
I
B
I
I
B
I
B
I
(I

E
I
I
I
I
B
I
I
I
I

February 1988 UILU-ENG-88-22 13
CSG-84

/- 6 / 3 COORDINATED SCIENCE LABORATORY N’’
College of Engineering / O - - d / - C L

EXPERIENCES
WITH SERIAL AND
PARALLEL ALGORITHMS
FOR CHANNEL ROUTING
USING SIMULATED
ANNEALING

Randall Jay Brouwer

{BASA-CB- 182530) EXFERIEHCES 51ZB SEBIAL nim-18289
APE PABALLEL BIGCFIITHES FCB CEAE%EL P O U T I B G
C.511G S I E U L A T E D dbUEAL3EG (I l l i n o i s Uniw-)
5 4 F CSCL 09B Unclas

63/61 0126GC8

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
~- ~

Approved for Public Release. Distribution Unlimited.

EXPERIENCES WITH SERIAL AND PARALLEL ALGORITHMS
FOR CHANNEL ROUl'IiiG USING SIMULATED ANNEALING

BY

RAiiDALL JAY B R O W

B.S.. Calvin College, 1985

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at C'rbana-Champaign, 1988

Urbana. Illinois

I
I iii

ABSTRACT

I
I
I
H
1
b

I
I
I
I

Two algorithms for channel routing using simulated annealing are presented. Many of the

channel routers of the past are for the most part based on greedy algorithms in which special

heuristics are applied to generate monotonic improvement. These algorithms are called greedy

because they d e r from inappropriate selections, getting stuck at suboptimal solutions. Simu-

lated annealing is an optimization methodology which allows the solution process to back up out

of local minima that may be encountered by inappropriate selections. By properly controlling

the annealing proccss. it is very likely that the optimal solution to an NP-complete problem

such as channel routing may be found. Previous simulated annealing channel routers only per-

mitted transformations which resulted in a routing without overlapping between nonconnected

wires. The algorithm presented here proposes very relaxed restrictions on the types of allow-

able transformations. including overlapping nets. By freeing that restriction and controlling

overlap situations with an appropriate cost function. the algorithm becomes very flexible and

can be applied to many extensions of channel routing. The selection of the transformation util-

izes a number of heuristics. still retaining the pseudorandom nature of simulated annealing.

The algorithm has been implemented as a serial program designed for a workstation. and a

parallel program designed for a hypercube computer. The details of the serial implementation

are presented, including many of the heuristics used and some of the resulting solutions. A

description of the Intel ipSC Hypercube is given, details on how the channel routing problem

was partitioned onto the hypercube are discussed. and results for an example and some perfor-

mance calculations are presented. Finally, some concluding remarks are made concerning the

applicability of simulated annealing to the channel routing problem, and some possibilities for

future research work are discussed.

iv

ACKNOWLEDGEMENTS

I wish to especially thank Professor Prith Banerjee for his continual encouragement. ideas,

and support throughout the development of this work. I would also like to thank my family

and my fiancee for their love, encouragement, and support. Finally, I would like to thank all of

the members of the Computer Systems Group, past and present, for plenty of fruitful ideas as

well as needed distractions.

This work was supported by the National Aeronautics and Space Administration under

contract number NAG-1413.

I
I
1

TABLE OF CONTENTS

CHAPTER

V

PAGE

8
I
I

8
1

1 .

2 .

3 .

4 .

IiUTRODUCTION ..
1.1. Motivation ...
1.2. Channel Routing Problem ...
1.3. Previous Work ...
1.4. Thesis Outline ..
SIMULATED ANNEALING ...
2.1. Simulated Annealing .Methodology ...
2.2. Simulated Annealing Applied to Channel Routing ...

2.2.1. The first simulated annealing channel router ..
2.2.2. A new simulated annealing algorithm for channel routing

2.2.2.1. Channel routing ..
2.2.2.2. Extensions to the channel routing algorithm

SERUL IMPLEMENTATION ..
3.1. Implementation Details ...
3.2. Heuristics ...
3.2.1. Initial placement ...

3.2.2. Move selection ..
3.2.3. Net selection ...
3.2.4. 'Track selection ...

3.3. Results ...
PARALLEL IMPLEMENT44TION ..

1

1

2

5

8

10

10

12

13

14

15

18

20

20

20

20

21

21

23

24

27

4.1. Hypercube Architecture ..
4.2. Hypercube Software ..
4.3. Intel Hypercube Simulator ..
4.4. Implementation Details ...

4.4.1. Selected topology ..
4.4.2. Data partitioning ..
4.4.3. Parallel moves ..
4.4.4. Parallel updating ..

4.5. Heuristics ...
4.6. Algorithm Results ...
4.7. Performance Analysis ...

4.7.1. Computation costs ..
4.7.2. Communication corn ...
4.7.3. Speedup calculations ..

5 . CONCLUSIONS ..
5.1. Summary of Results ..
5.2. Convergence Issues ..
5.3. A?plicability of Simulated h e a l i n g ..
5.4. Parallelizability of the Channel Routing Algorithm ..
5.5. Future research ..
REFERENCES ..

27

28

29

30

30

31

32

35

36

38

39

41

41

42

44

44

44

45

45

46

47

LIST OF FIGURES

FIGURE PAGE

1.1. Example Channel With Density 5 ...
1.2. Doglegging Examples ...
1.3. Vertical Constraint Graph ...
1.4. Cyclic Constraint Problem ..
2.1. General Simulated Annealing Algorithm ...
2.2. Local and Global Minima in an Annealing Cost Function ..
2.3. Example of Illegal Move ..
2.4. Track Data Linked List Structure ...
3.1. n and u Shaped Subnets ..
3.2. Final 12 Track Solution - Serial ..
3.3. Annealing Cost vs. Temperature - Serial ..
3.4. Subnet Overlap vs. Temperature - Serial ..
3.5. Average Xumber of Tracks vs. Temperature - Serial ...
4.1. Four-Dimensional Hypercube ...
4.2. Parallel Algorithm for Channel Routing ..
4.3. Domain i m p for ThrctDimensional Hypercube ..
4.4. Move Communication Rquircments ..
4.5. MastedSlave Move Evaluation Steps ...
3.6. Vertical Constmint Graph Example ..
4.7. Final 12 Track Solution - Parallel ...
4.8. Annealing Cost vs. Temperature - Parallel ...

n n w n

3

4

5

6

11

12

14

17

22

25

25

26

26

28

30

31

33

34

37

39

40

... 4.9. Subnet Overlap vs. Temperature - Parallel 40

41 4.10. Average Number of Tracks vs. Temperature - Parallel ..

LIST OF TABLES

TABLE PAGE

4.1. Approximated VCG Data .. 38

42

42

4.2. Computation Timing (mscc) ...
4.3. Message Transmission Timing (msec) ...

1 I
I
1
I

I
I
I

1
I
1
8

cHApTw1

INTRODUCI'ION

1.1, Motivation

During the past few years, we have seen the complexity of VLSI circuit designs increase

rapidly. One reason for the increase in complexity is the technological advances in the area of

mask production and fabrication. making it possible to use smaller and smaller devices.

Another reason for the increase in complexity is the automation of the design process, through

the use of Computer-Aided Design (CAD) tools. Without the aid of computer programs in the

design process. the complexity of the design would be far too great for any engineer to handle.

The design process can be divided up primarily into eight stages as follows [l]:

1) System Specification (A4rchitectural Design 1)
2) Functional Design (Architectural Design II)
3) Logic Design
41 Circuit Design
5) Circuit Layout
6) Design Verification
7) Ten and Debugging
8) Prototype Test and Manufacture

Stage five of the design process includes the placement and routing of components. There are

usually three steps distinguished at this stage. namely :

1) Cell Placement
2) Global Routing of Wires
3) Detailed Routing of Wires

A great deal of research has been directed in these three areas over the last few years in an effort

to develop algorithms to perform these complex tasks in a reasonable amount of time. All three

of these problem are known to be NP-complete, which means that no known algorithm exists

which can optimally solve any of these problems in polynomial (nonesponential) time with

2

respect to the size of the problem. For this reason, all the heuristics and algorithms that have

been developed are only able to produce near optimal results.

The detailed routing step can be modeled in many different ways. Some of these ways

include:

1) River Routing
2) Channel Routing
3) Switchbox Routing

The focus of this thesis is to discuss a new algorithm for channel routing.

1.2 Channel Routing Problem

The general channel routing problem deals with placing wires connecting modules of a cir-

cuit within a surface area of the chip using the connection layers provided by the given fabrica-

tion technology. The surface area can be thought of as a general rectilinear shape. an L shape. a

rectangular shape, or any other maskable shape. The wires may be fabricated using any of the

connection layers available.

In gate array and standard cell designs. the module placement step determines the positions

of cell blocks in predetermined row sites on the chip. Space is provided between the rows of

cells to connect terminals of cells to the respective terminals of other cells. These spaces are

labeled channels. The global routing step then determines which wires to assign to be routed in

each of the channels available. Finally. a detailed routing is performed on each channel to select

the exact placement of conductors in the channel. These conductors are called nets.

In this thesis, it will be assumed that the channel boundaries form a rectangle. and that the

wire terminals are located at uniform spacings (grid based) along the top and bottom edges.

Furthermore. only two layers will be used such that all horizontal net segments are routed in

one layer and all vertical net segments are routed in the other layer.

