NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

A Numerical Method for Approximating Anteñna Surfaces Defined by Discrete Surface Points

```
(NASA-TM-87125) A NUMERICAL METHGD FOR N86-10381
APPROXIMATING ANTENNA SURFACES DEFINED BY
DTSCRETE SURFACE POINTS (NASA) 10 p
HC AO2/MF AO1 CSC% 20N Unclas
```

Richard Q. Lee and Roberto Acosta Lewis Research Center Cleveland, Ohio

Prepared for the 1985 Antenna Applications Symposium cosponsored by the University of Illinois and the Rome Air Development Center Monticello, Illinois, Septemer 18-20, 1985

N/SN

A NUMERICAL METHOD FOR APPROXIMATING ANTENNA SURFACES

DEFINED BY DISCRETE SURFACE POINTS

Richaid Q. Lee and Roberto Acosta National Aeronautics and Space Administration Lewis Research Center Cleveland, Chis 44135

1. INTRODUCTION

Reflector antennas on earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. Although numerical techniques for analyzing reflector surface distortions and doubly curved reflector surfaces have been reported in open literatures, ${ }^{1-3}$ all these techniques are rather complicated and involve lengthy computations. In this paper, a simple numerical technique based on Taylor's expansion and finite differences approximation is. presented. By applying the numerical technique to approximate the surface normals of a distorted reflector surface, the aperture field over a near-field plane is obtained using geometric
optics tecinnique. The aperture integration method is then applied to find the radiation patterns. ${ }^{4}$

2. FORMULATION

The proposed numerical technique is a quadratic approximation of a distorted surface defined by a grid of nine points, Let (x, y, z) be the coordinate of any point, P, on the surface which is described by

$$
z=z(x, y)
$$

The position vector of P is given by

$$
\vec{r}=x \bar{x}+y \hat{y}+z \hat{z}
$$

To obtain an approximation for the surface $z(x, y)$, the position vector is replaced by its Taylor's expansion around $\vec{r}_{0}\left(x_{0}\right.$, y_{0}, z_{0}), the closest point to the point of incidence. That is

$$
\begin{aligned}
\vec{r}(x, y, z) & =\vec{r}_{0}\left(x_{0}, y_{0}, z_{0}\right)+\left(x-x_{0}\right) \frac{\partial \vec{r}}{\partial x}+\left(y-y_{0}\right) \frac{\partial \vec{r}}{\partial y} \\
& +\frac{1}{2}\left[\left(x \cdots x_{0}\right)^{2} \frac{\partial^{2} \vec{r}}{\partial x^{2}}+\left(y-y_{0}\right)^{2} \frac{\partial^{2} \vec{r}}{\partial y^{2}}\right. \\
& +2\left(x-x_{0}^{\prime \prime}\left(y-y_{0}\right) \frac{\partial^{2} \stackrel{\rightharpoonup}{r}}{\partial x \partial y}\right]+0\left(x^{3}, y^{3}\right)
\end{aligned}
$$

where the partial derivatives of \vec{r} are evaluated at $\vec{r}_{0}\left(x_{0}\right.$, y_{0}, z_{0}). All terms higher that the quadratics of x and y have been neglected as indicated by $0\left(x^{3}, y^{3}\right)$. The surface may then be approximated by

$$
\begin{aligned}
z(x, y) & =\hat{z} \cdot \vec{r}=z_{0}+\left(x-x_{0}\right) \frac{\partial z}{\partial x}+\left(y-y_{0}\right) \frac{\partial z}{\partial y} \\
& +\frac{1}{2}\left[\left(x-x_{0}\right)^{2} \frac{\partial^{2} z}{\partial x^{2}}+2\left(x-x_{0}\right)\left(y-y_{0}\right) \frac{\partial^{2} z}{\partial x \partial y}\right. \\
& \left.+\left(y-y_{0}\right)^{2} \frac{\partial^{2} z}{\partial y z}\right]+0\left(x^{3}, y^{3}\right)
\end{aligned}
$$

