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ABSTRACT 
Differentiating between energy-efficient and inefficient single-
family homes on a community scale helps identify and 
prioritize candidates for energy-efficiency upgrades.  
Prescreening diagnostic procedures can further retrofit efforts 
by providing efficiency information before a site-visit is 
conducted. We applied the prescreening diagnostic to a 
simulated community of homes in Boulder, Colorado and 
analyzed energy consumption data to identify energy-inefficient 
homes. 
  
A home is defined as efficient if it is compliant with the 
prescriptive measures of the 2009 International Energy 
Conservation Code (IECC-2009) for Boulder, Colorado.  
Previous research indicates a correlation between building 
operational efficiency and the Heating Slope (HS) regression 
parameter resulting from the variable-base degree day method.   
 
We compared the HS values across a community of houses and 
those of an IECC-2009-compliant home to identify energy-
inefficient homes on a community-scale.  To simulate 
community-wide HS identification, we used DOE-2 energy 
simulation software for defined home archetypes and 
corresponding occupant behavior to artificially generate 567 
sets of monthly natural gas consumption data  Home archetypes 
were either compliant or non compliant at three conditioned 
areas; occupant effects were also simulated.  Each simulation 
produced twelve months of natural gas use data.  We used 
monthly energy consumption datasets to estimate the HS values 
with regression analysis and sorted the homes based on HS 
values. 

INTRODUCTION 
The U.S. residential sector consumed 11.3 quads (11.9 EJ) in 
2008, 11% of national annual consumption. This figure is 

projected to increase 5% by 2030 [1].  Improvements in 
construction practices and building codes will increase the 
energy-efficiency of new buildings, but energy retrofits can 
effectively reduce energy consumption and carbon dioxide 
emissions.  As more attention is paid to building energy-
efficiency, community-scale conservation programs must 
identify energy-inefficient homes and retrofit opportunities. 
Comprehensive energy audits traditionally fill these roles, but 
readily available information such as energy consumption data, 
conditioned building area, and local daily weather data can be 
used in a pre-screening diagnostic tool to identify energy-
inefficient homes before a site visit is conducted.  Further, the 
prescreening information obtained can aid the analyst infer 
design and operational characteristics.  The crux of the analysis 
consists of inversely modeling utility data and inferring 
efficiency characteristics of the homes from the model 
parameters. 
 
Previous work has addressed the physical significance of model 
parameters resulting from inverse modeling [2-4].  Further, the 
variable base degree-day (VBDD) is a suitable prescreening 
tool to help identify retrofit candidates in commercial buildings 
[5].  Raffio et al. has shown that the proactive use of inverse 
modeling methods can identify retrofit candidates when 
compared across multiple buildings [6].  Our process is similar, 
but uses the VBDD method instead of a change point model, 
compares VBDD parameters to building simulation inputs, 
distinguishes homes that are compliant with 2009 International 
Energy Conservation Code (IECC-2009) from those that are 
noncompliant, and identifies specific design and operational 
characteristics. 
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PRESCREENING PROCESS DEVELOPMENT 
The prescreening methodology is based on heating slope (HS) 
ranking of homes and uses a four-step process to test whether 
energy-inefficient homes can be differentiated from energy-
efficient homes: 
 

1. Collect electricity and natural gas consumption data 
for the analysis community.  DOE-2, a detailed whole 
building simulation tool, was used to simulate the 
community’s consumption data [7].   

2. Create VBDD models for each home.   
3. Calculate the HS metrics and rank the area-normalized 

model parameters for each home.   
4. Compare the HS ranking to the simulation inputs by 

checking for IECC-2009 compliance.   
 
Step 1 –Monthly Consumption 
In the absence of real utility data, the goal is to simulate 567 
“synthetic” utility bills in DOE-2.  Each consists of 12 months 
of natural gas consumption. To simulate each home’s annual 
energy consumption, we defined the construction 
characteristics including thermal, operational, and mechanical 
information, as well as occupant effects, to define thermostat 
behavior and miscellaneous loads. Homes were classified into 
three possible size archetypes:  
 

• A 1058-ft2 (95-m2) one-story ranch with crawlspace  
• A 2116-ft2 (190-m2) one-story ranch with conditioned 

basement 
• A 3174-ft2 (285-m2) two-story home with conditioned 

basement.  
 
For each archetype, three possible construction conditions were 
defined [8]:  
 

• Compliant with IECC-2009 for residential buildings in 
Climate Zone 5b (Boulder, Colorado) 

• Moderately below code 
• Substantially below code.   

 
For each home, three occupant behavior schedules were 
defined:  
 

• High user 
• Medium user 
• Low user.   

