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Lewis Research Center 
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SUMMARY 

A fully second-order closure model for turbulent reacting flows is sug­
gested based on Favre statistics. For diffusion flames the local thermodynamic 
state is related to a single conserved scalar. The properties of pressure 
fluctuations are analyzed for turbulent flows with fluctuating density. Clos­
ure models for pressure correlations are discussed and modeled transport 
equations for Reynolds stresses, turbulent kinetic energy dissipation, density­
velocity correlations, scalar moments and dissipation are presented and solved, 
together with the mean equations for momentum and mixture fraction. Solutions 
of these equations are compared with the experimental data for high heat 
release free mixing layers of fluorine and hydrogen in a nitrogen diluent. 

INTRODUCTION 

A test case for the evaluation of a fully second order closure model of 
turbulent reacting flows with moderate to large heat release has been provided 
by the recent experiments of Hermanson et al. (ref. 1) and Mungal and Dimotakis 
(ref. 2). The dynamic field consists of a two-dimensional mixing layer with 
gas phase free streams carrying hydrogen in a nitrogen diluent in one stream 
and fluorine in a nitrogen diluent in the other. The reaction is 

and is highly exothermic. The experimental results with the highest heat 
release correspond to fluorine concentration of up to 6 percent and hydrogen 
concentration of up to 24 percent, with a maximum adiabatic flame temperature 
rise of 940 K. 

An attempt will be made to assess the possible improvement in the pre­
diction of the above flow field by accounting for both velocity and scalar 
fluctuation time scales and by inclusion of the chemical heat release effects 
in the modeling of the Reynold stresses, scalar fluxes, and dissipation 
equations. 

Closure Model 

The closure model consists of three parts: 

(1) The thermo-chemical model based on the shifting equilibrium flame 
model (ref. 3). This model requires a fast rate of chemical reaction and 
relates the value of all thermodynanic variables to a conserved scalar. There 
are several scalar variables which are conserved in a chemical reaction and can 
be used as a basis for describing the mixing in a nonpremixed reacting flow. 
The mass fraction of a given element is such a variable. A normalized 



conserved scalar is referred to as the mixture fraction. Hence the density 
p, temperature T, and composition Yk are local functions of the mixture 
fraction f. 

(2) The turbulence or moment model consisting of a set of closed Favre 
averaged equations of order one and two, including the equations for all 
Reynolds stress components, scalar fluxes, dissipation rates of turbulence 
kinetic energy, and the mixture fraction variance. 

(3) The coupling model which relates the thermo-chemical model and the 
turbulence model through the probability density function, p.d.f., of the mix­
ture fraction. In general, the form of p.d.f. will depend on the flow condi­
tions and will be coupled with the chemical heat release. If constraints are 
imposed by solving the transport equations of the mean and the variance of the 
mixture fraction, the errors that can be made using an arbitrary form of the 
p.d.f. are limited. A Favre Beta function will be used here to represent the 
p.d.f. of the mixture fraction. The means and higher moments of the thermo­
dynamic variables at any pOint may be obtained from their local relationship 
with the mixture fraction obtained from the thermo-chemical model and the 
p.d.f. of the mixture fraction. 

NOMENCLATURE 

o velocity divergence 

f mixture fraction f = 7+ f" 

fs stoichiometric value of the mixture fraction 

gi gravitational acceleration vector 

k turbulent kinetic energy 

p pressure, p = p + pi 

~ Favre probability density function 

R ratio of turbulence velocity to scalar time scales 

T absolute temperature 

Tadb adiabatic flame temperature 

Tamb ambient temperature 

U longitudinal velocity component 

- " Ui velocity vector, Ui = Ui + ui 

V transverse velocity component 

~ position vector 

mass fraction of the kth species in the mixture 
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transverse location of the point at wh1ch (U - U2)/{U, - U2) = 0.5 

d1ffus1v1ty (same for all spec1es) 