Under these assumptions. the goal then is. given a sequence of net terminals along the top

and bottom borders of a rectangular channel. to determine a placement of the net segments so as

3

to minimize the size of the channel space and length or resistance of all connections made. An

example of a terminal assignment for a channel is shown in Figure l.l(a). Figure l.l(b) shows

one possible routing of the previous channel. In this figure. horizontal segments are shown in

solid lines. vertical segments in dashed lines.

The channel density is dehed as the theoretical minimum number of tracks rquired to

successfully and completely route a given channel. The density of any column is easily com-

puted by counting the number of nets that must pass through the given column. The channel

densify is then the masimum column density of all columns of the channel. Since this number .

is channel dependent. it must be calculated for each problem.

1 4 5 1 6 7 4 9 10 10
~~ *<.. ..)... i... .>. .. <... .;:. . ..; :...>...!... .>...!)...<. . ..f. ...:! >...! f - - . .

2 3 5 3 5 2 6 8 9 8 7 9

(a> Terminal Assignment

1 4 5 1 6 7 4 9 10 10

(b) Possible Routing

Figure 1.1. Example Channel with Density 5

4

Doglegging is a term used to describe nets that occupy two or more tracks of the channel.

Each net consists of a set of horizontal segments and a set of vertical segments. There are two

forms of doglegging: restricted and unrestricted. Restricted doglegging only allows a net to be

split into two tracks at a column in which a terminal of the net is found. A simple way to

model this is to break nets with more than two terminals (multiterminal nets) into two-

terminal subnets. This is shown in Figure 1.2(a). Each subnet is free to occupy any track of the

channel. and separations of tracks will automatically occur at the columns in which terminals

are found. Unrestricted doglegging allows a net to be split so that it occupies two tracks at any

point along the channel. This is shown in Figure 1.2(b).

One effective graphical technique used to determine relative positions of nets with respect

to each other is the vertical constraint graph WCG). Each net of the channel is represented by a

node in the graph. A directed edge from vertex i to vertex j indicates thar in column c of th;

channel a terminal pin for net i is located along the top of the channel and a terminal pin for

net j is located along the bottom of the channel. In order to avoid overlap between the vertical

segments of nets i and j , the track selected for net i must lie above the track selected for net j .

Figure 1.3 shows the vertical constraint graph for the example channel of Figure 1.3.

A A B
I I

I I
I +
1 I + I

I
I I
I I
I I

A A B B

(a) Restricted (b) Unrestricted

Figure 1.2. Doglegging Esamples

5

8
I

I
1
I

6
Figure 1.3. Vertical Constraint Graph

If a cycle exists in the vertical constraint graph. then it is impossible to successfully route

the channel without allowing unrestricted doglegging. Figure 1.4(a) shows a channel example in

which there is a cycle in the VCG. and Figure l.J(b) shows how unrestricted doglegging is used

to avoid the cyclic constraints.

The channel routing problem described above has been proven to be N-P complete.

1.3. Previous Work

The channel routing problem, in all of its various formulations. has been a focus of much

research interest for the past 15 to 20 years. Most of the earlier work was directed toward wire

routing of multilayered printed circuit boards. After the introduction of LSI and VLSI fabrica-

tion methods. research intensity increased, with many new ideas presented.

One of the first algorithms presented was Lee’s More Ruufer (21. Lee based his algorithm

on the idea of wavefront expansion of a single net and selection of the shortest path found

between the source and sink terminals. Some of the problems with this method include the

large amount of memory required. the often inadequate wiring of the last nets to be placed. and

the tendency to use excessive numbers of vias. Originally, the algorithm was intended for PCB

1 2 1 3

I I I
I I I -

I
I - -
I I I
I I I

3 2 2

(a) Example

1 2 1 3

I I I I
I I I I -.

I I
I I -

I I I

4;
I I t

3 2 2

(b) Solution

Figure 1.4. Cyclic Constraint Problem

routing, but was easily applied to rectangular channels in integrated circuits.

The nest major contribution was nearly ten years later when Hashimoto and Stevens [3]

introduced the Loft-Edge Algorithm. This algorithm routes one track at a time. trying to max-

imize the use of the space in the current track. Nets are placed in a left-to-right fashion until

the track is filled. The algorithm’s performance is strongly dependent on the order in which

nets are placed and the presence of vertical constraints in the channel routing problem.

6

7

A

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1
1

Deutsch made several improvements to the Left-Edge Algorithm in his Dogleg Chcvvrel

Router [4]. most notably being his inclusion of doglegging. Through an effective use of dogleg-

ging and other improvements. he was able to achieve better results than with the Simpler Left-

Edge Algorithm.

A new approach taken by Yoshimura and Kuh [5] derived routing heuristics from graph

theory concepts. Nets are first grouped according to the vertical constraint graph and an inter-

val graph based on horizontal constraints. Next. merging takes place between groups of nets to

minimize the longest path in the modified vertical constraint graph. Their results demonstrated

a large improvement over the Dogleg and Left-Edge Algorithms, especially in the minimum

number of tracks required and overall processing time.

Around the same time. another heuristic-based router was developed by Rivest and Fiddu-

cia [6] called the r e e d y chumel rourer. This router applies the same principles as the Left-Edge

and Dogleg routers do: however. the channel is scanned on a column-by-coiumn basis instead of

track-by-track methods of the former. Unrestricted doglegging is allowed: however, it may be

necessary to add estra columns on the end of the channel to complete the wiring.

Another approach. which combines aspects of both track-by-track and column-by-column

routers. was presented by Sangiovanni-Vincentelli and Santornauro. called YACR2. for "Yet

Another Channel Router 2" [71. Instead of requiring extra columns at the end of the channel.

this router may require extra columns in the middle of the channel.

A new approach. taken by Bumein and Pelavin [8]. applies linear and dynamic program-

ming to the channel routing problem which is decomposed hierarchically. The results they have

presented show a further improvement over previous channel routers.

A far different approach was proposed by Joobbani and Siewiorek [9]. They have applied

principles of artificial intelligence and expert systems to the channel routing problem. The task

of channel routing is divided into subtasks which are assigned to subtask esperts. The eiforts of

these upens are then coordinated to produce high quality channel routine.

8

Shin and Sangiovanni-Vincentelli developed MIGUTY: A 'RipUp Md Reroute' Detailed

Router in 1986 [IO]. Mighty is a very powerful router, able to route chaMek of various shapes,

including switchboxes. Mighty is a two-layer router: however, vertical routing is not restricted

to a single layer and horizontal routing to the other layer. Heuristics are applied for placing

nets one at a time, displacing some nets slightly to make room for blocked nets. and ripping up

some nets currently placed to allow other nets to be placed first.

Finally, another approach was taken by Leong, Wong, and Liu[ll] through the application

of a new optimization technique called simulated annealing. Their routing program produced

very good results: however, the program run time was far too long.

The above papers were chosen because they represent the major research contributions and

directions taken in channel routing over the past few decades. Then have been many other

papers published not mentioned that discuss improvements to previous algorithms. theoretical

bounds on channel routing, and less restricted problem Statements (including gridless and mul-

tilayered channel routing). For a good set of references on channel routing, see the introduction

to the book by Hu and Kuh (11.

1.4. Tllesisoutline

In the remainder of this thesis, research in serial and parallel algorithms for channel rout-

ing based on the simulated annealing methodology will be presented and discussed. This thesis

is organized as follows. Chapter 2 discusses the simulated annealing methodology and how it is

applied to channel routing. Frst. simulated annealing is presented as a recent approach to solv-

ing multivariate optimization problems. Xext. a previous application of simulated annealing to

channel routing is discussed in detail. Subsequently. our approach to channel routing is

presented. Finally, we discuss how to apply this approach to the basic channel routing problem

and also to extensions of channel routing which include unrestricted doglegging, obstacle

avoidance, and switchbox routing. Chapter 3 will dtst present the details of the serial imple-

mentation of the channel router. After discussing some of the heuristics used. the results of the

I
I
I
I
I
I
I
I
II
I
I
I
1
I
I
I
I
I
I

9

serial version will be given. Chapter 4 will present the details of the parallel implementation of

the channel router. The targeted parallel machine will be described, followed by descriptions of

how the problem was partitioned onto the parallel architecture. Some of the heuristics will be

discussed, and then the results will be presented. Finally, Chapter 5 will summarize the

research accomplished and draw some conclusions from the work.

10

21. Simulated Annealing Methodology

In 1983. Kirkpatrick. Gelatt. and Vecchi [121 demonstrated the similarities between sta-

tistical mechanics and multivariate or combinatorial optimization and proposed a technique for

optimization. Their technique, called simulated cuvreding, is analogous to the process of slowly

cooling a bar of metal so that large uniform crystalline structures are formed. These crystalline

structures represent the lowest possible energy states for that material. The probability of a

given state xi with energy €(xi is given by

where kb is Boltzman's constant and T is the absolute temperature.

To simulate the annealing process of metals. one must first determine how the state of a

system is defined. A methodology for permuting one state into another must be outlined. The

selection of components to move can be made in either a purely random fashion or by applying

specific heuristics generated for the problem at hand. An approximation to the energy of the

states must also be formulated. usually in the form of a cost function that accurately represents

the criteria to be minimized. Finally, a simulated temperature range and a schedule for decre-

rnenting the temperature must be selected to achieve an optimal cost-to-temperature ratio

throughout the annealing process.

