncertainty tool, OPR-PPR (Tonkin and 
others, 2007), is designed for overdetermined 
problems and intended to be used with the 
applications JUPITER (Banta and others, 2006) and 
UCODE 2005 (Poeter and others, 2005). Tonkin and 
others (2008) indicate that extension to highly 
parameterized problems is straightforward, although 
this has not previously been tested (M.C. Hill, written 
comm., 2009). A second software suite, PEST 
(Doherty, 2008a,b), is extensible to highly 
parameterized, underdetermined problems, including 
those implemented with regularization. The 
prediction uncertainty tools PREDUNC and 
PREDVAR are incorporated into the PEST suite. 

Herein, we document the theoretical and 
practical background underlying these two 
approaches and demonstrate the analysis of network 
design by use of PREDUNC. A key element of this 
work is exploring the impact of parameterization 
strategy on network design; hence, a tool capable of 
investigating a range of parameterization strategies, 
ranging from overdetermined to underdetermined, 
was required. As a result, it was necessary to use 
PREDUNC to accomplish all goals of the analysis. 

The scope of this report is confined to 
exploration of data worth for a network of potential 
head observations in the context of a head prediction 
and a flux prediction. The predictions are made when 
a high-capacity pumping well is added to the model 
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near the headwaters of a small stream. The choice of 
this particular example does not preclude the use of 
these techniques on other types of predictions and 
models; indeed, both the PEST suite and OPR-PPR 
are model-independent by design. 

Methods 

Using Prediction Uncertainty for Network 
Design 

Two main strategies can be employed to evaluate 
the worth of a particular piece of information: the 
information can be added to a base-calibration case 
(or to a completely uncalibrated model if at the 
beginning of a project), or the information can be 
subtracted from an existing network. For example: 

Addition. Observations can be added to the 
calibration data set. The calculated uncertainty 
of the prediction with the new observations 
added will typically be less than or equal to the 
uncertainty without the new observations. 

Addition. Better precalibration information can be 
obtained for model parameters and, again, the 
calculated prediction uncertainty will typically 
be less than or equal to the uncertainty without 
the new parameter information. 

Subtraction. Observations can be excluded from an 
existing calibration data set, and the prediction 
uncertainty will typically be greater than or 
equal to the uncertainty with all observations 
included. Such an operation would be useful if 
one is trying to decide how to shrink an 
existing network with the least adverse effect 
on predictions of interest. 

In the first example, when potential observations are 
added to the problem, the worth of each new addition 
(which can be an individual observation or a group of 
observations) is calculated independently from each 
other addition. In this report, the base case is 
considered to be the model with no calibration data 
available. Each potential observation is added 
individually, and its data worth is assessed. This 
approach is most appropriate at the beginning of a 

project, where a model has been created but no 
observations have been identified. At this phase, the 
design of a monitoring strategy can be assisted by the 
techniques outlined herein. 

The second example is focused on parameters 
rather than observations, and the problem is reduced 
to examining different types of parameters rather 
than the spatial distribution of parameters or 
inclusion of other system processes. In this way, 
general information about parameter information by 
type (for example, horizontal hydraulic conductivity 
in a single layer versus better constraining of 
recharge or streambed conductance) can guide 
further exploration of parameter information, such as 
proposing aquifer tests or recharge studies. 

The third example, in which potential 
observations are subtracted, may seem redundant; 
however, these approaches are not symmetric. The 
third method is appropriate when trimming an 
existing or proposed monitoring network; for 
example, in response to budget constraints or 
transition to a new phase of work requiring different 
(less) monitoring. 

Prediction uncertainty in PEST and OPR-PPR 
after the addition or subtraction of information is 
calculated through first-order second moment 
analysis (Dettinger and Wilson, 1981; Kunstmann 
and others, 2002; Glasgow and others, 2003). By 
expanding the calibration problem in a first-order 
Taylor series, it is assumed that the system response 
is sufficiently linear over the range of parameters 
evaluated that the linearized (Taylor expansion) 
representation is accurate, and the uncertainty of the 
prediction with or without the information being 
evaluated can be calculated by using linear 
uncertainty propagation theory. The difference in 
uncertainty with or without the information being 
evaluated leads to an assessment of worth of that 
information. 

Sources of Uncertainty in a Bayesian 
Framework 

A major theoretical difference between 
PREDUNC and OPR-PPR is that the former is 
derived in a Bayesian framework (appendix 1) 
whereas OPR-PPR is derived in the context of 
traditional, overdetermined regression (appendix 2). 
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The Bayesian conditioning framework formally 
includes two primary sources of uncertainty: a priori 
and epistemic. The a priori uncertainty is estimated 
before calibration and pertains to the parameters 
being estimated. Epistemic uncertainty also is 
estimated before calibration but pertains to the 
observations. Epistemic uncertainty is expressed in 
both OPR-PPR and PREDUNC through observations 
weights, whereas a priori uncertainty is supplied to 
OPR-PPR through prior-information equations and to 
PREDUNC through the explicit definition of a 
parameter uncertainty matrix. Both types of 
uncertainty are considered in the posterior estimates 
of parameter and prediction uncertainty. Further 
details of the Bayesian framework are given in 
appendix 1, and the two main sources of uncertainty 
are discussed in detail below by using the OPR-PPR 
and PREDUNC contexts. 

A Priori Parameter Uncertainty 

The PREDUNC prediction uncertainty 
calculation utility in PEST is derived in a Bayesian 
conditioning framework (see, for example, 
Christensen and Doherty, 2008, and appendix 1 of 
this report). As a result, an important component of 
the calculations is the a priori uncertainty (also 
referred to as the “inherent variability” or “aleatory 
uncertainty” (Beven, 2009, p. 24)) of the parameter 
field. Inherent parameter uncertainty of this type 
cannot be reduced, although estimates of it can 
decrease in response to improved knowledge about 
the system properties and parameters. It is also 
impossible to fully know the exact nature and 
magnitude of this uncertainty, but it can be 
characterized and expressed in several ways. 

This uncertainty can be expressed as a full 
covariance matrix, reflecting characteristics of the 
field of parameters and their interrelations; or it can 
be a diagonal matrix indicating that parameters are 
not correlated with each other. In the full covariance 
case, a variogram model from geostatistics is 
typically adopted, whereas in the diagonal case, 
distinct variance or standard deviation values are 
applied to each parameter. The matrix Cpp in 
equation 1 indicates covariance of the parameters. 

The PEST suite explicitly uses a Cpp matrix in 
its calculations, whereas in OPR-PPR, inclusion of 

the Cpp matrix must be performed by defining 
weights on prior information of the preferred-value 
type (see appendix 3). 

Epistemic Uncertainty 

Epistemic uncertainty (see, for example, Rubin, 
2003, p. 4, and Beven, 2009, p. 24) refers to the level 
of uncertainty in reproduction of observations in a 
model due to a variety of nonrandom causes 
including measurement error, model error, and 
structural/conceptual uncertainty. This term is 
important to distinguish from measurement error 
alone, which is sometimes cited in the assignment of 
weights. The epistemic uncertainty values are 
included in the Cεε matrix of covariance values. Both 
the PEST suite and OPR-PPR accept a full 
covariance matrix for Cεε , although in practice a 
diagonal matrix of weights is adopted in many cases. 

Epistemic uncertainty, unlike a priori 
uncertainty, can be reduced through the collection of 
more or better measurements, the refinement of 
models, or other improvements. In theory, with a 
model that is a perfect representation of all 
complexity and processes encountered in the real 
world, epistemic uncertainty could be reduced to 
zero. In practice, however, this can never be 
achieved. 

Calculation of Prediction Uncertainty by 
Using PREDUNC 

In the PREDUNC results shown here, an 
important concept is the potential difference between 
prediction and calibration conditions. Two broad 
categories of predictions can be considered. One is 
the prediction of a system property at a spatial 
location in a model at which observations are not 
available for calibration. For example, a network of 
agricultural wells may be available to calibrate a 
regional model, and a prediction may be desired in a 
region that is slated for residential development. A 
second, and probably more common category is the 
response of a system that is to be stressed. Often, 
models are calibrated under historical stresses but are 
to be used to evaluate the system response to a future 
stress. Examples include changes in recharge due to 
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climate change, pumping from a newly installed well, 
or a change in pumping rates in an existing well. 

In the remainder of this report, it is occasionally 
necessary to distinguish between calibration 
conditions and prediction conditions. “Calibration 
conditions” refers to the system state for which 
calibration is performed and does not include the 
stress (or change in stress) that is being investigated 
for the prediction. “Stressed conditions” or 
“predictive conditions” refers to the system state that 
does include the stress (or change in stress) of interest 
for the prediction. In the example of evaluating the 
system response to a newly installed pumping well, 
calibration conditions would be the model and data 
available without the well pumping, and prediction 
conditions would be the model and data available 
with the well pumping. If the stress is not changing 
but a new spatial location is being investigated (the 
first broad category above), calibration conditions 
and predictive conditions are the same. 