 
Figure 1 presents a schematic of the combinatorial process that 
produces 567 DOE-2 simulation input files.  Each file was 
simulated using TMY3 weather data for Boulder, Colorado, and 
resulted in an annual simulation of hourly energy use. Post-
processing summed hourly energy use to form monthly totals  

 Figure 1: Diagram of energy simulation process 
 
that represent a typical monthly utility bill.  The hourly 
temperatures for the TMY3 weather file were averaged to form 
365 daily average ambient temperatures.  The synthetic utility 
bills and the daily average ambient temperatures are used in 
Step 2. 
 
Step 2 – Variable Base Degree-Day Modeling 
Single-family homes can be treated as single-zone buildings, 
where space heating energy use maintains the thermostat set-
point temperature.  The heat balance is: 
 Q BLC · T T Q , , (1) 
 
where: Q = Space-conditioning heating Rate, Btu/h (W) BLC = Sum of building UA and infiltration, Btu/h-°F 

(W/°C) T  = Set-point temperature, °F (°C) T  = Ambient temperature, °F (°C) Q ,  = Rate of internal and solar heat gains, Btu/h (W). 
 

The BLC is the sum of building enclosure properties, which 
include all UA products and infiltration loads (seen in Eq. 2): 
 BLC UA UA UA UA mc , (2) 
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where U is the thermal transmittance per unit area in units of 
Btu/h-°F-ft2 (W/°C-m2), A is the heat transfer area in units of ft2 

(m2), and mc  is the product of the air infiltration rate and 
specific heat of air. 
 
It is useful to define an additional temperature, where no 
additional heat is required to maintain the temperature set-
point.  This is known as the balance-point temperature, Tb, and 
is: 
 T T Q , BLC⁄ . (3) 
 
The result is a range of ambient temperatures, below the 
thermostat set-point temperature, where no space-conditioning 
energy is required.  Instead, internal and solar gains provide the 
heat necessary to maintain the thermostat set-point temperature.  
Previous work has shown that the thermostat set-point and 
enclosure insulation properties determine the balance-point 
temperature [9].  Thus, the balance-point temperature is a 
combination of specific operational (such as thermostat) and 
specific design (such as insulation) properties. 
 
As the ambient temperature decreases, the building’s heating 
system provides the necessary make-up energy to balance 
system losses.  To model this energy use behavior, the VBDD 
method was developed, featuring an algorithm that calculates a 
best fit balance-point temperature based on regression 
coefficients between energy use and degree-days.  Specifically, 
the linear proportionality between monthly heating energy use 
and monthly heating degree-days (HDDs) is suitable for 
residential buildings where the heating load never exceeds the 
capacity of the heating system and consumption data are widely 
available in monthly intervals (see Eq. 4).   
 Y α β · HDD T  (4) 
 
where α is the monthly base-load energy use,  β is the HS, and HDD T  quantifies the heating degree-days calculated to the 
balance-point temperature.  In an analysis period of n days, 
heating degree-days are the sum of the positive temperature 
differences for this period: 
 HDD T T T  

 
(5) 

 
where Ta is the average daily ambient temperature. For 
example, to calculate the degree-days for December, one would 
sum the positive temperature differences for each days.  
Generally, winter months have lower daily average 
temperatures than summer months and thus, have more HDDs. 
 
Conventionally, degree-days are calculated to a balance-point 
temperature of 65  (18°C), but in VBDD modeling, an 
iterative process is used to calculate a best-fit balance-point 

temperature.  To find the best fit, the VBDD method uses the 
following steps: 
 

1. Choose an initial balance-point temperature of 40  
(4°C).  

2. Calculate the degree-days for each of the 12 months. 
3. Regress the monthly energy use with the monthly 

degree-days at the balance-point temperature. 
4. Record the regression R2. 
5. Repeat the process with the next balance-point 

temperature.  
 
The upper balance-point boundary is set at 70  (21°C). After 
completing all regressions, the algorithm will:  

 
1. Select the optimal balance-point temperature with the 

highest R2. 
2. Report the regression parameters. 
3. Continue the analysis on the next 12-month data set.   

 
We performed VBDD regressions on all datasets; the results are 
used in Step 3. Figure 2 shows analysis results from three 
example VBDD regressions.  Each is performed on 12 months 
of simulated natural gas consumption versus monthly HDDs to 
the individual best-fit balance-point temperature. The listed 
balance-point temperatures illustrate differing values from 
home to home.  The regressions show the amount of heating 
energy needed per month to maintain the thermostat set-point 
and those with smaller slopes use less heating energy and 
indicate efficient homes. Favorable R2 values were found for all 
567 regressions: 97% were at least to 0.98.    
 