All the partial derivatives of z are evaluated at $\vec{r}_{0}\left(x_{0}\right.$, $\left.y_{0}, z_{0}\right)$. The normals to the interpolatory surface can be found by taking the gradient of $z(x, y)$ as follows:

$$
\begin{aligned}
& \hat{n}=\frac{\partial z}{\partial x} \hat{x}+\frac{\partial z}{\partial y} \hat{y}+\hat{z} \\
& n_{x}=\frac{\partial z}{\partial x}+\left(x-x_{0}\right) \frac{\partial^{2} z}{\partial x^{2}}+\left(y-y_{0}\right) \frac{\partial^{2} z}{\partial x \partial y}+0\left(x^{2}, y^{2}\right) \\
& n_{y}=\frac{\partial z}{\partial y}+\left(x-x_{0}\right) \frac{\partial^{2} z}{\partial x \partial y}+\left(y-y_{0}\right) \frac{\partial^{2} z}{\partial y^{2}}+0\left(x^{2}, y^{2}\right) \\
& n_{z}=-1
\end{aligned}
$$

where $\left(n_{x}, n_{y}, n_{z}\right)$ are the x, y, and z components of \hat{n} with the normal pointing toward the source. Finite differences can be applied to approximate the partial derivatives. Since the
partial derivatives are of second order, a grid of nine points is required.

The partial derivatives may be expressed as

$$
\begin{aligned}
& \frac{\partial^{2} z}{\partial x^{2}} \sim \frac{\frac{\left(z_{4}-z_{0}\right)}{\left(x_{4}-x_{0}\right)}-\frac{\left(z_{0}-z_{5}\right)}{\left(x_{0}-x_{5}\right)}}{\frac{\left(x_{4}-x_{5}\right)}{2}} \\
& \frac{\partial z}{\partial x} \sim \frac{z_{4}-z_{5}}{x_{4}-x_{5}} \\
& \frac{\partial^{2} z}{\partial y^{2}} \sim \frac{\frac{\left(z_{2}-z_{0}\right)}{\left(y_{2}-y_{0}\right)}-\frac{\left(z_{0}-z_{7}\right)}{\left(y_{0}-y_{7}\right)}}{\frac{\left(y_{2}-y_{7}\right)}{2}} \\
& \frac{\partial z}{\partial y} \sim \frac{z_{2}-z_{7}}{y_{2}-y_{7}}
\end{aligned}
$$

$$
\frac{\partial^{2} z}{\partial x \partial y} \sim \frac{\frac{\left(z_{1}-z_{3}\right)}{\left(x_{3}-x_{3}\right)}-\frac{\left(z_{6}-z_{8}\right)}{\left(x_{6}-x_{8}\right)}}{y_{2}-y_{7}}
$$

where $\left(x_{1}, y_{1}, z_{q}\right),\left(x_{2}, y_{2}, z_{2}\right) \ldots\left(x_{8}, y_{8} z_{8}\right)$ are the coordinates of the points around the closest point (x_{0}, y_{0}, z_{0}).

3. DISCUSSION AND RESULT

In applying the numerical technique to compute the surface normals, the nine clesist points to the point of incidence are located by searching an array of discrete surface points defining the distorted antenna surface. Ray-tracing is then used to
compute the reflected fieid from the approximated normals. The secondary far field patterns are obtained from the Fourier transformation of the aperture field distribution.