By using these distinctions between calibration 
and prediction conditions, prediction uncertainty for 
a prediction s is calculated by PREDUNC as 

σs 
2 = yT Cppy− 

yT CppXT  XCppXT + Cεε

 −1 XCppy (1) 

where σ 2 is the prediction uncertainty, y is the s 
sensitivity of the prediction (under predictive stress 
conditions—this vector includes the sensitivity of the 
prediction to all parameters and is a 1 × NPAR vector, 
where NPAR is the number of parameters), Cpp is the 
covariance matrix of inherent variability (a priori 
uncertainty) of the parameters, X is the Jacobian 
matrix (NOBS × NPAR, where NOBS is the number 
of observations) of sensitivity under calibration 
conditions, and Cεε is the covariance of epistemic 
uncertainty on the observations. Note that the first 
term depends only on the sensitivity of the prediction 
to the parameters and to the inherent parameter 
variability. As a result, this represents the 
precalibration component of uncertainty. The second 
term, which includes sensitivity of observations to 
parameters in the calibration dataset and the 
epistemic uncertainty of the observations, represents 
the calibration component of uncertainty. A 

derivation of these equations is included in appendix 
1. 

Calculation of Prediction Uncertainty by 
Using OPR-PPR 

The general approach of OPR-PPR is the same as 
for the PEST PREDUNC tools. However, the 
structure of the prediction is based on uncertainty 
typically calculated at the end of a linear regression. 
A derivation of these equations is included in 
appendix 2. Adopting the symbology used in this 
report, the prediction uncertainty for a prediction s is 
calculated by OPR-PPR as 

 2 T  −1
σ

2 = s y XT Cεε X y (2)s 

2where σs 
2, y, and X, are the same as in equation 1, s

is the calculated error variance, and Cεε is the 
observation weight matrix, which corresponds to Cεε 

in equation 1. In traditional regression, the role of 
this formulation is to quantify the uncertainty in a 
prediction imparted by the observation dataset and 
the regression process (see, for example Draper and 
Smith, 1966) The Jacobian matrix (X) can be 
modified to include prior-information equations 
(Tonkin and others, 2007), and under certain 
circumstances, in which prior-information equations 
are used with preferred-value regularization, the 
same calculations can be made with OPR-PPR as 
with PREDUNC. Implementation limitations in the 
OPR-PPR software (version 1.00) include application 
to problems with relatively few parameters (on the 
order of 100). Further details of the derivation and 
implementation of OPR-PPR and a comparison with 
PREDUNC are given in the appendixes to this report. 

Comparison of PREDUNC and OPR-PPR 

One of the goals of this study was to compare the 
theoretical backgrounds underpinning both 
PREDUNC and OPR-PPR. The mathematical details 
are covered in depth in the appendixes to this report. 

PREDUNC is derived in the context of Bayesian 
updating. In this way, an a priori estimate of inherent 
parameter covariance (Cpp) is updated with the 
information added through the calibration process to 
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a specific set of data. Regularization equations are 
not considered in these calculations, and no other 
prior information equations are required or used to 
make the calculations. 

OPR-PPR is derived in the context of 
overdetermined regression. Prediction uncertainty in 
this context is intended to indicate the propagation of 
uncertainty in the observations to parameter 
estimates. The extension to include prior information 
allows inclusion of a Cpp matrix characterizing 
inherent parameter covariance in the form of weights 
on prior-information equations of the 
“preferred-value” type. Provided that the weights on 
prior-information equations correspond to C−1, the pp 
prediction uncertainty calculations in OPR-PPR are 
equivalent to those in PREDUNC. 

Further details of the circumstances required for 
PREDUNC and OPR-PPR to yield equivalent results 
are given in appendix 3. Programmatic limitations on 
the number of parameters that can be used with a 
combination of UCODE 2005 Version 1.015 and 
OPR-PPR Version 1.00 prevented a direct 
comparison of the results with PREDUNC. However, 
by using MATLAB Release R2008b (Mathworks, 
2008), the results from using both forms of the 
equations were compared and found to be equivalent 
under the circumstances detailed in appendix 3. The 
calculations discussed in the remainder of this report 
were made with PREDUNC. 

Model Description 

The methods discussed in this report were 
applied to a local model inset within a 
groundwater/surface-water interaction model created 
by Hoard (2010). The model uses a telescopic 
mesh-refinement approach where a local model was 
constructed (cell size = 21.8 m) within an 
intermediate model (cell size = 152.4 m), which was, 
in turn, inset within a regional model (cell size 
ranging from 1,524 m to more than 21,000 m) of the 
Lake Michigan Basin (Feinstein and others, 2010). 
The purpose of the two-step insets was to explore 
downscaling of regional climatic conditions at the 
large basin scale to a scale appropriate for evaluating 
impacts on small streams. Local exploration of 
stream/aquifer interactions was another motivation 

for a local model inset within an intermediate or 
regional model. The features and locations of the 
regional, intermediate and local models are shown in 
figure 1. The model contains six layers, of which the 
shallowest two are of principal interest in this 
investigation. Recharge and fixed-head lateral 
boundaries, simulated with the RCH and BAS 
packages within MODFLOW-2005 Version 1.6 
(Harbaugh, 2005), combine with surface-water 
features modeled through the streamflow routing 
(SFR) package to represent water inflows and 
outflows. Further details about the model features 
and implementation are discussed in Hoard (2010). 

Domain and General Model Characteristics 

The domain of the local model is depicted in 
figure 2. The locations of the pumping well, the well 
location for a head prediction, and the streamgage 
location for a flux prediction also are shown. The 
local model was run at steady state with fixed 
boundaries inherited from the intermediate model 
(rather than being run as a fully coupled version with 
the local grid refinement (LGR) package (Mehl and 
Hill, 2005; Hoard, 2010)). The techniques could be 
extended to transient cases and full 
intermediate-to-local iterative coupling via the LGR 
package (with an accompanying increase in 
computational demands). The steady-state, 
non-linked approach was adopted here to keep 
forward model run times short (several minutes), thus 
enabling comparison of many different methods and 
assumptions. 

Stress and Prediction 

The calibration condition for the local model 
consists of recharge, the presence of streams that 
interact with the aquifer, and constant-head 
boundaries inherited from the intermediate model. 
No pumping wells are present in the calibration 
conditions. The prediction conditions include a new 
stress—the addition of one new pumping well, 
extracting at 500 gal/min from layer 2 at the location 
indicated in figure 2. Two predictions related to the 
new stress are investigated: one head in a location 
between the pumping well and stream (figure 2, cell 
H115 259 in layer 1) and one flux prediction in the 
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Figure 1. The location and features of the regional, intermediate, and local models. Figure modified from Hoard (2010). 

nearby stream (figure 2; named “streamgage 17”). 
Both predictions are intended to indicate possible 
ecological impacts in the stream due to installation of 
a moderately sized extraction well; for example, the 
first might be related to change in water levels in a 
riparian wetland and the second related to effects of 
pumping on flows needed for trout or other species of 
societal interest. 

Figure 3 shows the head contours of the local 
model in layers 1 and 2 under the stressed conditions. 
A full description of the model layer geometry is 
given by (Hoard, 2010). The behavior of 
surface-water features is reasonable in these contour 
plots, and the effect of pumping can be seen. The 
characteristics of this head solution have utility for 
interpretation of data worth. For example, note the 
refracted contour lines that are most pronounced in 
layer 1. These are the result of 
hydraulic-conductivity contrasts in the zonation 

inherited from the regional model. 

Parameterization 

Parameterization, and the simplification 
decisions made during parameterization, can have 
ramifications on predictive uncertainty (Moore and 
Doherty, 2005; Doherty and Hunt, 2009). In a 
traditional approach to parameterization, the modeler 
is forced to make subjective decisions to simplify the 
natural world to a tractable modeling problem, most 
commonly by using zones of piecewise constancy. 
Although rarely done in practice, the uncertainty 
associated with such decisions can be estimated by 
using the approaches of Cooley (2004) and Cooley 
and Christensen (2006). These approaches are 
computationally expensive, however, and not suited 
for directing the modeler to actions that can address 
unacceptable uncertainty. A highly parameterized, 
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Figure 2. Local model domain and the locations of the pumping well, the head prediction (H115 259), and the flux prediction 
(streamgage 17). 

regularized inversion approach, on the other hand, 
builds the problems by using large numbers of 
parameters with additional mathematical techniques 
to constrain the additional parameters through soft 
knowledge of the system (Hunt and others, 2007; 
Doherty and Hunt, 2009). Large numbers of 
parameters do not necessarily mean high parameter 
heterogeneity, however, if the balance of soft 
knowledge (that is, qualitative information known 
about the site) and model fit is appropriate (for 
example, Fienen and others, 2009a,b). Rather, 
deviations from the preferred condition occur only 
when the improvement in the model fit is of sufficient 
magnitude to offset the deviation from the preferred 
condition. Such regularized inversion approaches 
help reduce the epistemic error component of 
uncertainty, which is particularly valuable when 
characterizing subtle aspects of data worth, such as 
comparing one location for a potential head 
measurement to another nearby potential head 
measurement. 

