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Chapter I

Summary of Research

1. Introduction

This chapter presents in Sections 2 - 7 the abstracts of the

papers that appear in full in the remaining six chapters of this

report. Each paper is a manuscript written for publication in a

technical journal and is authored by one or more members of our

research group. These manuscripts are in various stages of the

review process and their final forms will be different from those

presented here.

Sections 8 and 9 present work that was underway during the

contract but which has not progressed sufficiently for the

preparation of manuscripts. One study entitled "Application

Satellite Data to the Variational Analysis of

Three-Dimensional Wind Field" is the MS thesis topic for

Barbara Chance.

of

the

Ms.

These studies will be finalized at a later time.



2. A Variational Assimilation Method for the Diagnosis of

Cyclone Systems. Part l: Development of the Basic Model.

This paper outlines a theory for a variational objective

analysis for the diagnosis of cyclone systems. Gridded fields of

data from different type, quality, location and measurement

source are weighted according to measurement accuracy and merged

using a least squares criteria so that the two nonlinear

horizontal momentum equations, the hydrostatic equation, and an

integrated continuity equation are satisfied. We use the

variational method of undetermined multipliers to derive the

Euler-Lagrange equations necessary to create a dynamically

consistent hybrid data set. A quasi-geostrophic solution

sequence for these equations is described.

Other features of the variational diagnostic model include a

hybrid nonlinear terrain-following vertical coordinate that

eliminates truncation error in the pressure gradient terms of the

horizontal momentum equations and easily accommodates TIROS-N

mean layer temperatures in the middle and upper troposphere. A

projection of the pressure gradient onto equivalent pressure

surfaces removes most of the impacts of the lower coordinate

surface on the variational adjustment. In addition, the local

tendencies of the horizontal velocity components are reformulated

to better diagnose these hypersensitive quantities.
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An application of the variational diagnostic model to the

study of a dissipating short wave appears in the following

companion paper.



3. A Variational Assimilation Method for the Diagnosis of

Cyclone Systems. Part II: Case Study Results with and without

Satellite Data.

This paper presents the evaluation of a diagnostic

multivariate data assimilation method described in a companion

paper by Achtemeier __al.. Ground-based and space-based

meteorological data are weighted according to the respective

"measurement" errors and blended into a hybrid data set that is

required to satisfy the two nonlinear horizontal momentum

equations, the hydrostatic equation, and an integrated continuity

equation for a dry atmosphere as dynamical constraints.

Multivariate variational objective analyses with and without

satellite data are compared with initial analyses and the

observations to determine the accuracy and sensitivity of the

assimilation to different data sets. Three evaluation criteria

are developed that measure a) the extent to which the assimilated

fields satisfy the dynamical constraints, b) the extent to which

the assimilated fields depart from the observations, and c) the

extent to which the assimilated fields are realistic as

determined by pattern recognition. The last criterion requires

that the signs, magnitudes, and patterns of the hypersensitive

vertical velocity and local tendencies of the horizontal velocity

components be physically consistent with respect to the larger

scale weather systems.



The percent reduction of the initial RMS error is used to

determine the extent to which the SAT and NOSAT blended data sets

converge to the solution of the four dynamical constraints.

There was approximately 90-95 percent error reduction for the two

horizontal momentum equations when applied to the case of 1200

GMT I0 April 1979. The RMS error reductions for the integrated

continuity and hydrostatic equations ranged from 90-100 percent

except for the errors at levels 2 and 3 of the integrated

continuity equation which were reduced to approximately 70

percent.

The pattern recognition analysis for the basic fields,

height, temperature, and vector wind, revealed that the SAT and

NOSAT analyses were similar with the following two exceptions.

First. there were larger numerical differences between the SAT

height analysis and the initial objective analysis than were

found between the NOSAT analyses and the initial objective

analysis. Second, large areas of the network were void of

satellite data which caused the loss of important local details

of the temperature field. One result was the introduction of a

large (-40 m) height anomaly in the middle troposphere over the

western U.S. Both NOSAT and SAT analyses corrected a rather poor

univariate wind analysis and placed jet streaks over California,

western Texas, and the Great Lakes.
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In the analysis of hypersensitive variables, the variational

method removed or reduced the magnitudes of several large

vertical velocity centers (magnitudes greater than 10 cm sec -l)

which were placed between rawinsonde sites by conventional

methods and replaced them with a zone of positive vertical

velocity roughly parallel to the axis of an area of precipitation

Chat was used as a check on the accuracy of the final fields.

The variational analysis also concentrated an area of strong

subsidence (-14 cm/sec) along the axis of a jet streak over the

Northeastern States. It also placed a narrow band of ascending

motion near the entrance region along the anticyclonic shear side

of the jet streak, an area long noted by Chose experienced in the

motion fields surrounding jet streams as favorable for upward

vertical velocities.

The SAT and NOSAT tendency patterns were of approximately

the same magnitude and scale as the observed tendency patterns

that were obtained from NASA-AVE high frequency rawinsonde data.

With the exception of a negative tendency center in the lower

troposphere, the agreement among the tendency patterns was very

good considering that the observed patterns were subject to

interference by mesoscale phenomena and that the observed

patterns were valid at 1330 GMT rather than at 1200 GMT. The

relative accuracy of the variational tendencies was made more

apparent upon comparison of the initial field tendencies with the

observed patterns. The initial field tendencies consisted of

relatively large amplitude centers of scale roughly equal to the

6



average separation between observing sites. The magnitudes o£

these centers became unrealistically large in the upper

troposphere within high wind velocity areas.

These variational tendencies are the first relatively

accurate diagnostic fields of local tendencies of the velocity

components apart from initialization schemes for numerical

prediction models.



4. Hybrid Vertical Coordinate and Pressure Gradient Formulations

for a Numerical Variational Analysis Model for the Diagnosis of

Cyclone Systems.

A hybrid nonlinear sigma vertical coordinate that is

suitable for a diagnostic variational objective analysis model is

presented and used for an analysis of the pressure gradient terms

of the horizontal momentum equations. This vertical coordinate

grades from the sigma coordinate to a pressure coordinate at some

reference pressure level in the middle troposphere and thus

eliminates hydrostatic truncation error from this level upward.

For the lower troposphere, the nonlinear vertical coordinate is

used to show that the truncation error for a horizontally

homogeneous hydrostatic atmosphere with variable vertical

temperature structure arises because of a faulty assumption in

the transformation from pressure coordinates to the sigma

coordinates. This error is eliminated through a "nonlocal

formulation" for the pressure gradient terms that replaces the

temperature with its lapse rate in the hypsometric equation.

However, this solution is not incorporated into the variational

constraints because of greatly increased complexity that would

result in the Euler-Lagrange equations. We instead reduce the

magnitudes of the individual terms of the pressure gradient terms

approximately 30-fold by projecting the pressure gradient onto

"equivalent pressure surfaces". This solution leaves the

hydrostatic residual unchanged from the direct two-term

calculation.



5. Day-Night Variation

Temperature Biases.

in Operationally-Retrieved TOVS

The variational assimilation model offers a means for

blending satellite and conventional soundings in a way which

preserves the information content of both data sources. However,

the model requires input data which are as bias-free as possible

and about which the error characteristics are known. Because

previous studies of TOVS biases were insufficient for our

purposes, we recalculated the biases. Tiros-N soundings and

rawinsonde data for the period 26 March through 11 April 1979

were acquired. Layer mean virtual temperatures, derived from

rawiusonde thicknesses each 12 hr were objectively analyzed on a

21 x 21 grid (260 km grid spacing at 45°N) covering most of

North America. Biases were estimated by calculating the

difference between satellite-estimated layer mean virtual

temperatures and rawinsonde values interpolated in both time and

space from the analyses to the satellite data. Biases were

comparable to previous studies, however, biases for day and night

soundings were found to be statistically different (95%

confidence) at most levels for clear and partly cloudy soundings,

and at several levels for cloudy soundings. Day-night

differences are particularly large for clear soundings. In the

mid-troposphere, nighttime soundings have little bias, while

daytime soundings have a large cold bias. This day-night

difference in TOVS biases has not previously been reported in the

literature.



6. The Impact of Data Boundaries upon a Successive Corrections

Objective Analysis of Li_nited-Area Datasets.

Successive corrections objective analysis techniques

frequently are used to array data from limited areas without

consideration of how the absence of data beyond the boundaries of

the network impacts the analysis in the interior of the grid.

This problem of data boundaries is studied theoretically by

extending the response theory for the Barnes objective analysis

method to include boundary effects. The results from the

theoretical studies are verified with objective analysis of

analytical data. Several important points regarding the

objective analysis of limited-area datasets are revealed through

this study.

(i) Data boundaries impact the objective analysis by

reducing the amplitudes of long waves and shifting the phases of

short waves. Further, in comparison with the infinite plane

response, it is found that truncation of the influence area by

limited-area datasets and/or the phase shift of the original wave

during the first pass amplified some of the resolvable short

waves upon successive corrections to that first pass analysis.

(ii) The distance that boundary effects intrude into the

interior of the grid is inversely related to the weight function

shape parameter. Attempts to reduce boundary impacts by

producing a smooth analysis actually draw boundary effects

farther into the interior of the network.

10



(iii) When analytical tests were performed with realistic

values for the weight function shape parameters, such as the

GEMPAK default criteria, it was found that boundary effects

intruded into the interior of the analysis domain a distance

equal to the average separation between observations. This does

not pose a problem for the analysis of large dataaets because

several rows and columns of the grid can be discarded after the

analysis. However, this option may not be possible for the

analysis of limited-area datasets because there may not be enough

observations.

The results show that, in the analysis of limited-area

datasets, the analyst should be prepared to accept that most

(probably all) analyses will suffer from the impacts of the

boundaries of the data field.

11



7. On the Notion of Varying Influence Radii for a Successive

Corrections Objective Analysis.

This study examines the NOTION that the best successive

corrections objective analysis is obtained by first analyzing for

the long wavelengths and then building in short wavelengths by

successively reducing the influence radius for each correction

pass. It is shown that the best objective analysis, as measured

by filter fidelity (how well the objective analysis restores

desired wavelengths and removes undesired wavelengths), is

realized for the Barnes method if the effective influence area

used for the correction pass is equal to the effective influence

radius used for the first pass. The improvements are relatively

small, ranging from a few percent for long wavelengths to about

ten percent for short but resolvable waves. However, increased

simplicity and potentially great reductions in computer time

needed to analyze large masses of meteorological data advance

these modest gains. Therefore, rather than attempt to build

desired detail into an analysis, the analyst should determine the

detail permitted by the data quality and distribution and analyze

directly for these motion scales.

12



8. Application of Satellite Data to the Variational Analysis of

the Three-Dimensional Wind Field

Two of the Euler-Lagrange equations, the integrated

continuity equation and the velocity adjustment potential

equation have been extracted from the general variational

assimilation model and adapted for calculating mesoscale vertical

velocities. This technique consists of a variational blending of

vertical velocities obtained from the kinematic and adiabatic

methods. The relative weights assigned to these methods are

deduced from GOES infrared digital cloud top temperature data and

from GOES visible brightness data. The kinematic method receives

greatest weight near the surface and in deep cloudy areas. The

adiabatic method is assigned the greatest weight in layers not

strongly influenced by diabatic heating: clear regions and

levels above the tropopause.

This algorithm reduces errors introduced by the kinematic

method used alone. These errors arise from the wind

measurements, data interpolation, and the finite difference

approximation to the differential equation. Combining the

kinematic method with the adiabatic approach provides an

independent estimate of vertical velocity and removes sole

reliance upon the kinematic method.

13



9. Estimating the Accuracies of Kinematic Vertical Velocity

Methods by Pattern Comparisons with Precipitation.

The variational assimilation model requires as input the

observations of the vertical velocity. Since the vertical

velocity is not directly observed, it may be assumed to be zero

initially or may be calculated from some equation that relates

the vertical velocity to other variables that are observed. We

desire that the vertical velocity be determined as accurately as

possible and that it be determined from some algorithm that is

independent from the dynamic constraints so as to assure some

degree of independence among the initial variables.

There are a number of short-cut methods for calculating the

vertical velocity. None of these methods give the true vertical

velocity, however one may give more accurate estimates than the

others. In this study we examine the relative merits of two

kinematic methods for estimating vertical velocity. One makes

use of the integrated continuity equation to estimate vertical

velocity by the O'Brien (1970) method and the other is a

simplification of the Petterssen (1956) development equation.

The first method (divergence method) is well known to be

sensitive to small errors in the wind observations. It also has

been found to locate centers of vertical velocity approximately

midway between observation sites when the wind field is obtained

by univariate objective analysis. The second method (vorticity

method) requires specification of the vertical velocity profile.

14



Simplifying assumptions also restrict this method to the analysis

of wind fields surrounding weakly baroclinic cyclones some of

which are accompanied by widespread stratiform and embedded

convective precipitation. These systems are common during summer

and occur occasionally during fall and winter.

We are calculating vertical velocity fields with the two

methods. The results will be compared with precipitation

patterns available from hourly radar summary data. The results

of these comparisons will determine whether one or the other or

some combination of the two methods produces the best

distribution of vertical velocity.

References
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A Variational Assimilation Method for the Diagnosis of

Cyclone Systems. Part l: Development of the Basic Model

by

Gary L. Achtemeier, Harry T. Ochs llI, and Julia Chert

Illinois State Water Survey

Champaign, IL 61820

ABSTRACT

This paper outlines a theory for a variational objective analysis

for the diagnosis of cyclone systems. Gridded fields of data from

different type, quality, location and measurement source are weighted

according to measurement accuracy and merged using a least squares

criteria so that the two nonlinear horizontal momentum equations, the

hydrostatic equation, and an integrated continuity equation are

satisfied. We use the variational method of undetermined multipliers

to derive the Euler-Lagrange equations necessary to create a

dynamically consistent hybrid data set. A quasi-geostrophic solution

sequence for these equations is described.

Other features of the variational diagnostic model include a

hybrid nonlinear terrain-following vertical coordinate that eliminates

truncation error in the pressure gradient terms of the horizontal

momentum equations and easily accommodates TIROS-N mean layer

temperatures in the middle and upper troposphere. A projection of the

pressure gradient onto equivalent pressure surfaces removes most of

the impacts of the lower coordinate surface on the variational

17



adjustment. In addition, the local tendencies of the horizontal

velocity components are reformulated to better diagnose these

hypersensitive quantities.

An application of the variational diagnostic model to the study

of a dissipating short wave appears in the following companion paper.

I. introduction

The proliferation of new methods to measure the state of the

atmosphere through remote sensing and advanced immersion techniques

has led to the need to merge data collected from these new measurement

systems with data collected routinely by traditional methods. These

data include a number of different variables that are diverse in

measurement accuracy and in observation location. Therefore, it is

desirable to merge the data so that the hybrid product will contain

the best approximation to the significant meteorological variables.

This paper reports on the development of a diagnostic method to merge

data of different source, type, quality and location in a dynamically

consistent manner. We further develop and improve upon a diagnostic

variational objective analysis technique developed by Achtemeier

(1975) for the study of cyclone scale weather systems. A companion

paper (Achtemeier, et al., 1986) deals with an evaluation of the

method using a case study.

In most cases, the creation of a dynamically consistent hybrid

set of data is accomplished through some form of data assimilation

coupled with an initialization for a numerical model. Observational

18



data is blended with model forecast fields through an interpolation

technique (Cressman. 1959; Gandin, 1963; Schlatter; 1975) in which

the latter, used as a first guess, is updated with the observations.

These methods are multivariate; wind observations are used in the

interpolative analysis of the height and temperature fields and vice

versa. Then some initialization procedure such as dynamic

initialization (e.g., Miyakoda and Moyer, 1968; Nitta and Hovermale,

1969) or normal mode initialization (e.g., Baer and Tribbia, 1977;

Machenhaur. 1977) brings the hybrid data set into consistency with a

numerical model. Highly sophisticated dynamically consistent data

assimilation schemes such as those described by McPherson, et al.,

(1979), Bengtsson, et al., (1982), Ghil, et al. (1979), Temperton

(1984), and many others produce accurate representations of the state

of the synoptic scale atmosphere. These hybrid data sets, though

modified to be consistent with the scales of motion permitted by the

models, may be useful for diagnostic studies as well as for initial

states for forecast models.

The approach taken here is to develop a purely diagnostic method

for the dynamic merger of diverse data. This is not to say that the

variational method is superior to the data assimilation methods used

with prognostic models, only that it is, by design, independent of

numerical models and is therefore different from the other methods.

It serves a different purpose, namely the diagnosis of the morphology

and energetics of cyclone systems, whereas many studies of numerical

forecasts with mixed data sets are focused upon improved forecast

skill. However. the variational model may eventually be of value in

19



comparisons with existing data assimilations and may provide insights

that could lead to improvements in both methods.

The goal of our research is a variational data assimilation

method that incorporates as dynamical constraints, the primitive

equations for a moist, convectively unstable atmosphere and the

radiative transfer equation. Variables to be adjusted include the

three-dimensional vector wind, height, temperature, and moisture from

rawinsonde data, and cloud-wind vectors, moisture, and radiance from

satellite data. This presents a formidable mathematical problem. In

order to facilitate thorough analysis of each of the model components,

we defined four variational models that divide the problem naturally

according to increasing complexity. The first variational model

(MODEL i) contains the two nonlinear horizontal momentum equations,

the integrated continuity equation, and the hydrostatic equation.

Problems associated with an internally consistent finite difference

method, a nonlinear hybrid terrain-following vertical coordinate,

formulations for the pressure gradient terms, formulations for the

velocity tendency terms and the development of a convergent solution

sequence are addressed with MODEL I and are the subject of this paper.

MODEL II contains MODEL I plus the energy equation for a dry

adiabatic atmosphere. The introduction of this additional constraint

violates the requirement that the number of subsidiary conditions

(dynamic constraints) must be at least one less than the number of

dependent variables (Courant, 1936). inclusion of the same number of

constraints as dependent variables overdetermines the problem and a

20



solution is not guaranteed. Therefore, we must develop a scheme to

circumvent this problem or else the dynamically adjusted

meteorological variables will not satisfy the closed set of primitive

equations. MODEL Ill contains MODEL II plus an additional moisture

variable and equation to describe moist adiabatic processes. MODEL IV

includes MODEL Ill plus radiance as a dependent variable and the

radiative transfer equation as a constraint.

The next section presents the philosophy of a variational

diagnostic data assimilation method. Section 3 presents the dynamic

equations in the forms they enter the variational formalism as

constraints. The variational equations are derived in Section 4.

Details concerning the grid mesh, boundary conditions, and convergence

of the equations are found in Section 5. Section 6 summarizes the

model.

2. A Variational Approach to Diagnostic Data Assimilation

A good diagnostic analysis includes appropriate mathematical

algorithms applied to accurately gridded fields of meteorological

variables. This diagnostic objective analysis is an adaptation of

Sasaki's (1958) method of variational analysis. Data from different

measurement systems are weighted according to measurement accuracies

and are blended using a least squares method into a hybrid data set

that satisfies a set of subsidiary conditions. Sasaki (1976a) has

presented two variational formulations for the solution of the data

assimilation problem. His "weak constraint" formalism requires only a

21



partial satisfaction of the subsidiary conditions through coefficients

determined by the analyst. The subsidiary conditions are satisfied

exactly through the "strong constraint" method. Ikawa (1984) has

shown that the weak constraint algorithm converges to the strong

constraint formalism as the coefficients become large.

This study makes use of the method of undetermined multipliers

(strong constraint formalism). The constraints are the nonlinear

horizontal momentum equations (products of a variational principle

(Wang, 1984)), the hydrostatic equation and an integrated form of the

continuity equation. The adjustments are carried out on fields of

meteorological variables obtained through univariate objective

interpolation. This kind of variational formulation has been

criticized by Williamson and Daley (1983) on the grounds that the

adjustments to the dynamic state are carried out from gridded fields

rather than from the observations. Alternatively. observation

statistics for different measurements of the same variable can be

carried in the analyzed fields, perhaps as proposed by Baker (1983).

Another implication of the method of undetermined multipliers is the

extreme complexity of the variational equations which stimulates a

need for simplier methods to create hybrid, dynamically balanced data

sets. Wahba and Wendelberger (1980) have shown that multivariate

statistical objective analysis and variational analysis are

interchangeable for linear constraints. Our variational method

permits nonlinear constraints, allows for the physical interpretation

of the adjustments and provides mutual adjustment between the mass and

wind fields (Temperton, 1984).
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Accurately gridded meteorological variables are a requirement for

any good diagnostic analysis. There are also quantities which,

because of poor instrument accuracy or insufficient sampling

frequency, cannot be measured directly and must be inferred through

functions of other measured variables; in our case, they are products

of the variational blending process. Among these are hypersensitive

variables that are sensitive to small changes in the other variables,

such as vertical velocity and the local tendencies of the horizontal

velocity components which appear explicitly in the variational

formulation. The variational diagnostic model must also produce

accurate fields of these hypersensitive variables.

Krishnamurti (1968) calculated diagnostic vertical velocities

through a 12-forcing function balance omega equation. More recently,

Smith and Lin (1978) preferred vertical velocities diagnosed from the

O'Brien (1970) variational method. Our variational model calculates

vertical velocity from a generalized form of the kinematic method for

which the O'Brien method can be shown to be a special case.

The local tendency terms of the horizontal velocity components

are particularly difficult to determine with any accuracy because of

the coarse sampling frequency of operational data collection networks.

Local tendencies can be incorporated into the variational analysis by

fixing them and assuming that the generated error will not appreciably

contaminate the solution. But this ignores the fact that the tendency

terms are of the same order of magnitude as the advection terms and

that generated error undoubtedly will contaminate the solution,

23



especially the error sensitive divergence calculations. Sasaki

(1970b), Sasaki and Lewis (1970), and Lewis and Crayson (1972) have

used a "time-wise localized" method which physically is not a time

adjustment, but rather a space filter designed to adjust variables in

space at a particular time such that the local tendency is minimized

with partial constraint satisfaction. Achtemeier (1975) included

local rates of change in a primitive equation variational model

through a subsidiary variational formulation based upon O'Brien's

(1970) divergence adjustment method. This method was considered a

failure after an extensive analysis (Achtemeier, 1978) found

unrealistically large velocity component tendencies where actual

velocity changes over a 12-hr period were small.

More recently, Lewis (1980, 1982) has examined the problem of

time consistency from a Lagrangian approach through the application of

Thompson's (1969) variational method. By requiring conservation of

quasi-geostrophic potential vorticity, Lewis et al. (1983) combined

rawinsonde data with VAS height data taken 2.5 hr later and found

vertical velocity fields that compared favorably with space-observed

cloud fields and surface weather reports. These studies and the

results from Bloom's (1983) mesoscale analysis imply that variational

methods can be used with some success in the direct determination of

tendency variables, at least for observation frequencies on the order

of 3-hr.

3. The Formulations for the Dynamic Constraints

24



The dynamic constraints, Mi,

horizontal momentum equations,

integrated continuity

(I)-(4)) have been

for MODEL I are the two nonlinear

the hydrostatic equation, and an

equation. These constraints (see equations

transformed into the Lambert conformal map image

projection and into a hybrid nonlinear sigma vertical coordinate. The

equations have been nondimensionalized and presented in powers of the

Rossby number. An additional transformation removes most of the

impacts of unlevel terrain. Furthermore, thermodynamic variables are

partitioned into mean and perturbation variables. The variational

adjustments are carried out only on the scale of the meteorological

perturbations. The equations are listed below. Discussions of the

various transformations that render the equations into the forms shown

and definitions of nonconventional symbols follow.

The four dynamic constraints as they appear in

variational model are:

_u _u + R _ _u
ml = Ro [_u + m (u-c x) _x + m (V-Cy) -_y o -8-O]

- (i + RlC)V + (i + RIK) [_x + nx] .+ fu

the diagnostic

(l)

_v _v _ _v
m2 = Ro [_v + m (u-c x) T_x+ m (V-Cy) _+ RO -_]

+ (I + RIC) u + (l + RIK) [8_-_y+ ny] + f. V

(2)

m 3 =

where

I .Su By. I_+W) do + (_- _o) + F do

Lh -8u 8v- _K + v 8K
F " _-_ q2 t0s + RIK (_-x+_) - R1 (u _x • -_)

(3)

m4 _o + _ 8_nP= " Do + _ = O
(4)
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a) A Hybrid Nonlinear Sigma Vertical Coordinate

The vertical coordinate used for this analysis model is an

extension of the terrain-following coordinate system of Phillips

(1957). Although this coordinate eliminates problems with the lower

boundary encountered with other vertical coordinates, considerable

error can be introduced into the pressure gradient terms of the

momentum equations upon transformation into the Phillips coordinate.

