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Abstract 

The main rotors of the NASA Large Civil Tilt-Rotor notional 
vehicle operate over a wide speed-range, from 100% at take-off 
to 54% at cruise. The variable-speed power turbine offers one 
approach by which to effect this speed variation. Key aero-
challenges include high work factors at cruise and wide (40 to 
60°) incidence variations in blade and vane rows over the speed 
range. The turbine design approach must optimize cruise 
efficiency and minimize off-design penalties at take-off. The 
accuracy of the off-design incidence loss model is therefore 
critical to the turbine design. In this effort, 3-D computational 
analyses are used to assess the variation of turbine efficiency 
with speed change. The conceptual design of a 4-stage variable-
speed power turbine for the Large Civil Tilt-Rotor application is 
first established at the meanline level. The design of 2-D airfoil 
sections and resulting 3-D blade and vane rows is documented. 
Three-dimensional Reynolds Averaged Navier-Stokes 
computations are used to assess the design and off-design 
performance of an embedded 1.5-stage portion—Rotor 1, 
Stator 2, and Rotor 2—of the turbine. The 3-D computational 
results yield the same efficiency versus speed trends predicted 
by meanline analyses, supporting the design choice to execute 
the turbine design at the cruise operating speed. 

Nomenclature 

AN2 product of annulus area and shaft-speed squared 

cx  axial chord 

h0, h total and static specific enthalpy 

i, iopt incidence, incidence at minimum loss 

N  power-turbine shaft speed 

N*  N/N100%, fraction of 100% speed 

PRTT overall total-pressure ratio 

p0, p total and static pressure 

Recx Reynolds number based on axial chord 

s  blade pitch, or specific entropy 

T0  total temperature 

TRTT overall total-temperature ratio 

Tu  turbulence intensity 

u  (ux, u, ur), absolute velocity 

U  rotor speed at pitchline 

Y  , ,

,
, loss coefficient 

Z  θ, θ,

, ,
, Zweifel loading parameter 

W  weight flow 

 absolute and relative flow angles 

TT  adiabatic efficiency (total-to-total) 

  turbulent kinetic energy 

  density 

ψ  h0/U
2, work factor 

φ  ux/U, flow coefficient 

  vorticity 
 
Subscripts 
c  corrected to standard day 

1, 2 Blade-row inlet, blade-row exit 

4.5  power turbine inlet 

r  rotor (blade), or relative condition 

Introduction 

A key challenge of the NASA Large Civil Tilt-Rotor (LCTR) 
mission is the required variation of main rotor tip-speed from 
650 ft/s (100%) at take-off to 350 ft/s (54%) at cruise (Ref. 1). 
The wide speed variation can be accomplished by using a multi-
speed transmission with a fixed-speed power turbine. 
Alternatively, the speed change can be effected by varying the 
speed of the power turbine rather than the transmission gear-
ratio. The variable-speed power-turbine (VSPT) approach is used 
in the V-22, in which the output speed of the AE1107 engine 
varies speed in the range 80% < N/N100% < 100% (Ref. 2). The 
present study was focused on the VSPT approach to meeting the 
speed range requirement of the LCTR mission. 

Results from NASA engine cycle studies (Ref. 3) were used 
to determine that  LCTR power-turbine enthalpy extraction 
levels at take-off and cruise are nearly equal; therefore, the 
work factor, h0/U

2, at cruise (54% N*) is about 3.5 times that 
at take-off (100% N*). The high work factors at cruise, speed-
change requirement, and 28-kft altitude operation lead to 
significant aero-challenges (Ref. 4): (1) attainment of high 
efficiency at high work factor; (2) management of large (40 to 
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60°) incidence swings in all embedded vane/blade rows, and 
(3) operation at low (60 to 100 k) Reynolds number. The 
present study is focused on performance levels at design-point 
(28 kft cruise, 54% N*) and off-design (2 kft take-off, 
100% N*), and in particular the variation in VSPT performance 
with shaft-speed change. 