In 1953. Metropolis et d. E131 outlined an efficient procedure for deciding whether or not a

given state will erist at a given temperature. At each step of the annealing process. a pseudo-

random move is made and the resulting change in cost PC from the previous state to the new

state is calculated. Then. the probability of accepting the new state is

I
I
I
I
I
I
I
1
m
i
I
I
I
I
I
I
I
1
I

11

With this negative esponential function. it is very likely that new states causing a cost increase

will be accepted at high temperatures, but not a t low temperatures. Figure 2.1 shows the gen-

d i z e d simulated annealing algorithm which can be applied to many ditferent problems.

It is precisely this aspect of simulated annealing that makes it attractive over other optimi-

zation methods. Nearly all of the channel routers presented in the fitst chapter apply a set of

heuristics in solving the problem. The problem with simply using heuristics is that they can

easily lead the optimization to a local minimum which could be far from the optimal solution of

the problem. Once the local minimum is found. these algorithms are stuck. Simulated anneal-

ing allows one to get out of local valleys. Figure 2.2 graphically shows local and global minima

in a typical optimization problem.

However, there is a price to be paid. Simulated annealing is basically an iterative trial-

and-error algorithm, and calculating each cost change could be expensive in time and computing

resources. It is critical. therefore, to determine the cost criteria carefully and eficiently.

Set Initial Temperature and State
WHILE (Stopping Criteria Not Satisfied) DO

FOR Inner-hp-Count - 1 TO MAX DO
Select Elements to Move
Select Move Operation
Calculate Cost Change
Evaluate AccepdReject Based on Temperature and Cost
IF (Accept) THEN

Ad just Tempraturc
Update State Information

END Inner Loop
END While Stopping Criteria Not Satisfied
Display Final Results

Figure 2.1. General Simulated Annealing Algorithm

12

Objective
Function

20 40 60 80 lo0
Search Space

Figure 2.2. Local and Global Minima in an Annealing Cost Function

In their original paper, Kirkpatrick, Gelart. and Vecchi showed how to apply simulated

annealing to the problem of chip partitioning, cell placement, global wiring, and the classical

Traveling SOIeJNzn Roblem. Other researchers have applied simulated annealing to logic

minimization [13]. cell placement [lS, 161, global routing [171, and detailed (channel) rout-

ing [ll] since then. Furthermore. many of the simulated annealing algorithms have been paral-

lelized with some very interesting results. Some of these include partitioning and routing [MI,

standard cell placement [19,20.21]. macro cell placement [22], and floorplanning [23].

2.2 Simulated Annealing Applied to Channel Routing

As was noted above. determining the optimal assignment of nets in the tracks of a channel

has been proven to be an NP-complete problem. Although many people have reported good

results from applying heuristics to the problem. we feel that far better results in general may be

attained by applying simulated annealing. Heuristic algorithms are usually greedy algorithms

in the sense that only downhill moves are accepted. If a local minimum is encountered any-

where, these algorithms will accept that state as the minimum. even though a better state may

esist.

13

2.2.1. The ikst simulated annealing channel router

In 1985, Leong, Wong. and Liu presented the first channel routing algorithm based on

simulated annealing [ll]. Their algorithm borrows ideas from the net merging router of

Yoshimura and Kuh [SI. All nets of a given channel are divided into subnets and the vertical

constraint graph G is formed. This graph is then partitioned into groups in which subnets in one

group represent subnets placed in the same routing track with no horizontal overlap incurred.

One of three different types of operations is then chosen randomly and applied to ran-

domly chosen mbnets to create a new channel state. These operations (or moves) include

displacing one subnet from one group to another. exchanging two mbnets in different groups.

and extracting a subnet from a group to form a new group. Further. only legal moves are per-

mitted: at no time will a move that creates overlap between two subnets be allowed.

Lcong [24] has demonstrated that this set of moves is sufficient to perform all necessary permu-

tations on the state of the channel.

The cost function applied to determine the acceptance or rejection of a move is a combina-

tion of three characteristics of the current and new states of the channel. These are

1) Channel Width
2) Longest Path in G
3) Track Sparsity

The channel width requires no calculation. the longest path is found by searching the modified

vertical constraint graph 6 , and the sparsity of each individual track must first be calculated to

find the overall sparsity of the channel.

Since annealing takes a long time to complete. one option is to parallelize the process. If

moves are to be attempted in parallel, some mechanism must be used to prevent two separate

moves from causing an illegal channel state. An example of how this might occur is shown in

Figure 2.3.

Without shared data. there is no easy way to have parallel selection of mbnets and moves.

.Also. after a set of moves is attempted in parallel. the modified vertical constraint graph. G ,
I

1 2

I I

I
I

I I PO
- 1 - - - ; ! I -

I I

- : I - A. - ;

- A - ;

I
I
I
I

I
I

I I

I
I
I

I
I

I I

14

1 2 Overlap \ , ,

I I
I
I I

I P2

2 1

(a) Before

2 1

(b) After

Figure 2.3. Example of Illegal Move

must be modified to reflect each move. This is done before acceptance decisions are made, and if

a subset of moves is rejected, reformulation must take place. Furthermore. it is difficult to

incorporate avoidance of obstacles. such as power and ground wiring, into the vertical and hor-

izontal constraint checking.

For these reasons, we decided to investigate alternative approaches to applying simulated

annealing to the channel routing problem.

2.2.2. A ncw simulated annealing algorithm for channel routing

The algorithm presented here is less restrictive during the annealing process than the algo-

rithm of Leong, Wong. and Liu. First. an algorithm for channel routing is presented. Second.

extensions of the channel routing algorithm to include unrestricted doglegging. obstacle

avoidance. and switchbox routing are described.

1s

I
I

2.22.1. channel routing

Four aspects of our channel router will be discussed here. The first is the set of moves per-

mitted to operate on a given channel state. All moves of subnets are legal. We do not distin-

guish between moving a subnet to an empty area of a track or moving it on top of another sub-

net. creating overlap that must later be removed. Overlaps of subnets are handled during the

evaluation of the cost function. A similar idea was successfully used in the Timberwdf cell

placement program based on simulated annealing 1151.

There are two basic move types used, displacement and exchange. Displacement moves

allow a subnet residing in a given track Ti to be moved to track TI. Track Tj is either an esist-

ing track, or a new track. Displacing subnets to existing tracks is the source of the majority of

the improvements made to the channel state. It is possible through this move to eliminate

tracks completely by moving all subnets in the track to other tracks. If the annealing process

gets stuck at a local minimum, displacing subnets to a new track can be used to free up the

channel enough to get out of the local minimum.

The second set of moves permitted is exchange moves. These moves are also used to pro-

vide more freedom to the annealing process. Although no tracks are ever freed up by this move,

eschanging two subnets does provide improvements in cases where a sequence of two moves is

necessary. -411 exchange moves can be subdivided into a sequence of two displacement moves.

The first part displaces one subnet into the track of the second subnet. usually causing horizon-

tal overlap between the two subnets. The second part displaces the second subnet to the original

track of the first. Since overlap is usually induced momentarily. the first displacement would

be accepted with an extremely low probability. Thus in situations exemplified by Figure 2.3. it

is far better to use the exchange move than two displacement moves.

The second aspect of our channel router is the cost function used for calculating the cost of

a new channel state after randomly selected moves have been applied to the current state. Since

the goal of our channel router is to provide a near optimal routing of the given channel. the cost

16

for a given state of the channel is a function of the amount of overlap between unique nets

(OL), the length of the nets (NL), the width of the channel (WC), and the fraction of the track

not occupied by nets (FU). For each proposed move. the cost change incurred if the move was to

be accepted is calculated as follows and used to evaluate move acceptance:

It is necessary to adjust the values of the parameters CY , B , y , and 6 to optimize the annealing

process. These values should be determined through a study of numerous trials on a variety of

problems.

The third aspect of our channel router is the data structure employed. Since overlap is an

important part of the cost function and requires the most computation. the design of the data

structure should concentrate on providing efficient calculation mechanisms. Each net occupying

a given track is given a structure in a linked list that specifies the grid points of the left and

right endpoints of the subnet segment found in the horizontal track. Each track list is linked

with the list of the preceding track to form a two-dimensional linked data structure. The sub-

net structures in each track list are also sofled by leftmost gridpoint value so that searches may

be terminated early without traversing the entire linked list. Linked list structures are used for

the track data because the number of subnets in a track varies greatly from track to track. along

with the total number of tracks varying throughout the annealing process.

For the vertical segments of subnets placed in specidc columns. there is no need for linked

lists (at least not in the case of channel routing) and so dynamically allocated column structure

arrays are used. The number of columns is always fixed. and each column has exactly two end-

points where net terminals are located. The only other way to place more nets in a column is by

unrestricted doglegging. Since those numbers are very small it is possible to use fixed sued

arrays. Figure 2.4 shows the linked list structure used for the track data.

I
1
1
I
1
1
1
E
1
J
1
1
I
1
1
I
1
1

17

I
I

.
Fkt N E m k

Ldt Edpolat

Ri@t Endpolat

N.c Stmet Polator
I

J(
Fkt Nu-

Ldt Endpoint

R Q h t Bndpoln:

hi S l n r t Polnur
I

I

Figure 2.4. Track Data Linked List Structure

Finally, the fourth aspect of our channel router is the annealing schedule used. Many

researchers have investigated optimal and efficient cooling schedules for annealing processes.

The cooling algorithm can be modeled by Markov-Chains. One method has been developed to

approximate the optimal cooling schedule by analyzing ked-length Markov-Chains in polyno-

mial time [25]. Another method attempts to control convergence by adjusting the temperature

so that the average cost decrease is uniform [26].