integral thickness 

vorticity or maximum slope thickness 

shear layer 1 percent thickness of the mean temperature profile 

turbulent k1net1c energy d1ss1pat1on rate 

scalar variance dissipation rate 

density of the mixture 

time scale 

equivalence ratio 

conventional averag1ng 

density weighted averag1ng 

high speed and low speed s1des 

TURBULENCE HODEL 

Second-order closure methods are believed to be the optimum level of 
closure and have been successfully applied to constant density flows, includ­
ing buoyancy effects (refs. 4 to 6). The presence of the density fluctuations 
in the variable density or combusting flows results in far more complex equa­
tions for the second moments. Application of density weighted (Favre) averag­
ing to variable density flows results in a set of equations which .are s1m1lar 
to those of constant density flows. This extends the use of the well developed 
constant dens1ty second-order closure models to the variable density case and 
makes available well tested model expressions for many terms in the moment 
equat10ns (ref. 7). This is, however, not sufficient for the complete closure 
of the density weighted moment equations, since new correlations involving 
density and divergence of velocity appear in the set. The exact equations show 
that the var1at1on of dens1ty 1s felt v1a three mechan1sms: (1) the var1at1on 
of the mean density and the correlation of density with velocity; (2) the non­
zero divergence of velocity; and (3) the correlations involving pressure which 
are related to density via mass, energy, and state equations. These correla­
tions appear in the transport equations of the Reynolds stresses and scalar 
fluxes and play-an important physical role. 

Pressure Equation 

The instantaneous pressure equation follows from mass and momentum balance 
as 

2 2 2 
~p = attp - aij (pU,Uj ) + g, a, P + a,jT1j ( 1 ) 
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where T1j denotes the Newton1an stress tensor. In contrast to the con-
stant density case, the type of this equation for known velocity is hyperbolic. 
It describes the change of pressure due to hydromechanical mot10n and acoustic 
propagation of waves. The density term however contains not only acoustic 
variations of pressure but contributions which are due to mixing and chemical 
reaction. Expanding the first and second terms of above equation and ut1l1zing 
the 1nstantaneous mass and momentum equations, the above equation can be 
rewritten as, 

1 
~p = -paiujajU i + ; ajpa j P - pDtD (2) 

where the substantial derivative is 

and 

The last two terms in equation (2) represent the molecular viscous effects on 
pressure and are ignored in comparison to other terms in high Reynolds number 
flows. The second term in equation (2) results in an integral equation of the 
Fredholem type of second-order. It can be shown that the iterated kernals for 
this equation exist, thus a solution can be obtained. This solution is rather 
complicated, but it produces an integral form with a kernal modified by the 
density fluctuations. This term will have negligible affect at high Reynolds 
numbers due to the lack of correlation. The first term on the right-hand side 
of equation (2) is the well known hydrodynamic source of pressure change, see 
Chou (ref. 8). Th1s would be the only term appearing 1n the case of constant 
density flows. In the context of the thermochemical model for diffusion flames 
introduced above, density is a local function of the mixture fraction. It is 
however advantageous to consider p-l, specific volume, instead of p. 
Therefore 

The pressure equation can be recast in terms of mixture fraction, 

Ap ~ -p3\U j 3j U\ - pOt (p dfp-10tf) (3) 

In pure mixing of two gases of different molecular weights the variation of the 
specific volume as a function of the mixture fract10n is close to l1near, with 
its second derivative equal to zero. However in diffusion flames this relation 
is strongly nonlinear near the stoichiometric value of the mixture fraction. 
To the left and right of this value p-l(f) is nearly linear with different 
slopes. If this local relation is simplified to partially linear with a jump 
in the slope at the stoichiometric value of the mixture fraction, then the 
terms involving the first derivative of the specific volume reflect the effect 
of mixing, with 
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and the terms involving the second derivative of the specific volume reflect 
the effect of chemical heat release, with 

(4 ) 

( 5) 

where H(f - fs) denotes the Heaviside function, ~(f - fs) the Dirac function 
as generalized derivative of H(f) and fs is the stoichiometric value of 
the mixture fraction. utilizing the s~ecific volume, the equation of conserva­
tion of mixture fraction and considering the limiting case of high Reynolds 
number and Ko1mogorov's hypothesis of local isotropy (refs. 9 and 10) the 
pressure equation for diffusion flames is then reduced to 