To demonstrate the effect of parameterization on 
data-worth analyses, three parameterizations are 
considered (figure 4): a hydraulic conductivity (K) 

layer-multiplier (“KLM”) approach in which a single 
multiplier is applied to all horizontal and vertical 
hydraulic-conductivity values in each layer inherited 
from the regional model, yielding a 12-parameter 
model; a 300-parameter version of the Kfield 
(“300K”) in which the zonation inherited from the 
regional model was used to define 300 
hydraulic-conductivity parameters in the model (25 
horizontal K and 25 vertical K parameters in each of 
the 6 model layers); and pilot-point or “PP” approach 
(Doherty, 2003) in which a 20×20 grid of pilot 
points was used to represent both horizontal and 
vertical hydraulic conductivity, with estimated values 
kriged to the model grid in areas between the pilot 
points. The PP approach has 4,800 parameters. To 
better compare the three levels of parameterization, 
all parameters were treated as multipliers such that 
their initial value is unity for all cases and uncertainty 
is expressed as a fraction of that initial value. 

A critical aspect of this parameterization is that 
the model-node geometry and the parameter base 
values themselves underlying all the 
parameterizations are the same—inherited from the 
regional model. As a result, the impacts of 
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Figure 3. Head contours in layer 1 (left panel) and layer 2 (right panel). The contour interval is 1.5 feet. 

parameterization enter the problem in two ways: (1) 
the spatial area of the domain perturbed when 
evaluating the Jacobian sensitivity matrix, and (2) the 
resolution of the a priori parameter uncertainty 
matrix (Cpp). These differences are shown to have a 
substantial impact on the results of prediction 
uncertainty analysis. 

These three parameterizations allow investigation 
of different facets for using models for data worth 
analyses. The KLM case was chosen both to evaluate 
the parameter worth in a categorical sense (in other 
words, broad categories of parameter type rather than 
repeated instances distributed spatially throughout 
the model domain) and to serve as an extreme 
example of lumping as might happen in “back of the 
envelope” estimates of system response as simulated 
by a slightly modified version of the regional model 
where the surface water features are refined but the 
local aquifer properties are not. Using the KLM 
approach, one assumes that downscaling the major 
elements of the model from the intermediate scale 

(for example, the stream geometry, boundary 
conditions, and grid resolution) will be adequate to 
simulate the stream and groundwater interactions in 
the local model. If so, the KLM version of the 
problem should suffice for assessing data worth. The 
300K case was chosen as a moderately parameterized 
example in which some additional flexibility beyond 
the regional model is allowed in addition to the 
surface-water feature refinement of the KLM 
approach. This can be thought of as an end extreme 
of the number of zones that might be tried in a 
traditional calibration approach. The PP case 
represents a highly parameterized case typical of a 
regularized inversion approach that aims to overcome 
potential artifacts of parameter lumping and the 
associated structural error by using minimal 
assumptions about the geometry and lumping of the 
hydraulic-conductivity field. The three 
parameterizations are considered members along a 
natural continuum of model refinement. 
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Observation Network 

For this analysis, it is assumed that no existing 
data are available for the model domain beyond those 
used to constrain the regional model. Thus, the 
network of observations for this study is different 
from a typical calibration dataset, and observations 
are placed at the positions where potential 
observations might be placed rather than at the 
locations of existing wells. By using the concept of 
notional calibration (Doherty, 2008b), these 
observations are intended to be assessed for data 
worth, as described below, rather than as actual 

calibration targets. The network of potential 
observations is shown in figure 5 and is focused on 
the locations of both the proposed pumping well and 
the head and flux predictions. If existing data were 
included, the worth of new data would represent the 
incremental reduction in prediction uncertainty due 
to addition of the new data. The omission of a 
pre-existing dataset changes only the baseline of 
relative worth comparison and, for clarity of 
interpretation in this study, the baseline is assumed to 
be no data. 
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Figure 5. Potential head observation network. The same observation network is applied to the first and second layers. 

Structural Parameters 

In the “Methods” section, a priori and epistemic 
uncertainty were discussed. These sources of 
uncertainty enter the calculations as parameters in the 
Cpp and Cεε matrices, respectively. To differentiate 
these parameters from the main model parameters 
(hydraulic conductivity, for example) the uncertainty 
parameters are referred to as “structural parameters.” 
Structural parameters are not related to “structural 
uncertainty” as discussed later in this report—an 
unfortunate overlap in the prevailing terminology. 
Structural parameters are discussed here to indicate 
the means by which sources of uncertainty are 
introduced to the mathematics of the problem. 

In this study, a diagonal matrix was adopted for 
Cpp in all cases. This implies an absence of 
correlation (and, therefore, continuity) among the 
parameters. Although this assumption is an 
approximation and not fully correct, it was adopted 
as a simpler approach that also could easily adopted 
in a real-world application. The inclusion of a full 
covariance matrix, if desired, is typically 
accomplished by using a geostatistical variogram. 
Scenarios with different relative uncertainty among 
parameter groups are investigated by changing the 
diagonal elements of Cpp for recharge relative to 
hydraulic conductivity. In the OPR-PPR framework, 
formal adoption of the Cpp matrix is currently 
infeasible because the OPR-PPR calculations are not 
based on Bayesian conditioning. However, it is 
possible to use prior-information equations to include 

similar information in the problem, although this is 
not the documented intent of such information (as 
discussed in appendix 3). 

In all scenarios investigated in this study the 
same values for epistemic uncertainty are assumed. 
The head observation values were assumed to have 
an epistemic uncertainty, expressed as standard 
deviation, of 5 ft. The epistemic uncertainty is 
provided to the problem through weights on 
observations and, in this case, weights were set as the 
inverse of the standard deviation values (0.2 ft). 

Parameter Contributions to Predic
tion Uncertainty 

One approach to network design for minimizing 
prediction uncertainty is through obtaining more 
accurate information about parameters. The goal of 
this approach is to identify, for a given model 
conceptualization, which parameters have the largest 
impact on the uncertainty of a prediction of interest. 
This can be done by using the PPR approach (Tonkin 
and others, 2007) or by using the PREDUNC4 or 
PREDVAR2-4 suite of tools in PEST (Doherty, 
2008a,b). 

These tools allow modelers to determine which 
parameters contribute most to the uncertainty of a 
prediction of interest. Armed with this knowledge, 
they can decide which parameters to target for better 
knowledge. For example, if hydraulic conductivity is 
most important, the next phase of work may benefit 
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from a pumping test to better constrain hydraulic Table 1. Parameters for the KLM scenario investigated by 
conductivity. Similarly, if recharge is the most using PREDUNC4 to identify which parameter groups con-
important, a field investigation aimed at better tribute most to the prediction uncertainty. 
constraining of recharge may be a better use of 
limited budgets for the next phase of work. 
Importance is defined here as contribution to the 
prediction uncertainty by a specific parameter type. 

In this work, PREDUNC4 was used for the 
analysis, whereby the prediction uncertainty is 
calculated with all parameters assumed known to a 
level of certainty indicated by Cpp, and then 
prediction uncertainty is recalculated for each 
parameter with the assumption that it is perfectly 
known. In this way, the contribution to prediction 
uncertainty by each parameter can be assessed. The 
assignment of a specific level of uncertainty to a 
parameter of interest can be implemented in the 
PREDUNC suite of tools by recalculating prediction 
uncertainty with various instances of the Cpp matrix. 
However, this approach is not explicitly documented, 
and this study implements the more typical 
PREDUNC approach of assessing parameter worth 
by recalculating prediction uncertainty with assumed 
perfect knowledge of the parameter for comparison. 

The PPR statistic (Tonkin and others, 2007, p. 
10) is calculated as     

s ! z (+ j)
PPR = 1.0 − c × 100 (3)

sz 
c
!

where s ! is the prediction standard deviation z (+ j)c

calculated with increased parameter knowledge and 
s ! is the prediction standard deviation without the zc 
increased parameter knowledge. The approach to 
calculating the PPR statistic is different from 
assigning the uncertainty such that a parameter is 
assumed to be perfectly known. 