A conceptual aero-design approach for the VSPT of the 
LCTR application was outlined earlier (Ref. 4). The design air-
angles of a 4-stage VSPT were set at the cruise operating 
condition (54% N*) where Reynolds numbers were lowest and 
work factors (h0/U

2) were highest. The impact of design point 
work factor on efficiency is documented in Figure 1. In 
addition to illustrating the decrease in design-point efficiency 
with work factor, the impact of operation at high (40 to 60°) 
negative incidence at the 100% speed take-off condition is 
shown as well. The meanline results—for example, compare the 
two green triangles of the present study—indicate that efficiency 
at the off-design take-off point is higher than at the cruise design-
point. At off-design, although the air-angles are far from 
design, the turbine is lightly loaded (aerodynamically) and 
blade-row turning is low. The stage efficiency potential at the 
low work factor is high enough that, even with high incidence-
induced loss production, the off-design efficiency exceeds that at 
design. The accuracy of this predicted trend depends strongly on 
the incidence correlation of the meanline system. 

In an earlier study (Ref. 4), 2-D CFD analyses (Fig. 2(a)) 
were used to assess the range of useful incidence as a function 
of Reynolds number for the relevant LPT mid-span section of 
Clark et al. (Ref. 11). The 100% N* operating condition had 
50° of negative incidence, leading to a separated region in the 
cove on the blade pressure-side (Fig. 2(a)). In spite of the 

pressure-side separation, the profile loss at –50°. incidence was 
quite acceptable. In the same study (Ref. 4), the loss buckets in 
Figure 2(a) were shown to collapse on the standard Ainley-
Mathieson incidence-loss correlation (Ref. 12). Thus, the 
efficiency versus operating speed trend of the meanline was 
substantiated by the loss buckets of the 2-D analysis. The 2-D 
and meanline analyses omit loss mechanisms and flow 
structures associated with 3-D aerodynamics and acceleration 
fields due to rotation. Considering Figure 2(b), for example, it 
is clear that the benign cove separation of the 2-D analysis is 
associated with a tornado like structure which transports low 
momentum flow radially outward toward the casing. The reset 
of the spanwise flow by secondary flows and radial transport is 
of particular concern in blade rows with high aerodynamic 
loading levels and turning. The present work was motivated by 
the need to verify, at the 3-D level, the loss versus incidence 
correlation of vane and blade (rotating) rows. 

The key objective of the present effort was to conduct 3-D 
aero-design and analysis of a relevant stage of the VSPT 
turbine at a level sufficient to verify that the design (54% N*) 
and off-design (100% N*) performance of 3-D computational 
results is consistent with the meanline design/analysis used in 
the conceptual design of the VSPT for the LCTR. The paper is 
organized as follows: The aerodynamic design methodology, 
including meanline analysis used to design the 4-stage VSPT 
and 3-D design used to design incidence-tolerant blading, is 
first provided.  Computational analysis of a selected three 
blade-row embedded 1.5-stage at design and off-design 
conditions is then provided to gauge performance potential and 
variation with shaft speed. Finally, conclusions from the 
present study are provided. 

 

 
Figure 1.—Modified Smith chart showing design-point efficiency as a function 

of work factors for 3- and 4-stage VSPT meanline designs by Welch (Ref. 4) 
and D’Angelo (Ref. 5), compared with open literature (AMDCKO) (Refs. 6 to 8) 
meanline performance, Smith data (Ref. 9) and LPT turbine data (Ref. 10). 
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  (a)          (b)  

Figure 2.—Loss bucket for high-lift rotor blading of Clark (Ref. 11), showing cruise (design air angles) and take-off (–50° 
incidence) operation. (a) 2-D mid-span loss bucket. (b) Flow in representative LCTR VSPT rotor at –50° incidence. 

 

Aerodynamic Design Methodology 

The conceptual design of the VSPT and the detailed aero 
design/optimization of airfoil sections and blade rows are 
documented in this section. The intent of the conceptual 
design at the meanline level was to obtain flow path 
geometry, air angles and boundary conditions for subsequent 
airfoil and 3-D blade row design, and to gauge expected 
design and off-design performance levels. The intent of the 
3-D design was to create a representative embedded 1.5 
stage (R1/S2/R2) with design-point stage efficiencies 
consistent with the meanline, in which the impact of off-
design operation of a rotor impacts the off-design 
performance of a stator (R1/S2), and vice-versa (S2/R2). 
Stator 1 (S1) was not included in the simulations because the 
S1 inlet and exit flow angles will not change appreciably 
with speed change; therefore, the S1 design was assumed 
achievable, and the S1 exit conditions at design and off-
design exit flow conditions were set to those of the meanline 
analyses. 