2 2 2 2 -1 
6p ~ -paiUjajajUi + 2p E dff (ln p) dffP (6 ) 

where E = raifaif. Based on the above model and equation (5) the second 
term on the right hand side of equation (6) is recognized as the heat release 
contribution to the pressure equation. This term behaves like a Dirac delta 
function and its magnitude is determined by the location and movement of the 
instantaneous flame front, f(!,t) = fs' since only near the flame front it 
has a large contribution and is small everywhere else. This simplified pres­
sure equation analysis indicates that the fluctuations of the pressure contain 
the contributions of mixing and reaction in addition to velocity fluctuations. 
Janicka and Lumley (ref. 11) have argued that the mixing part can be neglected 
at high Reynolds numbers in pure mixing. An order of magnitude analysis shows 
that in the case of chemical heat release the mixing contribution can also be 
neglected. 

Solution of the Poisson equation, (eq. (6», for pressure can be obtained 
by application of Green's theorem. Thus far from walls, where the surface 
integral may be neglected 

where 

and 

Second-Order Closure 

The complete set of equations constituting a closed system of Favre­
averaged moments including all density variation effects will be discussed 
briefly. 
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The mean veloclty, at hlgh Reynolds number, satlsfles 

aj (;u1 Uj) = -alP - al~u~) + ~gl (9) 

No closure assumption is requlred at this level of closure. 

The modeled Reynolds stress equation is given as 

( 
-k ~ (--u-H)~ '1--11 

- --II -~ , 2 
+ a, CsP ; U,Umam\UiUj / +; p'uiajP + p'UjaiP~ + 0ij + 0ij ('0) 

The Kolmogorov assumption of local isotropy at high Reynolds numbers is used 
here, so that the dissipation tensor is isotropic with its trace equal to twice 
the turbulence kinetic energy dissipation, c. The diffusion model of Daly and 
Harlow (ref. '2) is chosen over the more complicated model suggested by 
Hanjalic and Launder (ref. '3) due to their equivalent performances in constant 
density flows. Consideration of the exact solution of the pressure equation 
g1ven by equat10ns (7) and (8), suggests the following decomposition of the 
veloclty-pressure gradlent correlation 

The first term on the right-hand slde of the above equation is denoted by 
Q~j and represents th~ correlatlon of the velocity fluctuations with the 
hyarodynamics part of the pressure fluctuation gradient. This would be the 
only term present for the incompressible flow case and contalns the pure 
turbulence interaction IIreturn to isotropy,1I and mean strain rate interaction 
IIfast response ll contributions. The closure model of Launder, Reece, and Rodi 
(ref. 4) is used for thls term. In density weighted form this term is given as 

(~ 
- ~ cS1jk) -

c2 + 8 

(1I'ij - ~ cS 1j1l') 1 - C II II 
°1j = -c, p k uiUj 11 

8C 2 - 2 ( 
- ~ cS 1j1l') -

30C - 2 2 -
11 l1 ij 55 

pk( aj u1 + a1uj ) 

t2 + 
4 --... 40C 2 + '2 

&1jk! II II 
;al Ul 11 u1 uj -

55 
(11 ) 

(~ ~) ~ II II _ II II _ II II -where 1I'ij = - u1u,a l uj + uj ul a,u1 and 11' = .-u1 uj aj U1 

- (u~a}l + u~aliil) --II II 
t!ij and k = '12 ui ui · 
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,The term Q'j represents the heat release ~art of the pressure-
stra1n rate corre1at10n. Ins1ght 1ntomode11ng of th1s term can be ga1ned by 

. careful analys1s of the pressure equat10n's 'solut10n (eq. (8». Cons1der1ng 
just the heat release port10n of the pressure solut10n we have 

II 1 JJC ( , , 2 2 2 1) II -u , aj P2 = 2~ J ~ra,f a, f dff (In p) dffP- u, (!) 

x aj ( I! _1!, l)dX~ dX; dX; (12) 