The pressure gradient terms transform into two large and compensating

terms where there is steep sloping terrain. Pressure derivatives

taken along the sloping sigma surface can contain a hydrostatic

component that does not cancel among the two terms. Furthermore, the

variational formalism will separate the pressure gradient terms and

combine the large uncompensated terms with terms from the other

equations. The large nonmeteorological contribution by these terms

can also cause significant truncation error in the final solution

unless methods are developed to remove them.

We have eliminated the above problems from the middle troposphere

upward and have reduced them in the lower troposphere through the

introduction of a hybrid nonlinear sigma vertical coordinate that

blends from a terrain-following coordinate to a pressure coordinate at

a reference pressure level p in the middle troposphere. For a

complete description of this vertical coordinate, refer to Achtemeier
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and Ochs (1986). All horizontal variations caused by the lower

coordinate surface are confined to levels below p . The smooth

transition from the sigma to the pressure coordinate is accomplished

by fitting two curves which are piecewise continuous through the

second derivatives. The curve from the top of the domain Pu to

p is linear in pressure. The relationship between sigma and

pressure is cubic between p and the surface pressure Ps" The

equation for the hybrid vertical coordinate is

- B (P-P*)3 + _,
(P-Pu)

(p*-pu) ( 5 )

Ps-Pu -3

B " [i- O* (p,-_pu) ] (ps-p*)

The first term of (5) is zero where p__ p .

(6)

The hybrid nonlinear vertical coordinate permits the dynamical

equations to appear in their simplest forms on the pressure surfaces

at and above the reference pressure level. Coding to omit terms that

are zero for coordinate surfaces that are surfaces of constant

pressure can result in a substantial reduction of computational

overhead for this variational model. The tradeoff is that the

*

complexity of the equations below p is increased over the

complexity of the equations written for the linear sigma coordinate.

However, the magnitudes of these additional terms become small in the

sigma levels above the lower coordinate surface.

b) Expansion of the Local Tendencies
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Local changes in the horizontal velocity components are caused by

a combination of translation of existing disturbances and development.

In partitioning the tendencies, we note that, for example, the local

change in the u-component of the wind caused by a moving weather

system is

__ du (7)
_u = _ c'Vu + d--'t_t

where c is the velocity of an advective or steering current

(Fjortoft,1952), usually a smoothed middle tropospheric wind. Let

U=Uo+U" where u 0 is the u-component of the steady state part of

the circulaton and u" is the u-component arising from development.

Then,

_u (du'
_--f= - c-Vu ° + ._--f--- c'Vu') (8)

The first term of (8) is the local change in u caused by translation

of the steady state part of the weather disturbance. The second term

contains the local change of u from development. Note that the

vertical advection of u is considered part of development.

The use of the advective current throughout the troposphere is

valid because most synoptic systems tend to maintain vertical

structure. Any changes in vertical structure are assumed to be the

result of development. The variational formalism requires that the

adjustments be carried out on the total velocity components.

Therefore, we represent the local tendency of u by (7). The total

derivative, an approximate developmental component, is defined as a

new dependent variable, _,.=du/dt (_._dv/dt). With these definitions
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substituted into (7), the local tendencies of u and v are replaced by

the forms that appear in the constraints (I) and (2).

c) Scale Analysis

The equations of constraint are nondimensionalized following the

methodology of Charney (1948), Haltiner (1971) and others. Our use of

quasi-geostrophic scale theory revealed the need to transform the

pressure gradient terms of the horizontal momentum equations in order

to decrease the impacts of steeply sloping terrain upon several terms.

Partitioning the thermodynamic variables into reference and

perturbation variables is necessary for the variational adjustments to

be with respect to meteorological scales of motion. Further, the

expression of the terms of the equations in powers of the Rossby

number permits a solution sequence in which the higher order nonlinear

terms are gathered into forcing functions. As part of the expansion,

the mapscale factor m and the Coriolis parameter f expand into

m=I+RIK and f=I+RIC where the arrays K and C are of order one and

Rl=0.1. There remains a set of linear algebraic and partial

differential equations that can be solved easily by conventional

techniques. However this method is not expected to yield a solution

for the tropics nor for the mesoscale or wherever the Rossby number is

greater than one. Finally, the scale analysis for our extratropical

domain confirmed that map projection terms in the horizontal momentum

equations may be dropped.

d) Transformation of the Integrated Continuity Equation
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The mass continuity equation in generalized

and Hovermale, 1968) is

The material derivative in the Lambert map projection is

d _ _ _d-_= _-_+ mu_ + mv + & _-_

Upon expanding the map scale factor m, (9) becomes

c_u/K + _v/K_
V3"_ + RI K2 " _x _" + d-_ (in _-_O) = 0

The last term of (II) is determined from the equation for

vertical coordinate (5). Further, given (6) and

definitions,

coordinates (Shuman

(9)

( _ 0 I )

(ii)

the hybrid

the following

= O*/(p*-pu), (.12)

J = 38 (p_p,)3 + 0c (p-p*), (13)

it can be shown that

_t (£n _) =ql _ + q2 0_s (14)

-2 [J-C_ (p-p*) ] I

where ql = j2

(p_p,)3 Js [J 2e (PIP*)]

q2 = (ps-p*) 4 j2

Js is obtained by substituting Ps for p in (13). Including

these, modifications leads to the following form for the continuity

equation,

_u _v _&
_---x+-_y +-_ + ql _ + F = 0 where p > p* (15)

where (_u/K _v/K.
F = q2 _s + RIK2 "_+_)
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Both ql and q2 are zero where pep • When solved for (F,

(15) becomes the following non-homogeneous linear partial differential

equation,

I _u _v efql_d_= e-fql_ _o - e-fql_ [(_x + -_) + F] (16)

The domain of integration is arbitrary. For MODEL I, it is the

depth of the atmosphere contained within the grid. In the more

complex versions, the domain of integration will be sigma layers. In

order to simplify the solution of the Euler-Lagrange equations we set

ql=0. This assumption removes the dependence of the integrated

divergence on the variable pressure thickness of the sigma levels.

Therefore, divergences in the levels near the surface over elevated

terrain receive proportionally greater weight in the vertical velocity

adjustment. We make this assumption because vertical velocities over

elevated terrain are not important to this phase of the development of

MODEL I. With ql=0, (16) simplifies to the form in (4).

e) Pressure Gradient Force for the Diagnostic Variational Model.

The problem of hydrostatic inconsistency in the pressure gradient

force has already been eliminated in the middle and upper troposphere

through the hybrid nonlinear vertical coordinate. We reformulate the

.
pressure gradient force at levels below p to reduce the magnitude
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of the individual terms because the variational formalisms will

separate the pressure gradient terms and combine the large

uncompensated terms with terms from other equations. The large

nonmeteorological contribution by these terms can cause significant

errors in the final solution unless methods are developed to remove

them. Achtemeier and Ochs (1986) present a thorough analysis of the

hydrostatic equation and the pressure gradient force in the hybrid

nonlinear vertical coordinate. Those results are summarized here.

We reduce the magnitude of the individual terms by projecting the

pressure gradient onto equivalent pressure surfaces. The terminology

"equivalent pressure surfaces" is used to avoid confusion with methods

that calculate the pressure gradient on surfaces of constant pressure

and then interpolate the results to sigma coordinate surfaces

(Kurihara, 1968).

We first remove a hydrostatic component from both terms by

partitioning the pressure gradient to cancel most of the orographic

part. The separation is not complete because the mean layer

temperature is not partitioned. The geopotential and pressure are

expressed as an orograhic part plus a remainder, _w = _T+_ and

pw_pT+p. Here the subscript w implies the whole or unpartitioned

variable. Substitution into the hydrostatic equation gives

= 0
3o (17)

where

3 in (p) (18)
Y = 3o

32



and

-- 3_ 34#T RTw _PT

B = i) --f6-+-f6-+ F a--S- (19)

This equation describes the hydrostatic relationship between

meteorological perturbations. The perturbations are subject to the

variational adjustments. Most of the orographic component is located

in _ . Eq. 17 can be solved accurately if the layer average

pressures are equal to the average of the arithmetic mean plus twice

the geometric mean. The orographic variables are found by setting

=0 and defining p as equivalent pressure surfaces.

Having derived the relevant partitioned variables, the pressure

gradient terms are easily transformed, e.g.,

PGX =-_x + qx

where

a_T 3 in (pw)

qx = _ + R_x _x

(20)

Fig. I shows the height of the lower coordinate surface for a

grid to be used for the diagnostic variational analysis of data

collected at 1200 GMT I0 April 1979. The heights on the unpartitioned

terrain-following coordinate vary from 0-1800 m approximately (Fig.

la) and show the steep gradients that surround a smoothed high

elevation area over the western U.S. The heights remaining after the

removal of the hydrostatic component that arises from variations in

the elevation of the lower coordinate surface are shown in Fig. lb.

Calculations show that the projection onto equivalent pressure

surfaces reduces the magnitudes of the these variations by about
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30-fold. The equivalent 1O0O mb heights resemble the actual 1000 mb

heights (Fig. lc) with the exception that the heights of the low_

center over the West are approximately 60 m higher in Fig. lb. This

residual orographic effect is retained through the unpartitioned mean

layer temperatures.

Finally, we partitioned the thermodynamic variables into

reference and meteorological perturbation atmospheres. Once

determined, the reference atmosphere was not altered. However. this

required that it be in hydrostatic balance initially. Removal of the

reference atmosphere does not alter the form of the constraints from

that given in (I)-(4).

4. Euler-Lagrange Equations for the Diagnostic Model

The previous section has presented the equations of constraint in

the forms that they will appear in the diagnostic variational model.

These equations are written in finite differences according to the

grid structure of this model and the Euler-Lagrange equations derived

from them. We derived two finite difference variational models, one

with the dynamic equations written in uncentered differences on a

nonstaggered grid and the other formulated with centered differences

on a staggered grid. We sought a final difference formulation for the

Euler-Lagrange equations that is symmetric about the central grid

point. The centered difference formulation on a staggered grid proved

most suitable from this standpoint.

Following Shuman and Hovermale (1968) and Anthes and Warner
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(1978), we have defined the horizontal finite difference operators and

the finite averaging operators as

_x _ (_i+i/2,j - _i-i/2,j ) / Ax

y (_i,j+i/2 _i, j-i/2 ) / Ay

--x

-= (_i+i/2,j + _i-i/2,j ) / 2

(21)

_Y - (_i,j+i/2 + _i,j-i/2 ) / 2

The i is the east-west index, the j is the north-south index as

measured at the grid origin which is located at the lower left corner

of the grid. In addition, the vertical differences and averages are

defined by

SO E (_k+I/2 - _k-i/2 ) / A_

: (_k+l12 + _k-l12 ) 1 2

(22)

Figure 2 shows the staggered grid developed for this model. The

geopotential _ is defined at the grid intersections, v is located at

the top and bottom and u is located at the sides of the grid square.

The divergence D is found at the center of the grid. The layer mean

temperatures T are defined at one half grid length above and below the

grid intersections and the vertical velocity _ is located one half

grid space above and below the divergence. Mesinger and Arakawa

(1976) have shown that phase speed and dispersion properties of this
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staggered grid make it inferior relative to other grid configurations

for numerical prediction. However, the grid with v located on the top

and bottom and u located on the sides of the grid box is well suited

for the solution sequence developed for the Euler-Lagrange equations

later in this section. Other variables used in the variational

analysis are collocated with the variables in Fig. 2 as follows: _v-

and _, at v. _ and _zat u, )k3 at D, and _,at _.

The finite difference equations for the horizontal momentum

equations written for the staggered grid are

7YO

M I = R o[_u y + m-°{(u- < fyu--yx + _X(v_ Cy) u xy + Ro
(23)

- + +nXJ+fu = o

-- _, .xO

M2 = Ro [E_Y + mY(u - Cx ) _5'x+ mY(v- Cy )xy vXy + No O vxyG]o

(24)

+ (I+RI-CY)u + (I+RIK--Y) [_y + ny] + fv = 0.

The analogs for the continuity and hydrostatic equations are

I I .Lh Rl_XY (Ux+Vy)M3 ffi (ux+vy) dO + ($-Oo)+ [_-_ q2_s +

_R 1 (u-"x_y + _ "=xx Ky)] do = 0 (25)

M4 = ¢0 + _ (£n P)O + _ = 0

The four dynamic constraints are referenced,

following locations: M I at v, M 2 at u2M 3

on Fig. 2.

respectively,

at D and M 4 at

(26)

to the
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The variational analysis melds satellite data with conventional

data at the second stage of a two-stage objective analysis. All data

are gridded independently in the first stage and are combined in the

second stage. The gridded observations to be modified are meshed with

the dynamic constraints through Sasaki's (1970a) variational

formulation. The finite difference analog of the adjustment

functional is

= AxAy _ Y aibj
i j Iij

The integrand li, j is

(27)

I = Wl (u-u°)2 + 71 (v-v°)2 + W2 (___o)2 + w3 (¢__o)2

+ W4 (-___o)2 + 75 (dpx- _xO)2 + 75 (_y_ _yO)2 + "11"6(_0"-_CY 0)2

+ 77 (_u-_u °)2 + _'7 (_v-_'v °)2 + 2'I1 M1 + 2 %2 M2 + 2 %3 M3

+ 2 %4 M4 (28)

The weights "_, i=1,7 are Gauss" precision moduli (Whittaker and

Robinson, 1926). The gridded observations (u o, v o _o , _o$ J

To' _7' _ ) to be adjusted enter in a least squares formulation

and receive precision modulus weights according to their relative

observation accuracies. The strong constraints to be satisfied

exactly are introduced through the Lagrangian multipliers _[ j i=1,4.

Objectively modified meteorological variables are determined by

requiring the first variation on F to vanish. A necessary condition

for the existence of a stationary set is that the functions are
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determined from the domain of admissible functions as solutions of the

Euler-Lagrange equations. The variation is to be carried out at every

point (r,s) within the grid. Thus, setting the weights ai=bj=l

and differentiating the integrand (28) with respect to the arbitrary

variable (_r,s), the Euler-Lagrange operator in finite differences is

_r,s lul,J _Ur,s al, j r s

The Kronecker delta functions _i, _, equal I where r=i or s=j

and are zero elsewhere. Each term in li, j that contains an overbar

wx
term, e.g. c/_s , produces a corresponding overbar term in the

Euler-Lagrange equations when subjected to the operations specified by

(29). It is convenient that the multiplicate overbar terms such as

_ that appear in the nonlinear terms of the constraints be replaced

by _,s so that fewer gridpoints are required to express these terms

in the Euler-Lagrange equations.

The Euler-Lagrange equations for u, v, and _ result from the

operations specified by (29). The equations are

- [mXY_%l (u----_x)x]x- [m ')'l(V-cy)X]y- Ro

-x

(_ .-xyo )o}
(30)

- RZ + K-xy]x: 0

_i (v-v°) - (Ida) %3y - %1 (I+RI_) + Ro

-[m %2(U-Cx)Y] x - [m--XYq(v--_cy)Y]y- R°

--x_xy
{m--x)kI u_ + m A2 _ y

(31)

- RI [(%3KXy)y + %3 _xy] = 0
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The Euler-Lagrange equations for the thermodynamic variables

are

(32)

and T

-- o --x _y

-x o_5 (_-_°)xx + _ (_-_)yy + _66 (___o)_@ + _5x (_x-_x) + _5y y -y-

o

+ _60 (_-_O) - ]13 (___o) + _ix (I+RIK) + _2y (I+RIK) + _40 = 0

]14 (_:_- TO) + ¥%4 = 0 (34)

(33)

Similarly, the operations performed for E_ and _ yield

]I7 (_u-gC) + Ro_-_'Y = 0 (35)

]17 (Cv-gC) + Ro-_Y2 0 (36)

Variation on the Lagrange multipliers

dynamic cons train ts (23)-( 26 ).

restores the four original

Some of these Euler-Lagrange equations are complicated nonlinear

partial differential equations

obtain by direct conventional

proposed for the solution so

for which solutions are difficult to

methods. An iterative method is

that at the first cycle level, terms

multiplied by R° or R I are expressed with observed variables and

are expressed by previously adjusted variables at subsequent cycles.

At any particular solution cycle, these terms and the terms that are
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determined

forcing functions. Following this

equations for u, v, y , and _ become

by observed variables are specified and can be treated as

argument, the Euler-Lagrange

HI u - (AO) %3x + %2 + FI = 0
(37)

HI v - (40) %3y - %1 + F2 = 0 (38)

_2 _ + _3 + F3 = 0 (39)

,-rX _--y+ ]160_

- II3_ + %ix + %2y + %4o + F4 = 0

Similarly, the four dynamic constraints become

(4O)

#x - v +F 5 = 0 (41)

_y + u + F6 = 0 (42)

I (ux + Vy) dO + _ + AO F 7 = 0 (43)

_O + YT<_ + 8 = 0 (44)

Now these equations and (35) and (36) complete a set of eleven

simple algebraic or linear partial differential equations. Variables

may be easily eliminated to reduce the number of equations. Equations

(37), (38), (41), and (42) formulated as vorticity expressions are

combined to eliminate u and v.

= - + + (IIIF5) x + (IIIF6)
%Ix + %2y (Illqbx)x + (Illqby)Y Fly F2x x

(45)
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Equation (43) is combined with (34) to eliminate T,

]14

_4_ = (--2 _)_ + F8
7

(46)

where

]14 -_ ]148

F 8 ffi (-_- T°)O + (--_-)
y

(47)

Note that both (45) and (46) contain terms that obey the identity

(ABz) z zz z z
(48)

Now _,, _z' and _¢can be eliminated in (45)-(48).

three-dimensional second-order partial differential

non-constant coefficients in _ ;

This leaves a

equation with

Y

II4 __

+ (]11 + [[5)y _yy + (]16 + -_)c_ _c_ - ]13_ + F9
Y

where

= 0
(49)

= _ +F 4 + F 8F9 Fly + F2x + (]IIF5)x + (IllF6)y
(5O)

All of the coefficients of the geopotential and its derivatives are

functions of precision modulus weights and their derivatives. Note

that the coefficients of the first three terms of (49) are sums of

precision moduli. These are always positive, the three coefficients

are always positive, and (49) is always elliptic over the analysis

domain.
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Variables are also eliminated to produce a diagnostic equation in

_3" Dividing (37) and (38) by _ and reformulating as components of

the divergence gives

u - (/da 1

x ]71 13x) x + [_i (12 + FI) ]x = 0 (51)

v - (/do i
Y _ %3y)y + [_ii (-%! + F2) ]y = 0

(52)

Then (51) and (52) combine into the divergence and after integration

over some interval _0", become

-I (Ux+Vy) d° + ()'3x I /dO-_i dO)x + (x3y f /dO dO)y

f i i- {[ + q) Ix- (-%1 + F2)]y} da = 0

Now O" is eliminated from (47) and (51) so that

(53)

I (ux + v ) dO -_3 F3
Y _2 _2 + F7 = 0 (54)

_3 is obtained upon elimination of theA diagnostic equation in

integrated divergence through combining (53) and (54):

(),3x f fdc_ _3"_i dO)x + (x3y f ]'do +dO)y - _2 F10 -- 0
(55)

FIO I {[I [1 F3
= - _i (_2 + Fl)]x + h I (-hi + F2)]y} d_ -_2 + F 7

(56)

Since _3=_3(x,y), it follows that "_['A,- We also note that
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several terms of (55) obey the identity (48).

transforms into the two-dimensional second-order elliptic

differential equation with non-constant coefficients given by

Therefore (55)

partial

(57)

+'_3y (/dO) do - _-_+ FIO = 0
H I Y

The relationship between u, v, and in (37) and (38) shows

that (57) is an equation for an adjustment velocity potential. With

the exception of a few small terms that contain the divergent part of

the wind, (49) is a diagnostic equation for the rotational part of the

wind. The solution sequence dictates that we adjust first for the

rotational part of the wind and then for the divergent part of the

wind. Our MODEL I is, in actuality, a variational adjustment within a

variational adjustment. This formulation relaxes the requirement that

the number of subsidiary conditions must be at least one less than the

number of dependent variables (Courent, 1936) and therefore the energy

equation may be included as the fifth constraint (MODEL II) without

overdetermining the problem.

5. Computational Details

a) Grid Domain

The ten level hybrid vertical coordinate model has the state

variables staggered in both the horizontal and vertical dimensions.

43



See Fig• 2 for the horizontal grid template• The variables u, v.

_, _ _ and _ are located at 100 mb intervals from the top of the

domain (I00 mb) to 700 mb (p*)• The constraints Ml, M2, and

M 3 are referenced to these surfaces• T, _ _ and M 4 appear at

150-j 250-, 350-, 450-, 550-j and 650-mb surfaces• Further_ the upper

boundary on _ is at 50 mb (d" =0)• The hybrid nonlinear vertical

coordinate requires that the coordinate surfaces be standard levels

above p • This choice allows the incorporation of TIROS-N mean

layer temperatures directly without initial vertical interpolation and

eliminates the need for any vertical interpolation in order to

interpret the final analyses.

Below p , u, v and the developmental components appear on sigma

surfaces and _ and M 4 are located at the half levels. The first

three dynamic constraints and _ are referenced to the equivalent

pressure levels and the mean layer temperature is located at the half

levels• The lower boundary for _ ( _ =0) is the ground• We have

also chosen the surface observations to be representative of the

average conditions of the lowest sigma layer. This means that the

boundary layer divergence is representative of the mean divergence of

this lowest layer.

b) Boundary Conditions

The correct number of boundary conditions are furnished by the

variational formulation such that a unique solution is provided when

natural and/or imposed boundary equations are satisfied (Forsythe and

44



Wasow, 1960). Natural boundary conditions are derived from the

constraints as numerical expressions to be solved. However, the

complexity of these expressons for the MODEL I dynamic constraints

dictates the use of imposed boundary conditions whereby the dependent

variables are specified on the boundaries. The solution sequence

designed for MODEL I requires that boundary conditions be specified

for the geopotential and adjustment velocity potential diagnostic

equations, the remaining equations in the adjustment cycle, and the

vertical velocity. In addition, special boundary conditions are

imposed by the cyclic solution sequence. Details of the various

boundary conditions follow.

Boundary conditions on the 2eovotential adiustment. Imposed

boundary conditions for the geopotential adjustment equation (49) are

supplied by the gridded fields of the observed meteorological

component of the partitioned height field. The top boundary is

provided by the analysis at I00 mb. The lower boundary is the

meteorological height component transformed onto equivalent pressure

surfaces (see Section 3e).

B@undarv conditions on the velocit7 adiustment potential.

Lateral boundary conditions are required for the adjustment velocity

potential equation (57). They are imposed and may be either Dirichlet

or Nevmann boundary conditions. It is well known that the

specification of boundary conditions on the velocity potential

determines the structural details of the recovered wind field to some

degree (Hawkins and Rosenthal, 1965). Furthermore, there appears to

45



be no method of uniquely specifying the boundary conditions (Shukla

and Saha, 1974; Eskridge, 1977; Liu, 1977. Stephens and Johnson,

1978). It follows that the specification of boundary conditions for

the adjustment velocity potential will determine the structural

details of the recovered adjusted divergent part of the wind and

therefore will determine the structural details of the total adjusted

wind to some extent.

in order to determine the impacts of the boundary conditions upon

the adjustment velocity

_=_,(0") and _,= 12=0.

