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PREDICTION OF HEAT RELEASE EFFECTS ON A MIXING LAYER

Mohammed Farshchi
Sverdrup Technology, Inc.
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

A fully second-order closure model for turbulent reacting flows is sug-
gested based on Favre statistics. For diffusion flames the local thermodynamic
state is related to a single conserved scalar. The properties of pressure
fluctuations are analyzed for turbulent flows with fluctuating density. Clos-
ure models for pressure correlations are discussed and modeled transport
equations for Reynolds stresses, turbulent kinetic energy dissipation, density-
velocity correlations, scalar moments and dissipation are presented and solved,
together with the mean equations for momentum and mixture fraction. Solutions
of these equations are compared with the experimental data for high heat
release free mixing layers of fluorine and hydrogen in a nitrogen diluent.

INTRODUCTION

A test case for the evaluation of a fully second order closure model of
turbulent reacting flows with moderate to large heat release has been provided
by the recent experiments of Hermanson et al. (ref. 1) and Mungal and Dimotakis
(ref. 2). The dynamic field consists of a two-dimensional mixing layer with
gas phase free streams carrying hydrogen in a nitrogen diluent in one stream
and fluorine in a nitrogen diluent in the other. The reaction is

Hp + Fp——2 HF

and is highly exothermic. The experimental results with the highest heat
release correspond to fluorine concentration of up to 6 percent and hydrogen
concentration of up to 24 percent, with a maximum adiabatic flame temperature
rise of 940 K.

An attempt will be made to assess the possible improvement in the pre-
diction of the above flow field by accounting for both velocity and scalar
fluctuation time scales and by inclusion of the chemical heat release effects
in the modeling of the Reynold stresses, scalar fluxes, and dissipation
equations. '

Closure Model
The closure model consists of three parts:

(1) The thermo-chemical model based on the shifting equilibrium flame
model (ref. 3). This model requires a fast rate of chemical reaction and
relates the value of all thermodynanic variables to a conserved scalar. There
are several scalar variables which are conserved in a chemical reaction and can
be used as a basis for describing the mixing in a nonpremixed reacting flow.
The mass fraction of a given element is such a variable. A normalized
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conserved scalar is referred to as the mixture fraction. Hence the density
p, temperature T, and composition y, are local functions of the mixture
fraction f.

(2) The turbulence or moment model consisting of a set of closed Favre
averaged equations of order one and two, including the equations for all
Reynolds stress components, scalar fluxes, dissipation rates of turbulence
kinetic energy, and the mixture fraction variance.

(3) The coupling model which relates the thermo-chemical model and the
turbulence model through the probability density function, p.d.f., of the mix-
ture fraction. In general, the form of p.d.f. will depend on the flow condi-
tions and will be coupled with the chemical heat release. If constraints are
imposed by solving the transport equations of the mean and the variance of the
mixture fraction, the errors that can be made using an arbitrary form of the
p.d.f. are limited. A Favre Beta function will be used here to represent the
p.d.f. of the mixture fraction. The means and higher moments of the thermo-
dynamic variables at any point may be obtained from their local relationship
with the mixture fraction obtained from the thermo-chemical model and the
p.d.f. of the mixture fraction.

NOMENCLATURE
D velocity divergence
f mixture fraction f = F + f"
fs Stoichiometric value of the mixture fraction
9, gravitational acceleration vector
k turbulent kinetic energy
p ' pressure, p =p + p'
E Favre probability density function
R ratio of turbulence velocity to scalar time scales
T absolute temperature
Tadb adiabatic flame temperature
Tamb ambient temperature
] longitudinal velocity component
U1 velocity vector, U1 = ﬁ} + u:
v transverse velocity component
X position vector
Yk - mass fraction of the kth species in the mixture
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Yo.5 transverse locat1on of the point at which (U - U )/(U - U2) = 0.5
r d1ffus1v1ty (same for all spec1es)