Figure 2: VBDD linear regressions of natural gas consumption and heating 
degree-days for three simulations with different best-fit balance-point 
temperatures  
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Step 3 – Heating Slope Metric 
The regression parameter β from the VBDD models in Step 2 
was used as the HS metric.  To test accuracies of different 
ranking metrics, we calculated two additional comparative 
metrics for each simulation.  The first, fuel use (FU), is the 
annual sum of natural gas use.  The second, fuel use per heating 
degree-days (FU/HDD65°F), is the FU metric divided by the 
number of HDDs based on TMY3 weather data, which are 
calculated for a balance-point temperature of 65°F, (5781°F-
day/3194°C-day for Boulder, Colorado) [10].  This is a 
conventional weather-normalized metric for comparing energy 
use between homes.  FU/HDD65°F is: 
 FU/HDD 65 FU∑ T . (5) 

 
Step 4 – Test: Identifying IECC 2009-Compliant Homes 
The final step shows the accuracy of the HS ranking in 
identifying energy-efficient homes in a Boulder, CO 
community.  Before ranking the homes, we separated them into 
the three archetypes and identified them as either compliant or 
incompliant with IECC-2009, based on simulation inputs.  For 
each archetype, a HS threshold was defined that serves as a cut-
off score for code compliance: any score above the threshold is 
labeled incompliant and vice-versa. The HS threshold for each 
archetype was defined as the highest HS value for a compliant 
home and any simulation with a HS equal or less than the 
threshold is assumed to be compliant. The experiment was 
conducted over three home archetypes, so each has a unique HS 
threshold (see Table 1). 
 
Table 1: Summary of HS threshold for all archetypes 

 
 
 
 
 
 
 
 
 

For instance, if a one-story ranch with crawlspace archetype 
simulation resulted in an HS of 450 Btu/h-°F (230 W/°C), 
according to Table 1, this exceeds the HS threshold and the 
house would be classified as incompliant. The primary 
assumption is that a home’s energy efficiency is related to its 
enclosure and mechanical energy efficiencies, which are 
directly related to the amount of space-conditioning energy 
consumption per household. The goal for HS ranking is to give 
a relative indication of the home’s energy efficiency.  The 
metrics FU and FU/HDD65°F, along with threshold values, 
were calculated for each simulation along with threshold 
values.  The results for ranking by each metric are applied to all  
567 simulations.  Figure 3 shows those for the one-story ranch 
with crawlspace archetype. The black bars represent 
incompliant, inefficient homes and the gray bars represent 
compliant, efficient homes.  The x-axis shows the 189 
archetype simulations, the y-axis shows the ranking metric, and 

 
Figure 3: Comparative results of HS, FU, and FU/HDD (65⁰F) ranking for 
1-story ranch with crawlspace archetype 

the threshold for each metric is indicated as a red arrow.   Table 
2 lists the threshold values for each ranking metric. 
 
Table 2: Summary of ranking threshold values for 1-story ranch with 
crawlspace archetype 
 
 
 
 
 
 
 
 
As seen in the one-story ranch with crawlspace archetype, both 
the FU and FU/HDD65°F rankings classify several code-
compliant homes as incompliant. The same homes, however, 
were correctly identified by the HS ranking. Both had high 
base-load and miscellaneous gas use, which were disaggregated 
by the VBDD method, but not by the FU and FU/HDD65°F 
rankings. This highlights the strength of the VBDD method: it 

Archetype 
HS 

[Btu/h-°F] 
HS 

[W/°C] 
1-story with 
Crawlspace 365 186 

1-story with Basement 480 245 

2-story with Basement 1002 512 

Metric Type Threshold Value 

HS 365 [Btu/h-°F] 

FU 704 [Therms/year] 

FU/HDD(65°F) 12 [kBtu/°F-day] 

° 
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disaggregates of weather-independent energy use from space-
conditioning energy use.   
 
Discussion 
The HS ranking identifies inefficient homes more accurately 
than do the FU and FU/HDD 65°F rankings.  Table 3 shows a 
10% difference between ranking accuracies and the success rate 
of HS ranking in identifying IECC-2009compliant homes is 
favorable.  One explanation for more favorable results using the 
HS ranking is that the VBDD modeling parameters contribute 
more information to the identification process.  The VBDD 
method separates base loads from weather-dependent energy 
uses, which the other rankings cannot disaggregate.  In practice, 
weather normalizing total FU to ambient temperatures helps 
correct for colder and warmer conditions compared across 
years, but does not add disaggregation to the analysis.  An 
advantage to the VBDD method is that energy use can be 
attributed to different end uses, such as space-conditioning and 
base load.  This enables heating performance to be 
characterized individually and compared across the community.  
An important issue is the assignment of a threshold value, as it 
is the primary identification criterion.  In simulated 
communities, threshold values can be calculated from the 
known simulation inputs.  In a “real world” application, the 
characteristics of the home are not well known, unless an 
extensive technical audit has been performed. 
 