- f (_Ux

potential, we make the

Equation (53) becomes

f(Ao)+ _v ) do + do + 0
Y _ (X3xx X3yy) =

simplifications;

(58)

where _Uxffi(u-U°)x is the adjustment required to satisfy the

variational equations. Further, we separate the x-derivative from the

y-derivative terms (see (51) and (52)) to obtain separate expressions

for the x-boundaries and the y-boundaries:

13x x = e _u = e (6D - 6_,)x y (59)

t3yy = _ _y = e (aD - a] x)

is the inverse of the integrated coefficient of _$ in (58).

overbar on the divergence and velocity components indicates that

Here

The

these are averages over the vertical domain of integration. These

equations show that Dirichlet boundary conditions force all of the

divergence adjustment into the v-component along the x-boundaries and

into the u-component along the y-boundaries. Neumann boundaries

accomplish the opposite.
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It appears that the ideal boundary conditions for the adjustment

velocity potential are some combination of Virichlet and Neumann

boundary conditions. We define a variable r such that

r-lVy/ _Ux. Then _3 can be expressed as functions of the

adjustment divergence,

_ c _
_3xx l+r (60)

er 65
%3yy - l+r

If, for example, r=l, (60) forces one half of the divergence

adjustment into the boundaries. Then (60) can be solved as a line

integral for _3 at the boundaries. Further, r may take on other

values such as functions of the observed wind fields, however the

structures of these functions are beyond the scope of this

development.

Boundary conditions on the remainin_ variables. Horizontal

boundary conditions are not required to determine the remaining

variables in the interior of the analysis domain. However, boundary

values of these variables are required in order to calculate

horizontal derivatives for the forcing functions in subsequent

solution cycles. Interior fields are extrapolated across the

boundaries by using an approximation that is the sum of a locally

averaged curvature with one half of a locally averaged gradient. This

method provides boundaries that are compatible with the adjusted

fields; they are generated, however, to eliminate boundary

discontinuities, and do not satisfy the dynamic equations.

Boundary condition# Qn _h# vertical velocity. The boundary
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conditions on _ are _ =0 at the ground and at 50 mb. Because the

lower coordinate surface slopes with the underlying terrain, there may

exist finite actual vertical velocity near the ground. Given as

b)$=dPs/dt, the surface vertical velocity is a combination of flow

over elevated terrain and through evolving meteorological pressure

fields. Upon partitioning into terrain and meteorological components,

the surface vertical velocity is

_s = - (V'VPT + _-_+ V'VP m) (61)

Scale analysis of the terms of (61) (Achtemeier, 1972) showed the

first term in parentheses to be at least an order of magnitude larger

than the meteorological terms. This combined with our inability to

accurately determine the local tendency of Pm on the synoptic

scale, prompted us to neglect the meteorological components and

approximate the surface vertical velocity with the first term.

Boundary conditions r_quired by _h_ cyclic sQlution s_quenc¢.

Initial tests with HOVEL I with the case study described in the

following article revealed features near the lateral boundaries that

gave reason to suspect local violations of linear stability. These

features amplified and grew into the interior of the grid during

successive cycles. The adjustment of the geopotential height field

(49) is forced to take on the gridded values of the observed

geopotential at the boundaries regardless of the relative weights

ascribed to the other variables. Small perturbations where the

heights are obtained by extrapolation are frozen into the geopotential
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adjustment near the boundaries and cause the growth of the erroneous

waves. We were unable to totally eliminate the perturbations but were

able to eliminate the buildup of the undesired waves by requiring

variational analysis to satisfy the geostrophic, hydrostatic equations

near the boundaries. These solutions grade into the solutions for the

full nonlinear dynamic equations at five grid spaces into the grid

interior.

c) Convergence Criteria

The convergence criteria for the general second-order partial

differential equation with nonconstant coefficients,

aA + bA + cA + dA + eA + fA - gA + h = 0 (62)
xx yy O_ x y

obtained by the partial wave technique is

( a + b + c +_.) 2 d e A__ 2__ __ __ > ( _ + _ + ) (63)
Ax 2 dy 2 AO 2

Convergence of (49) is virtually assured because the coefficients a,

b, c, and g are always positive. Further, the coefficient d is just

the horizontal derivative of a, e is the horizontal derivative of b,

end f is the vertical derivative of c. The most stringent convergence

requirement is that the absolute magnitude of the derivative of a

coefficient not exceed the value of the coefficient. This requirement

can be easily satisfied through the definitions of the precision

modulus weights. The coefficients of (57) are similarly related

except that c=f=0.
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Convergence of the cyclic solution sequence for MODEL I is

assured for quasi-geostrophic motions; the Rossby number is much less

than one. When the Rossby number approaches one, the adjustment terms

in the forcing functions approach or exceed the magnitudes of the

variables being solved for, a condition that favors the development of

linear instability. A determination of the range of scales for which

MODEL i will return a convergent solution is the subject of continuing

research.

6. Some Concluding Remarks

We have presented an outline of the first of four models that

will yield a general variational model for the diagnosis of cyclone

systems. The method will meld data collected from rawinsonde (wind,

temperature, height, moisture) with data collected from space-based

platforms (cloud wind vectors, moisture, mean-layer temperatures).

This method is, by design, independent of numerical prediction models.

MODEL i incorporates as dynamical constraints, the two nonliner

horizontal momentum equations, the hydrostatic equation, and an

integrated continuity equation. The vertical coordinate minimizes the

interpolation from pressure to terrain-following coordinates, easily

accomodates TIROS-N mean-layer temperature data in the middle and

upper troposphere, and decreases truncation error associated with the

pressure gradient force in the horizontal momentum equations.

Reformulations for the horizontal tendencies of u and v are designed

to increase the accuracy of the variational analysis for these

hypersensitive quantities.
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We designed a cyclical solution sequence that is based upon a

quasi-geostrophic linearization of the eleven Euler-Lagrange equations

that comprise HODEL I. This solution form does not preclude

ageostrophic motion. A solution is not guaranteed for scales of

motion for which the Rossby number approaches one, however. MODEL I

is actually a variational model within a variational adjustment model.

Rotational and divergent parts of the wind are adjusted separately

This formulation does not include frictional effects as the lower

boundary is held fixed. Moisture will be included later after

problems associated with the incorporation of the thermodynamic

equation are solved. Comparisons of fields of meteorological data

obtained via the variational method with standard analyses are the

subject of the following paper, Achtemeier et al.j (1986).
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Figure Captions

Figure I. Heights at the lower coordinate surface for a)

unpartitioned terrain-following coordinate, b) the equivalent

pressure surface, and c) the 1000 mb pressure surface.

Figure 2. A portion of the staggered grid used for the variational

diagnostic model.
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ABSTRACT

This paper presents the evaluation of a diagnostic multivariate data

assimilation method described in a companion paper by Achtemeier 9/_a__..

Ground-based and space-based meteorological data are weighted according to

the respective "measurement" errors and blended into a hybrid data set that

is required to satisfy the two nonlinear horizontal momentum equations, the

hydrostatic equation, and an integrated continuity equation for a dry

atmosphere as dynamical constraints. Multivariate variational objective

analyses with and without satellite data are compared with initial analyses

and the observations to determine the accuracy

assimilation to different data sets. Three

developed that measure a) the extent to which

and sensitivity of the

evaluation criteria are

the assimilated fields

satisfy the dynamical constraints, b) the extent to which the assimilated

fields depart from the observations, and c) the extent to which the

assimilated fields are realistic as determined by pattern recognition. The
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last criterion requires that the signs, magnitudes, and patterns of the

hypersensitive vertical velocity and local tendencies of the horizontal

velocity components be physically consistent with respect to the larger

scale weather systems.

The percent reduction of the initial RMS error is used to determine

the extent to which the SAT and NOSAT blended data sets converge to the

solution of the four dynamical constraints. There was approximately 90-95

percent error reduction for the two horizontal momentum equations when

applied to the case of 1200 GMT 10 April 1979. The RMS error reductions

for the integrated continuity and hydrostatic equations ranged from 90-100

percent except for the errors at levels 2 and 3 of the integrated

continuity equation which were reduced to approximately 70 percent.

The pattern recognition analysis for the basic fields, height,

temperature, and vector wind, revealed that the SAT and NOSAT analyses were

similar with the following two exceptions. First, there were larger

numerical differences between the SAT height analysis and the initial

objective analysis than were found between the NOSAT analyses and the

initial objective analysis. Second, large areas of the network were void

of satellite data which caused the loss of important local details of the

temperature field. One result was the introduction of a large (-40 m)

height anomaly in the middle troposphere over the western U.S. Both NOSAT

and SAT analyses corrected a rather poor univariate wind analysis and

placed jet streaks over California, western Texas, and the Great Lakes.
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In the analysis of hypersensitive variables, the variational method

removed or reduced the magnitudes of several large vertical velocity

centers (magnitudes greater than I0 cm sec -I) which were placed between

rawinsonde sites by conventional methods and replaced them with a zone of

positive vertical velocity roughly parallel to the axis of an area of

precipitation that was used as a check on the accuracy of the final fields.

The variational analysis also concentrated an area of strong subsidence

(-14 cm/sec) along the axis of a jet streak over the Northeastern States.

It also placed a narrow band of ascending motion near the entrance region

along the anticyclonic shear side of the jet streak, an area long noted by

those experienced in the motion fields surrounding jet streams as favorable

for upward vertical velocities.

The SAT and NOSAT tendency patterns were of approximately the same

magnitude and scale as the observed tendency patterns that were obtained

from NASA-AVE high frequency rawinsonde data. With the exception of a

negative tendency center in the lower troposphere, the agreement among the

tendency patterns was very good considering that the observed patterns were

subject to interference by mesoscale phenomena and that the observed

patterns were valid at 1330 GMT rather than at 1200 GMT. The relative

accuracy of the variational tendencies was made more apparent upon

comparison of the initial field tendencies with the observed patterns. The

initial field tendencies consisted of relatively large amplitude centers of

scale roughly equal to the average separation between observing sites. The

magnitudes of these centers became unrealistically large in the upper

troposphere within high wind velocity areas.
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These variational tendencies are the first relatively accurate

diagnostic fields of local tendencies of the velocity components apart from

initialization schemes for numerical prediction models.

I. Introduction

In a companion paper, Achtemeier e__tt al., (1986) presented the

description of a multivariate data assimilation method based up?n Sasaki's

(1958, 1970) method of variational objective analysis. It is the first of

several variational numerical models designed to produce dynamically

consistent fields of meteorological variables for the diagnosis of cyclone

scale weather systems. Special emphasis is placed upon incorporatin 8 data

from diverse sources and, in particular, upon meshing observations from

space-based platforms with those from more traditional immersion

techniques.

The variational diagnostic model (MODEL I) requires the two nonlinear

horizontal momentum equations, the hydrostatic equation, and an integrated

continuity equation for a dry atmosphere to be satisfied as dynamical

constraints o (Later versions will include the energy equation for moist

processes.) A hybrid nonlinear vertical coordinate allows for the easy

incorporation of TIROS-N mean layer temperatures. Coordinate surfaces are

pressure surfaces above 700 mb. The nonlinear vertical coordinate also

makes possible the removal of much of the local variations with unlevel

terrain at levels below 700 mb in the hydrostatic equation and the pressure

Eradient terms of the momentum equations. A complete development of the

vertical coordinate and an analysis of the pressure gradient terms are
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given by Achtemeier and Ochs (1986).

In addition, there are some quantities which, because of poor

instrument accuracy or insufficient sampling frequency, cannot be measured

directly and must be inferred through functions of other measured

variables; in our case, they are determined as part of the variational

blending processes. Among these are hypersensitive variables that are

sensitive to small changes in the other variables, such as vertical

velocity and the local tendencies of the horizontal velocity components.

The local tendencies of u and v appear explicitly in the dynamic

constraints and therefore must be solved for in the variational

formulation. Various methods used in the past for accommodating the local

tendencies are discussed in the companion paper.

The intent of this paper is to compare multivariate variational

objective analyses with and without satellite data with initial analyses

and the observations to determine the accuracy and sensitivity of MODEL l

to different data sets. Because this assimilation is not an initialization

for a numerical prediction model, the often used procedure of determining

the best initial analysis by finding the best forecast does not apply. We

instead use three diagnostic criteria which, although they may be somewhat

more subjective than measures of forecast skill, have found use in the

verification of diagnostic analyses (Krishnamurti, 1968; Achtemeier, 19Y5;

Otto-Bliesner et all, 1977). These criteria are measures of a) the extent

to which the assimilated fields satisfy the dynamical constraints, b) the

extent to which the assimilated fields depart from the observations, and c)

the extent to which the assimilated fields are realistic as determined by
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pattern recognition. The last criterion requires that the signs,

magnitudes, and patterns of the hypersensitive vertical velocity and local

tendencies of the horizontal velocity components be physically consistent

with respect to the larger scale weather systems.

The case study used for the verification of MODEL I was a short wave

over the Central Plains on 1200 GMT I0 April 1979. Shown in an objective

analysis of the 500 mb heights (Fig. 1), this disturbance was one of a

progression of shore waves that were embedded within southerly flow between

a synoptic scale trough over the Great Basin and a high pressure ridge over

the eastern United States. It was not accompanied by severe mesoscale

convective systems as were the short waves that followed it through the

Central Plains. Light precipitation (shaded patches) at 1235 GMT was

mostly from relatively shallow convective elements embedded within middle

tropospheric clouds (6 km) located along the upwind side of a large cold

cloud mass (Fig. 2) alone and ahead of the wave. This case was selected

because TIROS-N temperature soundings coexist with NASA-AVE 3-hr rawinsonde

data over a large area of the central United States. The 3-hr rawinsonde

data are required to provide verification for the diagnosed 3-hr local

tendencies of the horizontal velocity components. Furthermore, this SESAME

case data has been the subject of several synoptic and mesoscale diagnostic

analyses. These studies provide additional verification fields for MODEL

I.

The time, 1200 GMT I0 April 1979, was selected because intense

mesoscale convective systems were not significantly impacting the large

scale dynamics. However, our preliminary analyses with the SESAME I
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regional scale ravinsonde network revealed the presence of mesoscale

features in the wind field for this relatively quiet period. Since the

resolution of mesoscale systems is not part of the design for this study,

only rawinsonde data for the NWS synoptic network were used (Fig. 3a).

The distribution of TIROS-N temperature soundings is shown in Fig. 3b.

Most notable is a large data void area over roughly the northwest quarter

of the analysis domain. Data is also sparse over Texas and New England.

The methods used to prepare the data for insertion into MODEL I are

described in the next Section. Methods for debiasing the TIROS-N

temperature soundings are developed in Section 3. Section 4 contains the

development of the precision moduli that weight the data in the

assimilation. Comparisons of assimilations with and without satellite data

are presented in Section 5 and the results of this study are summarized in

Section 6.

2. Preparation of Data for the Variational Analysis

The ten level hybrid vertical coordinate model has the state variables

staggered in both the horizontal and vertical dimensions. See Fig. 4 for

the grid template. The variables u, v, _ , Z_, and _'_are located at 100

mb intervals from the top of the domain (100 mb) to 700 mb (p*). _ and _-

appear at 150-, 250-, 350-, 450-, 550-, and 650-mb surfaces. Further,

the upper boundary on _ is at 50 mb (_- =0). The hybrid nonlinear

vertical coordinate is designed so that the coordinate surfaces are

,
standard pressure levels above p . This choice allows the incorporation

of TIROS-N mean layer temperatures directly at these levels without any
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need

interpolation at the end of the variational analysis in order to

the final analyses.

.
Below p , u, v and the developmental components

surfaces and _ and _ are located at the half levels.

for vertical interpolation and also eliminates the need for vertical

interpret

appear on sigma

The lower boundary

for _ (_ -0) is the ground. We also have chosen the surface

observations to be representative of the average conditions of the lowest

sigma layer. This means that the boundary layer divergence is

representative of the mean divergence of this lowest layer.

Interpolation of observed

horizontal mesh at and above the p

modification of the Barnes (1964)

(Achtemeier, 1986b). Impacts by

boundaries of the data field can be significant for large amplitude,

wavelength patterns (Achtemeier, 1986a).

quantities onto the 1O0 km by lO0 km

level is easily accomplished with a

successive corrections technique

this method upon the analyses near the

short

The procedure for obtaining the state variables for the sigma levels

which vary nonlinearly with pressure below p first requires that all

variables be gridded to constant pressure surfaces save for the surface

winds and temperatures which are gridded directly to the lower coordinate

surface. Vertical interpolation onto sigma surfaces awaits the definition

of the sigma surfaces as functions of surface pressure. We first determine

,
the mean temperature between the height of the p surface and a smoothed

terrain that forms the lower coordinate surface by forming the weighted sum

*

of the mean layer temperatures for the pressure layers from p to the

first pressure surface above the lower coordinate surface and the mean
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temperature from this level to the surface. We define a new surface

temperature subject to the requirement that the mean temperature for the

layer below p is equal to the average of the temperature at p and

the modified surface temperature. This approach creates a mean lapse rate

for the layer and eliminates cold thicknesses that would result if the mean

layer temperatures were calculated from cold surface temperatures at the

bases of shallow nocturnal inversions.

Once the mean layer temperatures are determined, the pressure at the

lower coordinate surface may be found from

1
T* + r (0"-¢s) R-F

* .]
Ps = p [' T* (I)

where /_=-_T/_ . The pressures corresponding to the remaining sigma

surfaces can be found from the definition of the nonlinear hybrid sigma

coordinate (Achtemeier and Ochs, 1986). Once the locations of the sigma

surfaces are known, the temperatures can be found by linear interpolation

from the mean lapse rate of temperature between p and the surface.

Then the corresponding geopotential heights are obtained with

= 0" + R [(T* + YP*) in p*/P - X(P*-P)]
(2)

where _=- _T/ _ p. The horizontal wind components are interpolated

directly to the sigma surfaces from the pressure surfaces.

We nondimensionalize all variables. As shown by Achtemeier and Ochs

(1986), the nonlinear vertical coordinate is used to remove a hydrostatic

component that includes much of the vertical variations of the lower

coordinate surface due to variable topography. This procedure transforms
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the lowest three sigma coordinate surfaces onto "equivalent pressure

surfaces". We arbitrarily let Pe = 800, 900, I000 mb respectively for

these surfaces. Figure 5 shows the untransformed heights (Fig. 5a) for

the lowest coordinate surface and the heights remaining after the

hydrostatic component was removed (Fig. 5b). Virtually all of the

orographic contribution to the sigma coordinate system is removed by this

method. However, the remaining heights at 1000 mb equivalent pressure do

not equal the heights obtained directly from an objective analysis of the

I000 mb heights because the mean temperature of the layer between the

surface and the reference pressure is used to calculate the thickness of

the layer between the equivalent pressure level and the reference pressure.

Finally, a hydrostatic reference atmosphere is removed and the

residual fields are multiplied by the ratio of the Rossby number to the

Froud number to bring them into compatibility with the nondimensionalized

dynamic equations. The variational adjustments are carried out on these

residual variables.

3. Preparation of TIROS-N Temperature Data for the Variational Analysis

There are four steps in the process of preparing the satellite

soundings for insertion in the variational analysis model: (i) determining

and removing biases, (2) determining standard errors of the satellite

temperatures to assist in the assigning of weights in the model, (3)

converting layer mean temperatures (the form in which the Tiros-N soundings

are supplied on tape) to level temperatures (which are required in the

variational analysis model), and (4) determining what action to take to
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correct for the non-synoptic nature of the satellite data.

a) Biases and Weights

The accuracy of satellite soundings has been the subject of a number

of investigations (Phillips e_/_t a__!_1.,1979; Schlatter, 1981; Gruber and

Watkins, 1982). However, the comparisons differ because the retrieval

algorithms are occasionally updated and because the retrieval coefficients

are regularly updated. In addition, the comparisons are made against

different reference (truth) data sets. To make certain that the retrieval

algorithms and coefficients for our calibration study are the same as for

the case study used to test the variational analysis model (10-11 April

1979), we acquired Tiros-N soundings and RAOB data for the period 26 March

through 11 April 1979. This is the same period (plus a few days) analyzed

by Schlatter.

Schlatter compared the Tiros-N soundings with NMC Final Analyses;

others have compared the satellite soundings with "co-located" RAOBS.

Because Tiros-N is an afternoon satellite while the RAOBS are taken at 6 AM

and 6 PM in the central U.S., comparisons with co-located rawinsonde data

were not possible. Therefore, we decided to compare the satellite

soundings with time- and space-interpolated, objectively-analyzed fields of

RAOB data.

Mean layer virtual temperatures, derived from RAOB thicknesses, were

objectively analyzed on a 21 x 21 grid covering most of North America

(Fig. 6) for each 12 hr for the period 0000 GMT 26 March through 1200 GMT

11 April 1979. Biases were estimated by calculating the difference between
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satellite-estimated mean virtual temperatures and RAOB values interpolated

in both time and space from the analyses to the satellite data.

Figure 7 shows the 12 hr average biases as a function of time for each

layer. The dashed lines represent the mean biases for the periods 26 March

through 8 April and 10-11 April. The three sounding types (clear, partly

cloudy, cloudy) have been kept separate. The error bars represent 95%

confidence intervals assuming that the biases are normally distributed

about the 12 hr mean, which proved to be a good assumption upon

examination. As we studied these plots, two aspects were disturbing: (1)

For a large number of points the error bars did not include the mean

represented by the dashed line. Only one in 20 points should not include

the mean if the long term average is representative. (2) There seems to be

a 2¢-hr oscillation, which indicates that daytime and nighttime biases may

be different.

Kidder and Achtemeier (1986) stratified the TIROS-N soundings by day

and night and calculated the mean biases for the period 26 March through 8

April. It was found that biases for day and night soundings are

statistically different for clear and partly cloudy soundings, and at most

levels for cloudy soundings. It was also found if the biases are not

properly removed by time and by sounding type, objectively analyzed fields

of satellite temperatures can have variations of several degrees due solely

to biases.
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A second kind of bias associated with elevated terrain was also

investigated. The statistical retrieval algorithm used by NESDIS is based

upon the assumption that the base of the sounding is at (or near) 1000 mb.

Over elevated terrain this assumption fails. There have been attempts to

correct this problem in the operational scheme, but the process can

generate a bias in the low levels. Failure of the assumption for elevated

terrain should result in satellite temperatures that are too cold. To

determine the magnitude of the cold bias, we correlated the deviations of

the satellite temperatures from the rawinsonde analyses with terrain

height. No significant correlation was found. Therefore, the cold bias

over elevated terrain seems to be a negligible error, at least for the

satellite data used for this study.

The TIROS-N temperature data inserted into the variational analysis

model have been debiased with the mean biases tabulated in Table I. Table

I also includes the standard deviations of the biases. If biases are

properly removed from the temperature data, these standard deviations are

equal to the RMS errors. These RMS errors are included in the calculation

of the precision modulus weights that determine the relative importance the

satellite data receive in the variational meshing with the other

ob serva tion s.

c) Conversion from Layer Temperatures to Level Temperatures

0perationally retrieved Tiros-N soundings are supplied on tape as

layer mean virtual temperatures at standard synoptic levels. The nonlinear

sigma vertical coordinate was designed so that the coordinate surfaces for
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the variational model are coincident with standard synoptic levels in the

middle and upper troposphere. However, the coordinate surfaces for the

lower troposphere are not coincident with standard synoptic levels and the

layer mean temperatures must be decomposed into level temperatures at

specified levels. The conversion can be accomplished easily if the

temperature at one level is known. However, when we assumed that the 400

mb temperature is simply the average of the 300-400 and the 400-500 mb mean

layer temperatures, the rawinsonde data revealed that the estimated 400 mb

temperatures are too cold on the average by 0.65 K. A check using the

U.S. Standard Atmosphere (1962), also showed that the 400 mb temperature

estimated in this way should be 0.65 K too cold.