Due to the D1rac delta funct10n behav10r of the second der1vat1ve of the 
spec1f1c volume near the st01ch10metr1c value of the m1xture fract10n, th1s 
correlat10n 1s determ1ned by the 10cat10n and movement of the 1nstantaneous 
flame front, f(!,t) = fs' 1.e., only near the flame front does the second 
der1vat1ve of the spec1f1c volume contr1bute to the pressure equat10n. There-

. fore, the 1ntegral representat10n of the heat release contr1but10n 1nd1cates 
dependence on the probab111ty of the flame sheet be1ng present at a g1ven 
10cat10n. On the other hand, the probabi11ty of m1xture fract10n be1ng 1n an 
1nterval about the sto1ch10metr1c value, ~(fs;!)df, is zero for pure ox1d1zer, 
where f = 0, and grows qu1ckly w1th fuel concentrat10n. It reaches 1ts max1-
mum at the flame front reg10n and dec11nes to zero 1n the pure fuel reg10n, 
where f = 1. Th1s suggests that a1f(f s ;!) 1s large and posit1ve on the 
entra1nment s1de of the flame and becomes small and negat1ve past the flame 
front. Cons1der1ng the d1mens10nal propert1es of equat10n (12)1t becomes 
clear th~tthere are two t1me scales affect1ng th1s term. One 1s the scalar 
fluctuat10n t1me scale def1ned by the scalar var1ance and its diSs1pat10n, the 
other one 1s the dynam1c or veloc1ty fluctuat10n t1me scale, wh1ch 1s related 
to the turbulence large eddy structures. If tensor1al propert1es and con­
s1stency w1th the 11m1ts of zero fluctuat10ns and pure m1x1ng w1thout react10n 
are requ1red, the follow1ng poss1ble closure model emerges: 

-112 where R = 2 cf/f k/c denotes the rat10 of turbulence t1me scale to scaler --f1uctuat10ns t1me scale and Cf = raiflla,fll 1s the rate of d1ss1pat10n 
of the scalar var1ance. Begu1er, Dekeyser, and Launder (ref. 14) showed from 
a survey of several non1sothermal, nonreact1ng turbulent shear flows that the 
t1me scale rat10 was approx1mately equal to 2.0. The 1mp11ed constancy of R 
1s used 1n most work a1med at ca1culat1ng scalar var1ances. However based on 
the ev1dence to the contrary prov1ded by Warhaft and Lumley (ref. 15) an exact 
transport equat10n for the scalar d1ss1pat10n 1s der1ved and modeled, so that 
R can be determ1ned at each p01nt. 

The.constant CR1 can be est1mated as 

CRl ~ C* --' d2 1n P 
8~ ff 

where C* 1s a measure of correlat10n among the terms 1n the 1ntegral 
(eq. (12» and should have a value much less than one due to the degree of 
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stat1st1ca1 1ndependence 1mp11ed 1n the mode11ng of th1s term~ d~f 1n P 
1s a chem1ca11y dependent term that var1es from zero (for nonreact1ng cases) 
to the order of 100 for react10ns w1th large heat release. Therefore the value 
of CRl depends on the energy release 1n the flow f1eld. For the hydrogen 
- a1r flame of D1bble, Kollmann, and Schefer (ref. 16) a value of 1.25 1s 
recommended (ref. 10). 

The rate of turbulence k1net1c energy d1ss1pat10n determ1nes the dynam1c 
length and t1me scales and sat1sf1es the follow1ng modeled equation 

(14 ) 

where the last term conta1ns the effect of chemical heat release on d1ss1pat1on. 
This complex process 1s tentatively taken 1nto account by analogy with the 
correspond1ng term (eq. (13» for the normal stresses. 

Dens1ty - Ve10c1ty correlat1ons appear both d1rect1y and through the 
modeled terms 1n the Reynolds stress transport equat10n (10). Derivation of 
exact equations and the closure of the equat10ns are d1scussed 1n deta11 by 
Farshch1 (ref. 10). The modeled transport equations for these correlations 1s 
g1ven by 

- II _ 

+ C2RUPP' uj aj U1 ( 15) 

T 1s the turbulent t1me scale, wh1ch 1s trad1t10nally set equal to the 
turbulence time scale k/&. However 1t can also be the t1me scal~ scalar 
fluctuat10ns or a comb1nat10n of the two t1me scales (ref. 17). p'2 is the 
var'ance of density and 1s obta1ned d1rectly us1ng the thermo-chem1cal model 
and the appropr1ate we1ghted 1ntegrat1on of the m1xture fract10n p.d.f. 