Conceptual Design/Meanline Analysis 

The operational requirements of the VSPT were obtained 
from NASA engine cycle studies (Ref. 3). Key VSPT 
requirements were provided in Table 1 for the 2 kft take-off 
power point (100% N*) and a 28 kft cruise point (54% N*). 

Design-Point Selection 

The VSPT of this study was designed at the 54% N*, 
28 kft cruise condition. As documented earlier (Ref. 4), the 
following considerations impacted this decision: mission 
fuel burn is dominated by the 28 kft cruise leg; work factors 
at cruise are 3 to 3.5 times higher than at take-off, and the 

 
TABLE 1.—VSPT REQUIREMENTS AT KEY FLIGHT  

POINTS OF LCTR MISSION (REF. 3) 
Flight point Take-off Cruise 

Altitude 2kft 28 kft 
VSPT speed (N/N100%) 100% 54% 
Main-rotor tip-speed 650 ft/s 350 ft/s 
Power, SHP 4593 2328 
VSPT mass flow rate, lbm/s 22.03 12.22 
Specific power (BTU/lbm) 147 135 
PT inlet temp (T4.5), R 2204 1812 
PT inlet pres. (p0,4.5), psia 58.0 26.76 
PRTT 4.04 5.34 
Corrected flow, lbm/s 11.51 12.54 
Corrected speed (Nc/Nc100%), % 102.3 60.8 
Aft-stage unit-Re (in–1)a 50,000/in. 30,000/in. 

aBased on static conditions at last stage rotor exit with Mr,2 = 0.7. 

 
associated loss buckets are narrower; the positive-incidence 
range of the turbine blade rows is 2 to 3 times narrower than 
the negative-incidence range (see Fig. 2(a)); and, design-
point loss-levels increase and the incidence range decrease 
from take-off to cruise, due to Reynolds number lapse. 
These factors support the choice to design at cruise, so as to 
obtain maximum possible efficiency at cruise turbine-speed 
(54% N*). The turbine then runs with negative incidence at 
the higher shaft-speed conditions. As noted, results of 
meanline and 2-D CFD analyses indicate that the efficiency 
at the higher shaft-speed points, characterized by lower 
turning and extreme negative incidence, is predicted to be 
higher than at the design point. 

Four-Stage Turbine Design at Meanline Level 

The turbine flow path, number of stages, and design air 
angles were determined using F. Huber’s meanline design 
and off-design codes, which are constituents of the AFRL  

  

a. Loss as a function of incidence.
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Turbine Design and Analysis System (TDAAS) (Ref. 11). 
The meanline codes are consistent with the open-literature 
methodology of Ainley-Mathieson (Ref. 6), Dunham and 
Came (Ref. 7), and Kacker and Okapuu (Ref. 8), referred to 
herein as AMDCKO (see Fig. 1). As in previous work 
(Ref. 4), the aerodynamic loading levels of the vanes (Z = 1) 
and blades (Z = 1.1) are set near unity so as to be consistent 
with operation with transitional flow (Ref. 13) and required 
incidence-tolerance. The stage reaction levels were set near 
0.45. The stage work splits were based on trades between 
optimum efficiency and management of maximum turning 
per stage. The rotors were tip-shrouded and leakage flows 
were neglected. Huber’s off-design code (meanline) was 
used to assess off-design operation. Example design- and 
off-design point performance levels from the Huber code 
were provided in Figure 1. 

A mechanical design constraint of maximum AN2 based 
on temperatures and anticipated material properties was 
imposed at take-off (100% N*) hot condition (Ref. 4). In  
the 4-stage design of the previous study (Ref. 4), the 
mechanical limit was set at AN2 = 45 ∙109 rpm2∙in.2, 
corresponding to an aft blade-row exit annulus area of  
Aex = 212 in.2 and 100% speed of 14,560 rpm.  In the 4-stage 
design considered here, the exit area was maintained at  
Aex = 212 in.2 and 100% shaft speed was increased to 
15,000 rpm (AN2 = 47.7 ∙109 rpm2∙in.2).  