In the remainder of this section, “importance” is 
characterized as the contribution to total prediction 
uncertainty made by each parameter. The numerical 
results can be thought of as   

PPR
importance= − 1 × 100 (4)

100 

The parameters of interest are identified in table 
1 and represent the KLM parameterization discussed 
in the “Parameterization” section. 

Symbol Description 

KH1 Multiplier on horizontal hydraulic con
ductivity in layer 1. 

KH2 Multiplier on horizontal hydraulic con
ductivity in layer 2. 

KH3 Multiplier on horizontal hydraulic con
ductivity in layer 3. 

KV1 Multiplier on vertical hydraulic conductiv
ity in layer 1. 

KV2 Multiplier on vertical hydraulic conductiv
ity in layer 2. 

KV3 Multiplier on vertical hydraulic conductiv
ity in layer 3. 

R Multiplier on the entire recharge array. 

SL Multiplier on the value used for streambed 
leakance in all streams. 

Two a priori uncertainty scenarios were 
considered. In the first, all multipliers on all 
parameters (table 1) were assumed to have standard 
deviation (σ) of 0.25 units in log10 space, meaning 
that their 90-percent confidence limits would extend 
over about one order of magnitude. In the second 
scenario, recharge was assumed to be more certain (a 
typical assumption in models like this one), so its 
uncertainty was reduced to σ = 0.0625. 

Figure 6 shows the contributions of each 
parameter type to the head-prediction uncertainty in 
both a priori uncertainty scenarios. When a priori 
uncertainty is equal for all parameters, recharge is 
shown to be the most important parameter, followed 
by vertical hydraulic conductivity in layer 1 (the layer 
containing the prediction) and horizontal hydraulic 
conductivity in layer 2 (the layer containing the 
well). This outcome is consistent with what might be 
expected, given that recharge is important for the 
overall mass balance of water in the system and that 
the pressure must propagate vertically through layer 
1 and horizontally through layer 2 to be transmitted 
between the pumping- and observation-well 
locations. However, recharge is commonly assumed 
to be better known than hydraulic conductivity; thus, 
in the case where a priori uncertainty on recharge is 
lower than for hydraulic conductivity, the relative 
impact on prediction uncertainty due to recharge 
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decreases, and streambed leakance becomes more 
important. The relative contributions of hydraulic 
conductivity to one another remains unchanged, but 
relative to recharge, the contribution of hydraulic 
conductivity is increased. 

The contributions of each parameter type to the 
flux-prediction uncertainty are shown in figure 7. In 
this case, the streambed leakance is more important 
than recharge, which follows from the fact that the 
streambed leakance is the main control of exchange 
between the stream and the groundwater system. 
Recharge and horizontal hydraulic conductivity in 
layer 1 also play important roles, but the other 
parameters are shown to make minimal contributions. 
Even when the a priori uncertainty of recharge is 
reduced, as shown in the right panel of figure 7, the 
relative importance of streambed leakance and KH1 
remain generally unchanged. This is because 
recharge plays a less significant role in prediction 
uncertainty in flux prediction than in the 
head-prediction case above. 

Determining Observation Locations 
for Reducing Prediction Uncertainty 

A second approach to network design for 
minimizing prediction uncertainty is through 
obtaining more observation information. The goal of 
this approach is to identify which are the most 
influential in reducing the uncertainty of a prediction 
of interest. The result is assessing the “worth” of 
each potential observation for achieving the goal of 
low prediction uncertainty. This can be done by using 
the OPR approach (Tonkin and others, 2007) or the 
PREDUNC1,5 or PREDVAR1,5 suite of tools in 
PEST (Doherty, 2008a,b). In this study, PREDUNC5 
was used for the analysis and OPR was not used 
because it is not extensible to the highly 
parameterized PP case. 

As mentioned previously, there are two principal 
methods by which the “worth” of a specific 
observation can be evaluated: observations can either 
be added to or subtracted from the calibration 
process. 

In the first method—where observations are 
added—the prediction uncertainty is first calculated 
without any calibration data (the first term in 

equation 1) and then, is sequentially recalculated 
after adding each potential observation. The 
prediction uncertainty calculated by using even a 
single observation to calibrate is less than or equal to 
the uncertainty calculated without calibration data. 
The metric of interest, therefore, is the decrease in 
uncertainty expected for each potential observation. 
These results can be displayed on a map to indicate 
general areas of the model domain where added 
observations will have the most impact on decreasing 
prediction uncertainty. 

In the second method—where observations are 
subtracted—prediction uncertainty is initially 
calculated by using the entire calibration data set 
(using both terms of equation 1) and then, 
sequentially, each observation is removed from the 
second term and the prediction uncertainty is 
recalculated. There should be an increase in 
prediction uncertainty when each observation is 
removed, so the metric of interest is the increase in 
prediction uncertainty incurred via removal of an 
existing observation. 

Calculation of these metrics separately may seem 
redundant, but they are not symmetric. In the first 
method, each observation is considered 
independently, whereas in the second method, the 
impact on prediction uncertainty of each observation 
is related to those around it. Therefore, the 
applications of the two methods differ. The first 
method is most appropriate when designing a 
monitoring network; where one did not previously 
exist. The second method is appropriate when 
trimming an existing or proposed monitoring 
network, for example in response to budget 
constraints or transition to a new phase of work 
requiring different (less) monitoring. 

In this study, the metric of decrease in prediction 
uncertainty due to addition of observations is 
considered as the hypothetical situation of designing 
a previously nonexistent monitoring network. This 
situation is probably more common than reduction of 
an existing network, and the approach is easily 
adapted for the case with existing data considering 
decreases in prediction uncertainty relative to the 
baseline of the existing data rather than the baseline 
of no data. 

For this analysis of adding observations, the 
relative reduction in uncertainty that would be gained 
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by adding each potential head observation in layers 1 
and 2 is evaluated under two scenarios. Figure 5 
shows the locations of potential head observations, 
which are the same for layers 1 and 2. The a priori 
uncertainty for hydraulic conductivity is set at 
σ = 0.25 and for recharge is set at σ = 0.0625. 
Subsets of this scenario are the parameterization 
scenarios discussed above. Specifically, each of the a 
priori uncertainty scenarios was evaluated by using 
the scenarios defined in the previous 
parameterization section as KLM, 300K, and PP. 

The normalized decrease of prediction 
uncertainty variance for locations in the potential 
observation network is defined as data worth, 
calculated as 

σ 2 
dec data worth = σ2 = (5)norm 

σ2 
total 

where σ2 is the normalized prediction-uncertainty norm 
variance for a given observation, σ2 

dec is the decrease 
in prediction-uncertainty variance predicted if a given 
observation is included in the calibration, and σ 2 

total is 
the total prediction-uncertainty variance. This 
normalization is similar to the OPR statistic defined 
in Tonkin and others (2007, p. 7). Note that, in the 
case of the OPR statistic, the sign indicates whether 
the observation is being added or subtracted—in this 
example, one may consider σ2 as the absolute norm 
value of OPR. 

Head-Observation Importance for a Head 
Prediction 

Data worth, as defined in equation 5, is displayed 
as interpolated maps in figure 8 for the head 
prediction identified in figure 2. The potential 
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observations are head observations in the network 
shown in figure 5. In figure 8, the differences in the 
displayed values from left panel to right reflect 
progressively more flexible parameterization of 
hydraulic conductivity, from a single value per layer 
at left (KLM) through a 5×5 grid of homogeneous 
zones (300K) to a 20×20 grid of pilot points (PP) at 
the right. 

Two major trends are evident when comparing 
the parameterization scenarios: first, non-intuitive 
artifacts are encountered at the coarser KLM and 
300K discretizations in areas that are distant from 
both the stress and the related prediction; second, in 
the highly parameterized PP case, appropriately 
higher values of data worth become evident in the 
general area where one would expect data worth—the 
area near both the stress and the prediction. 