To correct this problem, the atmosphere was assumed to have a constant

lapse rate between 300 and 500 mb. Using the equations which describe such

an atmosphere (Hess, 1959), we derived an algorithm which, when given the

average and the difference between the mean layer temperatures for the

300-400 and the 400-500 mb layers, would calculate a corrected 400 mb

temperature. This method was tested with the rawinsonde data from 26 March

through 11 April (includes over 3200 observations) and it was found that

the mean of the difference between the corrected and actual 400 mb

temperatures was 0.00 to within 2.77 K (95Z confidence level). Since this

method proved to be accurate, it was used to decompose the Tiros-N mean

layer temperatures into level temperatures before insertion into the

variational analysis model.

d) Time to Space Conversion for Asynoptic Satellite Data
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Satellite soundings are not taken simultaneously with the semi-daily

collection of rawinsonde data from the National Weather Service upper air

network. Therefore, we considered several simple time to space conversions

to make the satellite soundings more representative at synoptic times. Two

of these methods made use of the univariate objective analyses of

temperature and horizontal wind to calculate the advective rate of change

of temperature and potential temperature. The calculated changes were

compared with the actual temperature changes measured by rawinsonde at 3-hr

intervals over the AVE/SESAHE network for 10-11 April 1979. Very small

correlations were found (See Table 2). A third method that determines

horizontal temperature advection through the vertical shear of the

geostrophic wind yielded similar results. The errors were so large that it

was concluded that the satellite data should be included directly into the

analysis as long as the difference in measurement times is less than three

hour S •

4. Precision Modulus Weights for the Variational Assimilation

The observations to be assimilated by the variational method are

meshed with the dynamic constraints through the formulation described in

the companion paper. The gridded observations to be adjusted receive

precision modulus weights in proportion to their relative observation and

interpolation accuracies according to

_. *
i = Hi Gi (3)

where _ for the ith observation is defined by _.=0.50 _- (_-hittaker and
k

Robinson (1926). The _ is the root mean square error (RNS) for the ith
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observation. The function G.
I

that multiplies /_ is an additional

weight that accounts for the variable density of observations surrounding a

grid point. It varies inversely with the distances of observations from a

grid point. G. has been assigned a value of one for all data for this
i

study. Consequences of this restriction upon the TIROS-N temperatures will

be discussed later in the next section.

This development is restricted to securing values for 7T'.

Furthermore, we require that the 7/" are functions of sigma only. The

Lagrangian density (Eqn. 28 in the companion paper),

I = Hl(U-U°)2 + r[l(V-V°)2 + r[2(@-O°)2 + II3(qb-_°)2 + ]I4(TCr-T'O°)2 +H5(qbx-d#x °)2

+ H5(Oy-Oy°) 2 + H6(_O-OO°) 2

k

+ II7(_u-_u°) 2 4" II7(_v-_v°) 2 + 2 Z %kMk (4)
k=l )

contains precision modulus weights for seven quantities that enter the

variational assimilation. Three of these (_ , _ , and _) weight

observed variables, two more (4 and T/6 ) weight gradients of observed

geopotential, and the remaining two ( TF_ and _) weight the vertical

velocity and the developmental components of the local tendencies of the

velocity components.

The precision moduli for variables that are directly observed are

calculated from the RMS values for that variable. Gradients of some

observed variables are also included in the assimilation and the RMS errors

for the gradient must be calculated from the observed RMS values. Finally,

the RMS errors for some variables that are not directly observed must be

estimated from the RMS errors of other observed variables.
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Table 3 shows the RMS errors of observation for the meteorological

variables that are observed. The first two columns give estimates for the

RMS errors for the scalar wind speed as functions of elevation angle of the

balloon (Fuelberg, 1974). The values for the 20 degree elevation angle

compare favorably with the results from Hovermale's (1962) spectral

decomposition of meteorological data. RMS values for heights and

rawinsonde temperatures are from a composite of methods for estimating

measurement error (Achtemeier, 1972). Estimates of the measurement error

for the TIROS-N clear and cloudy temperature soundings are provided by this

study (see Section 3).

o = o
_x _y

The RNS errors for the horizontal gradient of geopotential are

estimated based on the assumption that the errors of measurement of

geopotential are uncorrelated among observation sites. If the

representative gradient is the average separation between observing sites,

then

as (5)

where AS is the average separation between observation sites. The error

in the geopotential thickness is related to the measurement error in the

mean temperature for the layer through the hydrostatic equation. The RMS

error is

(6)

for the transformed version of the nonlinear sigma vertical coordinate

presented in this study.
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The RMS errors for the developmental parts of the horizontal velocity

components tendencies are estimated from the temporal gradient of the

velocity in addition to the errors encountered upon. estimating the

advective part of the tendencies. The error in _'_ at any observation site

is thus

i . T+l T. + C T T
e = _--t [eu -eu) _-S (eu - eu)
_u x+1 " (7 )

Upon assuming that the errors are uncorrelated, the RMS error for the

developmental part of the tendencies are related to the RMS errors for the

velocity through

_ = _,_'_ [ i C2 _]i/u 2 +. C 2
u (At) (AS) 2 At AS , (8)

Finally, the RMS errors for the vertical velocity must be estimated through

the algorithm that calculates vertical velocity, in this study, the

integrated divergence. The mean square error for the divergence is twice

the mean square error for the gradient of the velocity. This error is

integrated vertically to find the RMS error for the vertical velocity at

any level k:

k 2 1/2) (9)
2A_

_. =_-_-(
_k j=l uj .

Table 4 shows the nondimensional root-mean-square errors of

"observation" for the variables and their derivatives to be adjusted in

MODEL I. Small values mean greater accuracy. In order of decreasing

accuracy, Table 4 ranks the geopotential height as the most accurately

observed variable and then the winds and the temperatures. The

developmental components of the local velocity tendencies are estimated to

77



be the least accurately determined variables. Note that the RMS errors for

the rawinsonde temperatures are larger than the corresponding satellite

temperatures for the upper troposphere. These RMS values are for

vertically averaged layer temperatures and the error in representing the

these temperatures by the average of the level temperatures increases near

the tropopause where large changes in stability can be found within a

layer. The RMS values for the satellite temperatures are also largest near

the tropopause but are not degraded to the extent as the mean layer

temperatures for rawinsonde data. Increasing the vertical resolution of

this model will lead to improvements in the rawinsonde RMS values.

Finally, the RMS value for level 10, the top boundary of the vertical

velocity, has been set to near zero to guarantee that the adjusted vertical

velocity will vanish at the top of the domain.

Table 5 gives the nondimensional precision moduli weights calculated

from the RMS values presented in Table 4. Larger values imply greater

accuracy and therefore Smaller adjustments in the quantity that receives

the large weights. These values are of course estimates of the actual

weights because they are developed from mean observational errors and do

not necessarily represent the actual observational error for this case

study. Further_ the estimated errors for non-observed quantities obtained

through approximations do not necessarily strictly obey the assumptions

made in their derivations.

The precision modulus weights that are used in the development of the

variational hybrid data sets presented in the following sections differ

from the weights shown in Table 5 by the following amounts for the
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following reasons. First the weights for the temperature have been

increased by a factor of I0. We have made this modification because a

major purpose in undertaking this study is to assess the impact of

temperatures measured from space-based platforms upon a hybrid data set

that includes other variables that may be poorly measured or not observed.

In addition, we have reduced the precision modulus weights for the

geopotential by a factor of I0 for the above stated reason and because

preliminary results indicated that the observed geopotential necessary to

satisfy boundary conditions tends to force the solution toward the

geopotential in the interior of the domain. Finally, we have increased the

weights for the vertical velocity and the developmental components of the

velocity tendencies to require the solution not to transfer error residuals

into these adjusted variables. A more complete analysis of the sensitivity

of MODEL I to different precision moduli is planned.

5. Results of the Assimilations

a) Satisfaction of Dynamical Constraints

The variational assimilation method we have developed is a physical

model. Four of the Navier-Stokes equations that govern flow in free

atmosphere subject to the assumptions that apply to hydrostatic and

synoptic conditions have been used in the model derivation. Therefore, it

is expected that the three dimensional fields of meteorological variables

should be solutions of the dynamic equations.
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Adjusted variables at two successive cycles were averaged and

reintroduced into the dynamic constraints. Residuals were computed as

remainders of algebraic sums of individual terms of each constraint. The

&MS error (Glahn and Lowry, 1972) for each level was then found. Residuals

vanish (constraint satisfaction) when variables at two successive cycles

are unchanged. A measure of the convergence of the variational method to

constraint satisfaction is the difference between the initial RMS error of

the residuals of the unadjusted variables substituted directly into the

dynamic equations and the &MS values at each cycle. These differences are

divided by the initial &MS errors, converted to percent and expressed in

Tables 6 and 7 as percent reduction of the initial RMS error.

Table 6 shows how the reductions of the initial &MS error for the two

horizontal momentum equations varies for each pass through the cyclical

solution sequence for the eight adjustable levels of the Model. The error

is approximately cut in half with each cycle through the fifth cycle. The

solution stabilizes near 90-95 percent error reduction and there is no

further significant improvement in the assimilation after the fifth cycle.

_n fact the assimilated fields do not satisfy the constraints quite as well

out to the eighth cycle. The percent RMS error reductions behave similarly

for the two equations except that the final error reductions for the

v-component equation are one to four percent less than for the u-component

equation.

The percent &MS error reductions for the integrated continuity and

hydrostatic equations are shown in Table 7. The errors for the integrated

continuity equation are reduced approximately by 70 percent by the fourth
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cycle and remain relatively unchanged through the eighth cycle at levels 2

and 3. The solution for the six upper levels improves to approximately 90

percent by the eighth cycle. These improvements are, of course, dependent

upon the magnitudes of the initial RHS errors. We first calculated the

vertical velocity by the O'Brien (1970) method and then determined the RHS

errors for the integrated continuity equation. Had we assumed that the

initial vertical velocity was zero, the initial RMS errors would have been

much larger than the values used in Table 7 and the error reductions would

have been 100 percent by the fourth cycle.

The RMS errors for the hydrostatic equation are halved at each cycle

and the percent error reduction increases monotonically to near 100 percent

by the eighth cycle.

b) Pattern Recognition. Results for the Major Fields

Analyses of height, streamlines and isotachs, and temperature

developed by the objective and the NOSAT and SAT variational assimilations

are presented for levels 3 and 6 for 1200 GHT, 10 April 1979. The lowest

level is approximately the 800 mb surface except over the highest terrain

while the upper level is identical with 500 mb. Height contours are drawn

for every 30 m MSL, isotachs at 5 m s-I intervals, and temperature at

2Co In addition, the variational height analyses include height

differences from the initial objective analysis contoured at 5 m intervals.

The dashed rectangle located in the interior of each plot, 3 grid distances

from the network border, delineates the part of the variational analysis

unaffected by the boundaries of the domain.
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Height maps developed by the objective analysis, the NOSAT analysis,

and the SAT analysis are shown on level 3 in Fig. 8. In general, all

methods produced smooth analyses of the large scale height field. An

elongated region of relatively low heights was oriented along the eastern

slopes of the Rocky Mountains and centered in northwestern Colorado. The

area was rather broad, covering the western half of the network. To the

east, higher heights ridged across the U. S. from the central Gulf coast

north northwestward into Wisconsin, generally dominating conditions from

the eastern Plains to the Appalachians. Further east, a second trough,

centered just outside the network over New England, created cyclonic

conditions over the Atlantic coastal states from the Virginias northward.

NOSAT variational height contours (Fig. 8b) closely resembled those

developed by the objective technique. Nearly all NOSAT heights were higher

(dashed lines), but differences between the two analyses were relatively

minor. Largest departures were centered close to extremes in the height

field, varying from about 5 m higher near areas of lowest heights to just

over 10 m higher across the ridge located in eastern Missouri and southern

Illinois. In general, however, the NOSAT analysis tended to filter out

most small scale features in the initial objective analysis.

The SAT height analysis (Fig. 8c) also was smoother than the original

analysis. However, numerical differences between the SAT analysis and the

initial objective analysis were substantially larger than those developed

by the NOSAT variational analysis and included some areas with large

negative departures in contrast to mostly higher heights in Fig. 8b. SAT

adjusted heights within the western and northern sections of the trough in
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the Rockies were 5 - 10 m lower than the objective analysis. Positive

height departures were generated throughout the ridge in a pattern roughly

similar to that shown by the NOSAT analysis but with larger magnitudes.

Compared with the objective analysis in this area, heights were as much as

15 m higher. A 15 m positive departure was located also in the base of the

trough across the mid-Atlantic states. In both of these areas, the use of

satellite temperatures created departures three times larger than the

amount calculated by the NOSAT analysis.

Unfortunately, large areas of the network were void of satellite data.

Temperature sounding information (satellite subpoints are shown

superimposed on the analysis in Fig. 3b) was unavailable over New England,

Texas, and across the northern Plains north of a line from southwestern

Iowa to northeastern Oregon. Temperatures over roughly the northwestern

quarter of the network were interpolated from surrounding data rich areas.

Thus, important local details of the temperature field were lost. One

result was that warm thicknesses (observed by rawinsonde) were replaced by

cold thicknesses from data located south of the data void area. There

resulted a large negative height anomaly in comparison with the initial

objective analysis.

Analyses from the three methods on level 6 (500 mb) are shown in Fig.

9. The objective technique (Fig. 9a) produced a deep, narrow trough along

the western boundary of the network, centered from northeastern Nevada into

western Idaho. Other analyses of this trough (Moore and Fuelberg, 1981;

Kaplan et al., 1982) produced heights up to 40 m lower over Arizona,

Nevada, and Utah. The axis of the trough was located several hundred
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kilometers west of its position on level 3: a substantial tilt in the

system between these two levels. The ridge also tilted westward into the

northern Plains. The trough in the northeast remained in that area and a

second, weak short wave was produced over the western Great Lakes.

The short wave, which is the focus of this study, stretched eastward

from the trough in Utah through northern Colorado and into northwestern

Missouri. Although appearing quite substantial here, this feature was

purely a mid to upper level phenomenon and was not observed in any of the

analyses on level 3. Showers associated with this wave were located across

central Kansas (Fig. 2).

The 500 mb NOSAT variational height analysis (Fig. 9b) in general

tended to smooth the initial objective height field. The western part of

the long wave trough over the western U. S. was filled about 5 - 15 m in

response to variational melding with a very poor wind field analysis that

failed to produce the intense jet streak in an area centered over east

central Nevada. The short wave was filled by approximately 5 m with a

concomitant 5 m lowering of heights within the crest of the ridge to the

north. These changes produced a reduction in the intensity of both

features.

Further east, the weak perturbation over the Great Lakes region was

filtered from the NOSAT analysis. Finally, an approximate 5 m filling

occurred within the New England trough.
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The SATheight analysis for level 6 is shown in Fig. 9c. The major

trough was filled about i0 m over Nevada in response to the mutual

adjustment with the poorly resolved wind field there as discussed in

reference to the NOSAT height analysis. The major departure is the large

region of deepening within the trough over the northwest quarter of the

grid. Departures in excess of 45 m from the objectively analyzed heights

were found over eastern Montana.

The reason for these large departures was discussed in reference to

the level 3 height analysis. Satellite temperature data did not exist for

the area and relatively cold temperatures along the edge of the available

data were interpolated into the data void region. Thus, through

adjustments to satisfy the hydrostatic equation, the SAT analysis lowered

the heights in response to cold thicknesses in the temperature field.

Examples of the objective and variational temperature analyses for

level 3 are shown in Fig. I0. The objective analysis developed a

baroclinic zone in the central Rockies in association with the major trough

in the height field (Fig. 7a). A large mass of warmer air extended

northward over the entire Great Plains ahead of the trough. This feature

was interrupted by a small pocket of cooler temperatures over north central

Kansas and south central Nebraska that was associated with the short wave

at 500 mb (Fig. 9a).

A second baroclinic region was produced by the objective analysis over

the southern Plains, and a third, stronger thermal gradient from Minnesota

to North Carolina. This latter feature was most noticeable over the

western Appalachians in the form of an intense protrusion of cold air over
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northeastern Tennessee and eastern Kentucky. An anomalously cold

temperature at the Huntington, West Virginia, rawinsonde site produced the

pattern. The pattern existed at all levels below 700 mb (level 4) and thus

could have been an error in the data or a real observation through the top

of a shallow cold air mass that upwelled along the eastern mountains and

pushed southward by northerly flow behind the New England trough. The

feature was not supported in either the height or wind fields and was not

retained in either the NOSAT or SAT analyses.

The large scale features produced by the NOSAT temperature analysis on

this level (Fig. lOb) were similar to the objective analysis in both

pattern and magnitude but was much smoother across the Midwest where NOSAT

temperatures were 2 - 5C warmer. The intensity of the gradient was reduced

by more than one-half and was shifted northward over the Great Lakes. This

loss of horizontal detail along a shallow, sloping baroclinic zone is at

least partly the result of decomposition of the mean layer temperature

obtained through the hydrostatic equation. Elsewhere, temperature

differences between the two analyses were substantially less; however, all

baroclinic zones were smoothed from their objectively-generated appearance.

An objective analysis of temperatures retrieved from satellite is

shown in Fig. 10c. Although large scale features were similar to the

rawinsonde temperatures in Fig. 10a, substantially colder temperatures

were found within the long wave trough. These cooler temperatures were

well documented by satellite soundings that show the data void region was

further north. The warmer air of the Plains was centered further to the

southeast over eastern Nebraska and Kansas. However, the center of warm
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temperatures apparent in the rawinsonde data was located entirely within

the data void region in the satellite data. These differences shifted the

primary baroclinic zone to the east and south, but its intensity remained

unchanged. A weak thermal gradient in the satellite temperatures also

apparent over the eastern part of the country did not support the strong

gradients shown in Fig. lOa over the central Appalachians.

The SAT variational analysis (Fig. 10d) located the large scale

baroclinic zones with roughly the same orientation and intensity over the

southern Plains and the Ohio Valley as did the NOSAT analysis. In

contrast, the SAT analysis was colder by approximately 2C over the

Southwest and the primary baroclinic zone was established farther east over

Colorado and New Mexico. SAT temperatures, 2 - 5C colder than the original

analysis, were found over the data rich areas of the central Rockies and

interpolated into the data void region to the north.

The objective temperature analysis at 500 mb again showed a strong

baroclinic zone in the west associated with the long wave trough (Fig.

lla). Elsewhere, a relatively flat temperature field replaced the strong

zonal temperature gradient found at level 3. A small area with cold

temperatures was found over northeastern Kansas in association with the

middle tropospheric trough.

Both the NOSAT and SAT analyses (Fig. llb and 11d) weakened the

temperature gradient preceding the major trough. Both analyses weakened

the long wave ridge over the northern Plains and smoothed out the cold

pocket associated with the central Plains trough although a flat, possibly

weakly reversed thermal pattern remains. The SAT analysis increased the
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intensity of the baroclinic zone over Oklahoma and Texas in comparison with

the NOSAT analysis; however, both analyses produced weaker gradients than

were observed in the initial objective analysis of rawinsonde temperatures.

Both NOSAT and SAT analyses radically altered the temperature field near

the left boundary of the domain in response to the fixed height field

boundaries and concomitant poor wind field analyses there. Boundary

effects are mostly contained in the area between the dashed rectangle and

the boundaries, and these areas are not included in our evaluation of the

variational models.

Objective analysis of the satellite temperatures on level 6 (Fig.

llc) was not substantially different from the rawinsonde analysis in Fig.

lla. Rawinsonde temperatures were slightly colder in the Rockies with a

more intense baroclinic zone along the eastern Rockies. However, the

failure of the satellite temperature analysis to develop a thermal gradient

of this strength was related again to the satellite data void region in the

vicinity of warmest temperatures. Across the Plains, including the area of

the weak short wave, temperature differences were less than a degree.

Further east, satellite temperatures were slightly warmer over the

Southeast and colder to the north, generating a moderate thermal gradient

over the central Appalachians that was not observed in Fig. lla.

Streamline and isotach maps for the initial objective

NOSAT analysis are presented in Fig. 12a and 12b for level 3.

variational streamline and isotach analyses on this level closely

the NOSAT variational analysis and are not presented.

analysis and

The SAT

resemble
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All of the analyses produced a large cyclonic circulation in the

streamline pattern along the Rockies from north central Montana to western

Colorado. Although the alignment of the trough coincided well with the low

in the height field (Fig. 8), there were significant differences in the

streamlines between the objective and NOSAT analysis. The objective

analysis (Fig. 12a) developed a sharp trough line that stretched southward

from a center of cyclonic flow over north central Montana to a secondary

center in northwestern Colorado. Comparison with the height £ield (Fig.

8a) shows that there existed strong ageostrophic flow west of the trough

axis. This anomalous condition was likely the result of the interruption

of the wind field by high mountain ridges.

The NOSAT variational analyses produced a much broader, elongated area

of cyclonic circulation that slowly converged into the center in Colorado

(Fig. 12b). This circulation center was coincident with the position of

the height center in Fig. 8b. The dynamic constraints in MODEL I permit

frictionless flow at level 3 and the resulting dynamic assimilation forces

the wind field toward geostrophic flow. As a result, the

objectively-generated cross-contour flow on the western side of the long

wave trough was eliminated by the NOSAT analysis.

Placement of southerly winds over nearly the entire Great Plains was

very similar between the initial and variational analyses. However, wind

speeds calculated by the variational method were 5 - 8 m s -1 higher than

the univariate objective analysis on both the eastern and western sides of

the Colorado cyclone. Isotachs and unit vectors of the vector differences

between the NOSAT and initial objective analyses for level 3 are shown in

89



Fig. 13. Vectors oriented roughly along the streamlines of Fig. 12

identify where the variational analysis increased the wind speeds over the

initial objective analysis. The cyclonic pattern of vectors surrounding

the circulation center over Colorado shows that the variational analysis

-I
increased the strength of the entire circulation by up to 8 - 10 m s

over the mountainous areas.

Elsewhere, in the eastern part of the country, two areas show

relatively large differences that are a result of large directional changes

in the wind necessary to bring the initial wind field into variational

adjustment with the height field.

The 500 mb (level 6) objective streamline and NOSAT variational

analysis are shown for comparison in Fig. 14. The patterns over the

interior of the western half of the grid are similar. The flow has been

turned more northwesterly to bring the wind field into balance with the

height field over the eastern interior of the grid. Rather large

modifications are found near the grid boundaries where the variational

adjustments for both NOSAT and SAT placed jet streaks over California,

western Texas, and the Great Lakes. Anthes et al. (1982) showed a 50 m

s -1 wind speed maximum in southern California in an analysis that used a

site located within the jet maximum, an observation not available to our

analysis.

The vector difference (Fig. 15) at 500 mb showed the appearance of

the jet streaks north of the Great Lakes and Texas and the removal of the

wind maximum south of California to the actual jet streak location further

north. The southerly vectors over Utah on the west side of the trough show
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where the NOSATwinds were reduced to accommodate the slight filling in

this area. Virtually no vector difference was found over the Plains,

including the area of the short wave in Kansas.

c) Pattern Recognition. Results for the Hypersensitive Variables

The variational assimilation has produced significant adjustments in

height, temperature, and wind velocity in order that the values of these

variables are solutions of the dynamic constraints. However, these

modifications can cause large and physically unrealistic changes in other

important variables such as vorticity, divergence, and vertical velocity

and other quantities that involve derivatives of the basic variables. In

addition, the local tendencies of the horizontal velocity components are

sensitive to small errors in the basic variables when they are determined

from the arithmetic sum of the other terms of the horizontal momentum

equations. The patterns of these hypersensitive variables must be

physically realistic when compared with other data sets such as cloud

fields, precipitation, and independent measurements of the variable itself.

Thus, the hypersensitive variables provide a critical test of the accuracy

of the MODEL I dynamic assimilation.

Patterns of the relative vorticity of the observed wind and the

vorticity of the NOSAT variational assimilated wind for level 6 (500 mb)

are shown in Fig. 16. The SAT vorticity fields are similar to the NOSAT

vorticity fields save for a slight increase in cyclonic vorticity over

Wyoming, Montana, and the Dakotas as the wind field was modified slightly

to balance the 40 m SAT height anomaly (Fig. 9c) and will therefore not be

91



included in the discussion. Comparison of the figures reveals that the

variational analysis increased the detail in the relative vorticity

patterns. The magnitude of the vorticity center over Kansas was reduced

slightly while negative vorticity was increased across the ridge in

response to increased curvature and shear. Vorticity centers and the

associated gradients were strengthened over the Eastern States and over

Nevada and California in response to intensification of the jet streaks

near the major troughs.