8 | integral thickness

6w vvort1c1ty or maximum slope thickness

6] shear layer 1 percent thickness of the mean temperature profile
€ turbulent kinetic energy dissipation rate

e scalar variance dissipation rate

P density of the mixture

T time scale

¢ equivalence ratio

(7),( )" conventional averaging

(~),( )" density weighted averaging

( )1,( )2 high speed and low speed sides

TURBULENCE MODEL

Second-order closure methods are believed to be the optimum level of
closure and have been successfully applied to constant density flows, includ-
ing buoyancy effects (refs. 4 to 6). The presence of the density fluctuations
in the variable density or combusting flows results in far more complex equa-
tions for the second moments. Application of density weighted (Favre) averag-
ing to variable density flows results in a set of equations which are similar
to those of constant density flows. This extends the use of the well developed
constant density second-order closure models to the variable density case and
makes available well tested model expressions for many terms in the moment
equations (ref. 7). This is, however, not sufficient for the complete closure
of the density weighted moment equations, since new correlations invoiving
density and divergence of velocity appear in the set. The exact equations show
that the variation of density is felt via three mechanisms: (1) the variation
of the mean density and the correlation of density with velocity; (2) the non-
zero divergence of velocity; and (3) the correlations involving pressure which
are related to density via mass, energy, and state equations. These correla-
tions appear in the transport equations of the Reynolds stresses and scalar
fluxes and play-an important physical role.

Pressure Equation

The instantaneous pressure equation follows from mass and momentum balance
as B :

Ap = aitp = afj (PU j) + g1 3P + a1j 13 (1M
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where 143 denotes the Newtonian stress tensor. 1In contrast to the con-

stant density case, the type of this equation for known velocity is hyperbolic.
It describes the change of pressure due to hydromechanical motion and acoustic
propagation of waves. The density term however contains not only acoustic
variations of pressure but contributions which are due to mixing and chemical
reaction. Expanding the first and second terms of above equation and utilizing
the instantaneous mass and momentum equations, the above equation can be
rewritten as,

1 1 2
Ap = -pa1ujaju1 + " ajpajp - thD " ajpa111j + 31J11j (2)

where the substantial derivative is

and

D = B1U1 =5

.tP

The last two terms in equation (2) represent the molecular viscous effects on
pressure and are ignored in comparison to other terms in high Reynolds number
flows. The second term in equation (2) results in an integral equation of the
Fredholem type of second-order. It can be shown that the iterated kernals for
this equation exist, thus a solution can be obtained. This solution is rather
complicated, but it produces an integral form with a kernal modified by the
density fluctuations. This term will have negligible affect at high Reynolds
numbers due to the lack of correlation. The first term on the right-hand side
of equation (2) is the well known hydrodynamic source of pressure change, see
Chou (ref. 8).. This would be the only term appearing in the case of constant
density flows. In the context of the thermochemical model for diffusion flames
introduced above, density is a local function of the mixture fraction. It is
however advantageous to consider p-1, specific volume, instead of .
Therefore

-1
D =p df ) th

The pressure equation can-'be recast in terms of mixture fraction,

-1
Ap = -painajU1 - th (p dfp Dt%> (3)

In pure mixing of two gases of different molecular weights the variation of the
specific volume as a function of the mixture fraction is close to 1inear, with
its second derivative equal to zero. However in diffusion flames this relation
1s strongly nonlinear near the stoichiometric value of the mixture fraction.

To the left and right of this value ,-1(f) is nearly linear with different
slopes. If this local relation is simplified to partially linear with a jump
in the slope at the stoichiometric value of the mixture fraction, then the
terms involving the first derivative of the specific volume reflect the effect
of mixing, with




dep™ = a(l - H (F-F)) (4)

and the terms involving the second derivative of the specific volume reflect
the effect of chemical heat release, with

2 - |

where H(f - fg) denotes the Heaviside function, §(f - fg) the Dirac function
as generalized derivative of H(f) and fg 1s the stoichiometric value of

the mixture fraction. Uti111zing the specific volume, the equation of conserva-
tion of mixture fraction and considering the 1imiting case of high Reynolds
number and Kolmogorov's hypothesis of local isotropy (refs. 9 and 10) the
pressure equation for diffusion flames is then reduced to