These artifacts are indicative of the confounding 
effects of structural uncertainty incurred by imposing 
sharp but ultimately arbitrary parameter boundaries 
in the hydraulic conductivity field. Moreover, these 
boundaries are often away from the area of interest. 
The resolution of the parameterization impacts the 
resolution of the Jacobian matrix used extensively in 
calculating the statistics. This structural uncertainty 
is not explicitly accounted for in the calculations of 
prediction uncertainty with equation 1 when a 
diagonal Cpp matrix is used to characterize a priori 
parameter uncertainty. A diagonal Cpp matrix 
implies complete statistical independence of the 
hydraulic conductivity parameters and is the simplest 
imposition of this information. The alternative is use 
of a variogram or other spatial covariance structure, 
but justifying a meaningful covariance representation 
is difficult for homogeneous zones (especially in the 
extreme case of a single homogeneous zone per 
layer). The cost of this structural uncertainty 
adversely affects the design of the potential 
observation network because the oversimplification 
of the parameters overwhelms the method’s ability to 
discern subtle information, such as one head location 
versus an adjacent head location within the same 
zone. The effects of oversimplification caused by the 
hard-wired imposition of zonal boundaries can be 
mitigated through use of a highly parameterized 
approach such as pilot points, whereby more 
parameter flexibility is introduced and the effects of 
correlated structural noise are sufficiently reduced to 

discern the difference in importance of potential head 
location. 

In the PP scenario in layer 1, the location of a 
southwest-northeast trending stream that is nearest 
the stress and prediction can be seen as reducing data 
worth for potential head observations, as would be 
expected given the stream’s ability to constrain the 
sensitivity of nearby heads (Hunt, 2002). There is 
asymmetry about the stream, with potential 
observations east of the river having greater data 
worth—a counterintuitive result since the prediction 
is on the western edge of the stream. This result 
indicates greater importance of the eastern part of the 
domain for describing the distribution of flow into 
stream capture and underflow captured at the well. 
Indeed, inspection of figure 3 shows that most flow to 
the pumping well originates to the east of the stream. 
The limited value of placing head observations in the 
stream, because the stream itself already provides 
information regarding head, is indicated by very low 
data-worth values in locations coincident with the 
stream. 

In the PP scenario in both layers 1 and 2, the 
location for maximum data worth is collocated with a 
subtle groundwater divide, as indicated on the head 
contour map in figure 2 delineating the capture zone 
of the pumping well. The low values associated with 
potential head observation locations in the streams 
are absent in layer 2 in agreement with the absence of 
the streams themselves in layer 2. 

Head-Observation Importance for a Flux 
Prediction 

Data worth, as defined in equation 5, is displayed 
in figure 9 for the flux prediction identified in figure 
2. The potential observations are head observations 
in the network shown in figure 5. 

The artifacts discussed for the 
non-highly-parameterized scenarios KLM and 300K 
are present for the flux prediction, although they are 
less pronounced. This result is expected, given that 
flux predictions integrate larger parts of the model 
domain thus are more suited for the larger zones used 
in the KLM and 300K models. Moreover, this result 
is supported by the information in figure 7, which 
indicates that the most significant parameters for 
reducing flux prediction uncertainty are streambed 
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Figure 8. Observation data worth for head-prediction scenario evaluated for layer 1 (upper 6 panels) and layer 2 (lower 6 pan
els). In each row of panels, three parameterizations are shown: KLM (left panel), 300K (middle panel) and PP (right panel). The 
values of data worth presented are normalized prediction uncertainty variance σ2 calculated according to equation 5. norm 
Results are shown both at native scale to show detail and at a normalized scale relative to the PP results. The KLM, 300K, and 
PP parameterizations are described in the “Parameterization” section. 

leakances. Because head observations are much more 
closely tied to local variability in hydraulic 
conductivity than streambed leakance, it is not 
surprising that their overall worth for prediction 
uncertainty would be more muted. Nonetheless, once 
again, the highly parameterized results provide 
valuable insights into the worth of head observations 
for the flux prediction. 

The asymmetry in the worth of layer 1 
head-observation data for the head prediction appears 
again in the context of the flux prediction. This 
asymmetry can also be explained by inspecting the 
head-contour solution in figure 3 which shows more 
water entering the stream from the east than the west. 
As a result, information about the head gradient to 
the east of the stream is likely to be more informative 
than similar information to the west. 



Under pumping stress conditions, the 
streamgages in the region of the stream indicated by 
low data worth are dry, which creates the artifact of 
limited data worth near and upstream from them. 
Clearly, much information is imparted by better 
knowledge of the location of the interface of the dry 
and non-dry areas of the streams. This limitation is a 
drawback of the use of linear statistics for this 
analysis; the drying of a stream is a nonlinear 
(threshold) impact and therefore is not well 
characterized by the linear analysis. 

In layer 2, the impact of the streams is muted, as 
it was for the head prediction. Especially notable is 
that the 300K parameterization implies that none of 
the potential head observations would be valuable for 
reducing prediction uncertainty on the flux 
prediction, but such a finding is not likely. The PP 
scenario results provide more valuable information in 
this context. 

Discussion and Conclusions 

A model calibration process can be enhanced (in 
terms of reducing uncertainty of a specific prediction 
to be made by a model) by obtaining either more 
accurate information about a parameter or more 
calibration data (observations). This analysis can be 
done at any phase of a project and is inherent to 
many adaptive-management scenarios. In this study, 
the focus is a specific scenario in which a local model 
with sparse local information was extracted from a 
calibrated intermediate model. Such a scenario may 
be common where a new stress too small to be seen 
at the regional scale (in this case, a single pumping 
well) is proposed in an area covered by a regional 
model and a refined representation of surface-water 
features and system properties is needed to make an 
accurate prediction. 

The results highlight important questions that are 
raised in the process of creating the local model but 
not usually formally addressed. Is the 
parameterization inherited from the regional model 
adequate for the smaller-scale question addressed by 
the local model? Are the parameter values calibrated 
at the regional scale appropriate at the local scale? 
Visual inspection of figure 3 serves as a foundation 
for addressing these questions. The head field 
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behaves generally as one would expect, given the 
refined geometry of streams. However, significant 
artifacts visibly highlight the hydraulic-conductivity 
contrasts in the inherited hydraulic-conductivity 
zones. These observations suggest that the 
refinement of geometry in a downscaled local inset 
model would improve the applicability of the model, 
but it is likely that recalibration with data appropriate 
to the scale of the local model would be required. 

Once the need to recalibrate the local model is 
established, the motivation for the modeling changes. 
What type of monitoring network can be designed 
such that the model makes the most accurate (certain) 
prediction? These questions can be answered by 
using the propagation of uncertainty, implemented in 
this case by use of linear methods, through a notional 
calibration process to determine how much the 
uncertainty of a prediction can be reduced by 
inclusion of a specific new source of data (or refined 
estimation of a priori parameter uncertainty). 

Potential information on parameter a priori 
uncertainty also was evaluated by investigating broad 
categories. Parameter contributions to prediction 
uncertainty were evaluated for vertical and hydraulic 
conductivity of entire layers, a single multiplier on 
streambed conductance for all streams in the model, 
and a single multiplier on the recharge array. A more 
distributed approach for the more highly 
parameterized conceptualizations could be evaluated 
and the results contoured—this helping to ensure that 
the adverse effects of parameter oversimplification 
are reduced. However, such an analysis should be 
accompanied by an evaluation of support volume for 
parameter information, which is beyond the scope of 
this report. For example, given results from an 
individual pumping test, the spatial area over which 
properties are averaged must be considered. This 
area varies with strength of the test, aquifer 
properties, and other factors, so the true meaning of a 
contoured representation of parameter importance 
can be misleading. 

The parameter-uncertainty analysis highlighted 
the importance that hydraulic conductivity has on the 
head prediction. Recharge also was found to be a 
large contributor to head-prediction 
uncertainty—although if recharge is already known 
reasonably well, the reduction in prediction 
uncertainty realized through better information about 
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Figure 9. Observation data worth for flux-prediction scenario evaluated for layer 1 (upper 3 panels) and layer 2 (lower 3 pan
els). In each row of panels, three parameterizations are shown: KLM (left panel), 300K (middle panel) and PP (right panel). The 
values of data worth presented are normalized prediction uncertainty variance σ2 calculated according to equation 5. norm 
Results are shown both at native scale to show detail and at a normalized scale relative to the PP results. The KLM, 300K, and 
PP parameterizations are described in the “Parameterization” section. 

it will be limited. For the flux prediction, the largest 
contributor to prediction uncertainty was streambed 
conductance, an expected result because the 
streambed forms the connection between the 
surface-water and groundwater systems. 

A network of potential head observations was 
then evaluated near both the location of a stress 
(pumping well) and two predictions (a head 
prediction near a stream, and the base flow in that 

stream). The worth of each of the potential 
observations was calculated for each of the 
predictions, and the results were contoured. For a 
project manager deciding, with a limited budget, 
where to put a specified number of new wells in a 
monitoring network to calibrate the local model, this 
type of analysis could guide the design. 