Figure 17 shows the vertical velocities in cm sec -1 at level 6 (500

mb) for 1200 GMT 10 April 1979 as developed from the kinematic method of

O'Brien (1970) applied to the objective analyses of the initial

observations and from the more general kinematic method that is part of

MODEL I. The O'Brien kinematic method, which uses gridded wind data only,

produced a general area of rising motion over the Rocky Mountain States and

the plains west of the Mississippi River within the area of southwesterly

flow in advance of the upper tropospheric trough and behind the preceding

upper level ridge (Fig. 17a). General subsidence is over the Eastern

States in advance of the ridge. Upon closer inspection, it is seen that

the field of rising motion breaks down into several large vertical velocity

centers (magnitudes greater than I0 cm/sec) which are located between

rawinsonde sites (see Fig. 3). These strong ascent centers are separated

by areas of weak vertical motion of either sign. This type of pattern

(vertical velocity centers located between data collection sites) is

typical of the kinematic technique when applied to univariate objective

analyses of the components of the horizontal wind field. Our wind data was

gridded with a successive corrections method (Achtemeier, 1986b) that is an
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adaptation of the method developed by Barnes (1964).

The relationship between this vertical velocity field, and the

precipitation areas as observed by radar (shaded areas) within the region

of interest for this study, namely, the weak short wave trough over Kansas

and Missouri, is not quite fortuitous. Precipitation is not located within

the I0 cm sec -l vertical velocity center located over southeastern

Colorado nor within the 4 cm sec -I center over northern Missouri.

However, precipitation is located along the axis of upward motion that

connects these two centers. The precipitation area in Missouri turns

southward into Arkansas, a region of weak vertical velocity of both signs.

It is also typical with the kinematic method to find areas of precipitation

overlapping into regions with downward vertical motion. Several isolated

showers are found within an area identified by the GOES visible imagery as

containing fields of swelling cumulus, the area located over Oklahoma and

northeast Texas. The kinematic analysis positions a center of downward

motion over this area.

The vertical motion field developed by the SAT variational analysis

(Fig. 17b) is representative of both SAT and NOSAT analyses. This pattern

is similar to the kinematic analysis on the large scale in that the ascent

areas are positioned from the Mississippi River westward into the Rocky

Mountain States. However the smaller scale patterns are different. Gone

-I
are the large centers of upward vertical motion. The I0 cm sec

positive motion center over Montana in the kinematic analysis is not found

in the variational analysis. This reduction was brought about by the

decrease of convergence in the lower troposphere as the horizontal wind
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field was made to more closely balance the height field. The I0 cm sec -I

ascent center over southeastern Colorado has been reduced and shifted into

western Kansas in alignment with precipitation observed there. The

variational analysis also places a 6 cm sec -I center of upward motion

over Oklahoma and northeastern Texas as part of a zone of positive vertical

velocity that extends from western Kansas through eastern Oklahoma and into

Louisiana. This pattern compares favorably with the convective showers

over Oklahoma and Texas but is located behind the position of the short

wave trough (Fig. 1). It is oriented along the main precipitation band

but is generally located to far to the southwest of it. We note that the

observations lag the precipitation patterns by approximately one hour and

that, given the rapid northeastward movement of the short wave trough,

could account for about 50 km of the displacement between the two patterns.

The most notable impact by the variational analysis upon the vertical

velocity is the increased detail of the adjusted patterns associated with a

vigorous, fast moving short wave and accompanying jet streak over the

northeastern United States (see Fig. 14). The kinematic analysis produced

a rather large region of subsidence over the Great Lakes States with the

maximum sinking exceeding -8 cm sec -I over western Pennsylvania. The

variational analysis concentrated the area and increased subsidence to -14

-I
cm sec over West Virginia. The variational analysis also increased

the magnitude of the upward motion area in the largely data void area along

the East Coast and introduced a narrow zone of upward motion along an axis

from northern Kentucky to southeast Georgia and beyond. This is a

significant departure from the kinematic analysis which produced a broad

area of weak subsidence over the same region.
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A comparison with the features of the wind field in Fig. 14 reveals

that the most prominent subsidence was located along the axis of the jet

streak. The narrow band of ascending motion was found near the entrance

region along the anticyclonic shear side of the jet streak, an area lone

noted by those experienced in the motion fields surrounding jet streams as

favorable for upward vertical velocities (Eiehl, 1952; Relier, 1961).

Thus these rather extreme vertical velocities are not without support from

pattern analysis.

The solution sequence of the variational assimilation requires that

the developmental components of the local tendencies of u and v be found

from the arithmetic sum of the other terms of the horizontal momentum

equations. The developmental components are recombined with the advective

components, redimensionalized, and expressed as 3-hr changes. These

tendencies are compared with the observed 3-hr tendencies of u and v

calculated from the high frequency rawinsonde data collected over the

central part of the U. S. as part of the NASA-AVE SESAME project and with

the 3-hr tendencies calculated with values from the initial gridded fields

substituted in place of the adjusted fields in the horizontal momentum

equations. In making these comparisons, we assume that the observed 3-hr

tendencies represent "ground truth" subject to the following

qualifications. First, in keeping with the synoptic scale of the analysis,

we have gridded only 3-hr tendencies taken from data collected at standard

NWS observing sites. Second, the ground truth tendencies are calculated

over the 3-hr interval from 1200-1500 GMT and are therefore centered at

1330 GMT. The tendencies found from MODEL I are centered at 1200 GMT.

Therefore, some phase shift should be observed between the patterns.
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Third, to the extent that the tendencies calculated from the SESAME data

suffer from mesoscale "noise", the patterns will not accurately represent

the true pattern of synoptic scale tendencies.

The following figures present the comparisons for the initial field,

observed (ground truth), and SAT variational 3-hr v-tendencies for three

representative levels within the troposphere. We have omitted discussion

of the 3-hr u-tendencies without loss of content. The u-tendency patterns,

though different from the v-tendency patterns, are comparatively similar

with the poorest results found in the lower troposphere.

NOSAT results are similar to the SAT results and will not

the comparisons.

In addition, the

be included in

of the

700mb.

excite

initialized with unadjusted initial data.

Figure 18 shows the fields of the three v-tendencies for level 4 (700

mb) for the central region of the U. S. roughly covered by the SESAME-AVE

rawinsonde network. The initial field tendencies consist of relatively

large amplitude centers of scale roughly equal to the average separation

between observing sites. The pattern has no relationship with the position

short wave trough over Kansas (Fig. 8) nor with the wind field at

The pattern is more suggestive of the tendency field that would

inertial-gravitational oscillations within a numerical model

The pattern also shows little

correspondence with the observed 3-hr tendencies (Fig lifo) in either the

locations, amplitudes or the scale of the features. The one plausible

exception, the -8 m sec -I 3h -I center would have had to move 300 km

in Io5 hr in order to locate over Arkansas, a distance about twice as far

as expected from the observed speed of movement of weather systems on 10
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April 1979. The SAT tendency field (Fig. 18c), though of the same

magnitude and scale as the observed tendency field, suffers from the same

excessive displacement of the negative center over the Central Plains.

Elsewhere, the SAT 3-h tendencies are in general agreement with the

observed 3-h tendencies over the eastern and northern portions of the

domain.

The initial field 3-h tendencies (Fig. 19a) at level 6 (500 mb)

feature a center of large (12 m sec -I) increases in v over Kansas. The

observed 3-h tendency field replaces this pattern with a smaller center of

opposite sign (Fig. 19b). Only along the eastern part of the domain near

the position of the long wave ridge does the initial field analysis have

some correspondence with the observed tendencies. The agreement is to the

extent that both analyses show increases in v over three hours. The

magnitudes and locations of the maxima are more poorly related. The SAT

3-h tendency field (Fig. 19c) reproduces the observed 3-h tendency pattern

over the Mississippi Valley and over western Texas. The relative minimum

over Kansas and Oklahoma consists of small increases in v and the negative

center over northeastern Texas is too far south to relocate at the observed

position by 1330 GMT.
i

Strongest jet stream winds were located at level 8 (300 mb). Large

magnitudes and gradients of the velocity can combine to create large

tendencies if the terms of the horizontal momentum equations do not

compensate. The 3-h tendency field obtained from the initial data (Fig.

20a) is a pattern of large magnitude centers of alternating sign spaced at

approximately the average observation separation. These centers imply
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unrealistically large changes in v over three hours. With allowances for

horizontal displacement of the pattern over 1.5 h, the only correspondence

with the observed 3-b tendency field is the sign of the pattern along the

eastern part of the domain. The SAT analysis (Fig. 20c) reproduces most

of the features of the observed 3-h tendencies. The positive tendency

center near the lower boundary of the grid (Texas-New Mexico border) in the

SAT analysis appears over the Texas panhandle at 1330 GMT in the observed

tendencies (Fig. 20b). Furthermore, the relative minimum over Oklahoma is

moved into southeastern Kansas. These displacements are in accord with the

rapid northeastward movement of the weather systems through the area.

Relative horizontal displacements were smaller within the weaker flow near

the long wave ridge over the eastern part of the domain. Here the SAT

analysis preserved the area of larger positive v-tendencies but located the

maximum over Illinois rather than over Mississippi as found in the observed

tendencies.

6. Discussion

This paper has presented the evaluation of a diagnostic multivariate

data assimilation method described in a companion paper (Achtemeier e_/_tal____.,

1986). Special emphasis is placed upon incorporating data from diverse

sources and, in particular, upon meshing observations from space-based

platforms with those from more traditional immersion techniques.

Meteorological data are weighted according to the respective "measurement"

errors and blended into a hybrid data set that is required to satisfy the

two nonlinear horizontal momentum equations, the hydrostatic equation, and

an integrated continuity equation for a dry atmosphere as dynamical
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constraints. A hybrid nonlinear vertical coordinate allows for the easy

incorporation of TI&OS-N mean layer temperatures. Coordinate surfaces are

pressure surfaces above 700 mb. The nonlinear vertical coordinate also

makes possible the removal of much of the local variations with unlevel

terrain at levels below 700 mb in the hydrostatic equation and the pressure

gradient terms of the momentum equations.

The intent of this paper is to compare multivariate variational

objective analyses with and without satellite data with initial analyses

and the observations to determine the accuracy and sensitivity of MODEL I

to different data sets. Because this assimilation is not an initialization

for a numerical prediction model, the often used procedure of determining

the best initial analysis by finding the best forecast does not apply. We

instead use three diagnostic criteria which, although they may be somewhat

more subjective than measures of forecast skill, have found use in the

verification of diagnostic analyses. These criteria are measures of a) the

extent to which the assimilated fields satisfy the dynamical constraints,

b) the extent to which the assimilated fields depart from the observations,

and c) the extent to which the assimilated fields are realistic as

determined by pattern recognition. The last criterion requires that the

signs, magnitudes, and patterns of the hypersensitive vertical velocity and

local tendencies of the horizontal velocity components be physically

consistent with respect to the larger scale weather systems.

The case study used for the verification of MODEL I was a short wave

over the Central Plains on 1200 GMT I0 April 1979. This case was selected

because TIROS-N temperature soundings coexist with NASA-AVE 3-hr rawinsonde
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data over a large area of the central United States; the latter data set

was required to provide verification for the diagnosed 3-hr local

tendencies of the horizontal velocity components. In addition, the case

was selected because intense mesoscale convective systems were not

significantly impacting the large scale dynamics.

Methods to debias the TIROS-N temperatures and to insert the initial

data into the variational assimilation model were described. These data

received weights according to the respective precision moduli developed in

Section 4.

We developed the percent reduction of the initial RMS error as a

measure of the convergence of the SAT and NOSAT blended data sets to

satisfaction of the four dynamical constraints. Upon application of this

measure to the two horizontal momentum equations, we found that the error

is approximately cut in half with each cycle through the fifth cycle for

the eight adjustable levels of the Model. The solution stabilizes at

approximately 90-95 percent error reduction and there is no further

significant improvement in the assimilation after the fifth cycle. The RMS

error reductions for the integrated continuity and hydrostatic equations

ranged from 90-100 percent except for the errors at levels 2 and 3 of the

integrated continuity equation which were reduced to approximately 70

percent by the fourth cycle and remained relatively unchanged through the

eighth cycle. These improvements for the integrated continuity equation

are, of course, dependent upon the magnitudes of the initial RMS errors.

We determined the initial vertical velocity by the O'Brien kinematic

method. Had we assumed that the initial vertical velocity was zero, the
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initial RMS errors would have been much larger than the values used for

this study and the RMS error reductions would have been 100 percent by the

fourth cycle.

The pattern recognition analysis for the basic fields, height,

temperature, and vector wind, revealed that the SAT and NOSAT analyses were

similar with the following two exceptions. First, there were larger

numerical differences between the SAT analysis and the initiaI objective

analysis than were found between the NOSAT analyses and the initial

objective analysis. In this respect, the comparisons are unfair because

the initial height fields were in an approximate hydrostatic balance with

the NOSAT temperatures. Adjustments between these two fields were only

necessary to remove error introduced by the griddin 8 of the data. The

satellite temperatures are initially independent of the heights. Thus the

adjustments must be made for both gridding error and nonhydrostatic

residuals. Second, large areas of the network were void of satellite data.

Temperature sounding information was unavailable over New England, Texas,

and across the northern Plains to near the Pacific coast north of a line

from southwestern Iowa to northeastern Oregon. Temperatures over roughly

the northwestern quarter of the network were interpolated from surrounding

data rich areas. Thus, important local details of the temperature field

were lost. One result was that warm thicknesses (observed by rawinsonde)

were replaced by cold thicknesses from data located south of the data void

area. Because the G-function that weights the gridpoint values of the

initial fields according to data density was set to one for this study,

there resulted a large (-40 m) height anomaly in the middle troposphere in

comparison with the initial objective analysis.
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Streamline and isotach maps for the SAT analyses closely resembled the

NOSAT analyses. The variational blending increased the horizontal detail

of the wind field in comparison with the initial univariate analyses in the

middle troposphere. Rather large modifications of the initial wind field

were found near the grid boundaries where the variational adjustments for

both NOSAT and SAT placed jet streaks over California, western Texas, and

the Great Lakes. The jet streak over California was verified by a study by

Anthes et al. (1982) who used data not available to this study to diagnose

a 50 m s-I wind speed maximum in southern California.

The most significant departure between the initial and variational

analyses was in the lower troposphere where the variational analysis

replaced an area of strong ageostrophic flow over the Western States with a

broad area of cyclonic circulation that slowly converged into the center of

a major low pressure system located in Colorado. The ageostrophic flow was

likely the result of the interruption of the wind field by high mountain

ridges. The dynamic constraints in MODEL I permit frictionless flow in the

free atmosphere over the smoothed terrain that forms the lower coordinate

surface and the dynamic assimilation forces the wind field into greater

alignment with the height field.

in all other features of the height, temperature, and wind velocity

fields, the pattern recognition technique is suggestive that the

modifications to satisfy the dynamic constraints does not alter the

physical realism of the final fields. However, small modifications can

cause large and physically unrealistic changes in other important variables

such as vertical velocity and the local tendencies of the horizontal
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velocity components which are not observed directly and must be calculated

from other variables through the dynamic constraints.

The variational analysis removed or reduced the magnitudes of several

large vertical velocity centers (magnitudes greater than 10 cm sec -1)

which were placed between rawinsonde sites by the O'Brien kinematic

technique applied to the univariate objective analyses of the components of

the initial horizontal wind field and developed a zone of positive vertical

velocity roughly parallel to the axis of an area of precipitation that was

used as a check on the accuracy of the final fields. This pattern compared

favorably with the convective showers over Oklahoma and Texas but was

located behind the position of the short wave trough over the Central

Plains. It was oriented along the main precipitation band but was

generally located too far to the southwest of it. However, we note that

the observations lagged the precipitation patterns by approximately one

hour and that, given the rapid northeastward movement of the short wave

trough, could have accounted for about 50 km of the displacement between

the two patterns.

The most notable impact by the variational analysis upon the vertical

velocity was the increased detail of the adjusted patterns associated with

a vigorous, fast-moving short wave and accompanying jet streak over the

northeastern United States. The variational analysis concentrated an area

of strong subsidence (-14 cm/sec) along the axis of the jet streak. It

also placed a narrow band of ascending motion near the entrance region

along the anticyclonic shear side of the jet streak, an area long noted by

those experienced in the motion fields surrounding jet streams as favorable
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for upward vertical velocities. Thus these rather extreme vertical

velocities are not without support from pattern analysis.

The solution sequence of the variational assimilation requires that

the developmental components of the local tendencies of u and v be found as

the summation of the other terms of the horizontal momentum equations. We

recombined the developmental components with the advective components,

redimensionalized, and expressed the results as 3-hr changes. These

tendencies were compared with the observed 3-hr tendencies of u and v

calculated from the high frequency rawinsonde data collected over the

central part of the U. S. as part of the NASA-AVE SESAME project and with

the 3-hr tendencies calculated with values from the initial gridded fields

substituted in place of the adjusted fields in the horizontal momentum

equations.

We found that the SAT and NOSAT tendency patterns were of

approximately the same magnitude and scale as the observed tendency

patterns. There was a significant disagreement between the two fields in

the placement of a large negative tendency center in the lower troposphere,

however. Elsewhere, particularly in the upper troposphere, the agreement

among the tendency patterns was very good considering that the observed

patterns were subject to interference by mesoscale phenomena and that the

observed patterns were valid at 1330 GMT rather than at 1200 GMT. The

relative accuracy of the variational tendencies was made more apparent upon

comparison of the initial field tendencies with the observed patterns. The

initial field tendencies consisted of relatively large amplitude centers of

scale roughly equal to the average separation between Observing sites. The
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magnitudes of these centers became unrealistically large in the upper

troposphere where large magnitudes and gradients of the velocity can

combine to create large tendencies if the terms of the horizontal momentum

equations do not compensate. These patterns have no relationship with the

position of the short wave trough over Kansas nor with the wind field nor

with the observed 3-h tendencies. The patterns are more suggestive of the

tendency fields that would excite inertial-gravitational oscillations

within a numerical model initialized with unadjusted initial data.

Now, does this variational assimilation method produce better hybrid

data fields than other methods? Since no intercomparison studieshave been

performed, we cannot offer definitive answers to the question. However, we

believe that the variational model should provide quality analyses if the

following two criteria are satisfied. First, the variational assimilation

method we have developed is a physical model. Four of the basic primitive

equations that govern flow in free atmosphere subject to the assumptions

that apply to hydrostatic and synoptic conditions have been used in the

model derivation. Since the real atmosphere obeys these equations, it is

expected that the three dimensional fields of meteorological variables

should be reasonable approximations to the true atmosphere if they are

solutions of the dynamic equations. Furthermore, advanced versions of this

model that include the energy equation as a fifth constraint should provide

analyses that are superior to the results presented here.

Second, the dynamical equations permit many solutions. Therefore, the

error characteristics of the observations and the horizontal distributions

of the G-function that make up the precision moduli should be known with
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accuracy. The sensitivity of the variational model to the values given to

these weights is currently not fully known and is the subject of

investigation in the ongoing model development.

Finally, we note from the results of the pattern recognition that the

variational analysis produced physically reasonable fields of the

hypersensitive variables. Model I produced the first relatively accurate

diagnostic fields of local tendencies of the velocity components apart from

initialization schemes for numerical prediction models. Our continued

model developments should improve upon these results.
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Table I

Biases and standard deviations of Tiros-N layer mean virtual temperatures (K).

Layer (mb) Day Night

Clear Partly Cloudy Clear Partly Cloudy

Cloudy Cloudy

Biases

200-100 -0.02 -0.05 0.54 0.19 0.18 0.51
300-200 0.98 0.65 1.20 0.61 1.49 1.62
/-+00-300 -0.04 0.20 -0,41 0.41 0.26 -0.02
500-/-100 -0.87 0.33 -1.14 0.14 -0,25 -1.11
700-500 -0.90 0.29 -1.35 -0.10 -0.23 -1.37
850-700 -0.16 0.67 -0,65 0.09 1.08 -0.31

1000-850 O. 32 1 . 03 1 . 87 -0.42 1 . 3 5 2.06

Standard Deviations
200-100 1.29 1.63 1.48 1.38 1.12 1.47

300-200 1 . 57 1 • 40 1 • 7 4 1 • 18 1 • 34 1 . 45
400-300 1 • 50 1 •37 1 • 83 1.38 1 • 40 1 • 99

500-400 1 • 43 1 • 43 1 • 70 1 • 59 1 • 30 1 • 89
700-500 1.62 1.72 1.77 1.25 1,44 1.77
850-700 1.84 2.42 2.31 1.84 2.28 2.60

1000-850 2.11 2.52 2.60 2.64 3.12 3.39

Table 2

Correlation coefficients between

advective temperature change and
observed temperature change over

a 3 hr period.

Level (mb) Correlation
Coef ficlent

850 .20
700 .27
5OO .02
400 .04
300 .09
200 .11
100 .04
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Table 3

RNS errors of observation for meteorological variables
that are observed. Units are standard.

VARIABLE
Hodel Pressure Ravin Satellite
Level (mb) u I u 2 H T T(cl) T(cy)

10 100 4.5 2.3 25.0 2.0 1.9 1.9
9 200 4.5 2.3 19.8 3.0 2.4 2.6
8 300 4.2 2.1 18.0 3.0 2.0 2.7
7 400 3.6 1.8 15.0 2.6 1.9 2.6

6 500 3.2 1.6 11.6 2.0 1.8 2.4

5 600 3.0 1.5 9.2 1.5 1.7 2.3
4 700_ 2.8 1.4 7.8 1.5 2.0 2.8
3 800_3 2.4 1.2 7.0 1.5 2.0 2.8

2 9003 2.1 1.1 6.5 1.5 2.4 3.5

1 1000 s 2.0 1.0 6.0 1.5 3.0 4.0

1
2...at 20 degree elevation angle

3...at 40 degree elevat£on angle
...approx£mate pressure level
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Table 4

Nondimensional RMS errors for all variables to be adjusted.

VARIABLE

Model Pressure Mean Temperature

Level (rob) u u H H H Rawin T(cl) T(cy)

10 100

9 200

8 300

7 400

6 500

5 600

4 700

3 800

2 900

1 1000

0.45 0.23 0.25 0.71

0.45 0.23 0.20 0.56

0.42 0.21 0.18 0.51

0.36 0.18 0.15 0.42

0.32 0.16 0.12 0.33

0.30 0.15 0.09 0.26

0.28 0.14 0.08 0.22

0.24 0.12 0.07 0.20

0.21 0,11 0.06 0.18

0.20 0.10 0.06 0.17

0.00

3.68 0.59 0.57 0.57 2.13 6.98

3.21 0.88 0.70 0.76 1.88 6.98

2.28 0.88 0.59 0.79 1.64 6.51

1.53 0.76 0.56 0.76 1.43 5.58

0.97 0.59 0.53 0,70 1.24 4,65

0.61 0.44 0.50 0.67 1.04 4.34

0.53 0.44 0.53 0.70 0.84 3.72

0.47 0.44 0.59 0.82 0.64 3.26

0.42 0.44 0.70 1.03 0.44 3.10
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Table 5

Nondimensional precision modulus weights for MODEL I variational assimilation.

VARIABLE

Model Pressure Mean Temperature

Level (mb) u H H H Rawin T(cl) T(cy)

106

I0 I00 2.5 8.0 1.0

0.04 1.4 1.5 1.5 0.II 0.01

9 200 2.5 12.5 1.6

0.05 0.6 1.0 0.9 0.14 0.01

8 300 2.8 15.4 I.9

0.10 0.6 1.4 0.8 0.19 0.01
7 400 3 • 9 22.2 2.8

0.21 0.9 1.6 0.9 0.24 0.02
6 500 4.9 34.7 4.6

0.53 1.4 1.8 1.0 0.33 0.02
5 600 5.6 61.7 7.4

1.34 2.6 2.0 1.1 0.46 0.03
4 700 6.4 78.1 10.3

1.78 2.6 1.8 1.0 0.71 0.04
3 800 8.7 102.0 12.5

2.26 2.5 1.4 0.7 1.22 0.05
2 900 11.3 138.9 15.4

2.83 2.6 1.0 0.5 2.58 0.05

1 1000 12.5 138.9 17.3
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Table 6

Percent NOSAT RMS error reduction with respect to initial

RMS residuals for the u- and v-horizontal momentum equations.