Initially we decided to take a simplified approach by applying a predefined temperature

adjustment schedule. The annealing temperature T is adjusted based on the following schedule:

Ti+l = ALPHA (T i) x Ti

in which the function ALPHA (TI ranges from 0.8 for large values of T to 0.95 for small values

18

of T. This schedule allows more permutations at low annealing temperatures to make many

small improvements. To determine the initial temperature, 100 random moves with a positive

cost change are evaluated without accepting any of them. The average cost change ACUST’,

for those move is then calculated and TzNn is solved for as follows:

The value 0.90 is used because at the initial temperature we would like to accept 9Wo of all

moves attempted.

2.222. Extensions to the channel routing algorithm

The algorithm presented above can easily be extended to include unrestricted doglegging,

obstacle avoidance. and switchbox routing.

To allow unrestricted doglegging it is necessary to add two more move .types to the set

already used. one to split a selected subnet into two different tracks at a selected column, and

one to restore a separated subnet back into a single track. Furthermore. a penalty or cost should

be assessed to any move that creates unrestricted doglegs because of the additional vias required.

In cases where cycles are found in vertical constraint graphs. it is necessary to allow unres-

tricted doglegging.

Since overlaps are allowed during the annealing process. the algorithm is also well suited

for extending to include obstacle avoidance. Obstacle avoidance is important to consider if some

sections of the routing area could be used for power or ground routing or any other element of

the chip that must be placed there. By applying a very high cost to any subnet occupying those

areas it is possible to retain the necessary freedom for the subnets at high temperatures to be

piaced almost anywhere, and then as the temperature is reduced. those interferences can gradu-

ally be eliminated.

19

I
1
I
1
I

Switchbox routing is similar to channel routing, except nets are given terminals on all sides

of the rectangle instead of just two sides. Although this problem is much more diflkult than the

channel routing problem, it is not as m c u l t to extend our algorithm to handle switchboxes.

Since there are many more constraints on the placement of subnets. it is even more important to

allow the subnets to overlap during high temperature annealing. In some sense. at high tem-

peratures it appears that each subnet is being placed in the best location independent of all other

nets around it, and as the temperature is reduced, the effect of the other nets is slowly increased.

The linked list representation of the track data could easily be replaced with a representation

similar to that used for the column data. Unrestricted doglegging would have to be included to

successfully route nearly all switchbox examples.

20

cHGpTER3

SERIAL IMPLEMENTA'ITON

3.1. Implementation Details

The algorithm presented in the previous two chapters was implemented as a serial version

with approximately 7,000 lines of C code and was executed on a Sun Microsystems 3/50 works-

tation under Sun CPJIX 4.2. Release 3.4.

3.2 Heuristics

In the following we will discuss various heuristics used for different characteristics of the

annealing algorithm. After a simple initial implementation of the simulated annealing algo-

rithm, i t was clear that many more improvements on the algorithm would have to be made.

The initial placement of nets and selection of moves. nets. and tracks for displacement were ori-

ginally made in a purely random fashion. It is necessary to include some intelligent heuristics

to all of the selection processes in order to achieve convergence within a reasonable amount of

time. In the following pages. we will attempt to describe those heuristics that were applied to

the uniprocessor implementation.

3.21. Initial placement

One simple heuristic was used for the initial placement of the nets into tracks. First, nets

with all terminals on the top border of the channel are placed in unique tracks. No horizontal

overlap is created because subnets in the Same track always belong to the same net. Next. all

nets that have terminals along the top and bottom borders of the channel are placed, one per

track. Finally, all nets that have all terminals along only the bottom border are placed. one per

track.

21

3.2.2. Move selection

Sechen [15] reported that for a simulated annealing algorithm for standard cell placement,

the number of displacement moves should outweigh the number of eschange moves. The ratio

used was 5:l in favor of displacements. After a series of tests. we found that for channel rout-

ing, a ratio between 15:l and 20:l produced better results.

After further analysis of the moves selected at low temperatures, it was decided that

exchange type moves should be eliminated for temperatures below a given threshold. The cost

function used is able to accurately predict overlap for a given subnet displacement. but due to

the complexity of the calculations. the overlap between exchanging subnets is only approxi-

mated. Because of this. overlap could mistakenly be created at low temperatures, not allowing

enough time for the annealing to gradually clear it out.

3.23. Net selection

Net selection could be one of the most important aspects of the annealing process. If the

best placed subnets are always selected to be moved, it will be impossible to make any progress.

Originally, the mbnet to be selected was drawn at random from the set S of subnets. This

approach is analogous to walking a random path in a forest. hoping to find the way out.

c.

One solution to the problem is to apply a weighting to each subnet in the set S. forming S.

Subnets currently incurring some overlap should be weighted much higher than subnets with no

overlap. This can be reflected by adding a cost term proportional to the amount of overlap the

given subnet has. The subnets with overlap should be selected more often, and overlap should

be quickly eliminated. A similar idea was also use by Kling and Banerjee [27] for selecting the

queue ordering of modules in an evolution-based standard cell placement (ESP) program.

Another possible factor that could be included in the selection of subnets is the current

position of the subnet with respect to the best possible placement of that mbnet taken individu-

ally. This idea applies primarily to "n" and "u" shaped subnets as shown in Figure 3.1, or in

22

other words, subneiG having either both terminals along the top border of the channel or both

terminals along the bottom border. There are two reasons for wanting these types of subnets

drawn to their respective borders. The first is that it frees up the central tracks so that other

subnets having both top and bottom terminals may use those. The second reason. more impor-

tantly, is that it shortens the length of the conducting wires of those subnets. reducing the resis-

tance and propagation delay. We decided to add another term to the approximated subnet cost

to reflect the escess length that is proportional to that length. During the high temperature

ranges of the annealing process. the effect of the length is much less than the effect of the over-

lap, so to save computation time, the length computation is only added below a given tempera-

ture threshold.

One other subnet selection biasing technique is to increase the probability of selecting sub-

nets in nearly vacant tracks. If it is possible to displace a subnet out of an almost vacant track,

then it might be possible at the same time to eliminate that track and decrease the channel

width.

u u

I I
I I
I I

-
I I
I I
I I

n n

Figure 3.1. "d and 'u" Shaped Subnets

23

3.2.4. Track selection

Selecting the track to displace a subnet to is also a very important decision. Purely ran-

dom selection is simply not enough to secure improvements quickly, especially at high tempera-

tures when bad track selections are accepted equally well as good track selections. Note. how-

ever, that it is important not to eliminate "bad" moves because they are an integral part of the

annealing process.

The first method for biasing track selection to consider is to increase the probability of

selection of a track based on track vacancy. Since subnets are selected to vacate nearly empty

tracks, the track selected for displacement to should be reasonably full. or few gains are made.

Another heuristic applied to *n" and *u* shaped subnets is to bias the displacement track

selection toward those tracks on the inside of the subnet. This approach should encourage such

subnets to move toward the border tracks to reduce wire length and congestion. Again. it is

important not to over-bias the selection because it is absolutely necessary that some subnets

move away so that better subnets can be moved inward.

In physical annealing, during very low temperatures. molecular movement is usually lim-

ited to a very small area around the molecule's current position. This same idea has b u n

applied by many in standard and macro-cell placement by simulated annealing [20.22.281. The

idea can take on two forms: One. a fixed sized window enabled for temperatures below a thres-

hold, and two, a variable sized window proportional to the temperature. The first is the easiest

to implement. but the second is better suited to annealing because of its gradual changes. X

thorough testing was not done to determine the feasibility of either approach: further research

in this area is necessary.

A more accurate way of determining which track to choose is to evaluate the anticipated

overlap and wire length changes that would occur for each track under consideration. This

estimated cost is then used to find the weighted probability of seiection for each track.

Although this is one of the better heuristics. it is also very costly in computation time.

24

33. Results

Due to the large number of variations possible in heuristics. a thorough testing of each

heuristic independently was impossible. Many trial runs were performed combining many of

the heuristics together and adjusting the parameters and heuristics by analyzing the output of

each run. Instead of listing the results of every trial, this section will present the results of

applying some of the "better" heuristics to one channel example in particular.

The ratio of exchange to displacement moves to eschange moves was 15:l. The threshold

temperature for cutoff of exchange moves and including net length in the cost calculations was

20.0 At each temperature 500 iterations were performed. The density of the channel was 12.

and there were 21 nets broken up into 39 subnets.

The weighting applied to each subnet was a function of the overlap. the current track

vacancy. and if below the threshold. the excess length of the mbnet. Subncts for displacement

and the first subnet for exchanging were selected randomly biased by the calculated weighting.

The second subnet selected for exchanging was biased by precalculating the resulting overlap for

each eligible subnet.

The tracks for displacement were biased by calculating the expected overlap if the track

was selected and adding a constant factor to bias "n" and "u" shaped nets toward the appropriate

border. N o windowing was used in selecting either the tracks or subnets.

Figure 3.2 shows the final solution for the 12 track example. Figure 3.3 shows the anneal-

ing cost with respect to temperature for that example. Figure 3.4 shows the average overlap

with respect to temperature. Finally, Figure 3.5 shows the average number of tracks with

respect to the temperature.