The worth of observations was calculated against 
a baseline condition of no available observations as 
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the precalibration condition. The contoured 
data-worth results can guide network design in two 
ways. Using the results presented here, a manager 
could choose locations cascading down the 
data-worth scale from the most valuable to less 
valuable points in placing a predetermined number of 
wells. A more robust approach (but slightly more 
computationally costly) would be to progressively 
change the baseline with the addition of each 
proposed (and accepted) new well. This iterative 
procedure would change the location of the most 
valuable well each time the analysis was run 
contingent on the addition of each proposed new 
well. This is a Bayesian updating approach. 

The number and arrangement of 
potential-head-observation locations used in this 
analysis is consistent with a thorough interrogation of 
the model domain. However, ranking the importance 
of this density of potential locations can be 
confounded by the level of parameterization used in 
the local model construction. In this example, the 
results are not meaningful for the KLM and 300K 
parameterization strategies. However, the PP 
parameterization with pilot points yields reasonable 
and intuitive results. This confounding influence of 
parameter oversimplification results from the 
increase in structural uncertainty (as a component of 
epistemic uncertainty). When a high level of 
parameter lumping is employed as a parameterization 
device, the calculation of uncertainty is overwhelmed 
by the errors introduced by oversimplification, and 
the difference to prediction uncertainty expected 
from the addition of a single potential observation is 
relegated to noise. Parameterization must be 
sufficiently fine that flexibility in the model 
diminishes the structural uncertainty so that the 
analysis of uncertainty desired for network design 
can be realized. This is in some ways an intuitive 
result; hydrologists have long known that 
oversimplification by analytical solutions or overly 
strict homogeneous, isotropic assumptions can result 
in poor representations of the response of natural 
systems. Yet, unless regularized inversion or other 
mathematical means are employed, the degree of 
additional complexity warranted is often left as a 
subjective decision for the modeler, uninvestigated in 
the context of uncertainty. 

The results of the parameterization role in 

uncertainty analysis, and the significant cost that can 
accompany simplifying the natural world into 
models, is consistent with the findings of Moore and 
Doherty (2006). It is important to note that the model 
objective (Hunt and Zheng, 1999; Hunt and others, 
2007) again becomes critical for decision regarding 
the appropriate level of model complexity. Broad, 
piecewise-constant zones may represent prior 
knowledge about the hydrogeologic 
conceptualization of a model and may be appropriate 
for large-scale model predictions (see Haitjema, 
1995, p. 272, 274, and 279); however, a model 
objective such as comparing the importance of one 
head observation in proximity to another potential 
location for a stream-aquifer prediction requires a 
parameterization scheme that may be finer than prior 
knowledge supports and one that is commensurate 
for the observation network being tested. Thus, use 
of models for monitoring-network design is likely to 
require a more flexible and highly parameterized 
approach to obtain meaningful results, even if the 
prediction itself can be simulated by using coarse 
parameter representations. That is, the 
parameterization should reflect the representative 
scale of the range of observations the model is to 
evaluate, not necessarily the scale of the original 
prediction of interest. 

The final objective of this study was to 
investigate areas of theoretical equivalence for two 
freely available software packages that can perform 
network design and data-worth analysis. 
Prediction-uncertainty calculations by use of the 
equations of OPR-PPR and PREDUNC were found 
to be equivalent under a relatively narrow set of 
specific conditions and assumptions. PREDUNC 
(Doherty, 2008a,b) was chosen for the example 
analysis to explore a highly parameterized 
conceptualization in addition to sparsely 
parameterized conceptualizations. The current 
distribution of the OPR-PPR package (Tonkin and 
others, 2007) could not perform the full set of 
analyses because of limitations on the number of 
parameters that can be used when combining 
UCODE 2005 (Poeter and others, 2005) with 
OPR-PPR. In the final analysis, the differences in 
capabilities between OPR-PPR and PREDUNC are 
largely in the programming rather than the 
mathematics. However, in choosing a tool, the 
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theoretical framework is a relevant factor and, as 
shown in this work and in the appendixes, the role of 
including a priori uncertainty and the explicit role of 
a Bayesian perspective are present in PREDUNC 
from derivation through application; in contrast, 
OPR-PPR is an adaptation of traditional, 
overdetermined regression. The goals of the project 
and the perspective of the user can be made to match 
one or the other perspective. 
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This appendix presents a derivation of the PREDUNC statistic calculated in equation 1 for the variance of a
prediction. The derivation here is based on Bayesian conditioning and is preceded by preliminaries for readers
less familiar with the mathematics used here. The derivations are based largely on discussion by Anderson
(1984) and Olaf Cirpka (Subsurface Mixing And Reactive Transport (SMART) workgroup, Universitat¨
Stuttgart, Institut fur¨ Wasserbau, written commun., 2003)

Preliminaries

For a general random variable that is multi-Gaussian, the equation for its distribution is

1
p(x) =

1− (n exp x1−µ
T

x ) C−1 ( 1 µ
(2π)

− x )11 x (1.1)
|C | 1

11 2 1√ ( )
where x1 is the random variable, µx1 is its mean, and C11 is its covariance. The convention is that for dummy
variables such as x1 and x2, µx1 is the mean of x1, µx2 is mean of x2, C11 is the covariance of x1, C22 is the
covariance of x2, and C12 is the cross-covariance of x1 and x2. The cross-covariance is symmetric, so
C12 = C21. All lowercase bold values indicate vectors, whereas capital bold letters indicate matrices.
Such a multi-Gaussian (also called normal) distribution can be noted in shorthand as x1 ∼ N (µx1 ,C11) which
implies the equation above.
The definition of covariance is

C12 = E
[
(x1−µ

T
x1)(x2−µx2) (1.2)

where E []

]
is the expected value.

The next preliminary element is a definition of conditioning. If we start with two multi-Gaussian random
variables x1 and x2 with means µx1 and µx2 and covariance matrices C11 and C22, we can condition x2 on
x1 = x(0)1 , leading to the two following key relationships:

µ̃ µ C C−1
(

x(0)x2 = x2 + 21 11 1 −µx1 (1.3)

C̃22 = C22−C21C−1
11 C12

)
(1.4)

where µ̃x2 is the conditional mean of x2 and C̃22 is the conditional covariance of the dependent variable x2.
Note that, in this case, x1 is the independent variable, and x2—the dependent variable—is being conditioned
upon x (

1. The value x 0)
1 is some realization or measurement from the distribution of x1. In the

parameter-estimation case below, for the problem of inference, x1 would correspond to the observations (h)
and x2 would correspond to the parameters (p). As a result, the conditioning occurs when we have specific
measurements in h upon which to base the parameter estimates.

Conditioning Without Epistemic Error

Assume we have two random variables p and h, which are both multi-Gaussian. Further assume p corresponds
to model parameters with mean µp and covariance Cpp and h corresponds to model outputs with mean µh and
covariance matrix Chh. We assume a linear relationship between h and p that is expressed through the
measurement equation as

h = Xp (1.5)

In nonlinear cases, X is the sensitivity matrix (Jacobian) defined as X ∂h=
∂

. For linear theory, however,p X just
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has to be some linear relationship.
Now, suppose we want to express the linear change in µp conditioned on the knowledge of a new set of
measurements h0. This is the opposite direction that this derivation would normally follow because it is a
problem of inference. First, we consider the conditional mean (µ̃p), which will become

µ̃p = µp +B(h0−µh) (1.6)

Next, we calculate the conditional covariance of p, defined as C̃pp, using the definition of cross-covariance in
equation 1.2,

C̃pp = E
[
(p− µ̃

T
p)(p− µ̃p)

T= E
[
{(p−µp)− (B(h0

]
−µh))}{(p−µp)− (B(h0−µh))}

= E
[

p−µ − p−µ
T −2B h −µ p−µ

T T T( p) ( p) ( 0 h)( p) +B(h0

]
−µh)(h0−µh) B

= E
[
(p−µp)− (p−µ

T
p)
]
−2BE

[
(h0−µh)(p µ

]
− T

p)

BE
[

h −µ h −µ
T T+ ( 0 h)( 0 h) B

]

= Cpp−2BChp +BChhBT

]
(1.7)

Now, we need to find correct values of B. We seek the most likely mean, which corresponds with the minimum
variance value. So, we seek B that minimizes C̃pp. This is accomplished by setting the derivative of C̃pp (from
equation 1.7) with respect to B to zero:

∂ C̃pp
= 0

∂B
−2Chp +2ChhBT = 0

ChhBT = Chp

BChh = Cph

B = CphC−1
hh (1.8)

Substituting our new-found value of B back into equation 1.6, we see that the conditional mean is mapped from
the unconditional mean using the covariances

µ̃
1

p = µp +CphC− (hh h0−µh) (1.9)

To find the new conditional covariance on the parameters C̃( )pp, we substitute B into equation 1.7, and noting
that because C is a symmetric matrix by definition, C−1 T C−1

hh =hh hh

C̃pp = Cpp−2BCph +BChhBT

T
= Cpp−2CphC−1

hh Chp +CphC−1
hh Chh

(
Chh
−1) Chp

= Cpp−CphC−1
hh Chp (1.10)

This is consistent with the given propagation formula of equation 1.4. What we have established here is that,
starting with two multi-Gaussian distributions,( we) can condition one upon the other—which is the same as
converting p∼N (µp,Cpp) into p|h∼ N µ̃p, C̃pp , which is the conditional random variable. In the next
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section, we extend this to the case where the conditioning occurs in the presence of epistemic error, and then
we move on to the Bayesian interpretation.