To fllustrate the numerical "echnique, the numerical algorithm has been programmed and applied to the antenna configuration shown in figure 1, The surface grid points for an artificia'ly "enlarged" parabolic surface are generated. Thus, the bolndary points along the rim of the actual reflactor surface can be included in the computation. The computed secondary far field patterns for the symmetric and the offset cases are shown in figures 2 and 3 respectively. In the figures, the E-plane radiation patterns computed from an analytic expression of a parabolic surface are drawn with solid lines, while that computed numerically are drawn with dots and broken lines. The E-plane radiation patterns computed numerically from a grid of 50×50 surface points of $\sim 0.7 \lambda$ spacing was found to compare exactly to that computed from an analytic expression. For the offset case, the aperture surface is described by fewer points; therefore, a higher density of target points is required to produce the same accuracy. With a scan step of $\lambda / 3$ for the symmetric case and $\lambda / 6$ for the offset case, the computer time required to compute the secondary radiation patterns numerically is 25 sec for the symmetric case and 17 sec for the offset case, respectively. For comparison purpose, the radiation pattern
for the offset case has been computed using spline function epproximation. 5 The computed E-plane pattern is shown in figure 3.

REFERENCES

1. Agrawal, P.K., Kauffman, J.f., and Crosvell, A.7., (1979) A Method for Pattern Calculation for Reflector Antennas Whose Geometry is Described by a finite Number of Discrete Surface Points, in IEEE International Symposfum on Antennas and Propagation, Vol. 1, IEEE, Piscataway, NJ, pp. 67-70.
2. Chan, K.K., and Raab, A.R., (1981) Surface-Current Annalysis of Distorted Reflector Antenna, IEE Proc., Part H: Microwaves, Opt Antennas, 128:206-212.
3. Sletten, C.J., (1981) Ray Tracing Method for Doubly Curved Reflector Surfaces, Proc. IEEE, 69:743-744.
4. Lam, T.C., Lee, S.W., and Acosta, R., (1984) Secondary Pattern Computation of an Arbitrarily Shaped Main Reflector, UILU-ENG-84-2547. NASA Grant NAG3-419, Electromagnetics Laboratory Scientific Report No. 84-7, University of Illinois.
5. Steinbach, R.E., and Winegar, S.R., (1985) Interdisciplinary Design Analysis of a Precision Spacecraft Antenna, in Structures, Structural Dynamics, and Materials Conference, 26th, AIAA, New York, pp. 704-712.

Figure 1-Antenna configuralion used in the study.

Figure 2. E - plane pattorn for the symmetric case,

Figure 3. - E - plane pattern for the offsel case.

1. Report No. NASA TM $=87125$	2. Government Accession No,	3. Recipiantis Catalog No.
4. Tille anc sublile A Numerical Method for Approximating Antenna Surfaces Defined by Discrete Surface points		6. Report Date 6. Performing Organizallon Code $506-58-22$
7. Author(s) Richard Q. Lee and Roberto Acosta		8. Portorming Oigantzalion Report No. E-2738 10. Work Unit No.
9. Pefforming Organization Name and Address National Aeronautics and Space Adrninistration Lewis Resparch Center Cleveland, Ohio 44135		11. Contract or Grant No.
12. Sponsoring Agency Name and Address National Aeronautics and S Washington, D.C. 20546	Administration	Technical Mernorandum
15. Supplomentary Notes Prepared for the 1985 Antenna Applications Symposium, cosponsored by the University of Illinois and the Rome Air Development Center, Monticello, Illinois, September 18-20, 1985.		
16. Abstract A simple numerical method for the quadratic approximation of a discretely defined reflector surface is described. The numerical method was applied to interpolate the surface normal of a parabolic reflector surface from a grid of nine closest surface points to the point of incidence. After computing the surface normals, the geometrical optics and the aperture integration method using the discrete Fast Fourier Traissform (FFT) were applied to compute the radiaton patterns for a symmetric and an offset antenna configuratons. The computed patterns are compared to that of the analytic case and to the patterns generated from another numerical technique using the spline function approximation. In the paper, examples of computations are given. The accuracy of the rumerical method is discussed.		
17. Key Words (Sugested by Author(3)) 18. Dlstribution Slatement Numerical method Unclassified -unlimited Reflector antenna STAR Category 32		
19, Security Classilf. (Ot this rapocti) Unclassified	acurity Classifi (of this page) Unc lassiffed	22. No. of pages $]^{\text {22. Price* }}$

[^0]
[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22161