2.2 2 -1
Ap = -p31UJaJQJU1 + 2p E dff(ln e) dffp (6)

where E = rasfasf. Based on the above model and equation (5) the second

term on the right hand side of equation (6) is recognized as the heat release
contribution to the pressure equation. This term behaves Tike a Dirac delta
function and its magnitude is determined by the Tocation and movement of the
instantaneous flame front, f(x,t) = fg, since only near the flame front it

has a large contribution and is small everywhere else. This simplified pres-
sure equation analysis indicates that the fluctuations of the pressure contain
the contributions of mixing and reaction in addition to velocity fluctuations.
Janicka and Lumley (ref. 11) have argued that the mixing part can be neglected
at high Reynolds numbers in pure mixing. An order of magnitude analysis shows
that in the case of chemical heat release the mixing contribution can aiso be
neglected.

So]ution of the Poisson equation, (eq. (6)), for pressure can be obtained
by application of Green's theorem. Thus far from walls, where the surface
integral may be neglected

P(x) = Py(x) + Pa(x)

P (x) = stpaju1a1uj —I—X—_X_l— dx dx dx (7)

P 2 2 -1 ] ! ! !
(x) = - ra fa f ff(1n e) dff ) T;—j—;TT dx] dx2 dx3

where

and

(8)
Second-0rder Closure

The complete set of equations constituting a closed system of Favre-
averaged moments including all density variation effects will be discussed
briefly.



The mean velocity, at high Reynolds number, satisfies

- - - ay -
aj(pUiUJ) = -81p - aj pu1uj + pg, (9)
No closure assumption is required at this level of closure.

The modeled Reynolds stress equation is given as
—_— Hoon —-_ " ~ -_nn ~ 2 —
a1 pU1U1UJ = - pu1uja1U1 + pu]u1a]Uj -3 pe&1J

+ 31<FS; % u:u;am<y:u;>) + % %p'u:ajﬁ + p'u;a15§ + Qlj + ij (10)

The Kolmogorov assumption of local isotropy at high Reynolds numbers is used
here, so that the dissipation tensor is isotropic with its trace equal to twice
the turbulence kinetic energy dissipation, e¢. The diffusion model of Daly and
Harlow (ref. 12) is chosen over the more complicated model suggested by
Hanjalic and Launder (ref. 13) due to their equivalent performances in constant
density flows. Consideration of the exact solution of the pressure equation
given by equations (7) and (8), suggests the following decomposition of the
velocity-pressure gradient correlation

n " L1} 1] [{] ] n : 1 ] ]

(et et ) - (e e )- (viaypy + vieyey)
The first term on the right-hand side of the above equation is denoted by
Q]J and represents the correlation of the velocity fluctuations with the
hydrodynamics part of the pressure fluctuation gradient. This would be the
only term present for the incompressible flow case and contains the pure
turbulence interaction "return to isotropy," and mean strain rate interaction
"fast response" contributions. The closure model of Launder, Reece, and Rodi
(ref. 4) 1s used for this term. In density weighted form this term is given as

1 - e nwou g 2 g
Q3 =4 rk (“1“j "3 “Uk) ST <"1j "3 613“)

8C, - 2 30C, - 2
2 2 —2 Al q
- 1 <A1j —36131r>— pk(a,U, + 3,U

- . 6C2 + 4 o~ 40C2 + 12
-p2)1U.I ]—]uiuj _Téﬁk (11)

i) -
u n ~ nn

where "13 = - <u1u1a.|Uj + uju]a]U1> and =’—u1ujajU1

won ~ non g
A1j = - <u1uiaju] + uju1a1U]> and k = 1/2 ujuy-
6




The term Q?q represents the heat release part of the pressure-
strain rate correlation. Insight into modeling of this term can be gained by
. careful analysis of the pressure equation's solution (eq. (8)). Considering
just the heat release portion of the pressure solution we have