The transport equat10n of the m1xture fract10n's mean value requ1res no 
mode11ng and 1s g1ven as 
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al <;;TIl f) = -al (pu~) 
where the molecular diffusion effects are neglected in comparison with the 
turbulence diffusion at high Reynolds numbers. 

---Next a transport equation for the scalar flux vector. U1f". is derived 

(16 ) 

and modeled (ref. 6). The scalar pressure ~radient terms (pressure scrambling) 
are modeled using the same line of argument'used for velocity-pressure gradient 
correlations in the Reynolds stress equation. The modeled form of this equa­
tion is given as 

al (;rrjY-') = -! ;uf=a/il + ;u-gal! + aj (Cc T;u~alu~) 

(~)1/2 2 e lfll 
+ CRFk f R _ ai(Pf(fs;~» 

p 
(17 ) 

plfll appearing in the above equation can be obtained from the p.d.f. of the 
mixture fraction. 

Mixture fraction variance appears in the Beta function representing the 
probability density of the mixture fraction. For high Reynolds number flows 
the modeled mixture fraction variance equation is expressed as 

( 18) 

The variance of the mixture fraction is dissipated by molecular action at small 
scales. This dissipation rate is also the key to determination of scalar 
fluctuation time scale. The exact form of the scalar dissipation equation and 
its modeling is discussed in details by Farshchi et al. (ref. 18). However. 
regrouping some of the exact terms and applying an order of magnitude analysis 

-1 2 and ignoring terms of order Ret and less. where Re = k /u& is the turbu-
lence Reynolds number. Farshchi (ref. 10) shows thatfo~ high heat release cases 
there is a source along with a sink of the scalar dissipation. The chemical 
source term for diffusion flames is given by 

d2 p.( ra fila fll)2 ff i 1 

with cp3 = 1.0. The completely modeled scalar dissipation equation is then 
given by: 
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2 

COl; ~ - CO2;cf ~ - C03 ; (d f P)2 c~ 
f 

( 19) 

All constants used in above equations are summarized in table I. 

APPLICATION AND COMPARISON WITH MEASUREMENTS 

Hermanson's (ref. 19) experimental studies of the effect of heat release 
in a planar, gaseous reacting mixing layer formed between free streams contain­
ing hydrogen and fluorine in nitrogen diluents are used for comparison. The 
density ratio of the free streams is kept equal to one by using as diluent a 
mixture of nitrogen and a small amount of helium, on the fluorine side, and a 
mixture of nitrogen with small amount of argon on the hydrogen side. The 
nominal high speed, hydrogen containing side, flow velocity is 22 mls and a 
free-stream speed ratio of U2/Ul = 0.4 is maintained. The high speed 
free-stream turbulence level was measured to be about 2/3 percent. The measur­
ing station was positioned 0.457 m downstream of the splitter plate trailing 
edge. The Reynolds number at the measuring station based on the high speed 
free-stream velocity, the downstream distance and the cold free-stream kine­
matic viscosity was Rex = 6xl05. The Reynolds number based on high speed 
boundary layer momentum thickness just upstream of the trailing edge was 
estimated to be about 240. 

Two cases of moderate and high heat release are considered, corresponding 
to two equivalence ratios (ref. 2): 

(1) ~ = 1, corresponding to fluorine concentration of 6 percent and 
hydrogen concentration of 6 percent, with a maximum adiabatic flame temperature 
of 860 K. 

(2) ~ = 1/4, corresponding to fluorine concentration of 6 percent and 
hydrogen concentration of 24 percent, with a maximum adiabatic flame tempera­
ture of 1240 K. Thermodynamic tables relating density and temperature to the 
mixture fraction are obtained using CEC83 (ref. 20) computer program .. 