Table 3: Summary of all ranking metric results  
 

 
Inferring Design Properties 
The HS of a VBDD regression is related to the BLC and the 
furnace efficiency: 
 HS BLC ηfurnace⁄ . (6) 
 
The BLC consists of the building enclosure properties 
including all building UA (attic, walls, windows, and 
foundation) and infiltration loads, mc . The furnace efficiency, η , is the Annual Fuel Utilization Efficiency.  Figure 4 
shows a linear proportionality of the average HS metric from 
the VBDD regressions for each given simulation BLC. Each 
property is a simulation variable defined in Step 1 of the HS 
ranking process (See Figure 1).  
 
 
 

 Figure 4: Comparison of HS and calculated simulation BLC 
 

 
Figure 5: Average balance-point temperatures compared to occupant 
archetypes 

Inferring Operational Properties 
We inferred building characteristics from the VBDD models.  
Figure 5 shows that the balance-point temperature correlates 
with occupant behavior.  On average, the higher heating 
thermostat set-points result in higher balance-point values for 
all home archetypes.  This shows one example of an operational 
characteristic that can be inferred from the VBDD regression 
parameters, namely, high thermostat set-points. As mentioned 
by Raffio et al. [6], regressions with high balance-point 
temperatures are candidates for programmable thermostats.  
The monthly base load, which is the VBDD parameter α, can 
also be inferred. High monthly base loads indicate hot tubs, 
energy-inefficient hot water heaters, and other large energy-
consuming appliances.  Figure 6 compares the different 
monthly base-load gas uses across the simulations and shows 
that homes with high base-load energy uses can be identified. 
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Figure 6: Ranking of α parameter values for VBDD models  

 
Figure 7: VBDD regression results for three example single-family homes 
from Boulder, CO dataset 

 
Utility Bill Applications 
The VBDD method can be applied to empirical utility data and 
shows similar results.  It was applied to a collection of actual 
electricity and natural gas utility bills for several single-family 
homes in Boulder, Colorado, using local daily weather data and 
monthly natural gas consumption.  Figure 7 shows VBDD 
regressions for three example homes and the results illustrate 
the VBDD method’s applicability to actual utility data.   
 
SUMMARY, CONCLUSIONS AND FUTURE WORK 

 
Summary 
This study demonstrates a four-step prescreening diagnostic 
process in which a Heating Slope (HS) ranking is applied to a 
simulated community of homes.  A whole-building detailed 
energy simulation tool was used to simulate 12 months of 
natural gas use for 567 homes for various home and occupant 

archetypes. Each simulation was labeled as compliant or 
incompliant with IECC-2009, given the home archetype and 
energy simulation inputs.  VBDD models were estimated using 
TMY3 weather data and the simulated natural gas consumption.  
HS values were calculated from the VBDD modeling, along 
with comparative ranking metrics.  Finally, the HS rankings 
were compared with the pre-ranking IECC-2009 compliance 
label to test the accuracy of using HS values to identify 
incompliant, energy inefficient homes.  Additional 
characteristics were investigated including base-load energy use 
and thermostat set-points.   
 
Conclusions 
This study concluded that: 
 

• The HS ranking identified 100% of the inefficient 
homes, compared to 90% for FU and FU/HDD 65°F 
rankings. 

• High base-load natural gas users were identified. 
• Homes with high thermostat set-points were identified. 
• The HS ranking is an effective identification 

procedure for inefficient homes, as well as other 
design and operational characteristics. 

 
Further Studies 
Further investigations are needed to demonstrate the HS 
ranking of empirical utility data and to evaluate the 
effectiveness of identifying inefficient homes when energy-
efficiencies and operational characteristics are uncertain or 
unknown.  Two difficulties are commonly encountered when 
analyzing empirical utility data: 
 

• While the occupant behavior is known in this study, it 
is often highly uncertain with empirical data.  

• Incomplete, missing, or erroneous monthly data may 
impact the ranking results.  While this has a large 
effect on the annual FU, the HS ranking can still be 
applied with missing data because it relies on 
regressions, rather than sums.   

 
Future studies will include analysis on the effects of missing 
months and statistical outliers of consumption data.  The HS 
ranking has been demonstrated on a heating-dominated climate 
and only on natural gas consumption.  Further studies should be 
conducted in different weather conditions, including cooling-
dominated climates. 
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