Tw 1 v v o 9 2 -] 1
~uyap, = 1 j” (pra1f a,t 2 % (In p) ¢ ) u; (0

) 1 [ |-
X aJ (13;jjzzrt>d ] dx2 dx3 (12)

Due to the Dirac deita function behavior of the second derivative of the
specific volume near the stoichiometric value of the mixture fraction, this
correlation is determined by the location and movement of the instantaneous
filame front, f(x,t) = f¢, 1.e., only near the flame front does the second
~derivative of the specific volume contribute to the pressure equation. There-
fore, the integral representation of the heat release contribution indicates
dependence on the probability of the flame sheet being present at a given
location. On the other hand, the probability of mixture fraction being in an
interval about the stoichiometric value, P(fs:x) df, is zero for pure oxidizer,
where f = 0, and grows quickly with fuel concentration. It reaches its maxi-
mum at the flame front region and declines to zero in the pure fuel region,
where f = 1. This suggests that a4P(fg;x) is large and positive on the
entrainment side of the flame and becomes small and negative past the flame
front. Considering the dimensional properties of equation (12) it becomes
clear that there are two time scales affecting this term. One is the scalar
fluctuation time scale defined by the scalar variance and its dissipation, the
other one is the dynamic or velocity fluctuation time scale, which is related
to the turbulence large eddy structures. If tensorial properties and con-
sistency with the 1imits of zero fluctuations and pure mixing without reaction
are required, the following possible closure model emerges:

: P

where R = 2 cf/f"2 k/e denotes the ratio of turbulence time scale to scaler

—
fluctuations time scale and e = rajf"asf" 1s the rate of dissipation
of the scalar variance. Begujer, Dekeyser, and Launder (ref. 14) showed from
a survey of several nonisothermal, nonreacting turbulent shear flows that the
time scale ratio was approximately equal to 2.0. The implied constancy of R
s used in most work aimed at calculating scalar variances. However based on
the evidence to the contrary provided by Warhaft and Lumley (ref. 15) an exact
transport equation for the scalar dissipation is derived and modeled, so that
R can be determined at each point.

The. constant Cgy can be estimated as

2
CRp ~ C* gy dgg 1N p

where C* 1s a measure of correlation among the terms in the integral
(eq. (12)) and should have a value much less than one due to the degree of
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statistical independence impiied in the modeling of this term. d?f In p

is a chemically dependent term that varies from zero (for nonreacting cases)

to the order of 100 for reactions with large heat release. Therefore the value
of Cgjy depends on the energy release in the flow field. For the hydrogen

- air flame of Dibble, Kollmann, and Schefer (ref. 16) a value of 1.25 is
recommended (ref. 10).

The rate of turbulence kinetic energy dissipation determines the dynamic
length and time scales and satisfies the following modeled equation

— -k ] —e Tw o - 2 -
aj(pU1c> = aj<Ccp A uiuja1c> - Cc]p k u1ujaju1 - chP K "3 /.’5:81U1

1
U4 _ z(\.f.é 1/2 2 PU4 —
=3P+ Cpelf R = 3, (pR(f :x)) (14)

+ C‘-_3

o

P P

where the last term contains the effect of chemical heat release on dissipation.
This complex process is tentatively taken into account by analogy with the
corresponding term (eq. (13)) for the normal stresses.

Density - Velocity correlations appear both directly and through the
modeled terms in the Reynolds stress transport equation (10). Derivation of
exact equations and the closure of the equations are discussed in detail by
Farshchi (ref. 10). The modeled transport equations for these correlations is
given by

aj(;ﬁjp'u:;) - - ',';,,-u;"ajﬁ1 . ;u:u;a3;§— ;p'u:ajﬁj

I et S — l2
— . 1] nou . n — —
+ aJ(FSTpUju]a1p u1)-2cs1uju]a]<p u1> ajp + —2§—~ a1P

C. pruidlptus ) ¢ Cool & Bptul - C k?E]/ZRZJ’——-I_2 a,(PB(F_;
~ Prup P 1a0%5\P Yy Uk PP T Rr o 3yl PE(f i)

— 1 ~
o+ CZRUPPIujajU1 (15)
v 1s the turbulent time scale, which is traditionaily set equal to the
turbulence time scale k/e. However it can also be the time scale of scalar
fluctuations or a combination of the two time scales (ref. 17). p'2 1s the
variance of density and is obtained directly using the thermo-chemical model
and the appropriate weighted integration of the mixture fraction p.d.f.