Numerical Method 

The numerical method used for this calculation is a modified version of 
the Patankar and Spalding method (ref. 21) where all the first order moments 
are defined on node points, and all higher order moments are defined at 
midpoints. The given initial velocity profiles have Blasius form and agree 
with the boundary layer momentum thickness value repBrted by the experiment. 
The initial dissipation rate, c, and the shear stress, ullv", are determined 
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ut1l1z1ng the turbulence equ1l1br1um assumpt10n, a slmple grad1ent flux model 
w1th molecular k1nemat1c v1scos1ty, and the ass1gned veloc1ty prof1le. Next 
the well known turbulence v1scos1ty model, 

wlth lamlnar vlscos1ty 1s used to determine 1n1t1al turbulent k1net1c energy 
prof1le. The normal stresses are equi-partitioned. The in1tial mean m1xture 
fract10n has a step prof1le and all other turbulent correlations are set to 
zero. The 10ngitud1nal mean pressure grad1ent must be prescribed analytically 
1n terms of the grad1ent of the outer boundaries velocities and 1s zero here. 
The transverse pressure grad1ent cannot be prescribed and is approx1mated by a 
slmpl1fied vers10n of the mean transverse momentum equat10n as 

-- - "2 a p = -a (pv ) 
y y 

The upper bound of the marching step of the maln procedure ls determlned at 
each forward pos1t1on w1th respect to the value of a character1st1c th1ckness 
of the m1xfng layer. To solve a typlcal problem w1th thls 13 equation turbu­
lence model over a d1stance of 0.9 m with 80 node po1nt in the cross d1rection, 
the t1me needed on an IBM 370 1s about 30 m1n CPU. The p.d.f. 1ntegrat10n for 
the calculat10n of mean dens1ty, temperature, and other m1xture fract10n 
moments at each node takes 2/3 of above time. 

D1scuss10n of the Results 

The 1n1t1al predict10n of the homogeneous cold flow m1x1ng layer resulted 
1n a m1x1ng layer th1ckness 35 percent below 1ts experimental value at the 
ax1al measur1ng stat10n. To val1date the model constants and the method used 
here and due to the lack of veloc1ty correlat10ns measurements by Hermanson 
(ref. 19) 1t was dec1ded to use Browand and Lat1go's (ref. 22) experimental 
study. Two measures of th1ckness of the turbulent m1x1ng reg10n are employed. 
Flrst is the 1ntegral thickness defined as 

Second 1s the vort1c1ty thickness defined as 

( AU) 

6W = (ay U)max· 

F1gure 1 shows that there is about 16 percent d1fference between the experi­
mental and calculated values of the. normalized integral thickness. The ax1al 
rate of change of vort1c1ty th1ckness 1s exper1mentally estimated to be between 
0.15 and 0.17 ~, where ~ = (Ul - U2)/(Ul + U2)' The calculated value, dx6w = 

11 



0.148 X, is at most 13 percent less than the experimental value. Comparison 
of normalized mean velocity and turbulence shear stress are presented in fig­
ures 2, 3, and 4. They show good agreement with experiment except near the 
high speed side where the calcul'at1on shows a faster approach to the outer 
values. 

Phys1cally the spread of the m1x1ng layer downstream of the splitter plate 
is determined by two different mechanisms. The spreading rate of the mixing 
layer at dynamical equ1l1br1um stage is one mechanism. This is reasonably well 
predicted by the calculation. The other and more crucial mechanism, which is 
not predicted by the calculation, involves the transition from attached bound­
ary layers on the splitter plate to free mixing layer developing downstream of 
it. If the boundary layers are laminar then there is also a transition from 
laminar to turbulent flow in the developing region of the mixing layer. Birch 
(ref. 23) has attempted to model the developing region of the mixing layer by 
a multi-length scale gradient flux turbulence model. However, present calcula­
tions indicate that a single-length scale second-order model along with sub­
stantially reduced value of the initial turbulent kinetic energy dissipation 
would result in an increase of the spreading in the initial developing region. 
Even though the final spreading rate in the similarity region is the same as 
before, the thickness of the mixing layer is larger by up to 25 percent. The 
major short com1ng of th1s treatment is that the amount of initial reduction 
of & is not the same for all flow conditions and is a function of velocity 
ratio and character of the boundary layers on the splitter plate. Since in the 
study of heat release effects only relative values of the spreading are of 
importance the basic model without any modification can be used. 