1
I

Figure 3.2. Final 12 Track Solution - Serial

2000

4 - 1

cost

0

0.001 0.01 0.1 1 10

1.0 / Annealing Temperature

Figure 3.3. Annealing Cost vs. Temperature - Serial

26

Ave. Overlap

0.001 0.01 0.1 1 10

1.0 / Annealing Temperature

Figure 3.4. Subnet Overlap vs. Temperature - Serial

15 1
I \

0 ' I I I I 1
0.001 0.01 0.1 1 10

1.0 / Annealing Temperature

Figure 3.5. Average Xurnber of Tracks vs. Temperature - Setial

27

PAMLLEL IMPLEMENTATION

Once we demonstrated the viability of our simulated annealing approach to solve the chan-

nel routing problem, we decided to implement a parallel version which was the original intent

of this thesis. The parallel algorithm would serve to cut down the run time of the algorithm.

The machine for which the parallel version is targeted is the Intel iPSC Hypercube. The iPSC

was chosen because one machine is readily available for use here at the University of Illinois for

testing. However, even though a system was wailable. due to lack of time and resources. no

testing could be performed on it. Instead, simulations were carried out using the Intel Hyper-

cube Simulator, version 3.0 running on a Sun Microsystems 3/50 workstation.

4.1. Hypercube Architecture

A hypercube computer is a collection of P = Xv processor nodes interconnected by a

binary N-cube topology. Each node of the hypercube is a self-contained computer with a cpu.

memory. and communication hardware. Each node can communicate directly with exactly N

neighbors through communications channels connecting adjacent nodes. Figure 4.1 illustrates a

four-dimensional (16 node) hypercube, showing the nodes and communication channels between

them. Each node is labeled with a unique N-bit binary number so that adjacent node numbers

differ in exactly one bit position.

The diameter of a network is defined as the maximum number of hops required to send a

message between any two nodes. and the node CoMectivity is the maximum number of commun-

ication lines required for any single node. For the hypercube, the diameter and node connec-

tivity are both logz P. The hypercube offers a good balance between node connectivity and com-

munication diameter. Furthermore, the topology of the hypercube allows a USCT to embed many

dif€erent communication mappings such as meshes. trees, linear arrays, and smaller dimensional

28

Figure 4.1. Four-Dimensional Hypercube

cubes. Each of the sixteen nodes of the available iPSC contains an Intel 80286 cpu. an Intel

80287 numeric coprocessor. 4.5 MBytes RAM. and communication hardware based on the Intel

82586 Ethernet Controller Chip. It is possible to have up to a seven-dimensional ipSC hyper-

cube: however, such an array is difficult to draw and harder to visualize.

The iPSC cube nodes are connected to a System Manager computer through which a user

can interface. The cube manager is made up of a monitor, hard and floppy disk drives. and eth-

m e t ports for connecting to both the cube and other computers on a local area network.

4.2. Hypercube Software

A typical program to be run on the ipSC is made up of two separate executable parts. One

part, called the host program. is executed by the hofl or System Manager provides the user

interface, file access, and downloading of the node program to each node. The second part, called

the node program. is executed by each node in parallel. Since the hypercube is a message-passing

based architecture. special constructs and functions are used to establish communication for the

node with the host and for the node with other nodes.

29

The functions used for sending and receiving messages have the form:

send(ci. type. buf. Ien. node, pid);
r e d c i . type, buf. ten. &cnt. &node. &pid):

where

ci

type- Type of message being sent or waiting to be received

buf - Starting address of buffer to read message from or to write message into

Im = Number of bytes to send or the size of the receive buffer

node- Number of node to send to or number of node received from

pid - Process id of process sending message

cnt - Number of bytes actually received

- Channel identifier for the channel to transmit the message on

Other functions are available for reading the clock, checking the status of a channel. writing to a

logfile, and some diagnostic functions.

43. Intel Hypercube Simulator

The Intel Hypercube Simulator is a tool distributed by Intel to provide the user with an

environment for developing and debugging programs written for the hypercube. The simulator

simulates the actual hypercube by forking a UNLY process for each node. Communication

between nodes is simulated by using U r n pipes and signals. Aside from a few minor limita-

tions. Intel claims that programs successfully run on the simulator will run on the hypercube

with few to no changes.

The material for the preceding sections of this chapter was taken from

[29.30.31.32,33.34].

30

4.4. Implementation Details

Before developing an algorithm for implementation on a hypercube, one should consider

first the number of processors required. how the problem can best be partitioned, how to map

that partition onto the hypercube, and what data structures would be most efficient for such an

implementation [35]. Given a highly parallelizable problem like matrix multiplication. choosing

the right partitioning, mapping, and data structure could greatly affect the performance of the

implementation. For example. partitioning the data of a matrix according to the back diagonals

of the matrix would not make any sense. For this reason. care must be taken in developing the

parallel algorithm and implementation. The parallel algorithm implementation for channel

routing is outlined in Figure 4.2, and will be discussed in more detail in the following sections.

44.1. Selected topology

Since the hypercube topology can be used to embed many other topologies. we choose to

map the processors into a linear array as shown in Figure 4.3. The lines and arcs on the figure

show the communication channels for the three-dimensional hypercube as it is embedded into a

line. Adjacent procssors in the array are chosen to be adjacent nodes of the hypercube.

Determine Initial Annealing Temperature and Parameters
Make Initial Track Assignment to Each Processor of Hypercube
'WHILE (Temperature > E) DO

FOR Inner-Loop-Count - 1 TO . W - I DO
FOR Cube-Dimension - 0 TO log (P) - 1 DO

Randomly Select One Subner in Each Processor in Parallel
Randomly Select P/2 Moves For Node Pairs of Cube-Dimesion in Parallel
Evaluate Cost Change for Each Move Between Pairs of Nodes in Parallel
Evaluate AccepdReject Based on Temperature and Cost in Parallel
IF (Accept) THEN

Update Local State Information
Broadcast Updates to All Other Nodes

END Dimensions of Cube
Adjust Temperature in each Node

END Inner Loop
END While Stopping Criteria Not Met
Display Final Results

Figure 4.2. Parallel Algorithm for Channel Routing

CHANNEL
U K

Trk k
Trk k+l

Tr 2k
Trk%k+1

Trk 3k
Irk 3k+l

Trk 4k
Trk 4k+l

Trt Sk
Trk 5k+l

Trk 6k
Trk 6k+l

Trk 7k
Trk 7k+l

Trk 8k

} --3

} --3

} --3
}---
} --->

} ---3

}--->
} --*

PROCESSORS

31

Figure 4.3. Domain Map for Three-Dimensional Hypercube

following a pseudo-gray code. The pattern is not a true gray code since we chose not to have the

topmost and bottommost processors adjacent. This distributes the long range connections more

evenly.

4.4.2. Data partitioning

After the initial placement of the subnets into tracks (similar to the serial implementa-

tion). sets of adjacent track are assigned to corresponding nodes in the linear array of Figure 4.3.

The tracks are distributed as evenly as possible so that the work load of each node is as uniform

as possible. The channel area is divided into strips of tracks because the algorithm used assumes

that subnets are dispiaced or exchanges between different tracks.

32

Each node is given information about the horizontal space used by each subnet in each

track assigned to it. In other words, each node receives Uph of the corresponding serial linked

list structure for the tracks. It is unnecessary for each node to know what sections of its

neighbor's tracks are occupied or not. However. a copy of the entire column data array is main-

tained in each node because of faster accessing and the small amount of updating required for

the column data.

4.43. Parallel m o m

The moves used to transform one channel state into another will still be based on the dis-

placement and exchange moves of the serial algorithm. In this case. however. two nodes

cooperate together as a pair to perform the desired transformation. During the evaluation of a

move. one processor of the pair acts like a master. and the other a slave. The following moves

can then be identibed:

MOVE 0: Intra-Displace - each node of a pair performs a displacement move within
its own sets of subnets and tracks

MOVE 1: Inter-Displace - master node displaces a subnets from its domain to a track
within the domain of the slave node.

MOVE 2: Intra-Exchange - each node of a pair performs an exchange move within its
own sets of subnets and tracks

MOVE 3: Inter-Exchange - master and slave nodes each select a subnet to exchange
with each other

By applying the Inter-processor moves, it is possible to utilize the connections to nodes not adja-

cent on the linear array to move a subnet a large distance up or down the channel in a single

move.

It is important to select which node should be the master and which node should be the

slave for a given iteration. The node numbers of the two nodes of a pair always differ in

exactly one bit posirion. An algorithm specifying that the node with a one in the bit position

should be the master and the other, the slave, would not work because then sooner or later. all

of the slave's subnets would get displaced to the master. Instead. the mastership of a pair of

33

nodes should alternate after each iteration.

The selection of the move is performed at the beginning of an iteration by the master pro-

cessor. The ratio of intraproccssor to interprocessor moyes is 1:l. Intraprocessor moves improve

the performance and speedup. but interprocessor moves are equally necessary to be able to move

the subnets throughout the Channel. The ratio of displacement moves to exchange moves ranges

between 15:l and 20:l. the same as in the serial implementation.

Since the hypercube has no shared memory, it is necessary for the nodes of a pair to com-

municate through messages while evaluating each current move. Figure 4.4 illustrates the com-

munication requirements for each of the four types of moves discussed earlier, and Figure 4.5

lists the steps performed by the master and slave processors in evaluating the move. Note that

for MOVE 3, Inter-Exchange, it is possible to overlap the first message sent by the master with

the first message sent by the slave to gain some parallelism. Furthermore, some calculations can

be performed by each processor during the transmission of the first message.