LEVEL

CYCLE 2 3 4 5 6 7 8 9

u-component
0 0 0 0 0 0 0 0 0

I 52 52 52 50 50 49 50 49
2 78 77 76 73 73 73 75 75
3 90 88 87 84 85 84 86 86
4 95 93 91 90 90 90 91 90
5 96 95 93 92 93 93 92 91

6 95 95 93 93 94 94 93 91

7 94 94 93 93 94 94 92 91
8 92 94 92 92 93 93 92 90

v-component
0 0 0 0 0 0 0 0 0

1 52 52 51 52 50 50 50 49

2 75 78 76 78 76 75 75 73
3 84 87 86 89 87 86 86 83
4 88 90 89 91 90 90 90 86
5 92 92 90 91 90 91 90 87

6 94 93 90 91 90 91 90 87
7 94 93 90 90 90 90 90 87
8 90 93 90 90 90 90 89 86
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Table 7

Percent NOSAT RHS error reduction with respect to initial
RHS residuals for the integrated continuity and hydrostatic

equations.

LEVEL

CYCLE 2 3 4 5 6 7 8 9

Integrated Continuity
0 0 0 0 0 0 0 0 0

I 50 50 50 50 50 50 50 50

2 65 60 39 51 57 57 63 72

3 70 65 43 56 62 60 67 78
4 70 68 55 65 71 69 75 82

5 70 69 66 74 79 78 82 84
6 71 70 75 81 85 85 86 87
7 70 69 82 87 90 90 90 89
8 70 68 87 90 92 93 92 91

Hydrostatic
0 0 0 0 0 0 0 0 0
I 50 50 50 50 50 50 50 50
2 75 75 75 75 75 75 75 75
3 87 88 88 87 87 87 87 87
4 93 94 94 94 94 94 94 94
5 96 96 97 97 97 97 97 97
6 98 98 98 98 98 98 98 98
7 98 98 99 99 99 99 99 99
8 98 98 100 100 i00 100 100 100
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FIGURE CAPTIONS

Fig. I. The 500 mb height field at 1200 GMT, I0 April 1979

showing a weak short wave disturbance over the Central Plains.

Fig. 2. Middle and upper tropospheric cloud (bright white) and

low cloud (light gray) as observed in IR from GOES-EAST and

precipitation echoes from radar summary charts in association

with the short wave over the Central Plains at 1200 GMT, I0 April
1979.

Fig. 3. The locations of the data used for this study; (a)

rawinsonde data for the NWS synoptic network, and (b) TIROS-N

temperature soundings.

Fig. 4. The grid template for the variational assimilation

model.

Fig. 5. (a) The heights of the lowest coordinate surface before

transformation and (b) the heights remaining after transformation

of the hydrostatic equation into "equivalent pressure surfaces".

Fig. 6. Asterisks indicate the location of the I01 rawinsonde

stations used to construct the objective analyses for comparison

with satellite soundings. The dashed line encloses the satellite

soundings. Note that the satellite soundings are well within the

boundaries of the rawinsonde objective analysis area, thus edge
effects should be minimal.

Fig. 7. 12 h average biases of satellite soundings: (a) clear

soundings, (b) partly cloudy soundings, (c) cloudy soundings.

The error bars represent the 95% confidence interval. Dashed

lines represent the average of the biases. The temperature scale

on the right is in Kelvin.

Fig. 8. Height (m) analyses on level 3 (approximately 800 mb) at

1200 GMT, 10 April 1979: (a) objective analysis, (b) NOSAT

analysis, and (c) SAT analysis. Dashed lines on the NOSAT and

SAT analyses represent the adjustment in height from the

analysis.

Fig. 9. Same as Fig. 8, but for level 6 (500 rob).

Fig. I0. Temperature (C) on level 3 at 1200 GMT, I0 April 1979:

(a) objective analysis of rawinsonde temperatures, (b) NOSAT

analysis

Fig. I0 (continued). (c) objective analysis of satellite

temperatures, and (d) SAT analysis. Satellite sounding locations

from Fig. 3b are superimposed in (c).
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Fig. II. Same as Fig. 10, but for level 6.

Fig. II (continued).

Fi}. 12. Streamline (solid lines) and isotach (dashed lines, m
s- ) analyses on level 3 at 1200 GMT, 10 April 1979: (a)

objective analysis and (b) NOSAT analysis.

Fig. 13. Isotachs (m s -1) and unit vectors of the vector

difference between the NOSAT and objective analyses on level 3 at

1200 GMT, 10 April 1979.

Fig. 14. Same as Fig. 12, but for level 6.

Fig. 15. Same as Fig. 13, but for level 6.

Fig. 16. Patterns of a) the relative vorticity of the observed

wind and b) the vorticity of the NOSAT variational assimilated

wind f_r leyel 6 (500 rob) at 1200 GMT, I0 April 1979. Units are
in 10 -_ s- .

Fig. 17. Vertical velocities (cm s -1) on level 6 (500 rob) at

1200 GMT, 10 April 1979 from a) the kinematic method (O'Brien,

1970) applied to the objective analyses of the initial wind field

and b) from the MODEL I adjusted wind field. Hatching delineates

areas of precipitation.

Fig. 18. Fields of a) initial, b) observed, and c) SAT

v-tendencies for level 4 (700 mb) for the central region of the

U. S. roughly coyered .by the SESAME-AVE rawinsonde network.
Units are in m s-- 3h -I.

Fig. 19. Same as Fig. 18, but for level 6 (500 rob).

Fig. 20. Same as Fig. 18, but for level 8 (300 rob).
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Fig. I. The 500 mb height field at 1200 GMT, I0

April 1979 showing a weak short wave disturbance over
the Central Plains.

i17



Fig .  2. Middle and upper tropospheric cloud (bright  
white)  and low cloud ( l i g h t  gray) a s  observed in 1B 
from GOES-EAST and prec ipi tat ion echoes from radar 
summary charts in assoc iat ion with the short wave 
over the Central Pla ins  at 1200 GMT, 10 A p r i l  1979. 
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Fig. 3. The locations of the data used for this

study; (a) rawinsonde data for the I_S synoptic

network, and (b) TIROS-N temperature soundings.
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Fig. 4. The grid template for the variational
assimilation model.
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Fig. 5. (a) The heights of the lowest coordinate

surface before transformation and (b) the heights

remaining after transformation of the hydrostatic

equation into "equivalent pressure surfaces".
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Fig. 6. Asterisks indicate the location of the I01

rawinsonde stations used to construct the objective

analyses for comparison with satellite soundings.
The dashed line encloses the satellite soundings.

Note that the satellite soundings are well within the

boundaries of the rawinsonde objective analysis area,

thus edge effects should be minimal.
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Fig. 7. 12 h average biases of satellite soundings:

(a) clear soundings, (b) partly cloudy soundings, (c)

cloudy soundings. The error bars represent the 95Z

confidence interval. Dashed lines represent the

average of the biases. The temperature scale on the
right is in Kelvin.
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Fig. 8. Height (m) analyses on level 3

(approximately 800 mb) at 1200 GHT, I0 April 1979:

(a) objective analysis, (b) NOSAT analysis, and (c)

SAT analysis. Dashed lines on the HOSAT and SAT

analyses represent the adjustment in height from the
analysis.
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Fig. 9. Same as Fig. 8, but for level 6 (500 rob).
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Fig. I0. Temperature (C) on level 3 at 1200 GMT, I0

April 1979: (a) objective analysis of ravinsonde

temperatures. (b) NOSAT analysis
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Fig. 10 (continued). (c) objective analysis of

satellite temperatures, and (d) SAT analysis.

Satellite sounding locations from Fig. 3b are

superimposed in (c).
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Fig. 11. Same as Fig. 10, but for level 6.
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Fig. II (continued).
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Fig. 12. Streamline (solid lines) and £sotach
(dashed lines, m s- ) analyses on level 3 at 1200
GMT, I0 April 1979: (a) objective analysis and (b)

NOSAT analysis.
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Fig. 13. [eotachs (m e -I) and unit vectors of the

vector difference between the NOSAT and objective
analyses on level 3 at 1200 GHT, 10 April 1979.
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Fig. 14. Same as Fig. 12, but for level 6.
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Fig. 15. Same as Fig. 13, but for level 6.
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Fig. 16. Patterns of a) the relative vorticity of

the observed wind and b) the vorticity of the NOSAT

variational assimilated wind for level 6 (200 m_) at
1200 GMT, I0 April 1979. Units are in I0 -_ s-_.
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Fig. 17. Vertical velocities (cm s -1) on level 6

(500 mb) at 1200 GMT, 10 April 1979 from a) the
kinematic method (O'Brien, 1970) applied to the
objective analyses of the initial wind field and b)
from the MODEL I adjusted wind field. Hatching
delineates areas of precipitation.
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Fig. 18. Fields of a) initial, b) observed, and c)

SAT v-tendencies for level 4 (700 mb) for the central

region of the U. S. roughly covered bzlthe S_SAME-AVE
rawinsonde network. Units are in m s 3h_.

136



ORIGINAL P;._E !3

POOR ObALI= i'

Fig. 19. Same as Fig. 18, but for level 6 (500 rob).

137



1(

4 2 '

-2

\

Fig. 20. Same as Fig. 18, but for level 8 (300 rob).
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Hybrid Vertical Coordinate and Pressure Gradient

Formulations for a Numerical Variational Analysis Model

for the Diagnosis of Cyclone Systems

by

Gary L. Achtemeier and Harry T. Ochs

Illinois State Water Survey

Champaign, IL 61820

ABSTRACT

A hybrid nonlinear sigma vertical coordinate that is suitable for

a diagnostic variational objective analysis model is presented and

used for an analysis of the pressure gradient terms of the horizontal

momentum equations. This vertical coordinate blends from the sigma

coordinate to a pressure coordinate at a reference pressure level in

the middle troposphere and thus eliminates hydrostatic truncation

error above this level. For the lower troposphere, the nonlinear

vertical coordinate is used to show that the truncation error for a

horizontally homogeneous hydrostatic atmosphere with variable vertical

temperature structure arises because of the representative temperature

used for the transformation from pressure coordinates to the sigma

coordinates. This error is eliminated through a '_onlocal

formulation" for the pressure gradient terms that replaces the

temperature with its lapse rate in the hypsometric equation. However,

this solution is not incorporated into the variational constraints

because of greatly increased complexity that would result in the

Euler-Lagrange equations. We instead reduce the magnitudes of the
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individual pressure gradient terms approximately 30-fold by projecting

the pressure gradient onto "equivalent pressure surfaces". This

solution leaves the hydrostatic residual unchanged from the direct

two-term calculation.

1. Introduction

A variational assimilation model for diagnosis of cyclonesystems

under development will combine data sets obtained from space-based

platforms and from other remote sources with more traditional data

systems. Fields of observations will be weighted according to

observed and diagnosed measurement accuracies and will be blended to

satisfy four dynamical constraints; the nonlinear horizontal momentum

equations, the hydrostatic equation, and an integrated form of the

continuity equation. Fundamentals of the "strong constraint"

variational formalisms as applied to meteorological problems have been

presented by Sasaki (1958, 1970), Stephens (1965, 1970), and Wang

(1984). Later versions of the assimilation model will include the

thermodynamic equation for adiabatic motions and for moist processes.

The adjustment equations will approach or exceed the equations of

many numerical prediction models in complexity and number of

equations. Although we do not expect to encounter some of the

problems posed by numerical prediction models such as the temporal

buildup of high frequency waves, we do expect to encounter problems

that are endemic to prognostic models and a diagnostic model of this

type simply because the dynamics are the same and because the
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difference equations are in many respects analogous to the difference

formulations for time-dependent models. This paper deals with two

such problems, the formulations for the vertical coordinate and for

the pressure gradient terms of the horizontal momentum equations.

Numerous vertical coordinate systems have been developed for use

in numerical weather prediction models (Kasahara, 1974). The

advantages of using the pressure coordinate are that it is the

vertical coordinate preferred by diagnosticians and much of the

physical processes of the atmosphere are understood in relation to

these surfaces. In addition, the physical equations appear in a

simplified form. Some disadvantages of the pressure coordinate are

that the coordinate surfaces intersect the ground surface, which leads

to an irregular mesh and coding complications, and that values of

meteorological variables must be extrapolated below ground surface.

The alternative terrain-following or sigma coordinate system of

Phillips (1957) eliminates these problems. However. considerable

error can be introduced in the pressure gradient terms of the momentum

equations. These transform into two large and compensating terms

where there is steep sloping terrain. Pressure derivatives taken

along the sloping sigma surface contain a hydrostatic component which

must cancel in the two terms or else large forecast errors can occur.

We are not concerned about forecast errors in our diagnostic model.

However. it is necessary that the equations be formulated to produce a

physically realistic dynamical balance.

Attempts to overcome the large truncation errors in the pressure
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gradient terms have included interpolation back to pressure surfaces

in order to calculate the terms (Kurihara. 1968; Sundqvist. 1976),

the development of finite difference methods that satisfy conservation

constraints (Johnson and Uccellini, 1983; Arakawa and Suarez, 1983;

Corby et al.. 1972; Simmons and Burridge, 1981), and the formulation

of hybrid vertical coordinates that change from sigma coordinates near

the ground to pressure coordinates at the top of the model atmosphere

(Simmons and Burridge, 1981). Bleck (1978) also found that forecasts

were more stable if the vertical coordinate blended from the sigma

coordinate into, in his case. isentropic coordinates.

We have attempted to avoid complicated difference formulations

for the pressure gradient terms in the development of the diagnostic

variational model because the complexity is greatly increased in the

adjustment equations. Instead we introduce a nonlinear vertical

coordinate that changes from the sigma coordinate into a pressure

coordinate at a pressure level p in the middle troposphere. This

hybrid vertical coordinate has the following advantages for a

diagnostic variational analysis model:

(1) All coordinate surfaces at and above p are pressure

surfaces. The pressure gradient is expressed by one term and
there is no truncation error.

(2) The pressure surfaces are the coordinate surfaces most

preferred by diagnosticians. There is no need to interpolate

from sigma coordinates back to pressure coordinates in order

to interpret the variationally adjusted fields of

meteorological variables.

(3) Vertical interpolation of the initial meteorological fields

from pressure coordinates to sigma coordinates is required

only for the lower troposphere.

(4) The dynamical equations are presented in their simplest form
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on the pressure surfaces at and above p . Coding to omit

terms that are zero for coordinate surfaces that are surfaces

of constant pressure can result in a substantial reduction of

computational overhead (Simmons and St_ufing, 1983). The
tradeoff is that the equations below p are more complex

than the equations written for the linear sigma coordinate.
However. the magnitudes of these additional terms become

small in the sigma levels above the lower coordinate surface.

We describe the hybrid nonlinear vertical coordinate in Section

2. In Section 3. we use the nonlinear vertical coordinate to

determine the origin of the truncation error for a horizontally

homogeneous hydrostatic atmosphere with variable vertical temperature

structure. Section 4 presents our method to partition the pressure

gradient terms to reduce truncation.

2. A Hybrid Nonlinear Vertical Coordinate

The hybrid sigma coordinate blends from a terrain-following

coordinate in the lower troposphere into a pressure coordinate in the

middle troposphere. All horizontal variations with the lower

coordinate

level p .

surface are confined to levels below a reference pressure

The smooth transition from the sigma to the pressure

coordinate is accomplished by fitting two curves which are piecewise

continuous through the second derivatives.

layer bounded by Pu at the top and by p

by a straight line subject to the boundary

P=Pu and that • = _at p=p • This equation is

P-Pu

P*-Pu

The curve for the upper

at the bottom is given

conditions that _ =0 at

(1)

The equation for the nonlinear part of the hybrid vertical coordinate
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between p and the surface pressure Ps is found subject to the

following four conditions:

O = 1.0

0 = O* "_

30 =
o*/(p*-p u)

32° = 0 .

3p 2

at P'Ps

at p=p*

These four conditions specify the equation as a cubic polynomial which

takes the form

3 (P-Pu)
0 = 6 (P-P*) + O*

(p*-pu) )
(2)

Ps-Pu -3

8 = [i- C* (p,_--_u) ] (ps-P*) -

Fig. I shows the relationship between sigma and pressure for the

levels below the elevation of the 600 mb pressure surface for the

coordinate parameters that have been selected for the variational

objective analysis. The reference pressure p is at 700 mb. A

straight line from 700 mb to 1000 mb separates two sets of curves

which describe the relationship between sigma and pressure for low

surface pressure (high elevation) from those for high surface

pressure. If the surface pressures were everywhere equal to I000 mb,

the hybrid sigma coordinate would be identical to a pressure

coordinate system. The thicknesses between sigma coordinate surfaces

are compacted over higher elevations wherever the slopes of the curves

in Fig. I are less than the slope of the straight line. The greatest
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packing of the coordinate surfaces is found for levels nearest the

lower coordinate surface. These layer depths increase to approach the

t

thicknesses of the pressure layers at levels above p .

The slopes of the curves in Fig.

straight

I000 mb.

surfaces

1 exceed the slope of the

line at locations where the surface pressure is greater than

The pressure thicknesses between the sigma coordinate

here are greater than are the pressure thicknesses over

linear part of the coordinate. Note how the curve from 1100 mb to 700

mb has approached the straight line by sigma equal to 0.88. Whenever

the surface pressure is greater than 1000 mb, the nonlinear vertical

coordinate will force most of the transition between terrain-following

coordinate surfaces and pressure-following coordinate surfaces into

the layer immediately above the ground. Thus the nonlinear sigma

coordinate surfaces in the lower troposphere tend to behave as

pressure surfaces that are punctuated by areas of higher elevation.

Fig. 2 shows the distribution of hybrid coordinate surfaces

below 600 mb as the surface pressure varies from 800 to 1025 mb, the

approximate range of surface pressures for the smoothed orography of

the variational model. The greater compression of the coordinate

surfaces over higher elevation nearest the surface is clearly evident.

Notice how the nonlinear coordinate surfaces tend to become surfaces

of constant pressure at locations away from the areas of high

elevation. Note also the increased pressure depth of the lowest layer

where the surface pressures exceed I000 mb. Clearly this nonlinear

vertical coordinate does not provide for a boundary layer of uniform
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thickness. Use of this coordinate can increase the complexity of some

numerical models in that the boundary layer will have to be

parameterized as a function of layer thickness.

3. The Truncation Error in the Pressure Gradient

It is well known that, upon transformation from the pressure

coordinate system into the sigma coordinate system, the pressure

gradient becomes the sum of two terms the total of which may be an

order of magnitude or more smaller than the individual terms in areas

where coordinate surfaces pass over steeply sloping terrain. Gary

(1973) noted that pressure derivatives taken on a sloping surface

contain a hydrostatic component that must cancel in the two terms that

make up the pressure gradient in the sigma system or else there will

be a risk of considerable error. In this section, we use the hybrid

nonlinear vertical sigma coordinate to isolate the hydrostatic

component. Then we show how the truncation error in the presure

gradient originates, and finally show how the error can be eliminated.

a) Origin of the Hydrostatic Component

Consider from Pig. 2 two sigma surfaces over steeply sloping

.
terrain. Let the top surface be at p (700 mb), a surface of

constant pressure. At any arbitrary point on the lower, sloping sigma

surface p, T, and _ are known. The pressure gradient force per unit

mass at this point is given by

PGF = RT _ _n p + __
_x _x

(3)
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We proceed to express PGF as the sum of the pressure gradient force at

the * level,

* _qb
PGF = _---_ (4)

and the incremental pressure gradient force for the layer between the

two sigma levels. In so doing, we will make use of the hypsometric

equation,

* 0"p = p exp [( -qb)IRT] (5)

where _ = 0.5(T* + T). Substitution of (5) into (3) gives

PGF _ (i- _ + T _¢ T * _
= DX T _ DE _2 (0 - 0) -_ (6)

Furthermore, we can rewrite the horizontal gradient of the mean

temperature if

T = T + 0.5 I" (0 -qb) (7)

where the vertical temperature lapse

Using (7) to eliminate the mean

pressure gradient force becomes

2T
rate V_ is defined by _ .

temperature gradient in (6), the

b

)2 * * *PGF = (A___T Dqb TT Dqb T _T
_+2z T_ DE r2 (0*-0) _X

* 2
T (dp - 0) _r

-- - _ 2 D_ (8)

where T = T* - T.
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If the atmosphere is horizontally

_/_X =_T/_X = _r/_ x =0 and there remains a residual.

.AT. 2 ___

PGF = _) 3X

invariant,

(9)

which as a function of the slope of the sigma coordinate surface and

the temperature change between the two sigma coordinate surfaces.

This uncancelled hydrostatic component is for a layer bounded by a

pressure surface and a height surface and is therefore unique to this

nonlinear vertical coordinate.

We calculated the hydrostatic residual for an adiabatic

atmosphere between the surface (1000 mb) and the p* level (700 mb)

with a surface temperature of 285K. The lower coordinate surface

sloped from sea level to the top of a mountain (elevation 1800 m) in a

horizontal distance of 200 km. We chose an adiabatic atmosphere to

maximize T. The residual, expressed as a geostrophic wind error, was

1.16 m s -1. Given the differences in modeling constraints, this

result is considerably less than the errors found by Johnson and

Uccellini (1983) for five methods for calculating the pressure

gradient force.

It would appear that a nontrivial improvement can be gained if

the pressure gradient force is calculated as a function of the sum of

.
the pressure gradient force on the pressure coordinate p and the

hydrostatic thickness of the intervening layer. However. a drawback

of this approach is that the pressure gradient force is rendered as a

"nonlocal" calculation which can seriously affect the local accuracy
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of the hydrostatic equation (Arakawa and Suarez, 1983).

b) Origin of the Hydrostatic Residual in Nonlinear Sigma Coordinates

The transformation irma the pressure coordinate to the sigma

coordinate is given by

P

where, substitution of the hydrostatic and state equations for the

vertical gradient of geopotential height as a function of pressure

_/_ yields the familiar form for the pressure gradient in sigma

coordinates (3). if (3) is calculated by using the temperature

located on either the sigma surface or the pressure surface, there

will result a small error where the incremental separation between the

two surfaces is large. As shown by Fig. 3, the vertical gradient of

is better represented by which is the mean temperature of theTm

layer of interpolation between the sigma and pressure surfaces. T

approximates T only at locations where the slopes of the sigma
m

coordinate surfaces do not depart much from the slopes of the pressure

surfaces. This is not the case over steep sloping terrain where the

sigma coordinate surfaces depart appreciably from pressure surfaces.

Here T differs significantly from T and a nontrivial hydrostatic
m

residual will exist unless the lapse rate of temperature over the

layer of the coordinate transformation is isothermal.

equal to zero. Sundqvist (1975) also found that the

residual vanishes for an isothermal atmosphere.

Then (9) is

hydrostatic
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c) Elimination of the Hydrostatic Residual

If T, Tm, and the mean layer temperature are found within an

atmospheric layer of constant lapse rate, we can retain (3) with T and

eliminate the hydrostatic residual upon expressing the pressure

.
gradient force in terms of the pressure gradient force at p and

the lapse rate of the intervening layer. To accomplish this, we

rewrite the hypsometric equation as

* If"d,
d gnp =- _-_ (11)

If we substitute for T with

T = T* + r (¢*- _) (12)

and integrate (II) over the layer between the two sigma

find that p can be related to p through

surfaces.

i

P = p, [T* + r (q_*-qb)]FR
T*

Substitution of (13) into (3) gives the pressure gradient force as

function of the horizontal gradients of _, T, _ and _ ;

we

(13)

_X 1 T - aFPGX =-- + "_" [1 - -_,] + [_,n _ + ] "_
(14)

This equation is an improvement over (8) in that all of its terms are

functions of variables at the p level and the horizontal gradient
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of the lapse rate. Therefore, if the atmosphere is horizontally

invariant, these terms vanish and there exists no uncencelled

hydrostatic component.

4. Pressure Gradient Force for the Diagnostic Variational Model.

We recognize the need to reduce the truncation error between the

two terms of the pressure gradient in the lower troposphere in the

development of the diagnostic variational model. However there are

other important factors that must be taken into consideration. The

"strong constraint" version of the variational formalism (Sasaki,

1970) produces a set of Euler-Lagrange adjustment equations that have

complexity greater than the complexity of the original dynamical

constraints. We therefore seek the simplest formulations for the

constraints. The nonlocal formulations that eliminated the truncation

error in the pressure gradient contain nonlinear terms that would

greatly increase the difficulty in obtaining a solution for the

Euler-Lagrange equations. However, if the hydrostatic terms are not

reformulated, the variational algorithm will separate the pressure

gradient terms and combine the large uncompensated terms with terms

from other equations. The large nonmeteorological contribution by

these terms can cause significant errors in the final solution unless

methods are developed to remove them (Achtemeier. 1975).