The VSPT flow path is provided in Figure 3. Key turbine 
parameters, including blade row incidence levels at off-
design, are provided in Table 2, and the design flow angles 
are provided in Table 3. Note that design-point blade-row 
turning levels are as high as 110°. 

High negative incidence levels (–40 to –60°) are 
experienced by all blade rows (blade, vane, and EGV) at off-
design operation (see Table 2 and Ref. 4). In spite of the 
 

 

 
Figure 3.—Four-stage VSPT flow path from 

Huber’s meanline, showing embedded 1.5-stage 
of computational analysis. No exit guide vane 
(EGV) shown. 

 incidence levels at 100% N*, the VSPT operating map 
(Fig. 4) reflects the increase in efficiency as speed is 
changed from the 8,100 rpm (54% N*) at the cruise design 
point to the 15,000 rpm (100% N*) at take-off. Note that the 
corrected flow in the turbine drops slightly as speed is 
increased. 
 

TABLE 2.—FOUR-STAGE DESIGN FOR LCTR VSPT 
REQUIREMENTS OF TABLE 1 

 Take-off Cruise 
Speed (N/N100%) 
Altitude, ft 

100% 
2,000 

54% 
28,000 

VSPT efficiency 0.9294 0.9154 
Total-pressure ratio 4.04 5.34 
N, rpm 15,000 8,100 
Average ψ 0.75 2.36 
Average φ 0.493 0.957 
Average h0, BTU/lbm 41.8 39.1 
Max. AN2, rpm2∙in.2 47.7109 13.9109 
   
Stage efficiency 0.9371, 0.9219, 

0.9229, 0.9068 
0.9105, 0.8887, 
0.9050, 0.9251 

   
Rotor incidence, deg 
(R1, R2, R3, R4) 

–38, –42,  
–50, –54 

 
0 

   
Stator incidence, deg  
(S2, S3, S4, EGV) 

–34, –40,  
–48, –35 

0 

   
Power, SHP 5287 2701 

 
 
TABLE 3.—DESIGN-POINT FLOW ANGLES AND LOADING 

FOR 4-STAGE ROTORS (AN2 = 47.7109 rpm2·in.2) 
Stage Vane Rotor 

 1 2 Turn 1 2 Turn 
1 0 62 62 42 –56 99 
2 –39 64 104 50 –60 110 
3 –42 62 104 42 –56 98 
4 –31 54 85 27 –47 74 

 
 

 
Figure 4.—VSPT performance map in terms of PRTT as 

a function of corrected flow and rpm of output shaft. 
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Two-Dimensional Air Foil Design and Stacking 

With air angles set in the meanline design (assuming free 
vortex flow), the TDAAS (Ref. 11) system was used to 
design and optimize 2-D airfoil sections at hub, mid-span, 
and tip, and to stack the 2-D sections to construct the 3-D 
blade geometry. The 2-D sections were generated by 
Huber’s blade profile generator, a 19-parameter description 
of the turbine blade section, including 5 arbitrary NURBS 
control points. Within TDAAS, the blade generator is driven 
by a MATLAB script, and contains options for Design-of-
Experiments (DOE) and gradient search optimization. Effort 
was expended in selecting chordwise loading distributions 
with minimum pressure placed toward the front to mid-
chord regions, consistent with lower-loss operation at low 
Reynolds numbers (Ref. 13). The 2-D analysis of blade 
sections was conducted using the commercial software of 
AeroDynamic Solutions, Inc. (ADS). H-O-H grids were 
generated about blade sections using the ADS WAND code 
and fully turbulent  RANS solutions were obtained 
using the ADS LEO solver. Design-intent for each blade 
section included matching meanline geometry, flow angles, 
gauge angles, and Mach numbers while minimizing total-
pressure loss coefficient. The key parameters of the DOE 
optimization were the blade setting angle, the leading edge 
wedge angle, and NURBS control points controlling area- 
and blade-thickness distributions. The hub, mid-span, and tip 
blade-sections for the R1, S2, and R2 blade rows are shown 
in Figures 5, 6, and 7. 