The transport equation of the mixture fraction's mean value requires no
modeling and is given as




3, (s0,F) = -a1<;u:f") | (16)

where the molecular diffusion effects are neglected in comparison with the
turbulence diffusion at high Reynolds numbers.

Next a transport equation for the scalar flux vector, u?f", is derived
and modeled (ref. 6). The scalar pressure gradient terms (pressure scrambling)
are modeled using the same 1ine of argument used for velocity-pressure gradient
correlations in the Reynolds stress equation. The modeled form of this equa-
tion 1s given as

- - o -
a1 (pUJU1f'> = _gpujf ajU,. + pu1ujajf §+ aj <Ccrpuju]a1u1f'>

1 tus l - = T
= pF1a,P - C1o L pugFr + €y puyfra,i,

=

+ CRFk (f

p'f" appearing in the above equation can be obtained from the p.d.f. of the
mixture fraction.

1/2 2 —TFW o
)R-t e (Rr ) (17)
P

Mixture fraction variance appears in the Beta function representing the
probabi1ity density of the mixture fraction. For high Reynolds number flows
the modeled mixture fraction variance equation is expressed as

— \t? _Tl-\l'; ~ ) P -
a1<pU1f ): —2pu1f a1f + 31<Ec21u1u331f >-— 2pcf (18)

The variance of the mixture fraction is dissipated by molecular action at small
scales. This dissipation rate is also the key to determination of scalar
fluctuation time scale. The exact form of the scalar dissipation equation and
1ts modeling s discussed in details by Farshchi et al. (ref. 18). However,
regrouping some of the exact terms and applying an order of magnitude analysis
and ignoring terms of order Re;1 and less, where Re = k2/vc is the turbu-
lence Reynolds number, Farshchi (ref. 10) shows thatfoF high heat release cases
there 1s a source along with a sink of the scalar dissipation. The chemical
source term for diffusion flames is given by

2 2 . 21 [T
dffp ( Fa1fl.a1f|l> = Cp3P£(fS,X) cf ’Ti(f )
f

with Cp3 = 1.0. The completely modeled scalar dissipation equation is then
given by:



k 1]
—_ -k _ —c TN
a1éujcf = aj<%c2p . U1Uja1c;> Cp2p k u1ujaju1
2
—\1/2 e e
~ . 21 (7 ~ - ¢ 1 2 2
+ Cpg PR(FiX) ep = (f ) - Cpyp == - Cppeeg i = Cpg 5 (dgp) eg
2 2
f f
¢ pmt ulfa,F | (19)
- 3
pl P 55 Uit % ,
f

A1l constants used in above equations are summarized in table I.

APPLICATION AND COMPARISON WITH MEASUREMENTS

Hermanson's (ref. 19) experimental studies of the effect of heat release
in a planar, gaseous reacting mixing layer formed between free streams contain-
ing hydrogen and fluorine in nitrogen diluents are used for comparison. The
density ratio of the free streams is kept equal to one by using as diluent a
mixture of nitrogen and a small amount of helium, on the fluorine side, and a
mixture of nitrogen with small amount of argon on the hydrogen side. The
nominal high speed, hydrogen containing side, flow velocity is 22 m/s and a
free-stream speed ratio of Uy/Uy = 0.4 is maintained. The high speed
free-stream turbulence level was measured to be about 2/3 percent. The measur-
ing station was positioned 0.457 m downstream of the splitter plate trailing
edge. The Reynolds number at the measuring station based on the high speed
free-stream velocity, the downstream distance and the cold free-stream kine-
matic viscosity was Rey = 6x105. The Reynolds number based on high speed
boundary layer momentum thickness just upstream of the trailing edge was
estimated to be about 240.