MOVE 0 MOVE 1

MOVE 2 MOVE 3

Figure 4.4. Move Communication Requirements

MASTER

34

SLAVE

Select Subnet m 1
Select Move
Calculate Cost Change for Removing m 1
Send Subnet mn 1 Data to Slave (m 1)

Case (MOVE)
0: Select New Track mt 1

Calculate Cost for Placing mn 1 in mt 1
If (Accept(Cost Change))

End Case 0
Update mn 1

1: Wait For Cost Data From Slave (12)
.. .
...
Receive Cost Data From Slave (s 2)
If (Accept(Cost Change))

End Case 1
Update mn 1

2: Select Subnet mn2 for Exchange With llyz 1
Calculate Cost for Placing mn 1 in mt2
Calculate Cost for Placing mn2 in nrt 1
if (,Accept(Cost Change))

Update mn 1 and mn 2
End Case 2

3: Wait for Subnet m 1 From Slave (s 1)
Receive Subnet sn 1 Data From Slave (s 1)
Calculate Cost of Placing m 1 in mt 1
Wait for Cost Change Data From Slave (s2)
Receive Cost Change Data From Slave (s 2)
If (Accept(Cost Change))

Updatemnlandm1
End Case 3

End Casc(M0VE)
Broadcast Updates

Select Subnet sn 1
Calculate Cost Change for Removing sn 1
Wait for Subnet mn 1 Data From Master (rn 1)

Receive Subnet mn 1 Data From Master (rn 1)
case (MOVE)

...

0: Select New Track st 1
Calculate Cost for Placing m 1 in sr 1
If (Acccpt(Cost Change))

End Case 0
Update sn 1

1: Select New Track sr 1
Calculate Cost for Placing mn 1 in st 1
Send Cost Change to Master (52)
End Case 1

2: Select Subnet sn2 for Exchange With sn 1
Calculate Cost for Placing sn 1 in st 2
Calculate Cost for Placing sn2 in sr 1
If (AcccpdCost Change))

Update sn 1 and sn 2
End Case 2

3: Send Subnet sn 1 Data to Master (I 1)
Calculate Cost of Placing mn 1 in st 1
Send Cost Change Data to Master (s 2)
End Case 3

End Case(M0VE)
Broadcast Updates

Figure 4.5. ?vaster/Slave Move Evaluation Steps

35

4.4.4. Parallel updating

The data defining all aspects of a subnet are split up into two separate structures, the track

linked lists and the column data array. If a move is evaluated favorably (using the same cost

and acceptance evaluation functions as the serial implementation). the information in the data

structures must be updated to reflect these changes. It should be noted. however, that with

evaluating moves in parallel. the information is. for all purposm. out of date. Processor pair

(i , j) evaluates their rnoveb). tacitly assuming the rest of the data on the channel is constant,

while at the same time processor pair (k I) is doing likewise. It is very possible that the moves

may offset each other and result in the state of the channel being worse than expected.

Jones and Banerjee [20] have found that the convergence properties were nearly main-

tained despite the use of parallel moves similar to what we propose. Furthermore. they were

able to apply those results to a uniprocessor or serial implementation of their placement algo-

rithm [36]. They applied what was termed pseudqxnzZ&L moves in which a series of moves

would be evaluated and accepted before performing an update on the data structure. By doing

this, they were able to maintain the convergence of their algorithm while decreasing the compu-

tation time dramatically. It is possible to apply pseudo-pluallel movej because of the nondeter-

ministic behavior of annealing. An offshoot of that idea, shown by Grover 1161. is to use

approximate cost calculations to save computation time. As others have pointed out [37.221, it

is important to carefully control parallel or approximated moves, especially at low tempera-

tures.

As shown in Figure 4.2, updating of all data structures is performed after each pair of pro-

cessors has esecuted moves in parallel. Every node must receive the updated information. so

some method must be used to broadcast the information across the network. The simplest

method. provided the hypercube network could support the function. is to have every node

broadcast the information to every other node. Unfortunately, the iPSC hypercube does not

have appropriate hardware for global communication: instead. a global send is performed by

36

sending a copy of the message out on a tree embedding E381. Another possible method is to

embed a ring network into the hypercube and transmit update information around the network

until it returns to the originating node. The tree broadcast scheme is O(2og PI, but contention

and congestion on the channels will likely slow the performance down considerably. On the

other hand. the ring network scheme is O(P), but will not have problems with contention and

congestion because of the uniform uni-directional flow of data around the network.

43. Heuristics

In general. nearly all of the heuristics discussed in the previous chapter for the serial

implementation were also applied in the parallel implementation. modified slightly for the

different moves and data structures. One problem faced by using the Intel Hypercube Simulator

was the extremely long time needed for each trial run. It became important then to h d addi-

tional heuristics to speed up the convergence of the algorithm.

The first idea was to improve the selection of the second subnet of an intraprocessor

exchange move. Assuming that the first subnet i is already chosen. it is possible to evaluate the

overlap that would occur for each subnet of the set of possible subnets to be chosen. This over-

lap can then be used to bias the selection of the subnet in favor of the subnets causing the least

damage, and which will likely provide some improvement.

The nest heuristic applied was to adjust the constant factor y for the change in channel

width of the cost function to reflect whether or not tracks should be removed, added. or neither.

For example. if the channel density for a problem is D , and if along the annealing process the

current channel width is D + 2, then it is favorable to increase the chances of removing a track

and decrease the chances of adding a track. If. however, the current channel width is D , then it

is usually better not to create new tracks or remove any of the current tracks.

The final heuristic used is to approximate the vertical constraint graph G created from the

original problem statement and estimate track positions based on the struczure of the graph.

Figure 4.6 and Table 4.1 show the solution to a simple channel routing problem. the vertical

37 I
I
I
I

constraint graph for the problem. and the data resulting from approximating the vertical con-

straint graph. Source nodes of G are nodes which only have directed arcs pointed away from

the node. Sink nodes are nodes which only have directed arcs pointed into the node. Assuming

1 4 5 1 6 7 4 9 10 10

1 ~ 1 1 1 1 I l l 1
1 I I I I I I

I I l l 1 I

I I 1

I I I I 1 ; -
I I I

I I
1 I

I I
I I I 1-

I
I I

I l l
I 1

r 1 i + l I
I I 1 I l l 1

I I 1 I I I I I
I I I I I 1 I I I 1 I I

I I I I I I I I I ~ I I

1 * I
I I I

; + I

2 3 5 3 5 2 6 8 9 8 7 9

(a> Problem

(b) VCG

Figure 4.6. Vertical Constraint Graph Example

38

Table 4.1. Approximated VCG Data

Subnet

1
2
3
4
5a
5b
6
7
8
9a
9b
10

Position
in Path

1
4
3
1
2
2
3
2
3
2
2
1

Total Path
Length

3
4
3
3
3
3
4
4
3
3
3
4

Percentage
of Total

0.25
0.80
0.75
0.25
0.50
0.50
0.60
0.40
0.75
0.50
0.50
0.20

Approximate
Track

2
5
5
2
3
3
4
2
5
3
3
1

for now that there are no cycles, for each node of the graph one can find a path through that

node which starts at a source node and ends at a sink node. Let pi be the longest path from

source to sink passing through node i . For node i the final track placement can be approximated

by the position of the node along pi. For channel width w , net number 7 of the example would

be assigned to'a zone ranging from track 0 . 2 5 ~ ~ to track 0.50Xw.

This approximation can then be applied to the cost evaluation at several points. One possi-

ble use is for subnet selection. Subnets not placed in the tracks of their zones can be biased for

selection higher rhan those inside their zone. Another way to apply this is in the selection of

tracks for displacement. Tracks to be selected can be biased inversely proportional to the dis-

tance from the subnet's zone.

4.6. Algorithm Results

For reasons similar to those in Chapter 3. we will be presenting a summary of the results

of one Channel routing problem for the set of heuristics that arrived at the best results. The

same channel routing problem with channel density twelve was used for the testing.

39

1
I
8

I
i
I
I
8
I
1
8
I
8
I
I
8
I
1

The ratio of displacement-to-exchange moves was 15:l. At the same time, the temperature

was decreased according to the annealing schedule. and the number of iterations at that tempera-

ture was increased by 45% over the number of iterations at the previous temperature. The cost

factor y was dynamically changed to d e c t the need to add or remove tracks in the channel.

Finally, the VCG was approximated and the information was used to bias the selection of sub-

nets by weighting mbnets not found in their expected track range with a higher probability.

Furthermore, the approximated track position was used to bias the selection of tracks for dis-

placement.

The h a 1 routing solution for the twelvttrack example is shown in Figure 4.7. The plots

of Cost vs. Temperature, Average Overlap vs. Temperature, and Average Number of Tracks vs.

Temperature are found in Figures 4.8.4.9, and 4.10. respectively.

4.7. Performance Analysis

Although the parallel implementation used the Intel Hypercube Simulator. we did perform

an analysis of the expected speedup of the algorithm when run on the Intel iPSC Hypercube.

Figure 4.7. Final 12 Track Solution - Parallel

1500 4

cost

0 ' I I I I

0.01 0.1 1 10
1.0 / Annealing Temperature

Figure 4.8. ,4nnealing Cost vs. Temperature - Parallel

"1
c

Ave. Overlap

0.01 0.1 1 10
1.0 / Annealing Temperature

Figure 4.9. Subnet Overlap vs. Temperature - Parallel

40 I
1
I

8
I

41

0 ' I I I I
0.01 0.1 1 10

1.0 / Annealing Temperature

Figure 4.10. Average Number of Tracks vs. Temperature - Parallel

4.7.1. Computation costs

The amount o f time spent on processing each new move was measured by applying the

CLOCK0 function of the simulator to random moves repeated thousands of times. Since the

simulator was run on a Motorola 65020 CPU and the hypercube uses Intel 80286 processors.

some adjustment must be made to account for the difference in processing speeds. The 68020 is

rated at 2.7 AMPS. while the 80286 is rated at 0.78 MIPS. This is a dserence of approximately

3.5. Table 4.2 gives the computation times for the master and slave nodes for each of the four

types of moves for both the 68020 and the 80286. The computation costs for updating subnets

after each move are also given in Table 4.2.