To examine the contr1but1on of heat release terms 1ntroduced by pressure 
fluctuation correlations and those appear1ng in the scalar dissipation equation 
two sets of model constants are examined: 

(I) Constants CR1, CR2, CRF, C03, and Cp3 are all set to zero 

(II) The values given in table I are used for above constants 

The rest of the constants are kept the same in both cases. 

The comparison of mean axial velocities (fig. 5), and turbulent shear 
stresses (fig. 6), obtained for the large heat release case, ~ = 1/4, utiliz­
ing models (I) and (II) indicate that there is a little difference between the 
two models and the improvement obtained by the application of model (II) is 
almost negligible. This means that the heat release portion of the pressure 
fluctuation correlations has little effect on the turbulent velocity f1eld. 
This result can also be shown by the fact that at each level of heat release, 
models (I) and (II) predict very close values for the spreading rate of the 
mixing layer. The spreading rate, however, decreases with the heat release. 
Spreading rate is defined by d(YO.l - YO.9)/dx, i.e., the rate of spread 
of the distance between the points at which U equals O.l(Ul - U2) + U2 
and 0.9(Ul - U2) + U2. Table II summarizes the spreading rates at different 
levels of heat release. 

The moderate heat release case causes about 10 percent reduction in the 
spreading rate, however the increase in the heat release has only produced 
about 3 percent further reduction. The spreading rate levels off as the heat 
release is increased. This leveling corresponds with the leveling of the mean 
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density reduction reported by Hermanson (ref. 19) and leads to the conclusion 
that probably the single most important cause of the spreading rate reduction 
with heat release is the reduction of density and the subsequent reduction of 
the turbulent shear stress, _pU~I. Turbulent shear stresses normalized by 
free-stream density and velocity difference are compared in figure 7. There 
is a considerable reduction of shear stress between the cold and moderate heat 
release cases. Further increase of the heat release, however, results in a 
small reduction in the value of shear stress. 

Hermanson (ref. 19) reported a monotonic decrease of the vorticity thick­
ness, 6w, with heat release without any influence of the equivalence ratio 
on this trend. The present equilibrium flame formulation of the chemical 
reaction is however dependent on the stoichiometric value of the mixture frac­
tion and therefore on the equivalence iatio,~. For 6 percent fluorine and 
~ = 1, the stoichiometric value of the mixture fraction is about 0.5 and for 
~ = 1/4 it is about 0.2. It is in the neighborhood of this value that the 
mixture density reaches its minimum value. Figures 8 and 9 show the differ­
ences in the density variance distributions and the mean density minimum value 
10cat10n for the two cases of ~ = 1 and 1/4. The movement of the mean den­
sity minimum value causes the shift in the profile of turbulent shear stress 
and the location of its peak value as displayed in figure 7. Since the veloc­
ity profile is dependent on the gradient of the turbulent shear stress and not 
its absolute magnitude, the vorticity thickness predicted for the case of mod­
erate heat release, ~ = 1, is smaller than the value predicted for the high 
heat release case, ~ = 1/4. Hermanson's (ref. 14) experimental results for 
6 percent fluorene and ~ = 1 also show some scatter in vorticity thickness 
measurements with some values that are smaller than those measured for the 
higher heat release case, ~ = 1/4. These values are compared with calculated 
results 'n table III. 

Considering the general trend of the experimental vorticity thickness 
behavior and assuming that above scatter is within acceptable measurement 
accuracy bounds, one concludes that the above discrepancy between the predicted 
and measured results and the dependence on the stoich10metric value of the 
mixture fraction can be resolved by accounting for intermittency effects by 
such methods used by Kent and Bilger (ref. 24). Byggstoy1 and Kollmann 
(ref. 25) have presented a model for the prediction of intermittency and 
initial exploratory calculations with such models point to better predictions. 