Two cases of moderate and high heat release are considered, corresponding
to two equivalence ratios (ref. 2):

(1) ¢ = 1, corresponding to fluorine concentration of 6 percent and
hydrogen concentration of 6 percent, with a maximum adiabatic flame temperature
of 860 K.

(2) ¢ = 1/4, corresponding to fluorine concentration of 6 percent and
hydrogen concentration of 24 percent, with a maximum adiabatic flame tempera-
ture of 1240 K. Thermodynamic tables relating density and temperature to the
mixture fraction are obtained using CEC83 (ref. 20) computer program.

Numerical Method

The numerical method used for this calculation is a modified version of
the Patankar and Spalding method (ref. 21) where all the first order moments
are defined on node points, and all higher order moments are defined at
midpoints. The given initial velocity profiles have Blasius form and agree
with the boundary layer momentum thickness value reperted by the experiment.
The inittal dissipation rate, ¢, and the shear stress, u"v", are determined
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ut111zing the turbulence equilibrium assumption, a simple gradient flux model
with molecular kinematic viscosity, and the assigned velocity profile. Next
the well known turbulence viscosity model, ’

—
uy = 0.09 P
with laminar viscosity i1s used to determine initial turbulent kinetic energy
profile. The normal stresses are equi-partitioned. The initial mean mixture
fraction has a step profile and all other turbulent correlations are set to
zero. The longitudinal mean pressure gradient must be prescribed analyticaily
in terms of the gradient of the outer boundaries velocities and is zero here.
The transverse pressure gradient cannot be prescribed and is approximated by a
simplified version of the mean transverse momentum equation as

_ =~
3 = -3 (pV
y P y(p )

The upper bound of the marching step of the main procedure is determined at
each forward position with respect to the vaiue of a characteristic thickness
of the mixing layer. To solve a typical problem with this 13 equation turbu-
lence model over a distance of 0.9 m with 80 node point in the cross directtion,
the time needed on an IBM 370 is about 30 min CPU. The p.d.f. integration for
the calculation of mean density, temperature, and other mixture fraction
moments at each node takes 2/3 of above time.

Discussion of the Results

The initial prediction of the homogeneous cold flow mixing layer resulted
in a mixing layer thickness 35 percent below 1ts experimental value at the
axial measuring station. To validate the model constants and the method used
here and due to the lack of velocity correlations measurements by Hermanson
(ref. 19) 1t was decided to use Browand and Latigo's (ref. 22) experimental
study. Two measures of thickness of the turbulent mixing region are employed.
First is the integral thickness defined as

1 r [U, - U(Y) TTUCY) - Uy] dy

) =
(80)2 %o

t

Second is the vorticity thickness defined as

P 1)
w (ay U)max

Figure 1 shows that there is about 16 percent difference between the experi-
mental and calculated values of the normalized integral thickness. The axial
rate of change of vorticity thickness 1s experimentally estimated to be between
0.15 and 0.17 A, where X = (Uy - Up3)/(Uy + Upz). The calculated value, d,s,, =
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0.148 A, is at most 13 percent less than the experimental value. Comparison
of normalized mean velocity and turbulence shear stress are presented in fig-
ures 2, 3, and 4. They show good agreement with experiment except near the
high speed side where the calculation shows a faster approach to the outer
values.