Conditioning With Epistemic Error

Now we revise the measurement equation of equation 1.5 by corrupting the observations h with normally
distributed epistemic error ε with zero mean and covariance matrix Cεε

h = Xp+ ε (1.11)

Rather than repeat the entire procedure of the previous section using equation 1.11, we can simply replace C−1
hh

in equation 1.10. To derive a new version of C−1
hh , we return to the definition of covariance in equation 1.2:

Chh = E
[

T(h−µh)(h−µh)
]

(1.12)

We can replace h with equation 1.11, recalling that µx =E[x] and expectation is distributive, and do some
algebra as follows

Chh = E
[
(Xp+ ε−E [Xp+ ε

T]) (Xp+ ε−E [Xp+ ε]) (1.13)

= E
[
(Xp+ ε−XE [p] E

]
− [ε]) (Xp+ ε−XE [p]−E [ε T])

]
(1.14)

Recall that we assumed ε has mean zero, so we can drop the E [ε] terms and rearrange

= E
[
(X(p−E [p])+ ε)(X(p−E [p T])+ ε) (1.15)

T= E
[
(X(p−E [p T]))(X(p−E [p]))

]
+E

[
(X

]
(p−E [p]))ε

]
+E

[
εε

T ] (1.16)

Now, looking at the first term,

E
[
(X(p−E [p]))(X(p−E [p T]))

T= E (X(p E [p]))(p E [p]) XT

]
(1.17)[

− − (1.18)

T= XE
[

T(p

]
−E [p]) (p−E [p])

]
X (1.19)

= XCppXT (1.20)

using equation 1.2 to define Cpp.

Now, on to the second term,

E
[
(X(p−E [p T[ ] []))ε (1.21)

= E Xpε
T −E XE T[p

]
]ε = 0 (1.22)

recalling that E [E [p]] = p

]
Finally, we tackle the third term, using the definitions of ε at the beginning of this section, including the mean
being equal to zero:

E
[
vvT ]= E

[
T(v−0)(v−0)
]
= Cεε (1.23)

http:p])(1.18
http:p]))(1.17
http:�])(1.14
http:�])(1.13
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Reassembling the first and third terms,

Chh = XCppXT +Cεε (1.24)

Substituting back into equation 1.10,

C̃pp = Cpp−Cph
[
XCppXT +Cεε

]−1 Chp (1.25)

Now, we need to define Chp by using equation 1.2:

Chp = E
[
(Xp+ ε−E [Xp T+ ε]) (p−E [p]) (1.26)

T= E
[
(Xp+ ε−XE [p]) (p−E [p])

]
(1.27)

T= E
[
X(p−E [p]) (p−E [p]) + ε (p

]
−E [p])

]
(1.28)

= XE
[
(p−E [p]) (p−E [p T])

]
+E

[
εpT ]−E

[
εE[p T]

]
(1.29)

= XCpp (1.30)

Then,

C̃pp = Cpp−CppXT [XCppXT +Cεε

]−1 XCpp (1.31)

resulting in the new conditional covariance on the parameters.

A Bayesian Interpretation

We start with Bayes’ theorem

p(h p) p(p)
p(p|h) = |

(1.32)
p(h)

We define p(p|h) as the posterior probability or the probability of the parameters given (conditional on) the
data; p(h|p) as the likelihood function, meaning how likely is it that we perfectly reproduce our observations
(which correspond to h) given the parameters p; p(p) as the prior probability of the parameters; and p(h) as
the total probability of h. p(h) is really the probability of all possible data realizations integrated across
parameter space. This is often difficult to calculate and is constant with respect to this problem; so, to within a
constant, we can restate the theorem to

p(p|h) ∝ p(h|p) p(p) (1.33)

If we seek a maximum likelihood solution (which requires all these distributions to be multi-Gaussian), then
the constant of proportionality will not alter the conclusion of which set of parameters (p) maximizes the
posterior probability p(p|h).

http:�E[p](1.29
http:p])(1.27
http:p])(1.26
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An Important Caveat

If we have fully defined probability density functions, then we have values for the means µp and µh. In reality,
our knowledge of these means is diffuse, so the results of this section are a simplification and more rigor must
be used to find the answer. However, we proceed assuming we know the means.

To find p(p|h) becomes a matter of conditioning as shown above. In general terms, this can be shown with
partitioned matrices. We define

p(h|p) ∼ N µh,Chh = XCppXT +Cεε (1.34)

p(p) ∼ N

(
(µp,Cpp)

)
(1.35)

Now we express the conditioning as[
h|p

] [
I X ε

=
p 0 I

][
p

]
(1.36)

the conditional relationship of h on p shown as h|p above is assumed from here on without explicitly being
notated.
Using the formula for the propagation of variance

cov

([
h
])

I X Chh 0 I 0
= (1.37)

p

[
0 I

][
0 Cpp

][
XT I

]
[

XobsCppXT
obs +Cεε XCpp=

CppXT Cpp

]
(1.38)

Now, we return to the general form of equation 1.4 but remembering that, in the inverse problem, p is
dependent (conditioned) on h:

cov

([
x1

])
C11 C12= (1.39)

x2

[
C21 C22

]
C̃22 = C22−C21C−1

11 C12 (1.40)

So,

C̃pp = Cpp−CppXT [XCppXT +Cεε

−1 XCpp (1.41)

which is the same result as found in equation

]
1.31.

Making a Prediction

Up until now, we have been concerned with the propagation of covariance, due to application of Bayes’
theorem, from a set of measurements h to the inferred set of parameters p. We can take this propagation one
step further if we have a linear transformation of the parameters such as

s = yT p (1.42)
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where y is a vector representing a linear transformation to prediction (s) made on the basis of a set of
parameters p.
Now, we have already propagated the covariance from h to p through Bayes’ theorem for inference. We can
incorporate this other linear transformation to yield the variance of the scalar precision (s). We just need to set
up our matrix so that we are conditioning s on h:[

h|p
]

I X ε
= (1.43)

s

[
0 yT

][
p

]

Again, the explicit conditionality of h on p is dropped for clarity.
Then,

cov

([
h
s

])
=

[
I X
0 yT

][
Chh 0
0 Cpp

][
I 0

XT y

]
[ (1.44)

XobsC T
ppX

= obs +Cεε XCppy
yT CppXT yT Cppy

]

And finally, again applying equation 1.4, we find

σ
2 yT C y−yT C XT T
s = pp pp

[
XobsCppXobs +Cεε

This is the same equation as 4.37 in Doherty (2008b),

]−1 XCppy (1.45)

recalling that s is a scalar prediction, so σ2
s is a single

variance value rather than a covariance matrix.
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The OPR-PPR statistics are based on an assumption of overdetermined weighted least-squares regression. To
obtain the equation for posterior prediction uncertainty in equation 1 in Tonkin and others (2007, p. 5) we first
must determine a value for V through equation 2 in Tonkin and others (2007, p. 5),

V = s2 XT C−1
εε X −1

(2.1)

where V is the

(
parameter

)
variance-covariance matrix found through overdetermined weighted least squares

regression and C−1
εε corresponds to ω in Tonkin and others (2007, p. 5), and s2 is the calculated error variance

from the model calibration (Tonkin and others, 2007, p. 6). In the underdetermined case, where
NPAR > NOBS, equation 2.1 must be supplemented with prior information, in which case X is appended to.

