Do the Defects Make it Work? Defect Engineering in π -Conjugated Polymer Films and Their Solar Cells

Brian A. Gregg*, Dong Wang, Matthew O. Reese and Nikos Kopidakis *National Renewable Energy Laboratory*

NREL/PR-270-43277

Presented at the 33rd IEEE Photovoltaic Specialist Conference held May 11-16, 2008 in San Diego, California

Free carrier density at zero field, p_{f0} or n_{f0}

Intrinsic SC,
$$E_{\rm bg} = 2.0 \text{ eV}$$

$$p_{\rm f0} = n_{\rm f0} \approx 10^4 \, \rm cm^{-3}$$

Molecular SCs (e.g., porphyrins,

10¹¹ - 10¹⁴ cm⁻³

perylenes, phthalocyanines)

Peumans, P.; Yakimov, A.; Forrest, S. R., *J. Appl. Phys.* **2003**, 93, (7), 3693. Gregg, B. A.; Chen, S.-G.; Cormier, R. A., *Chem. Mater.* **2004**, 16, (23), 4586.

 π -conjugated polymers (e.g., cm⁻³

10¹⁵ - 10¹ SCLC

P3HT, MDMO-PPV)

Jarrett, C. P.; Friend, R. H.; Brown, A. R.; de Leeuw, D. M., *J. Appl. Phys.* **1995,** 77, 6289. Chen, S.-G.; Stradins, P.; Gregg, B. A., *J. Phys. Chem. B* **2005,** 109, 13451. Jain, S. C.; Geens, W.; Mehra, A.; Kumar, V.; Aernouts, T.; Poortmans, J.; Mertens, R.; Willander, M., *J. Appl. Phys.* **2001,** 89, 3804. Dicker, G.; de Haas, M. P.; Warman, J. M.; de Leeuw, D. M.; Siebbeles, L. D. A., *Phys. Chem. B* **2004,** 108, 17818; Mozer, A. J.; Sariciftci, N. S.; Pivrikas, A.; Österbacka, R.;

Juska, G.; Brassat, L.; Bässler, H., Phys. Rev. B 2005, 71, 035214.

Binding energy between charges $> k_{\rm B}T$ because of low dielectric constant and localized carrier wavefunctions. Should apply to excitons, doping, charge separation and transport

Poole-Frenkel currents

$$J = q \,\mu^0 \, F \, n_d \, exp((-E_a{}^0 + (q^3/\pi \varepsilon_0 \varepsilon)^{1/2} \, F^{1/2})/kT)$$

Band diagram with trapped charges and dipoleinduced conduction band fluctuations

The field-dependence of μ may be similar to that of $n_{\rm f}$, this is *not* included in the original PF model—> PF factor/2

Non-Covalent Defects: Molecular semiconductors have only non-covalent defects (and chemical impurities)

Covalent Defects: π -conjugated polymers have both covalent and non-covalent defects (and chemical impurities)

Chemically treating covalent defects in P3HT with nucleophiles and electrophiles

No reaction with pristine materials

Dark current-field curves for treated and untreated P3HT

Exciton diffusion length before and after chemical treatments

Results of chemical treatments

T	ale	1	•
_		_	

Tr a tment	ReliivePL Quantu Yild	Zen-field conductiy, σ_0 , x10 Scm	$E_{ m aJ0}$ meV	PL L ifin e τ _{avg} ps	L _{ex} m	Hile Mibiltyµp x104 an1/Vs	FreeHole denity, p _i , x 10 ⁶ an ³
P3H:Thone	1.00	14	233	401	7	1.2	7.3
MeO	1.35	3	276	579	9	1.8	1.0
MeI	0.92	29	223	354	_	3.5	5.2
MßQ	0.54	46	210	285	13	42	6.8
MDM PPY non	1.00	14	280	866	12	_	
MeO	1.22	0.5	306	1020	14		_
4							

Bulk heterojunction OPV cells made from Me₂SO₄ treated P3HT, and controls

Impurities make it work: a peryene diimide/phthalocyanine cell

P. Peumans, et al, Adv. Mater. 2008, 20, 206

Summary

- Charged defects produce 10^{15} 10^{17} cm⁻³ free carriers
- Treatment with nucleophiles decreases $p_{\rm f}$ and σ while treatment with electrophiles does not change $p_{\rm f}$ but increases σ
- Both treatments increase $\mu_{\rm p}, L_{\rm ex}$ and stability against photo-degradation
- Charged defects can improve OPV by increasing conductivity and creating interfacial electric fields
- But they hurt μ_p , L_{ex} and chemical stability
- A better way: synthesize materials without covalent defects and dope with purposely added, bound dopants