We are therefore motivated to develop a method that compensates

,
the two pressure gradient terms in the levels below p and also

retains the simple formulation that is required for the variational
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model. We remove a hydrostatic component from both terms by

partitioning the pressure gradient to cancel most of the orographic

part. The separation is not complete because the mean layer

temperature is not partitioned. We restate the hydrostatic equation

as

_w -- _ in (pw)

S--T+ RTw _o = 0 (15)

where the subscript w implies the whole or unpartitioned variable.

The geopotential and pressure are expressed as an orograhic part plus

a remainder. _w = _T+_ and pw=pT+p. Substitution intO the

hydrostatic equation gives

_d#a

$--_-+ yRT w + _ = 0 (16)

where

and

Y = _ in (p)
_o (17)

_qbw _dPT RTw _PT

= i) -Z-+-T6-+ p

We further remove a reference atmosphere by defining

_w = _ + T and requiring that

_¢R
_o + YR_R = 0

The remaining equation

(18)

(19)

_qb + yRT- + 8 = 0 (20)

describes the hydrostatic relationship between meteorological
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perturbations. The perturbations are subject to the variational

adjustments. Most of the orographic component is located in _r" Eq.

18 can be solved accurately if the layer average pressures are equal

to the average of the arithmetic mean plus twice the geometric mean.

The orographic variables are found by setting _ =0 and defining p as

equivalent pressure surfaces. We use the terminology "equivalent

pressure surfaces" to avoid confusion with methods that calculate the

pressure gradient on surfaces of constant pressure and then

interpolate the results to sigma coordinate surfaces (Kurihara, 1968).

The equivalent pressure surfaces can be easily determined from the

definition of the nonlinear vertical coordinate. Fig. 1 shows that

the relationship between pressure and sigma is linear in the lower

troposphere if the surface pressure is equal to 1000 mb. Choosing

ps=Pse=1000 mb uniquely determines the remaining pressures through

(2) and therefore PT" Then _T is found by downward integration

from the reference pressure level.

Having derived the relevant partitioned variables,

gradient terms are easily transformed, e.g.,

PGX =-_x + fix

where

the pressure

(21)

rlX

Fig.

grid to

collected at 1200 GHT 10 April 1979.

_T _ in (pw)
= __+ R_ x (22)

_x _x

4 shows the height of the lower coordinate surface for a

be used for the diagnostic variational analysis of data

The heights on the unpartitioned
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terrain-following coordinate vary from 0-1800 m approximately (Fig.

4a) and show the steep gradients that surround a smoothed high

elevation area over the western U.S. The heights remaining after the

removal of the hydrostatic component that arises from variations in

the elevation of the lover coordinate surface are shown in Fig. 4b.

Calculations show that the projection onto equivalent pressure

surfaces reduces the magnitudes of the these variations by about

30-fold. The equivalent 1000 mb heights resemble the actual I000 mb

heights (Fig. 4c) with the exception that the heights of the low

center over the West are approximately 60 m higher in Fig. 4b. This

residual orographic effect is retained through the unpartitioned mean

layer temperatures.

5. Discussion

We have presented a hybrid vertical coordinate for a diagnostic

variational objective analysis model. The coordinate blends from a

terrain-following sigma coordinate in the lover troposphere to

constant pressure surfaces in the middle troposphere. There are

several advantages to this nonlinear vertical coordinate. All

coordinate surfaces from the middle troposphere to the top of the

analysis domain are pressure surfaces. The pressure gradient is

expressed by one term and there is no hydrostatic truncation error.

This is also true for the lover stratosphere for which the pressure

gradient calculated on sigma coordinates is extremely sensitive to

truncation.
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Pressure surfaces are the coordinate surfaces most preferred by

diagnosticians. There is no need to interpolate from fields presented

on sigma coordinates to fields presented on pressure coordinates in

order to interpret the patterns of variationally adjusted

meteorological variables. Further, vertical interpolation of the

initial meteorological data from pressure coordinates to sigma

coordinates is required only for the lower troposphere.

The dynamical equations are presented in their simplest form on

the pressure surfaces at and above p . Coding to omit terms that

are zero for coordinate surfaces that are surfaces of constant

pressure can result in a substantial reduction of computational

overhead (Simmons and Strufing, 1983). The tradeoff is that the

complexity of the equations below p is increased over the

complexity of the equations written for the linear sigma coordinate.

However, the magnitudes of these additional terms become small in the

sigma levels above the lower coordinate surface.

We used the nonlinear vertical coordinate to derive an equation

for the hydrostatic residual. We found that an uncancelled

hydrostatic residual is present in the transformation of the dynamic

equations from pressure to sigma coordinates. The residual results

when the temperature on the sigma level is used in the transformation

instead of the mean temperature of the incremental layer between the

sigma and the pressure coordinate surfaces. If the temperature at the

sigma level is used, the hydrostatic residual vanishes only if the

coordinate surfaces are coincident or if the lapse rate of temperature
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for the layer is isothermal. We were able to eliminate the

hydrostatic residual in this nonlinear vertical coordinate by

replacing the temperature with its lapse rate in the hypsometric

equation. However. this "nonlocal solution" was not incorporated into

the variational constraints because of greatly increased complexity

that would result in the Euler-Lagrange equations.

We developed a method that removes most of the influence of

unlevel terrain in the pressure gradient terms by projecting the

pressure gradient onto equivalent pressure surfaces. This method

reduced the magnitudes of the individual terms by approximately

30-fold. Some hydrostatic residual remains, however, the nonlinear

formulation for this hybrid vertical coordinate requires the

hydrostatic residual to decrease upward to smaller values in

comparison with the linear sigma coordinate in order that it vanish at

the lower-middle troposphere (700 mb in our model) and upward.
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Figure Captions

Figure 1. The relationship between sigma and pressure for the levels

below the elevation of the 600 mb pressure surface for the

coordinate parameters that have been selected for the variational

objective analysis.

Figure 2. The distribution of hybrid coordinate surfaces below 600 mb

as the surface pressure varies from 800 to 1025 mb.

Figure 3. The relationship between the geopotential expressed on

pressure and sigma coordinate surfaces.

Figure 4. Heights at the lower coordinate surface for a)

unpartitioned terrain-following coordinate, b) the equivalent

pressure surface, and c) the 1000 mb pressure surface.
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Day-Night Variation in Operationally-Retrieved TOVS Temperature Biases

by

Stanley Q. Kidder and Gary L. Achtemeier

Climate and Meteorology Section

Illinois State Water Survey

Champaign, IL 61820

1. introduction

Several authors have reported that operationally-retrieved TOVS

(Tiros Operational Vertical Sounder) temperatures are biased with

respect to rawinsonde temperatures or temperature analyses (Phillips et

a_!l., 1979; Schlatter, 1981; Gruber and Watkins, 1982). Not appearing

in the literature, however, is an indication of how these biases may

vary diurnally. This note documents a significant day-night variation

in the biases over the United States during one time period.

2. Background

Under development at the lllinois State Water Survey is a

sophisticated variational analysis model (Achtemeier et al., 1986a)

which offers a means for blending satellite and conventional soundings

in a way which preserves the information content of both data sources.

However, the model requires input data which are as bias-free as

possible and about which the error characteristics are known. Because

gridded data are required as input for the model, we needed to know the

bias of TOVS temperatures with respect to objectively-analyzed

rawinsonde data. None of the previous studies of TOVS biases used

precisely this standard of comparison. Phillips e__t_ al. (1979) and
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Gruber and Watkins (1982) used nearly-colocated rawinsondes as a

comparison; while Schlatter (1981) used NMC Final Analyses. We

decided, therefore, to recalculate the biases.

3. Data and analysis

The case study on which the variational analysis model was first

run is 10-11 April 1979 (Achtemeier et a_!l., 1986b). To do the

calibration study, we acquired Tiros-N soundings and rawinsonde data for

the period 26 March through II April 1979. This is the same period

(plus three days) analyzed by Schlatter.

Layer mean virtual temperatures, derived from rawinsonde

thicknesses, each 12 hr for the period 0000 GMT 26 March through 1200

GMT 11 April 1979 were objectively analyzed on a 21 x 21 grid (260 km

grid spacing at 45°N) covering most of North America (Fig. 1). Biases

were estimated by calculating the difference between satellite-estimated

mean virtual temperatures and rawinsonde values interpolated in both

time and space from the analyses to the satellite data.

Figure 2 shows the 12 hr average biases as a function of time for

each layer. The dashed lines represent the mean biases for the periods

26 March through 8 April and 10-11 April. The three sounding types

(clear, partly cloudy, cloudy) have been kept separate. The error bars

represent 95Z confidence intervals assuming that the biases are normally

distributed about the 12 hr mean, which proved to be a good assumption

upon examination. Two aspects are disturbing: (I) For a large number

of points

dashed line.

long term

the error bars do not include the mean represented by the

Only one in 20 points should not include the mean if the

average is representative. (2) There seems to be a 24-hr
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oscillation, which indicates that daytime and nighttime biases may be

different.

Day and night soundings were separated, and the mean biases for the

period 26 March through 8 April were calculated. These results are

plotted in Figure 3 and tabulated in Table 1. Again, the error bars

represent 95% confidence intervals. It is clear that biases for day and

night soundings are statistically different (95% confidence) at most

levels for clear and partly cloudy soundings, and at several levels for

cloudy soundings. Day-night differences are particularly evident for

clear soundings. In the mid-troposphere, nighttime soundings have

little bias, while daytime soundings have a

Schlatter's results are plotted for comparison.

not separate day and night soundings, his biases

difference between the day and night biases. In the upper troposphere,

Schlatter's biases tend to be colder than the

respect to rawinsonde analyses.

large cold bias.

Because Schlatter did

tend to split the

biases calculated with

4. Conclusions

It is concluded that at least for the time period 26 March through

II April 1979 there was a significant day-night variation in TOVS mean

layer virtual temperature biases with respect to analyses of rawinsonde

data over the United States. Day-night variations may exist for other

time periods and for other locations.
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Table 1

Biases and standard deviations of operationally-retrieved
Tiros-N layer mean virtual temperatures (K).

Layer (mb) Day Night

Clear Partly Cloudy Clear Partly Cloudy

Cloudy Cloudy

Biases

200-100 -0.02 -0.05 0.54 0.19 0.18 0.51

300-200 O. 98 0.6 5 1.20 0.61 1•49 1.62

400-300 -0.04 0.20 -0.41 0.41 0.26 -0.02

500-/100 -0.87 0.33 -1.14 0.14 -0.25 -1.11
700-500 -0.90 0.29 -1.35 -0.10 -0.23 -1.37
850-700 -0.16 0.67 -0.65 0.09 1.08 -0.31

1000-850 O. 32 1 . 03 1 . 87 -0.42 1 . 35 2.06

Standard Deviations

200-100 1.29 1.63 1.48 1.38 1.12 1.47
300-200 1.57 1.40 1.74 1.18 1.34 1.45
400-300 1.50 1.37 1.83 1.3 8 1.40 1.99
500-400 1 . 43 1 . 43 1.70 1 • 59 1.30 1 . 89
700-500 1.62 1.72 1.77 1.25 1.44 1.77
850-700 1 • 84 2.42 2.31 1 • 84 2.28 2.60

1000-850 2.11 2.52 2.60 2.64 3.12 3.39
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Figure Captions

Fig. I. Asterisks indicate the location of the I01 rawinsonde stations

used to construct the objective analyses for comparison with satellite

soundings. The dashed line encloses the satellite soundings. (This is

the same area chosen by Schlatter, 1981.) Note that the satellite

soundings are well within the boundaries of the rawinsonde objective

analysis area; thus edge effects should be minimal.

Fig. 2. 12 h average biases of satellite soundings: (a) clear

soundings, (b) partly cloudy soundings, (c) cloudy soundings. The error

bars represent the 95Z confidence interval. Dashed lines represent the

average of the biases. The temperature scale on the right is in kelvin.

Fig.

(a)

Day and night biases have been kept separate.

Schlatter (1981) are plotted for reference.

the 95Z confidence interval.

3. Average biases for the period 26 March through 8 April 1979:

clear soundings, (b) partly cloudy soundings, (c) cloudy soundings.

The biases published by

The error bars represent
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ABS_ACT

Successive corrections objective analysis techniques frequently are used

to array data from limited areas without consideration of how the absence of

data beyond the boundaries of the network impacts the analysis in the interior

of the grid. This problem of data boundaries is studied theoretically by

extending the response theory for the Barnes (1964, 1973) objective analysis

method to include boundary effects. The results from the theoretical studies

are verified with objective analyses of analytical data. Several important

points regarding the objective analysis of limited-area data sets are revealed

through this study.

I) Data boundaries impact the objective analysis by

reducing the amplitudes of long waves and shifting the

phases of short waves. Further, in comparison with the

infinite plane response, it is found that truncation of

the influence area by limited-area data sets and/or the

phase shift of the original wave during the first pass

amplified some of the resolvable short waves upon

successive corrections to that first pass analysis.

2) The distance that boundary effects intrude into the interior

of the grid is inversely related to the weight function shape

parameter. Attempts to reduce boundary impacts by producing

a smooth analysis actually draw boundary effects farther into

the interior of the network.

3) When analytical tests were performed with realistic values for the
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weight function shape parameters, such as the GEMPAK default

criteria, it was found that boundary effects intruded into the

interior of the analysis domain a distance equal to the average

separation between observations. This does not pose a problem for

the analysis of large data sets because several rows and columns of

the grid can be discarded after the analysis. However, this option

may not be possible for the analysis of limited-area data sets because

there may not be enough observations.

The results show that, in the analysis of limited-area data sets, the analyst

should be prepared to accept that most (probably all) analyses will suffer

from the impacts of the boundaries of the data field.
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l ° Intr_ti_

Field experiments often involve the collection of tropospheric data in

networks of limited areal extent. The expense involved in obtaining upper air

data usually restricts these networks to no more than 10-15 observing sites.

Several limited-area tropospheric sampling networks have been operated during

the last two decades to support meteorological research. The National Severe

Storms Laboratory (NSSL) operated 8-10 rawinsonde sites during 1966-1970

(Barnes, et al., 1971) and the number of sites ranged from three to nine dur-

ing the last decade (Alberty, et al., 1977; Doviak, 1981; Taylor, 1982).

Other networks operated in the last 15 years included METROMEX: I0 pibal

sites in 1971 (Changnon et al., 1971) and 11 sites in 1973 (ISWS, 1974),

SESAME: 20 storm scale rawinsonde sites in 1979 (Hill et al., 1979), and

CCOPE: five rawinsonde sites in 1981 (News and Notes, 1981).

In the analysis of upper air data from limited-area networks with eight

or more measuring sites, the analyst may prefer an objective interpolation of

the data from the irregularly spaced observation sites to points on a regular

grid. An approach to the interpolation of the data would be the use of a mul-

tivariate statistical interpolation method (Gandin, 1963; Schlatter, 1975)

found to be useful for the analysis of large data sets with several interre-

lated parameters. However such a technique requires both good first-guess

fields and reliable models of the first-guess field error statistics. These

are generally not available for limited-area networks. However, we can use the

simpler successive corrections methods such as the techniques of Cressman

(1959) or Barnes (1964, 1973).
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Regarding the objective interpolation of meteorological data,.Eddy (1964)

suggested that the analyst take into consideration the data density, the sig-

nificant wavelengths in the field, the best method for interpolating between

observation points, and the noise level in the data. For limited-area data

sets, the analyst should also consider the extent to which the absence of

observations beyond the boundaries of the data field causes the method to

degrade the analysis of the waves defined within the interior of the network.

This latter problem is the subject of this paper. We are not concerned with

extrapolation although extrapolation is often unavoidable in the transferral

of information from irregularly shaped data fields onto a regular grid.

Instead, we are concerned with how an objective analysis technique responds to

the presence of boundaries in a limited-area data field. We seek answers to

the following questions: What impacts are measured at various wavelengths?

How far do the impacts extend into the grid interior and what can be done to

confine adverse impacts to near the grid boundaries?

The spectral responses of several objective interpolation techniques that

use distance-dependent weight functions have been derived with the assumption

either that the data were distributed continuously (Barnes, 1964) or that they

were distributed uniformly upon a plane within an "influence radius" from some

point of interpolation (Stephens, 1967; Stephens and Stitt, 1970). This

response theory will be extended to assess the impact of the boundaries of the

data field upon an objective analysis.

We will use the successive corrections method developed by Barnes (1964)

and extended by him in 1973. This method has found widespread use in the

analysis of regional scale and mesoscale phenomena, studies that most often

involve the analysis of limited-area data fields. It is also the objective
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analysis technique in the GEMPAK program package (Koch et al., 1983) which is

being distributed widely within the meteorological community. Throughout the

theoretical discussion, it is assumed that a continuum of information exists

within the data field. In the real world this is never achieved; the response

is degraded further by the discrete data distribution and is beyond the scope

of this paper. However, the continuum response provides a baseline for the

best analysis achievable near data boundaries.

In Section 2 we formulate the problam and discuss the Barnes analysis

technique in the context of first and second pass responses near data boun-

daries. Section 3 gives examples of the impact of data boundaries upon objec-

tive analyses of analytic data, and Section 4 presents a discussion of the

results.

@ Impact of Data Boundaries Upon an Objective

Analysis - Theoretical Studies

The Barnes (1973) report has become an unofficial instruction manual for

those who use his objective analysis method. Therefore, we will adhere to the

original nomenclature and developments where possible and will also use origi-

nal examples to demonstrate the impact of data boundaries upon the analysis.

Suppose an atmospheric variable can be described by a horizontal function

f(x,y). Assume a continuum of observations regarding f(x,y), and filter

(weigh) these data according to their distance from an arbitrary point (x,y).

We wish to determine the relationship between observed value, f, and weighted

average value, g, at the same point (x,y),

g(x,y) = Q[f(x,y)], (i)
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where Q is a "response operator" and is wavelength dependent. If the relative

locations between a grid point (x,y) and a data point (x+rcos_, y+rsing) are

as shown in Fig. I, then the relationship between the true field and the fil-

tered field may be expressed by

f I

gC ,y) - | fCx+rcos ,, y+rsin ) w<r,k) r dr
/ ]
*O "0

where w(r,k) is a simple Gaussian low pass filter,

w(r,k) = [I/4_k] exp(-r2/4k). (3)

The 4k is an parameter which determines the shape of the weighting curve and

thus the influence accorded to observations at distance r from (x,y).

Figure 2 shows how the limits of integration apply to (2) when part of

the area of integration overlaps the boundary of the data field. We will

assume that a continuum of data exists to the left of the data boundary. We

also assume that the integration is carried out to some scan radius Rc, (R c

<,o), beyond which the value of the weight function is some very small number

so that truncation of the weight function at R will not noticeably affect the
C

response characteristics. The interval of integration proceeds counterclock-

wise through the data-rich part of the scan area beginning at eI and ending at

02 . The remaining interval of integration covers the area where the scan area

overlaps the data boundaries and includes the data-rich triangular area with

two sides bounded by R c and the third side bounded by the edge of the data

field.

In the event that the grid point is far enough removed from the data

boundary, the integral reduces to the equation for the response for a data
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continuum over an infinite plane. Otherwise, a solution for (2) is difficult

to obtain because the distance from the'grid point to the data boundary is a

function of the angle, e. If f(x,y) is an idealized monochromatic data field

of the form Asin(ax) where a = 2F/_ , then g (x,y) is determined by the

weighted sum of the original function, f (x,y), with the original function

shifted 90 degrees out of phase,

g(x,y) ffiD(a,k) f(x,y) + E(a,k) h(x,y) (4)

where h(x,y) = A cos(ax). The amplitude responses, D(a,k) and E(a,k) are

integrals of higher-order Bessel functions. Barnes (1964) presented the

analytical solution for D(a,k) for data distributed over an infinite plane.

In his 1973 paper, he showed that E(a,k) vanishes under the same conditions.

These conditions are not satisfied near data boundaries and both integrals are

non-zero. We have solved them numerically.

a) Theoretical Response for a Single Data Boundary

Throughout this development, a continuum of data within the boundaries of

a finite data field (Fig. 2) is assumed. If f(x,y) is specified, then the

weight function shape parameter and the length of the wave are all that are

required to find the responses D(a,k) and E(a,k). However, to better relate

the theoretical results from (4) to distances measured from the edge of the

data field, we introduce a length scale S = _*/2 where _* is a reference

wavelength. The reference wavelength is chosen to equal the minimum resolv-

able wave, the final response of which must be prespecified in the GEMPAK

method (Koch et al., 1983). Thus, if the methods described here are applied

to the analysis of real data, S is equivalent to the average spacing between
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discretely distributed observations.

The first pass responses for the first term of (4) at selected distances

from s data boundary are shown in Fig. 3a. Distances are given in fractions

of S (S = I0 km). The shape of the weighting curve is 4k=64, a value used by

Barnes for the first pass analysis of data distributed on the 1970 NSSL sur-

face mesonetwork. The response for a grid point removed a distance, 2S, from

the data boundary is unchanged from the response for an infinite plane of con-

tinuous data for the range of wavelengths in Fig. 3a. At distance S from the

boundary, the responses for the medium and long wavelengths are slightly less

than the infinite plane responses - an indication that these waves receive

additional damping due to boundary effects. Additional smoothing is clearly

implied for all wavelengths when the grid point is located at distances less

than 0.67S from the data boundary. The Gaussian filter degrades the spectrum

of waves to the extent that less than 50 percent of the amplitudes of the long

waves are restored at the data boundary. Further, upon extending this

analysis to very long waves, it is found that D(a,k) approaches 0.5 in the

limit as _-Pdo.

Figure 3b shows how the second term of (4) shifts the phases of the waves

near the data boundaries. Phase shifts are negligible at distances greater

than S from the data boundary. Maximum phase shifts occur at the data boun-

dary and for the short but resolvable waves in the range 20-60 km. Approxi-

mately 30 percent of the amplitude of the 30-km plane wave appears as a phase

shifted wave at the data boundary.

The magnitudes of the impacts that the absence of data beyond the boun-

daries of a data field have upon filter fidelity at any location within an

analysis grid are also dependent upon the shape factor 4k. Figure 4 shows
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response curves for four values of 4k at a grid point located at a distance of

0.67S from the data boundary. The response for 4k=16 shows no significant

impact because that part of the scan area where relatively large weights are

accorded to the data does not overlap the data boundary. Thus, in a sense,

the filter does not "see" the data boundary when 4k=16. A value of 4k=205

produces first pass response characteristics in both wave amplitude and phase

shift at 0.675 similar to the response 4kffi64 would produce at about 0.5S from

the boundary (Fig. 3b). Since the larger 4k increase the effective scan

areas, the deleterious impacts of the data boundary upon filter fidelity must

increase in magnitude and must appear at greater distances into the grid inte-

rior because a greater percentage of the scan areas will overlap the data

boundary.

The interpolation method may be modified to obtain the desired response

at small wavelengths by applying correction pass(es) through the initial

interpolation field. In application, we perform the nth pass by finding

gn_l(x,y) through bilinear interpolation and then adding to the previous (n-l)

pass field the smoothed residual difference between the observed data values

and the (n-1)th pass estimated values at the data location. Thus,

gn (i'j) = gn-I (i'j) + Qn [f(x'Y)-gn-l(x'Y)] ' (5)

where the general response operator, Qu' may or may not take on the same value

as for the previous pass.