To account for a prediction, we define s = Zp, where Z is the sensitivity of the predictions to the parameters
and, using the definition of covariance,

C E
[

s−E s s−E s T
ss = ( [ ])( [ ])

= E

][
(Zp−E [Zp]) (Zp−E [Zp T])

T= E (Z(p−E [p]))(Z(p−E [p]))

]
(2.2)

= Z

[
E
[
(p−E [p]) (p−E [p T])

]
ZT

]
= ZCppZT

V in equation 2.1 is equivalent to Cpp in equation 2.2. V by equation 2.1 is typically calculated as the
covariance of the estimated parameters following an overdetermined least-squares regression (Draper and
Smith, 1966, p. 80; Cooley and Naff, 1990, p. 167). Replacing Z with yT , signifying that we are interested
only in a single prediction such that yT is a row from Z, we obtain

σ
2 1
s s2yT (XT= Cεε

−1X
)− y (2.3)

This equation is equivalent to equation 1 in Tonkin and others (2007, p. 5), although the symbology is different
to facilitate comparison with other equations in this report.
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Doherty and Hunt (2009) suggest that, based on the theory outlined in appendix 2, it is possible for OPR-PPR
using equation 2.3 and PREDUNC using equation 1 to give the same results for a restrictive set of conditions.
For this to occur, two additional parameters and five assumptions must be specified. These are encapsulated by
the process described below.
In terms of parameters, we must partition the Jacobian matrix X,

XX =

[
obs

Xpri

]
(3.1)

where Xobs is the sensitivity of observations to parameters and Xpri is the sensitivity of prior information to
parameters. Also, we must concatenate the two covariance matrices from equation 1 into a single matrix (C)
that replaces Cεε

−1 in equation 2.3,

C

[
Cε
−1

ε 0
=

0 C−1
pp

]
(3.2)

noting that these matrices are the inverse of the covariance of epistemic uncertainty and parameter variability,
respectively.
The use of prior information in this way is necessary to incorporate information regarding the inherent
variability of the parameters into the problem (that is, the Cpp matrix of equation 1). The regularization
equations do not enter the calculations of equation 1, even if regularization is used with PREDUNC (such as
commonly done in the case of a pilot-points implementation).
The value for s2 in equation 2.3 is defined in Hill and Tiedeman (2007, p. 95) as

S (p)
s2 = (3.3)

NOBS+NPRIOR−NPAR

where S (p 1) is the weighted sum of squares residuals using C− as the matrix of weights. In an idealized
postcalibration condition, the value of s2 should approach unity.
Given this development of the problem, the following conditions must now be met for OPR-PPR and
PREDUNC to yield the same results:

1. The value of s2 in equation 2.3 must be equal to unity.

2. The prior information must be of the form p = ppri, where ppri is an a priori set of preferred values for
∂the parameters p p. This is done so that Xpri =

prii
∂ p is an identity matrix and all variability information

j

about p is contained in the weights. This restricts the problem to a preferred-value approach to
regularization, an approach different from that typically adopted when using pilot points in which prior
information (in the form of preferred-difference (higher order Tikhonov) regularization) is often focused
on the shape or structure of the p field without commitment to particular values. Nonetheless, this
substitution is necessary for the equality to be obtained.

3. The weights assigned to the prior information must be equal to C−1
pp .

4. The weights assigned to the observations must be equal to C−1
εε .

5. The weights assigned to the prior information must be uncorrelated from the weights assigned to
observations, as illustrated in equation 3.2.
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If these conditions are all met, the OPR-PPR equation can be restated, recalling from above that Xpri = I, as

2 1
s yT (XT CX

)−1 y = s2yT (XT
obsC

−1
εε Xobs +XT 1

priC
−
pp X( pri

− y (3.4)
1

s2yT= XT
obsC

−1
εε Xobs +C−1 −

pp y

)
(3.5)

Then, using the following identity from Athans and Schweppe (1965, p. 31),

)

(
X11−X12X−1X21

)−1 1= X− 1+22 11 X−11 X12
( 1X22−X 1

21X− X12
)−

11 X21X−1
11 (3.6)

assigning

X11 ≡ C−1
pp (3.7)

X21 ≡ −X (3.8)

X12 ≡ −XT (3.9)

X22 ≡ −Cεε (3.10)

by substitution, and noting the distributive property with respect to multiplication by y, we see

s2yT (XT C−1X C−1)−1 y yT C y yT C XT (
X C XT C 1

obs εε obs + pp = pp − pp obs obs pp obs + εε

− XobsCppy (3.11)

It should be noted that the method described above is not fully documented in Tonkin

)
and others (2007, 2008)

or Poeter and others (2005). Making this extension to the code is therefore possible, but without supporting
documentation and for the reasons given by Doherty and Hunt (2009), it is not recommended. Furthermore, it
was our experience that under the current versions of UCODE 2005 and OPR-PPR, no more than 78
parameters could be evaluated—a limit of concern given the artifacts related to oversimplification
demonstrated in this study. Revisions to both UCODE 2005 and OPR-PPR and their documentations are
required to evaluate the same number of parameters as the PREDUNC software used here. The limitation is
due, in part, to a conflict in the way sensitivity information is written by UCODE 2005 and read by OPR-PPR.
This limitation does not arise unless a large number of parameters are used (greater than about 100).
Nonetheless, both sides of equation 3.11 were tested for calculating data worth using data from the present
problem in MATLAB Release R2008b (Mathworks, 2008) for both the overdetermined and underdetermined
cases, and the results were identical (data not shown).

1Note also that the two methods are not equal in terms of computational effort. The
(
XT CX − matrix for

OPR-PPR has dimensions of NPAR×NPAR, so as the number of parameters grows and exceeds the number of
observations as in the underdetermined case, this matrix will become more difficult— or at

)
( high numbers of

1parameters, impossible—to invert. On the other hand, the matrix XobsCppXT
obs +Cεε

− that must be inverted
for PREDUNC has dimensions of NOBS×NOBS. This is most efficient in the underdetermined case, but in a
strongly overdetermined context this method will perform somewhat more slowly. Ideally

)
, depending on the

dimensionality of the problem with respect to observations and parameters, the appropriate formulation could
be chosen for the most computationally efficient outcome. PREDUNC has been revised to allow this option.
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The relation in equation 3.6 is key to evaluating the equivalence between OPR-PPR and PREDUNC under the
specific conditions discussed in appendix 3. A proof is included here for completeness.

We start with the trivial identity

BD−1BT A−1B+B = BD−1BT A−1B+B (4.1)

Now, using the following relations that are incumbent for invertible matrices (Strang, 1988, p. 42)

D−1D = I and AA−1 = I (4.2)

we can substitute these two relations into equation 4.1

BD−1BT A−1B+BD−1D 1 T 1 1= BD− B A− B+AA− B. (4.3)

This can be simplified to

BD−1 (BT A−1B+D
)
=
(
BD−1BT +A

)
A−1B. (4.4)

1Now we premultiply both sides by
(
BD−1BT +A

)− and postmultiply both sides by
(
BT A−1B 1

+D
)− , leading

to (
BD−1B+A

)−1 BD−1 = A−1B
( −1

BTA−1B+D
)

(4.5)

To bring this into terminology consistent with equation 3, we make the following substitutions

B = XT
obs (4.6)

D = Cεε (4.7)

A = C−1
pp (4.8)

which result in(
XT 1

obsC
−1
εε Xobs +C−1

pp
)− XT

obsC
−1 T T 1
εε = CppXobs XobsCppXobs +Cεε

−
(4.9)

From this point, it is easiest to start with the PREDUNC

(
equation, apply

)
the identity, and convert to the

OPR-PPR equation. Starting
and reference variance

Cpp CppXT
obs X

( ) with the right-hand side of equation 3.11, removing the prediction sensitivity (y)
s2 for clarity,

−
( T

obsCppXobs +Cεε

)−1 XobsCpp (4.10)
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Substituting in equation 4.9,

C −
(
XT C−1X C−1

)−1 XT C−1[ pp obs εε obs + pp obs εε XobsCpp (4.11)

I−
(
XT C−1X C−1 1

= obs εε obs + pp
)− XT C−1[ obs εε Xobs

]
Cpp (4.12)

=

(
XT

obsC
1 1 −1 T 1 1( −εε Xobs +C−pp XobsCε

−
ε Xobs +C−pp

− XT 1 1 T
obsC

−1
εε X 1

Cpp (4.13)[ obs +

)
C−p

(
p
− XobsC

−
εε Xobs

) ]
(
XT C 1= C T

obs
−1
εε Xobs +

−
pp
)−1 (XobsC

−1
εε

)
Xobs +C−1

pp −XT
obsC

−1
εε Xobs Cpp (4.14)

T 1 1=

T=

[
obs

]
(
X C−εε Xobs +C−pp

)

XobsC
−1
εε Xobs +

)−1 C−1
pp Cpp (4.15)(

C−1 1
p

(
p

)
)−

]
(4.16)

At this step, multiplying the prediction sensitivity (y) and reference variance
(
s2
)

back in, we are left with the
left-hand side of equation 3.11

s2yT (XT 1 1 −1
obsC

−
εε Xobs +C−pp

)
y (4.17)
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