Physically the spread of the mixing layer downstream of the splitter plate
is determined by two different mechanisms. The spreading rate of the mixing
layer at dynamical equilibrium stage is one mechanism. This is reasonably well
predicted by the calculation. The other and more crucial mechanism, which is
not predicted by the calculation, involves the transition from attached bound-
ary layers on the splitter plate to free mixing layer developing downstream of
it. 1If the boundary layers are laminar then there is also a transition from
laminar to turbulent flow in the developing region of the mixing layer. Birch
(ref. 23) has attempted to model the developing region of the mixing layer by
a multi-length scale gradient flux turbulence model. However, present calcula-
tions indicate that a single-length scale second-order model along with sub-
stantially reduced value of the initial turbulent kinetic energy dissipation
would result in an increase of the spreading in the initial developing region.
Even though the final spreading rate in the similarity region is the same as
before, the thickness of the mixing layer is larger by up to 25 percent. The
major short coming of this treatment is that the amount of initial reduction
of € 1s not the same for all flow conditions and is a function of velocity
ratio and character of the boundary layers on the splitter plate. Since in the
study of heat release effects only relative values of the spreading are of
importance the basic model without any modification can be used.

To examine the contribution of heat release terms introduced by pressure
fluctuation correlations and those appearing in the scalar dissipation equation
two sets of model constants are examined:

(I) Constants Cry, Cr2, Cpf. Cp3, and Cp3 are a]] set to zero
(I1) The values given in table I are used for above constants
The rest of the constants are kept the same in both cases.

The comparison of mean axial velocities (fig. 5), and turbulent shear
stresses (fig. 6), obtained for the large heat release case, ¢ = 1/4, utiliz-
ing models (I) and (II) indicate that there is a 1ittle difference between the
two models and the improvement obtained by the application of model (II) is
almost negligible. This means that the heat release portion of the pressure
fluctuation correlations has 1ittle effect on the turbulent velocity field.
This result can also be shown by the fact that at each level of heat release,
models (I) and (II) predict very close values for the spreading rate of the
mixing layer. The spreading rate, however, decreases with the heat release.
Spreading rate 1s defined by d(yg.y - ¥g.9)/dx, i1.e., the rate of spread
of the distance between the points at which U equals 0.1(Uy - U2) + Up
and 0.9(Uy - Up) + U2. Table II summarizes the spreading rates at different
levels of heat release.

The moderate heat release case causes about 10 percent reduction in the
spreading rate, however the increase in the heat release has only produced
about 3 percent further reduction. The spreading rate levels off as the heat
release i1s increased. This leveling corresponds with the leveling of the mean
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density reduction reported by Hermanson (ref. 19) and leads to the conclusion
that probably the single most important cause of the spreading rate reduction
with heat release 1s the reduction of density and the subsequent reduction of
the turbulent shear stress, -pu"v". Turbulent shear stresses normalized by
free-stream density and velocity difference are compared in figure 7. There
s a considerable reduction of shear stress between the cold and moderate heat
release cases. Further increase of the heat release, however, results in a
small reduction in the value of shear stress.

Hermanson (ref. 19) reported a monotonic decrease of the vorticity thick-
ness, §,, with heat release without any influence of the equivalence ratio
on this trend. The present equilibrium flame formulation of the chemical
reaction is however dependent on the stoichtometric value of the mixture frac-
tion and therefore on the equivalence ratio, ¢. For 6 percent fluorine and
¢ = 1, the stoichiometric value of the mixture fraction is about 0.5 and for
@ = 1/4 1t 1s about 0.2. It is in the neighborhood of this value that the
mixture density reaches 1ts minimum value. Fiqgures 8 and 9 show the differ-
ences in the density variance distributions and the mean density minimum value
location for the two cases of ¢ = 1 and 1/4. The movement of the mean den-
sity minimum value causes the shift in the profile of turbulent shear stress
and the location of 1ts peak value as displayed in figure 7. Since the veloc-
ity profile is dependent on the gradient of the turbulent shear stress and not
its absolute magnitude, the vorticity thickness predicted for the case of mod-
erate heat release, ¢ = 1, 1s smaller than the value predicted for the high
heat release case, ¢ = 1/4. Hermanson's (ref. 14) experimental results for
6 percent fluorene and ¢ =1 also show some scatter in vorticity thickness
measurements with some values that are smaller than those measured for the
higher heat release case, ¢ = 1/4. These values are compared with calculated
results in table III.