The hub, mid, and tip sections of a given blade row were 
stacked on their center of gravity along a radial stacking 
axis. No dihedral was considered in the present study, 
although the benefits of using 3-D aerodynamic design—
including bow and lean—are well documented for turbines 
(see, for example, Hourmouziadis (Ref. 14). 

 

 
Figure 5.—Hub, mid-, and tip-sections of Rotor 1. 

 
 

 
Figure 6.—Hub, mid-, and tip-sections of Stator 2. 

 
 

 
Figure 7.—Hub, mid-, and tip-sections of Rotor 2. 

Three-Dimensional CFD Analysis Method 

The 3-D blading was analyzed at design and off-design 
conditions using 3-D RANS turbomachinery flow solver, 
SWIFT (Ref. 15). The finite-difference form of the thin-
layer Navier-Stokes equations in Cartesian coordinates are 
marched in pseudo-time using a multi-stage explicit Runge-
Kutta integration with implicit residual smoothing. Inviscid 
flux vector differences are calculated using central-
difference with artificial viscosity, or with the H-CUSP 
(used herein) or AUSM+ upwind schemes. The viscous 
terms are central differenced. Three-dimensional C-grids 
without clearance blocks were used in all blade rows and 
were generated using the TCGRID code (Ref. 16). A suite of 
turbulence sub-models are available, including the Baldwin-
Lomax (Ref. 17) (B-L) and low-Re  turbulence model 
for transitional flows (Ref. 18) used in this study. The 
SWIFT code has been validated against a number of 
turbomachinery data sets. 
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Boundary conditions were obtained from the design and 
off-design meanline analyses. Inlet total conditions and swirl 
angles at the mid-span were prescribed along with an 
assumption of free-vortex flow. The free vortex flow is 
consistent with the spanwise flow distributions of the 
meanline code and the 2-D airfoil design. Radial equilibrium 
and a specified hub static pressure were prescribed at the 
exit. 

The mixing-plane interface condition was used between 
blade rows. In addition to neglecting unsteady blade-row 
interaction, the mixing-plane approach does not conserve 
streamwise vorticity between blade rows. While these 
limiting assumptions will impact accuracy, particularly at 
off-design and high-load conditions, the accuracy was 
deemed sufficient to address the principal question of the 
study concerning the trend of VSPT efficiency trend with 
speed change. 

Computational Results 

Computational results for the design (54% N*, 28 kft 
cruise) and off-design (100% N*, 2 kft take-off) performance 
of the embedded 1.5-stage turbine comprising R1, S2, and 
R2 are considered in this section. First computed design and 
off-design spanwise profiles are compared to meanline 
predictions. At both design (54% N*) and off-design (100% 
N*), the 3-D structures associated with secondary flow 
transport and rotor acceleration fields are discussed. Finally, 
the blade row, stage, and overall 1.5-stage performance 
levels at design and off-design are compared. 

Design Point (Cruise at 28 kft, 54% N*) 

Spanwise Profiles 

Spanwise profiles of passage-averaged (mixed-out) 
normalized total-temperature and total-pressure (referenced 
to S1 inlet) and absolute flow angles are provided below 
(Figs. 8 to 10). The computed R1 inlet total-temperature is 
unity (not plotted in Fig. 8), as specified by the meanline 
analysis. The computed inlet boundary-layer thickness is 
evident in the R1 inlet total-pressure profile (black) in 
Figure 9. The computed R1 inlet absolute flow angle (black) 
of Figure 10 matches the free-vortex profile of the meanline.  