Figure 10 compares the predictions of model (I) and (II) for the ratio of 
scalar to velocity field time scales, indic~ting that the influence of modifi­
cations included in model (II) is larger on the scalar field than the velocity 
field. Even though the difference in density predictions (fig. 11), is not 
large, the density variance and the mixture fraction variance predictions 
(figs. 12 and 13), show as much as 36 percent jump in their values with model 
(II) near the stoichiometric value of the mixture fraction. This change in the 
magnitude of the mixture fraction variance causes more than 10 percent reduc­
t10n 1n the peak value of the pred1cted temperature which corresponds very well 
with the experimental measurement, as shown in figure 14. The transverse 
coordinate in this figure is normalized by shear layer 1 percent thickness, 
which is defined as the transverse width of the layer at which the mean tem­
perature is 1 percent of the maximum mean temperature rise. The shift between 
the predicted and measured temperature profiles is symmetric on both sides and 
is expected to be a consequence of a fixed horizontal high speed upper side 
wall and diverging low speed lower side wall in the experiment. 
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Compar1son w1th the 11m1ted exper1menta1 results ava11ab1e 1nd1cate that 
the mode11ng approach used here 1s a step 1n the r1ght d1rect10n. However, 
comprehens1ve measurements of the scalar f1e1d quant1t1es, such as m1xture 
fract10n and dens1ty var1ances and sca1ar-ve10c1ty corre1at10ns, are needed to 
exam1ne and fully evaluate the contr1but10n of the model presented here. 

CONCLUSIONS 

A fully second-order closure model for react1ng turbulent flows have been 
extended to 1nclude the effects of heat release on he turbulence flow f1eld. 
Th1s was done by ana1yz1ng the exact pressure equat10n of a turbulent nonpre­
m1xed flame. The scalar f1eld t1me scale has also been d1rectly calculated by 
develop1ng an equat10n for the d1ss1pat1on of scalar var1ance wh1ch also 
1nc1udes the heat release effects. Two models, (I) not 1nc1ud1ng heat release 
terms and (II) 1nc1ud1ng the heat release terms were compared and 1nd1cate 
that: (a) The ve10c1ty f1e1d pred1ct10ns are very s1m11ar 1n both models, 
correctly pred1ct1ng the reduct10n 1n m1x1ng layer spread rate w1th heat 
release. The scalar f1e1d results of model (II) are 1n better agreement w1th 
the exper1mental data y1eld1ng a 10 percent 1mprovement 1n temperature pre­
d1ct10ns. (b) The t1me scale rat10 1s sens1t1ve to dens1ty f1uctuat10ns. Th1s 
p01nts to a correct 1nc1us10n of heat release effects1n the equat10n of scalar 
var1ance d1ss1pat10n. Nevertheless, 1t would be premature to draw any conc1u­
s10n about un1versa11ty of such a'c10sure and the values of the constants used 
here. Further exper1ments are needed to support or to 1mprove present 
assumpt10ns and mode11ng. 
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TABLE I. - MODEL CONSTANTS 
Ci C1 C2 CR1 Ce Ce1 Ce2 

0.2 1.6 0.43 1.25 0.15 1.45 1.90 

C,3 CR2 
1.0 1.25 

C1RU C2RU CRF CRUD 
4.0 0.5 1.25 1.0 

Cc C1C 
0.18 3.2 

C2C CC2 COl CO2 CD3 
0.51.182.20.81.0 

TABLE II. - SPREADING RATES OF THE MIXING 
LAYER AT DIFFERENT LEVELS OF 

HEAT RELEASE 
Heat release level d(YO.1 - YO.9)/dx 

Cold flow 0.0562 
Moderate heat release .0505 
(~ = 1. Tadb = 860 K) 
High heat release .0488 
(~ = 1.4. Tadb = 1240 K) 

TABLE 111.- COMPARISON OF NORMALIZED VORTICITY 
THICKNESS ~w/~wo WITH MEASUREMENTS 

[~wo is the cold flow vorticity thickness.] 

Experimental (ref. 14) Present 
measurements calculation 

~ = 1 moderate 0.7645 0.8814 
heat release .8066 .8814 

.9067 .8814 

~ = 1/4 high .8826 .9627 
heat release 
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