Considering the general trend of the experimental vorticity thickness
behavior and assuming that above scatter is within acceptable measurement
accuracy bounds, one concludes that the above discrepancy between the predicted
and measured results and the dependence on the stoichiometric value of the
mixture fraction can be resolved by accounting for intermittency effects by
- such methods used by Kent and Bilger (ref. 24). Byggstoyl and KolImann
(ref. 25) have presented a model for the prediction of intermittency and
initial exploratory calculations with such models point to better predictions.

Figure 10 compares the predictions of model (I) and (II) for the ratio of
scalar to velocity field time scales, indicating that the influence of modifi-
cations included in model (II) is larger on the scalar field than the velocity
field. Even though the difference in density predictions (fig. 11), is not
large, the density variance and the mixture fraction variance predictions
(figs. 12 and 13), show as much as 36 percent jump in their values with model
(II) near the stoichiometric value of the mixture fraction. This change in the
magnitude of the mixture fraction variance causes more than 10 percent reduc-
tion 1n the peak value of the predicted temperature which corresponds very well
with the experimental measurement, as shown in figure 14. The transverse
coordinate in this figure is normalized by shear layer 1 percent thickness,
which 1s defined as the transverse width of the layer at which the mean tem-
perature is 1 percent of the maximum mean temperature rise. The shift between
the predicted and measured temperature profiles is symmetric on both sides and
is expected to be a consequence of a fixed horizontal high speed upper side
wall and diverging low speed lower side wall in the experiment.
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Comparison with the 1imited experimental results available indicate that
the modeling approach used here is a step in the right direction. However,
comprehensive measurements of the scalar field quantities, such as mixture
fraction and density variances and scalar-velocity correlations, are needed to
examine and fully evaluate the contribution of the model presented here.

CONCLUSIONS

A fully second-order closure model for reacting turbulent flows have been
extended to include the effects of heat release on he turbulence flow field.
This was done by analyzing the exact pressure equation of a turbulent nonpre-
mixed flame. The scalar field time scale has also been directly calculated by
developing an equation for the dissipation of scalar variance which also
includes the heat release effects. Two models, (I) not including heat release
terms and (II) including the heat release terms were compared and indicate
that: (a) The velocity field predictions are very similar in both models,
correctly predicting the reduction in mixing layer spread rate with heat
release. The scalar field results of model (II) are in better agreement with
the experimental data ylelding a 10 percent improvement in temperature pre-
dictions. (b) The time scale ratio is sensitive to density fluctuations. This
points to a correct inclusion of heat release effects in the equation of scalar
variance dissipation. Nevertheless, it would be premature to draw any conclu-
sion about universality of such a-closure and the values of the constants used
here. Further experiments are needed to support or to improve present
assumptions and modeling.
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TABLE I. - MODEL CONSTANTS

Cc € & Gy € C4y G

s .
0.2 1.6 0.43 1.25 0.15 1.45 1.90
C

e3 CR2 c'IRU cZRU cRF cRUD

1.0 1.25 4.0 0.5 1.25 1.0

C. ¢ S S22 Co1 Cp2 o3

6.18 3.2 0.5 1.18 2.2 0.8 1.0
cp] cp2 cp3
1.8 0.8 1.0

TABLE II. - SPREADING RATES OF THE MIXING
LAYER AT DIFFERENT LEVELS OF
" HEAT RELEASE
Heat release level d(yp.1 - Y0.9)/dx

Cold flow . 0.0562
Moderate heat release .0505
(¢ =1, Tadp = 860 K) '

High heat release .0488

(¢ = 1.4, Tagp = 1240 K)

TABLE III. - COMPARISON OF NORMALIZED VORTICITY
THICKNESS éw/éwo WITH MEASUREMENTS

[8wo 1s the cold flow vorticity thickness.]

Experimental (ref. 14) Present
measurement; calculation
¢ = 1 moderate 0.7645 0.8814
heat release .8066 .8814
.9067 .8814
¢ = 1/4 high | .8826 .9627
heat release
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