In general, the agreement between the 3-D CFD and 
meanline for total-temperature (Fig. 8), an indication of 
work, and total-pressure (Fig. 9) is acceptable, although 
lower enthalpy extraction is achieved by R2 for the 
prescribed total-to-static pressure ratio. A large deficit in 
passage-averaged total-pressure is evident from 60 to 95% 
of span at the exit of S2; similarly, the hub of the R2 
discharge is weak from hub to 20% of span. These low total-
pressure sections are consistent with the cross-passage 
contours of entropy shown Figure 11. In addition to low 
enthalpy extraction (and associated turning) in R2 for the 
prescribed total-to-static pressure ratio, the axial rating 
planes for the CFD and meanline are not coincident, and this 
may contribute to the disparity in flow angles in Fig. 10. 

 
Figure 8.—Spanwise profiles of normalized total-

temperature, T0, at R1 and R2 exits, showing 
comparison with meanline at design point  
(54% N*, 2 kft cruise). 

 

 
Figure 9.—Spanwise profiles of normalized total-

pressure, p0, at R1 inlet and R1, S2, and R2 exits, 
showing comparison with meanline at design point 
(54% N*, 2 kft cruise). 

 

 
Figure 10.—Spanwise profiles of absolute flow angle at 

R1 inlet and R1, S2, and R2 exits, showing comparison 
with meanline at design point (54% N*, 2 kft cruise). 
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Figure 11.—Computed contours of entropy at the 

blade-row exit planes at design point. 
 
 
Three-Dimensional Flow Field 

Entropy contours at the exit plane of blade rows R1, S2, 
and R2 are provided in Figure 11. The low momentum flow, 
transported by the secondary flow field, accumulates 
preferentially at the hub/suction-side corners of the rotors 
and at the case/suction-suction side corner of the stator. In 
the present study, these regions of low relative total-pressure 
are mixed-out between blade rows, and are manifested as 
axisymmetric bands (not shown) of high entropy flow 
downstream of each mixing plane; in practice the regions of 
high aero-blockage would be strong sources of spanwise 
mixing and unsteadiness in the downstream blade row. An 
unsteady multistage simulation capability would facilitate 
accurate account of such mechanisms. Three-dimensional 
blade and endwall features, including bow and lean (Ref. 14) 
and nonaxisymmetric endwall contouring (Ref. 19), have 
been demonstrated to be effective in minimizing the 
secondary-flow-field transport and associated loss and 
aerodynamic blockage production. This level of 
aerodynamic design was not pursued in this study. 

Off-Design Point (Take-Off at 2 kft, 100% N*) 

Spanwise Profiles 

Spanwise profiles of normalized total-temperature and 
total-pressure (referenced to S1 inlet conditions), and 
absolute flow angle are provided below. R1 inlet plane 
values of the meanline are plotted where appropriate. As 
with the design-point, the agreement between the 3-D CFD 
and meanline for total-temperature (Fig. 12), total-pressure 
(Fig. 13), and absolute flow angle (Fig. 14) were found 
acceptable; indeed, the agreement at off-design was perhaps 
better than at the design point. The computed R2 enthalpy 
extraction was again low, as at the design point. The 
aerodynamic loading levels in the blade rows are lower at 
the higher shaft-speed condition. The total-pressure profiles 
are more uniform (spanwise) in all sections (Fig. 13). The 

computed flow turning (Fig. 14) is again found to be low 
relative to the meanline. This is consistent with lower 
enthalpy extraction in R2, and may be attributable in part to 
axial offset of the computational and meanline rating planes. 

 

 
Figure 12.—Spanwise profiles of normalized total-temperature, 

T0, at R1 and R2 exits, showing comparison with meanline 
at off-design (100% N*, 2 kft take-off). 

 

 
Figure 13.—Spanwise profiles of normalized total-pressure, 

p0, at R1 inlet at R1, S2, and R2 exits, showing compari-
son with meanline at off-design (100% N*, 2 kft take-off). 

 

 
Figure 14.—Spanwise profiles of absolute flow angle at R1 

inlet and R1, S2, and R2 exits, showing comparison with 
meanline at design point (100% N*, 2 kft take-off).
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Three-Dimensional Flow Field 

Entropy contours at the exit plane of blade rows R1, S2, 
and R2 are provided in Figure 15. As at the design point 
(Fig. 11), the secondary flow fields transport flow to the 
rotor hub/suction-side corners and stator case/suction-side 
corner. In general, the regions of lower total-pressure are 
more diffuse, particularly in the high-turning second rotor, 
R2, due to radial transport induced by acceleration fields of 
rotation and associated redistribution of low momentum 
flow from the hub regions to the casing via the pressure-side 
cove separation/vortex (Figs. 2(b) and 16). 