4.7.2. Communication costs

The simulator does not provide any mechanism for estimating the amount of time needed

to send a message from one node to one of its neighbors. so we will use timing information

reported in the literature for sending onthop messages on the Intel iPSC Hypercube [391. Table

4.3 summarizes the message timing for the different types of messages used in our implementa-

tion. The messages m l . sl. and s2 are from Figure 4.4. The update message is the packet

42

-
MC68020 CPU 80286 CPU

Operation (Measured (Pro jetted)
Master Slave Master Slave

Table 4.2. Computation Timing (msec)

iMOVE 0 17.0 15.8 59.5 55.3
MOVE1 11 8.4 1 6.3 1 29.4 I 22.0 1
MOVE 2
MOVE 3

22.0 1 17.1 I 77.0 59.9
5.8 I 3.5 I 33.3 25.9

~~

I II

Operation
MOVE0

I 48 bytes I 48 bytes 16 bytes 48 bytes
I 1.83 I - - -

MOVE 1
MOVE 2

1.83 - I 1.74 -
1.83 - I - -

transmitted around the broadcast ring for updating subnets after a move. There are two other

MOVE3

types of messages used, one is for sending the original net data from the host to the nodes and

1.83 I 1.83 1.74 -
- I

the other is for sending the final routing data from the nodes back to the host. These. however.

do not affect the speedup of the algorithm and are not discussed here.

4.73. Speedup calculations

Assuming a 16 node hypercube. the ratio of moves is 15:15:1:1, respectively. for MOVE 0.

MOVE 1. MOVE 2. and MOVE 3. which means that during every iteration in which pairs of

nodes are evaluating a move. at least one pair will be performing either MOVE 0 or AMOVE 1.

MOVE 0 and Move 2 are bottleneck moves because of the computation required. The average

time for the bottleneck moves then can be found by weighing each move by its probability of

occurrence. The average move computation time per iteration is then 60.6 nu. Since there is an

43

equal probalility of selecting intcrprocessor moves and intraprocessor moves, approximately

half of the node pairs will evaluate a single move and the other half will evaluate parallel

moves. Thus there are usually 0.75 X P moves at once. or for the sixteen-node case. twelve

parallel moves. Including the communication costs for messages m 1. I 1. and 12 gives a worst-

case move time of 62.5 m e c for one iteration. Using a tree-based broadcast strategy, the com-

munication time is log P X 1.83 mec. The update computation time is 18.0 m, giving a total

time of

(4 x 1.83) + 18.0 + 62.5 = 87.8 m e c

For the uniprocessor case. twelve moves would require

(11.25 X 59.5) + (0.75 x 77.0) + 14.0 = 745.6 m e c

to complete, resulting in an overall speedup of 8.4 on a 16 processor hypercube.

44

CHAPTER5

CONCLUSIONS

5.1. Summary of Results

In this thesis. we have presented serial and parallel algorithms for channel routing using

simulated annealing. Simulated annealing is a powerful optimization tool and we have demon-

strated its use in a new uniprocessor channel routing algorithm. This algorithm permits maxi-

mal freedom to the nets in the channel being assigned to achieve near-optimal results.

The algorithm has been parallelized for implementation on a hypercube computer. The

channel is partitioned horizontally by tracks. and adjacent nodes of the hypercube cooperate in

parallel to gradually improve the state of the routing. The data have been partitioned to try to

minimize the overhead of message passing between pairs and complete updates.

5.2 Convergence Issues

One important issue to consider carefully in the design of any algorithm for simulated

annealing is how quickly the algorithm will converge. There is always a tradeoff between the

total number of moves attempted and the time taken to evaluate each move. It is an intractable

problem to analyze the problem enough to find one move that would solve the whole problem,

and it would take extremely large numbers of moves to solve the problem without analyzing

any of them. Between those extremes is the optimal point for minimizing total time to con-

verge. To find that point it is necessary to perform many tests on various strategies and param-

eters for selecting and evaluating moves.

One of the main features of the algorithm presented here is the allowing of channel states

at high temperatures that would be unacceptable as the final solution. These states usually

include overlap between nonconnected wires. It has been shown that for certain annealing algo-

rithms convergence is guaranteed. but since illegal intermediate States are allowed, there is no

I
I
I
I
1
1
1
1
8
8
I
I
1
8
1
1
I
I
8

45

longer any guarantee of convergence. For this reason, it is essential to evaluate all aspects of the

algorithm carefully.

5.3. Applicability of Simulated Annealing

Part of the issue of applicability of simulated annealing to channel routing involves the

convergence question. If convergence is not achieved. nearly all of the time in a reasonable

amount of time, then the problem. by nature. may not be well suited for simulated annealing.

For the algorithm presented, good convergence was achieved for small cases. especially for the

serial version. However, for large examples. the quality of the results dropped off. This may be

due in part to improper selection and evaluation heuristics.

Another aspect concerns the nature of the problem itself and how the current model affects

it. For simulated annealing, the choice of neighboring spaces is very important. The algorithm

of Leong. Wong, and Liu [ll] only allowed legitimate solutions to be in the neighboring space of

a current channel state. This greatly reduces the number of possible moves.

The algorithm we propose here allows any possible permutation of the current channel

state to be in its neighboring space. It is then much harder to determine the best state to select

next. so much more computation is needed. There is another tradeoff here between the benefits

of the new algorithm's flexibility and the added work to determine the next state. This is an

important area of future research.

5.4. Parallelizability of the Channel Routing Algorithm

How to write parallel algorithms has been a lively topic over the past decade. There are

many ways to look at the parallelization of the serial simulated annealing algorithm for channel

routing, and the method presented in this thesis is the way we determined to be the best suited

for the hypercube facilities available. Our approach can be looked at as a parallelization of indi-

vidual moves. or multiple moves at once. Another approach is to parallelize the computation of

a single move. hopefully providing a high enough computation / communication ratio to be

46

effective. Sets of moves can be parallelized in which each node performs serial annealing on the

entire channel for a k e d number of moves. then all nodes combine and take the best of the

results. This method may be an effective alternative. but it seems to sidestep parallel algorithm

designing.

For the algorithm presented. there are a few issues of concern. First. the cost of updating

each node after every set of parallel moves is high because of the overhead. Research into par-

tial or delayed broadcasting is necessary. Second. the overall parallelism is limited. Most chan-

nels for routing in industry consist of fewer than 100 tracks. It is impractical to distribute

those tracks to more than 32 hypercube nodes. The theoretical speedup is limited to 32. asmm-

ing linear speedup. which is unlikely. Other ways to partition the problem to allow for higher

ranges of speedup should also be looked into.

55 . FutureResearch

Throughout this thesis work. a good. solid base algorithm for simulated annealing has been

developed. The current results indicate a need for more research into the areas mentioned

above. Furthermore. other applications of this algorithm should be studied.

8
1
I
I
I
I
I

8
I
I
8

I
I
I
I
1
I
I
I
I
I
I
I
I
8
I
I
I
I
I

47

REFERENCES

T. C. Nu and E. S . Kuh. VLSI Circuit Layout: Theory and Design. New Yorlc, NY: IEEE,

C. Y. Lee, "An algorithm for path connection and its applications." IRE Tram. Electron.

A. Hashimoto and J. Stevens, '"Wire Routing by Optimizing Channel Assignment," Boc.
8th Design Automutwn Conf.. pp. 214-224. June 1971.
D. Deutsch. "A Dogleg Channel Router." Rm. 13th Design Automation Conf. pp. 425-
433. Jun. 1976.
T. Yoshimura and E. S. Kuh. "Efficient algorithms for channel routing." IEEE Trans.
Compufer-Aided Design. vol. CAD-1, pp. 25-25, Jan. 1982.
R. L. Rivest and C. M. Fidducia, "A Greedy Channel Router," Roc. 19th Design
Automation Conf.. pp. 418-424. Jun. 1982.
J. Reed, A. Sangiovanni-Vincentelli. and M. Santomauro. "A new symbolic channel
router: YACR2." I . Transactwns Computer-Aided Design. vol. CAD-4, pp. 208-219,
July. 1985.
M. Bumein and R. Pelavin, "Hierarchical Channel Router." Roc. 20th Design Automation
Conf.. pp. 591-597, June 1983.
R. Joobbani and D. P. Siewiorek. "WEAVER A KnowledgcBased Routing Expert." I€E&
Design and TeJt of Computers. vol. 3. no. 1. pp. 12-23. Feb. 1986.
H. Shin and A. Sangiovanni-Vincentelli. "Mighty: A 'Ripl.Jp and Reroute' Detailed
Router." Roc. I d . h f . Computer-Aided Design. pp. 2-5. Nov. 1986.
H. W. Leong, D. F. Wong. and C. L. Liu. "A Simulated Annealing Channel Router." Roc.
22nd Design Automation Gmf.. pp. 226-228. June 1985.
S. Kirkpatrick. C. D. Gektt. and M. P. Vecchi. "Optimization by Simulated Annealing."
Science. vol. 220. pp. 671680. May 1983.
N. Metropolis. A. W. Rosenbluth. M. N. Rosenbluth. -4. H. Teller, and E. Teller.
"Equations of State Calculations by Fast Computing *Machines." J. C h m . Phys.. vol. 21.

J. Lam and J. M. Delosme. "Logic Minimization Using Simulated Annealing," Roc. IEEE
Int. Conf. Computer-Aided Design (ICCAD-86). pp. 348-351. Nov. 1986.
C. Sechen and A. Sangiovanni-Vincentelli. "TimberWolf3.2: A New Standard Cell
Placement and Global Routing Package." &oc. 23rd Design Automutwn Conf.. pp. 432-
439. Jun. 1986.
L. K. Grover. "A New Simulated Annealing Algorithm for Standard Cell Placement."
Roc. Int. Conf. Computer-Aided Design, pp. 378-380. Nov. 1986.
M. P. Vecchi and S. Kirkpatrick, "Global wiring by simulated annealing," I- Trans.

M. J. Chung and K. K. Rao. "Parallel Simulated h e a l i n g for Partitioning and Routing,.'
Roc. I d . Conf. Computer Design. pp. 238-242, Oct. 1986.
S. -4. Kravitz and R. A. Rutenbar. "Multiproccsssor-Based Placement by Simulated
Annealing." €he. 23rd Design Automation Conf.. pp. 567-573. Jun. 1986.

hc.. 1985. pp. 3-18.

Cornput.. V O ~ . EC-10. pp. 346-365.1961.

pp. 1067-1092.1953.

cornputerr. V O ~ . C-7, pp. 215-222. Oct. 1983.

E251

[261

48

M. Jones and P. Uanerjee, "Performance of a Parallel Algorithm for Standard Cell
Placement on the Intel Hypercube." A.oc. 24th Design Automation Conf.. pp. 807-813.
Jun. 1987.
F. Darema and G. F. Pbster. "Multipurpose Parallelism for VLSI CAD on the RP3," IEEE
Design a d Test of Computers. vol. 4. no. 5. pp. 19-27, October 1987.
A. Casotto. F. Romeo, and A. Sangiovanni-Vmcentelli. "A Parallel Simulated Annealing
Algorithm for the Placement of Mam-Celk." Roc. Id. Conf. Computer-Aided Design.
Nov. 1986.
R. Jayaraman and R. A. Rutenbar. "Floorplanning by Annealing on a Hypercube
Multiprocessor." Roc. Int. Conf. Computer-Aided Desip. pp. 346-349. Nov. 1987.
H. W. Leong. Routing problems in the physical design of integrated circuits. Ph.D.
dissertation, Dept. of Computer Science. Univ. of Illinois at Urbana-Champaign, January
1986.
E. H. L. Aarts and P. J. M. van Laarhoven, "A New Polynomial-Time Cooling Schedule."
Roc. Int. Conf. Computer-Aided Design. pp. 206-208, Nov. 1985.
M. D. Huang. F. Romeo. and A. Sangiovanni-Vincentelli. "An Efficient General Cooling
Schedule for Simulated Annealing." A.oc. Int. Conf. Computer-Aided Design. pp. 381-
384. Nov. 1986.
R. M. Kling and P. Bancrjee. "ESP: A new Standard Cell Placement Package Using
Simulated Evolution." h. 24th Design Automation Conference. pp- 60-66. Jun. 1987.
L. K. Grover, "Standard Cell Placement Using Simulated Sintering." 24th Design
Automation Confersncc. pp. 56-59. June 1987.
Hypercube Simulator - InteTtrrJ Roduct Description, Version 3.0. Intel Corporation. Oct.
1986. pp. 1-15.
J. P. Hayes. T. N. Mudge. Q. F. Stout. S. Colley. and J. Palmer. "Architecture of a
Hypercube Supercomputer." Roc. Int. Gmf. Pardel Processing. pp. 653-660. Aug. 1986.
iPSC Simulator M a d . Intel Corporation. Oct. 1986.
iPSC System Overview. Intel Corporation. Nov. 1986.
iPSC Rogrcv~ler's Reference Guide. Intel Corporation. Mar. 1987.
M. H. Jones. A pardel simulated annealing algorithm for standard cell placement on a
hypercube computer. M.S. thesis. a p t . of Electrical and Computer Engineering. Univ. of
Illinois at Urbana-Champaign. January, 1987.
L. 34. Xi. C. King, and P. Prim. "Parallel Algorithm Design Considerations for Hypercube
Multiprocessors." Roc. Int. Conf. on Parollel Processing, pp. 717-720. Aug. 1987.
M. Jones and P. Banerjee. "An Improved Simulated Annealing Algorithm for Standard
Ceil Placement," Roc. Znt. Conf. Computer Design. Oct. 1987.
R. A. Rutenbar and S. A. Kravitz. "Layout by Annealing in a Parallel Environment."
Roc. Int. Conf. Computer Design, pp. 434-437. Oct. 1986.
iPSC Software I n t d Speci$catiim. Intel Corporation. March 1987.
T. H. Dunigan. "Hypt.tcube Performance." Roc. SIAiM 2nd Conf. on Hyper&
M J t i p r o c c s ~ o r ~ . p ~ . 178-192.1986.

~

I
1
I
I
I
8
I
I
1
I
I
I
I
I
I
I
8
I
I

la REPORT SECURITY CLASSIFICATION

21. SECURITY CLASSIFICATION AUTHORITY
Unclassified

Approved for public release;
distribution unlimited Zb. OECUSSIFICC\TION I DOWNGRADING SCHEDULE

1 b. RESTRICTIVE MARKINGS

None I

3 OlSTRlBUTlON / AVAILABILITY OF REPORT !

I

4 PERFORMING ORGANIZATION REPORT NUMBER61 5. MONITORING ORGANIZATION REPORT NUMBER(S) I
(CSG-84) UILU-ENG-88-2213

b. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
Coordinated Science .Lab (If applicable)

University of Illinois N/A
6 ~ . ADDRESS (city, srato, a d Z I P C O ~ ~)

7r. NAME OF MONITORING ORGANIZATION

NASA

7b. ADDRESS (City, Stat.. a d ZIP Cod.)

1101 W . Springfield Avenue
Urbana, IL 61801

ea. NAME O f FUNDING /SPONSORING ab. OFFICE SYMBOL
ORGANIZATION (/f applKablo)

NASA N/A
8C. AOORESS (City, state, d d ZIPCod.)

NASA Langley Research Center
Building 1268A
Hampton, VA 23665

Nasa Langley Research Center
Hampton, VA I

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NAG- 1-6 13

10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. No. ACCESSION NO.

I , SUB-GRoUP Parallel algorithms, VLSI computer-aided design, channel
FIELD I GROUP I

12 PERSONAL AUfHOR(S)
Brouwer , Randall Jav

Technical FROM TO Februarv 1988
13a TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yeat, Month. Day)

16 SUPPLEMENTARY NOTATION

'9 ABSTRACT (Continuo on reverso if necessary and Identtfy by Mock n u m k r)

Two algorithms for channel routing using simulated annealing are presented. Many of the

channel routers of the past are for the most part based on greedy algorithms in which special

heuristics are applied to generate monotonic improvement. Thest algorithms are called greedy

because they d e r from inappropriate selections. getting stuck at suboptimal solutions. Simu-

lated annealing is an optimization methodology which allows the solution process to back up out

I
r r { routing, simulated annealing, hypercube multiprocessors 1

BUNClASSIFIEORINLIMITED 0 SAME AS RPT 0 OTIC USERS
22d NAME Of RESPONSIBLE lNDIVIOUAL

Unclassified
22b. TELEPHONE (Include Area Cod.) 22c. OFFICE SYMBOL I

20 DlSTRlBUrlON /AVAILABILITY OF ABSTRACT 12 1 , ABSTRACT SECURITY CLASSIFICATION i

00 f ORM 1473,84 MAR 83 APR odrtlon may bo used until exhausted
All other edltlans are obsolotr.

SECURITY CLASSIFICLlTlON OF THIS PAGE

UTTCUS S IF1 ED
ORIGINAL PAGE

POOR QUUm

L’NCUS S IFIED
sacumw CLAUICICATION oc TWIS CAW

the annealing process. it is very likely that the optimal solution to an NP-complete problem

such as channel routing may be found. Previous simulated anneafing channel routers ody per-

mitted transformations which resulted in a routing without overlapping between nonconnected

wires. The algorithm presented here proposes very relaxed restrictions on the types of allow-

able transformations, including overlapping nets. By freeing that restriction and controlling

overlap situations with an appropriate cost function. the algorithm becomes very flexible and

can be applied to many extensions of channel routing. The selection of tha transformation util-

izes a number of heuristics. still retaining the pseudorandom nature of simulated annealing.

The algorithm has been implemented as a serial program designed for a workstation, and a

parallel program designed for a hypercube computer. The details of thc serial implementation

are presented, including many of the heuristics used and some of the resulting solutions. A

description of the Intel ipsC Hypercube is given. details on how the channel routing problem

was partitioned onto the hypercube are discussed. and results for an example and some perfor-

mance calculations are presented. Finally, some concluding remarks are made concerning the

applicability of simulated annealing to the channel routing problem. and some possibilities for

future research work are discussed.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

UNCWSSIFIED
JCCURITY CL*sSIfICATION O f THIS C4CE