It was noted that the lower-turning rotor, R1, was not 
impacted as strongly as the higher turning blade rows (S2 
and R2). Indeed a blade-to-blade view of the 1.5-stage 
(Fig. 16) reflected little reverse flow in the cove region of 
R1. In R2, a strong vortical structure (tornado) was induced 
by the radial acceleration fields associated with rotor 
rotation and the substantial region of reversed flow in the 
pressure-side cove. Low momentum flow is transported 
outward, through the cove separation, toward the case. S2 
had significant regions of reverse flow in the pressure-side 
cove as well; however, without the strong radial acceleration 
fields, no comparable 3-D structure was formed. 
 
 

 
Figure 15.—Computed contours of entropy at the blade-row 

exit planes at the 100% N* off-design take-off point. 

Design and Off-Design Performance 

The performance of the individual blade rows and overall 
1.5-stage were provided in Table 4. The meanline 
efficiencies reported in Table 4 were re-calculated for this 
comparison using the temperatures from the meanline and 
the constant ratio of specific heats of the corresponding 3-D 
computation. Note, for example, that the S2/R2 efficiency is 
0.9005 with this approach rather than 0.8887 (see Table 3) 
of the meanline output. The CFD parameters are based on 
mixed-out properties, accounting for loss production in the 
blade rows and in downstream-mixing.  

The computed (B-L and ) R1 rotor-alone efficiencies 
at design and off-design are consistently about 1 point lower 
than meanline. The R1 efficiency increases from design to 
off-design, as in the meanline analysis. The computed stator 
S2 design-point loss is twice that of the meanline calculation 
at both design and off-design, and strongly shifts all stage 
efficiencies to lower levels. The S2 loss decreases from 
design to off-design in agreement with the meanline. The 
design- and off-design efficiencies of the high-turning R2 
are essentially equal. Relative to the meanline results, R2 
efficiency is 2 points low at design and 4.5 points low at off-
design. The efficiency variation with speed of the meanline  
 

 
Figure 16.—Computed contours of axial velocity and 

streamlines in R1 and R2 at the 100% N* off-design 
take-off point. 

 
 

TABLE 4.—COMPARISON OF 3-D COMPUTATIONAL RESULTS WITH MEANLINE PREDICTIONS 
 Design (54% N*,  = 1.33) Off-design (100% N*,  = 1.315) 

Model B-L a Meanline B-L a Meanline 
R1 tt 0.9108 0.9152 0.9275 0.9439 0.9481 0.9530 
R2 tt 0.9254 0.9329 0.9453 0.9251 0.9258 0.9692 
R1/S2tt 0.8083 0.8100 0.8682 0.8695 0.8679 0.9080 
S2/R2 tt 0.8398 0.8444 0.9005 0.8334 0.8269 0.9042 
R1/S2/R2 tt 0.8749 0.8792 0.9152 0.9023 0.9013 0.9448 
S2 Y 0.1387 0.1414 0.0718 0.1214 0.1326 0.0666 
S2 dp0/p0 0.0426 0.0436 0.0222 0.0297 0.0329 0.0165 
PRTT R1/S2/R2 2.1438 2.1375 2.1454 2.1303 2.1307 2.1555 
TRTT R1/S2/R2 1.1776 1.1779 1.1875 1.1758 1.1756 1.1887 
Wc, lbm/s 12.865 12.942 12.868 12.306 12.423 12.060 
aLow Reynolds number model. 
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Figure 17.—Variation of embedded 1.5 stage (R1/S2/R2) 
adiabatic efficiency with speed from cruise (54% N*) to 
take-off (100% N*). 

 
is not supported by the CFD, potentially due to the 
deleterious impact on performance of the cove vortex 
(tornado) at the extreme negative incidence of take-off, 
which is not accounted for in the secondary-flow loss model 
of the meanline solver. 

Embedded Stage Efficiency Trend With Speed 
Change 

The principal objective of the present study was to 
determine the variation of embedded 1.5-stage (R1/S2/R2) 
efficiency with speed. As shown in Table 4, the embedded 
stage efficiency increases from cruise to take-off operation. 
The variation is plotted in Figure 17. The CFD results were 
found to follow the meanline. This is the key finding of this 
study, emphasizing that the design-point shaft-speed should 
be set near the cruise shaft-speed (54% N*), as done in the 
present study.  

At both cruise (54% N*) and take-off (100% N*), the 
overall R1/S2/R2 efficiencies predicted by CFD are 
consistently about four points lower than the meanline 
values (Fig. 17). The slight change in slope of the low-Re 
 model relative to the fully turbulent B-L and meanline 
models can be attributed to regions of low-loss laminar flow, 
on the accelerating portions of the suction-side, admitted by 
the low-Re  transition sub-model at cruise Reynolds 
number. Highly loaded aft stages may well trend differently. 

Conclusions 

The performance of representative blade rows of a 
variable-speed power turbine for the NASA LCTR 
application, in particular the variation of efficiency with 
shaft-speed change, was the subject herein. A conceptual 
design of the LCTR VSPT led to a 4-stage turbine designed 
for an altitude (28 kft) cruise point. The turbine performance 
map and key turbine parameters were provided. The design 

approach led to a turbine with 91.5% cruise-point (54% N*, 
28 kft) efficiency and 92.9% efficiency at take-off 
(100% N*, 2 kft) at the meanline level. 

A key objective of the study was to verify, using 3-D 
RANS analyses, the efficiency versus speed trend of the 
meanline analyses. The concern was that 3-D flow features 
associated with transport due to radial acceleration fields and 
cross-passage gradients would lead to higher losses at the 
extreme negative incidence operation of the 100% N* take-
off condition than predicted by the meanline loss 
correlations and 2-D CFD analyses. To this end, a 3-D 
design of a representative embedded 1.5-stage was designed 
and analyzed. The design- and off-design performance were 
found to be sufficiently close to the design intent to be 
considered relevant for use in assessing the variation of 
efficiency with shaft-speed. 

Two significant 3-D aero effects were noted in the 3-D 
RANS analyses. Firstly, as normative in highly loaded blade 
rows, the secondary flow fields transported low momentum 
fluid to the rotor hub/suction-side corners and stator 
case/suction-side corners. This occurred at both design and 
off-design conditions. Secondly, at the 100% N* off-design 
condition, the separation in the cove region of the pressure-
side of R2 and the radial acceleration fields combined to 
form a tornado-like structure which transported flow radially 
outward along the cove to the case. No such structure existed 
in the first rotor, R1, as the negative incidence levels in the 
first rotor did not cause a cove separation. Although a strong 
cove separation was found in S2 at off-design, the absence 
of the acceleration fields of rotation precluded formation of 
the tornado-like cove vortex found in R2.  

Consistent with meanline analyses, the blade-row loss 
levels were generally found to be lower at the off-design 
conditions where, though operating with 40 to 60-deg. of 
negative incidence, the blade rows are unloaded. An 
exception to this general trend of higher efficiency at off-
design was found in R2, attributable to the impact of the 3-D 
cove vortex. This finding may push future rotor airfoil 
designs toward thicker sections that admit less of a pressure-
side cove. Enhancement of the meanline secondary loss 
model for rotors at extreme negative incidence, to account 
for increased loss due to such 3-D structures, appears to be 
warranted as well. 

Although the regions of loss associated with the 3-D flow 
structures detailed here reset the spanwise profiles, as shown 
in the CFD and meanline comparisons, the variation of 
embedded 1.5-stage efficiency with shaft-speed was found 
to match that predicted by the meanline. This agreement 
between 3-D RANS computations and the meanline both 
corroborates the incidence correlation of the meanline 
code—with the exception of R2 deficiency noted above—
and supports the conceptual design approach that establishes 
the design speed at the lowest operating shaft speed 
(54% N*, cruise). In practice, the specific VSPT design 
speed is expected to be strongly biased toward the cruise 
shaft-speed, and selected so as to minimize mission fuel 
burn. 
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