187



For reasons of computer economy, Barnes (1973) modified the original

analysis technique so that only one correction pass through the data is

required to achieve the desired response at small wavelengths. By this

method, the filter is made to return more of the amplitude of the short waves

through a reduction of the shape factor by a fraction, _. This procedure is

analogous to decreasing the influence radius for the Cressman (195,9) analysis

technique except that the number of observations within the scan area remains

the same. Instead of reducing the number of observations, the weights are

adjusted so that the relative importances of the observations closest to the

grid point are increased on the correction pass. By this method, the

estimated values at the grid points are given by

g(i,j) = D" f(x,y) + E" h(x,y) (6)

where the final responses, D" and E', for the modified analysis method are

given by

D" = DO + D1 - (DoD 1 - E0E I)

E" ffiE0 + El -(DoE 1 + E0D I)

(7)

(8)

If a grid point is located at greater distance from data boundaries, then

EI = E0 = O, E" = 0 and D" reduces to the form given by Barnes (1973). Other-

wise, the amplitudes of the phase shift term are non-zero where data boun-

daries influence the analysis. E0 and E1 are related through _, both are of

the same sign, their product is always positive, and therefore the phase shift

excited at the first pass always increases the final response. The solid

curves in Fig. 5a are examples of the final responses, D', after one correc-

tion pass at a point located at the data boundary. The value of 4k is 205 and
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is equal to the value of 4k for the first pass of the GEMPAK objective

analysis. The correction pass value for _" is 0.2. The curve labeled E = 0

is the final response calculated with E - 0 and it serves as a baseline for

evaluating the impact of the phase shift upon the final analysis. The data

boundaries cause the method to restore only about 70 percent of the original

long waves. A comparison of the two curves illustrates the importance of the

phase shift terms in increasing the response for the short wavelengths in the

range 30 to 60 kin, the increases for these waves ranging from six to ten per-

cent. This is the range of waves for which the

greatest (see Fig. 4b for reference).

The tradeoff is that the data boundaries

first pass response E 0 is

also excite large amplitude

phase-shifted waves for the same range of waves near the data boundary (Fig.

5b). The maximum amplitude of the phase shifted waves occurs at the 30 km

wave and is 43 percent.

It is expected that the impacts of the data boundaries will vary among

objective analyses obtained by other methods or from the same method with dif-

ferent control parameters. The dashed curves in Fig. 5a are examples of the

final responses, D', after three correction passes with the Barnes (1964)

method. We set the shape factor 4k = 205. A comparison between the dashed

curve labeled E = 0 and the two solid curves, shows that this method substan-

tially improves the fidelity of the Barnes filter near data boundaries for

wavelengths greater than 40 km. Approximatley 85 percent of the amplitudes of

these waves are restored, inclusion of the phase shift terms improves the

fidelity of the filter still more with the greatest increases in the 30 to 60

km range. This is the range of waves for which the first pass response E0 is
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greatest. These increases range from only six percent for the 20 km wave to

38 percent for the 40 km wave.

However, this analysis also produces large mnplitude phase shifted waves

for the same range of waves near the data boundary (Fig. 5b). Seventy-five

percent of the amplitude of the original 30 km wave appears as a phase shifted

wave at the data boundary. More than 50 percent of the mnplitudes of the 20

and 40 km waves are returned out of phase. Phase shifting is a lesser problem

with the longer waves. Further, the mnplitudes of these phase shifted waves

and those obtained with the single correction pass method become negligibly

small for all waves where the distances from the boundary of the data set

exceed S.

b) Theoretical Response for Limited Area Data Sets

The previous discussions have focused upon the impacts the single boun-

dary of a data field have upon the filtering characteristics of the Gaussian

weight function. We now turn to the limited area data set and consider that

the response at all points within the small grid network may be impacted to

some degree by one or more data boundaries. Keeping the numerical approxima-

tion to the general response equation, we modify the geometry of the data

field by assuming that the data are distributed uniformly within a circle with

a diameter equal to 2S.

The final response curves for limited area data sets (Fig. 6) are labeled

in distances measured in fractions of S from a data boundary. They begin at

the data boundary (0) and terminate at the center of the circle (S). The

response curves are for the low pass filter designed to produce the infinite

plane response identical to the GEMPAK default criteria (D0=0.0064 and _-0.2)
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at the 2S wavelength. When applied to the limited area data set, this weight

function modifies the character of all of the waves studied (Fig. 6a). All of

the longer waves are filtered. The filtering is most extensive at the data

boundary; however, the amplitudes of long waves at the center of the data area

also are reduced. Short waves are amplified by this analysis. Responses for

the waves in the range from 20 to 40 km wavelength are increased above the

infinite plane response calculated with identical parameters (dashed line).

Maximum increases at the 2S wave (20 km) approach 10 percent at the center of

the limited-area data field. These increases cannot be explained by the addi-

tion of the phase shift term in (14) because the data are distributed symmetr-

ically about the central point. This satisfies the condition for the phase

shift to vanish and the phase shift does vanish (Fig. 6b line labeled S).

Instead, the short waves amplify because the influence area is truncated at

the data boundaries. Moreover, the magnitude of the amplification depends

upon the extent of truncation and hence upon the size of the limited area data

field. Figure 7 shows the differences between the truncated final response

and the infinite plane final response for the 2S wave if Rc varies in the

range from zero to 2S. The differences increase from -e -I (the truncated

final response is equal to zero if there is only one data point) to +0.12 if

R c is equal to approximately 0.67S. The truncated final response approaches

> 1.67 S.
the final response for the infinite plane for Rc _

3. Examples of Impact of Data Boumdariea Upon Objective Analyses

In this section, we use objective analyses to show that the impacts of

data boundaries extend for significant distances into the grid interiors. The
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data locations are colocated with grid points on a 21 by 21 grid with a 3.175

km grid spacing so that there is no need for any additional interpolation to

estiaate values of the gridded fields at off-grid data locations. It also

allows the direct comparison of the objectively filtered fields with the pred-

ictions of the response theory in Section 2. The final filtered value at each

grid point after L correction passes through the data is the weighted average

of M*N observations plus the sums of the correction passes according to

M N

E 7. Wo,m,n f(m,n) L

m=1 n=l + 7. C£ ,
gL (i'j) " M N £=i

m=l n=l

(8)

where

M N

7. 7. w£ [f(m,n) - g£ l(m,n)]
m= I n= I ,m,n

C£ = M N

7. 7. W£,m, n
m=l n=l

(9)

The weight function, wj,m, n is given by

w/,m, n = exp [-r2(m,n)14k ].
(lO)

The data are taken from analytic functions which include sloping plane

surfaces and monochromatic waves that range from 20 km through 80 km. We use

either three correction passes with w_,m, n = w0,m, n or the GEMPAK default cri-

teria, one correction pass with Wl,m, n = 0.2 w0,m, n.
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Figure 8 demonstrates the impacts of data boundaries ou a three-

correction pass analysis and upon a one-correction pass analysis for a 20 km

monochromatic wave (Fig. 8a). The initial value for 4k was 205. Filtering

the wave field by (8) with three correction passes does not restore this 2S

wave (Fig. 8b). However, a phase-shifted wave of amplitude comparable with the

amplitude of the original wave appears near the boundaries in accordance with

the response theory developed in the previous section (compare with Fig. 8a).

We subtract from the analysis in Fig. 8b a filtered wave determined from

response theory for data distributed over an infinite plane. This leaves the

phase shifted wave as a remainder located near the boundary (Fig. 8c). The

residual of 10 units corresponds to approximately 63 percent of the amplitude

of the original wave. This compares favorably with theory which predicts a

phase shifted wave with amplitude equal to 56 percent of the original wave

(Fig. 5b). The one-correction pass analysis run with the GEMPAK default cri-

teria restores e-I of the amplitude of the original wave (Fig. 8d). Subtrac-

tion of the infinite plane component of this filtered wave also leaves a

reversed phase wave nearly identical to the wave in Fig. 8c.

The analysis modelled after a limited area data set demonstrates that the

absence of observations beyond the boundaries of the data field can have a

significant impact over the whole analysis domain. We use a monochromatic 60

km wave for this part of the study. The wave is filtered with the one-

correction pass method subject to GEMPAK default criteria which assumes that

this wave is equivalent to the minimum resolvable wave. We then subtract a

filtered wave determined from infinite plane response as Was done in develop-

ink Fig. 8c. The line (curve I) in Fig. 9 shows that this filter draws boun-

dary effects into the interior of the analysis. (If this wave is equivalent
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to the minimum resolvable wave then one station separation is equivalent to

the length scale S.) The magnitudes of these boundary effects are in percen-

tages of the amplitudes of the original wave and are in general agreement with

predictions of theory. Decrease the initial 4k by a factor of four and (7)

reduces the magnitude of the phase-shifted wave and concentrates it nearer the

data boundary (curve 2). Increase the initial 4k by a factor of four to

smooth out the undesirable boundary effects and (7) reduces the amplitude of

the phase-shifted wave (at least for this 60 km wave) but draws the boundary

effects into the grid interior (curve 3).

4. Discuasiou

Successive corrections objective analysis techniques have often been used

to analyze (filter) data taken from limited area networks onto a regular mesh

without regard for the impacts upon the analysis in the interior of the grid

caused by the absence of data beyond the boundaries of the network. The

response theory for the Barnes objective analysis methods was extended to

include boundary effects and was compared with objective analyses of analytic

data. The analytic data was distributed semi-continuously over grid points of

a fine scale mesh. Several important points regarding the objective analysis

of limited area data sets were revealed through this study.

a) Both the theoretical and the analytic studies showed that data

boundaries can have a significant impact upon waves defined within the

interior of an objective analysis. The most deleterious boundary ef-

fects were that the long waves were filtered and the short waves were

phase shifted. Long waves suffered losses in amplitude of up to 50

percent. Up to 70 percent of the amplitudes of the short waves were

restored out of phase, it was also found that, upon use of multiple-

pass filtering, boundary effects, mnplified resolvable short

wavelengths in the range from 2S to 6S relative to the responses

194



predicted by theory for points unaffected by data boundaries. The

causes for these relative amplifications were feedbacks from waves

shifted out of phase on the first pass and/or truncation of the influ-

ence area by limited-area data sets. The magnitudes of the feedbacks

from phase shifted waves were sensitive to the wavelength. Relative

amplifications ranged from about 6 percent for the 2S wave to 30 per-

cent for both the 3S and 4S waves - an apparent increase in the filter

fidelity of the Barnes methods near the data boundaries. The maximum

relative amplification caused by the truncation of the influence area

by small data sets occurred for the 2S wave and was approximately 12

percent.

b) The distance that boundary effects intruded into the interior of

the grid was a function of the weight function shape parameter 4k.

Attempts to decrease boundary effects through a smooth analysis ob-

tained by using large initial 4k actually drew boundary effects farth-

er into the grid interior. Reducing 4k decreased and concentrated the

boundary effects to near the grid boundaries. However, the analyst
should be aware that a reduction of 4k modifies the response charac-

teristics to permit short wavelengths, a tradeoff that may cause phase

changes and aliasing of waves within the interior of the grid if the

observations are unevenly spaced.

c) After the analytic tests were performed with realistic values for

4k, such as the GEMPAK default criteria, it was found that boundary

effects intruded into the interior of the analysis domain a distance

equal to roughly one half the length of the wave. If the wave is the

minimum resolvable wave, then this distance is equivalent to the aver-

age separation between observations. This poses no serious problem

for the analysis of large data sets. The analysis area can be

designed so that some data fall outside the grid or so that several

rows and columns of the grid can be discarded after the analysis.

This latter approach has been proposed by Koch et al. (1983). These

options are not always possible for the analysis of limited area data

sets; there may not be enough observations. The analyst must be

prepared to accept that the data boundaries will modify the response

characteristics within the interior of the analysis domain. For exam-

ple, if a limited area data set consists of nine evenly spaced obser-

vations sited so that eight stations form the boundary and one station

is at the center of the network, and if boundary effects penetrate to

a distance equal to the average station spacing, then all of the

domain will suffer to some extent from boundary impacts.

d) The analysis presented here is a "worst case scenario" as regards
the phase of the original function f (x,y) in determining the final

response for the Barnes filter near data boundaries. Our investiga-

tion of the phase-shift term of (4) revealed that, if f (x,y) - A cos

(ax), then the phase-shifted wave is h (x,y) = A sin (ax). This wave

vanishes at the data boundary where X = 0. In addition, it was found

that the integral, E (a,k), changes sign when f (x,y) = A cos (ax).

it follows, therefore, that E (a,k) must decrease to zero somewhere

within the range of phases 0 to 1/2 for the original wave. Thus the
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maximum magnitudes for both E (a,k) and h (x,y) are permitted where f

(x,y) = A sin (ax).

e) Throughout this discussion, it has been assumed that a continuum

of information exists within the limited area domain. The analysis of

analytic data has been carried out with a densely distributed regular-
ly spaced data field. A data continuum was approached for some waves.

We have emphasized that the results herein are the best that can be

expected for the Barnes analysis schemes. In the real world, the data

are arrayed discretely and the data distribution further degrades the

response to the filtering process, if the data are not evenly distri-
buted, then phase changes and a higher "noise" level are inherent to

the analyzed field. We have not emphasized the analysis of unevenly

spaced data because these degrading factors are dependent upon the

data - the phenomena represented by the data, the data distribution,

and the boundaries of the data field. And, when the observation plat-
form is suspended within the wind field, the data distribution and the

boundaries of the data field are variables determined by the phenomena
represented by the data.

In conclusion, consider the applications of limited area data

field programs

scale phenomena.

of information

sets from

designed for the investigation of mesoacale and/or regional

If the purpose of a limited area network is the acquisition

on the spatial distribution of meteorological variables,

including gradients of the wind field, the analyst should be prepared to

accept that most (probably all) of the analyses will suffer to some extent

from the impacts of the boundaries of the data field. It should be kept

clear, however, that the above conclusion is based upon the results of an

investigation with the Barnes objective analysis schemes. An improved objec-

tive analysis scheme that concentrates boundary effects to near the grid boun-

daries and produces what can be called a "good analysis" in the interior of a

limited area domain is essential to provide an accurate description of the

local structure of the atmosphere with a limited area data field.
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.

o

Coordinate system used in objective analysis expressed by (1).

Point (x,y) is conveniently chosen as a grid point of a square mesh;
point (x + rcos , y + rsin ) represents one point where infor-

mation is observed. Theoretically, these are continuously arrayed

over the x-y plane, but in the practical application, they are

discrete points, irregularly arrayed. (After Barnes, 1973).

Schematic showing the intersection of an influence area about a

grid point with a data boundary.

a) Responses for 4k=64 for the first term of (4) at selected

distances from the grid boundary. Distances from data boundary
measured in fractions of S. b) Responses for the second term of

(4) for the same distances from the grid boundary.

.

.

Response for four values of 4k at a grid point location two grid

spaces from the data boundary.

I

a) Final response, D, for 4k-205 at the data boundary, b) Final
J

response, E, for the same 4k. Solid lines are responses for the

one-correction pass method and dashed lines are responses for the

three-correction pass method.

. Final response curves in fractious of S from the data boundary for

a limited-area data set. a) Amplitude response, D" and b) phase

shift response, E'. Response curves obtained with GERPAK default
criteria.

. Differences between truncated and infinite plane responses for

the 2S wave for different sized data areas. Response curve

obtained with GEMPAK default criteria.

. a) A 20 km 2S monochromatic wave used for analytical studies of

boundary effects, b) A 3-correction pass Barnes analysis of the

wave, c) Boundary impacts upon analysis and d) Analysis of same
wave with GEMPAK default criteria.

. Cross section along a 60 km wave used for three objective analyses

of analytical limited-area data field. Boundary effects expressed

as percentages of the amplitude of the original wave.
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Figure 7
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CORRKCTIONS OBJECTIVE _SA.LYSIS

Gary L. Achtemeier
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Illinois State Water Survey

Champaign, Illinois 61820

ABSTEACT

This study examines the NOTION that the best successive corrections

objective analysis is obtained by first analyzing for the long wavelengths and

then building in short wavelengths by successively reducing the influence

radius for each correction pass. It is shown that the best objective

analysis, as measured by filter fidelity (how well the objective analysis

restores desired wavelengths and removes undesired wavelengths), is realized

for the Barnes method if the effective influence area used for the correction

pass is equal to the effective influence radius used for the first pass. The

improvements are relatively small, ranging from a few percent for long

wavelengths to about ten percent for short but resolvable waves. However,

increased simplicity and potentially great reductions in computer time needed

to analyze large masses of meteorological data advance these modest gains.

Therefore, rather then attempt to build desired detail into an analysis, the

analyst should determine the detail permitted by the data quality and distri-

bution and analyze directly for these motion scales.
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1. 1 lt_OIMJCYX ON

This article focuses on a class of objective analysis techniques known as

"methods of successive corrections (SC)" first introduced to operational

meteorology by Cressman (1959) and popularized for the analysis of mesoscale

weather systems by Barnes (1964, 1973)o Though recently replaced, by a mul-

tivariate statistical technique as the operational interpolation method for

some synoptic scale numerical forecasting models, the successive corrections

techniques are widely used alone or in combination with other methods

(Achtemeier, 1975; Ogura and Chen. 1977; Seaman et al., 1977) for gridding

synoptic and regional scale data and, in particular, for gridding large quan-

titles of high frequency data taken from special mesoscale networks

(Achtemeier, 1983).

Cressman (1959) introduced the concept of building detail into an

analysis by successively decreasing the number of observations that contribute

to an estimated value at a gridpoint. Since the gridded data are weighted

averages, a type of filtering takes place over the influence area defined as a

circle centered on the gridpoint and having an "influence radius," R. The use

of a series of scans with decreasing R allows the analysis of a spectrum of

scales. From this approach has come the NOTION that the best analysis is

obtained by making the method a successively higher pass filter, first analyz-

ing for the large scales and then for the smaller scales. The NOTION has per-

sisted with other SC methods designed to retrieve the maximum allowable detail

from meteorological data (Endlich and Mancuso, 1968; Barnes, 1973; Ogura and

Portis, 1982; Koch et al., 1983; Smith and Leslie, 1984).
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We re-examine the NOTION for the following reasons: First. a theoretical

study of the optimum influence radius for the Cressman method (Stephens and

Stitt, 1970) found only small variations in the ratio of discrepancy variance

to field variance for a rather large range of second pass influence radii. No

comparable study has been put forth for the Barnes method, a technique that

has been well-documented in the meteorological literature and has been made

part of data assimilation and analysis packages (Koch et al., 1983; Smith and

Leslie. 1984). Second, a reassessment of underlying concepts can lead to

improvements over existing approaches to successive corrections interpolation.

and third, in spite of larger and faster computing systems, computational

economy is still an important factor in data analysis. Speed and size of com-

puting systems have been offset by larger volumes of data and by more complex

numerical models. Thus the prospect for increasing the computational speed of

an objective analysis method is a reason for undertaking this study.

2. TEST OF THKNOTION

Barnes (1973) modified his (1964) method so that only one correction pass

through the data was required to retrieve the desired detail at small but

resolvable wavelengths. The filter was made to return more of the amplitude

of the short waves through a reduction of the "effective influence radius", a

procedure that is analogous to decreasing the influence radius for the Cress-

man (1959) analysis technique except that the number of observations within

the scan area remains the same. Instead of reducing the number of observa-

tions, the weights are recalculated so that the relative importances of the

observations closest to the grid point are increased on the correction pass.
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The distribution of weights depends upon the theoretical response for the

first pass D O and a multiplier 7 for the correction pass to give a desired

final filter response, D'. If the grid point is located so that the impacts

of the data boundaries upon the final response are negligible, then for any

wavelength % and weighting parameter < ,

D" = D O + (l-D0) D 1 ,

where

(1)

DO " exp [- <0 ( _/ _)2] , (2)

and D I . D O , if <1 = Y<0" Koch et al. (1983) reduced the subjectivity in

the selection of the final response by requiring the final amplitude of the

minimum resolvable wave _* (same as the 2S wave, where S is the average

separation between data collection sites) to satisfy the constraint D" (_*) =

e -I. Then, upon specification of DO (A*) for the first pass, <0 and Y are

determined uniquely for all _and D" can be calculated for all wavelengths.

We can repeat the above steps for different choices for D and find new D" as

functions of the recalculated control parameters.

We can use the above methodology for finding the final response to formu-

late and test a "null hypothesis" which states that "The best objective

analysis, as measured by filter fidelity (how well a filter restores desired

wavelengths and removes undesired wavelengths), can be obtained if the effec-

tive influence radius used for the correction pass is equal to or larger than

the effective influence radius used for the first pass." We can prove the

NOTION false if it can be shown that there exists a Y _ 1.0 for which the

final responses for the resolvable spectrum of waves are equal to or greater
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than the final responses obtained with all Y < 1.0.

a) Test of the null hypothesis for a data continuum

We first make the null hypothesis more specific by finding the value

for Y in the range Y _ 1.0 that maximizes the response of the Barnes filter

for a set of resolvable wavelengths. We determine various combinations of DO

and y which satisfy the constraint upon D" and then calculate the final

responses for waves in the range from 0.5 % * to 6 % *. Maximum final

response occurs at Y = 1.0. Figure I shows the differences in D" (D'(Y > 1.0)

- D" (y = 1.0)) measured in percent of the original waves. Positive (nega-

tive) percentages mean that the use of a particular value for Y restores more

(less) of a particular wave than does the method with ¥ = 1.0 used for the

correction pass. All final responses for _ A*= are identical by constraint.

All longer waves receive greater filtering when Y > 1.0. Maximum reductions

of amplitude occur for Y = _ and range from three percent for the long

wavelengths to approximately eleven percent for the 2 _* wave. A second scan

with Y = _ is equivalent to adding the mean of the discrepancies between the

first scan estimates and the observations to the first scan. The correction

pass response is zero and the 2-pass Barnes method effectively becomes a sin-

gle scan with Do (_*) = e-I.

The positive percentages for the waves shorter than _* are an indication

that the Barnes filter amplifies these undesirable short waves as Y+ _. Fig-

ure I therefore shows that the use of a larger effective influence area for

the correction pass leads to an increase of the amplitudes of the undesirable

short waves and a decrease of the amplitudes of the desired longer waves in

comparison with the amplitudes restored for the same waves if y = 1.0 at the
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second pass. These results can be used to state the null hypothesis more

specifically: "The best objective analysis as measured by filter fidelity (how

well the filter restores desired wavelengths and removes undesired

wavelengths) can be obtained if the effective influence radius used for the

correction pass is the same as the effective influence radius used for the

first pass".

We can prove the null hypothesis is true if it can be shown that the

final responses for the waves _ > _* obtained with a smaller effective influ-

ence radius on the correction pass are degraded relative to the final response

obtained with the effective influence radius unchanged on the correction

pass. Figure 2 shows the differences in D" (D'(Y < 1.0) - D'(Y = 1.0)) meas-

ured in percent of the original waves for 0.2 < 7< 1.0. The negative percen-

tages for all waves _ > %* mean that the final responses have been degraded

by the use of y< 1.0. Short but resolvable waves suffer the greatest losses

in amplitude. The magnitudes of these losses vary inversely with ¥ .

Heuristically, the filter must be degraded for any choice of smaller

influence area on the correction pass. If Y is to be made small on the

correction pass, it is necessary to decrease D O on the first pass so that the

constraint D" (_*) = e-I is satisfied. Equation (2) shows that the decreas-

ing of D O is accomplished by increasing the shape factor < 0" In the limit

as <0 + _ ' DO + 0 and the filter only restores the mean of the data field on

the first pass. Therefore it is necessary to choose K I on the correction pass

so that D" (_*) = D 1 (_*) = e-I. This is equivalent to a single pass objec-

tive analysis method since all waves are totally filtered on the first pass

and any restoration of wave amplitudes is accomplished at the correction pass.

The resultant final responses therefore must be identical to the maximum
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degraded final responses found when an infinite influence area was used on the

correction pass (Fig. I).

The above reasoning is confirmed by Fig. 3 which shows the differences in

D" with respect to D'( y = I) for the 1.5 A wave as Y ranges from zero to

infinity. The differences are expressed in percent of the amplitude of the

original wave. They are all negative and are distributed symmetrically about

7 1.0. This means that the 1.5 _*= wave subjected to the Barnes filter with

the second pass effective influence area unequal to the first pass effective

influence area suffers greater filtering in comparison with the same wave

after application of the Barnes filter with the correction pass effective

influence area unchanged. This result also applies to all other resolvable

waves.

b) Test of the null hypothesis with analytical data

We now verify the theoretical results with analyses of a set of analyti-

cal waves. A 20 by 20 grid is sectioned into twenty-five 16-point arrays and

four data points are randomly located into each array subject to the require-

ment that the data points are collocated with grid points. Locating the

observations at the grid points eliminates any additional interpolation needed

to estinmte values of the gridded fields at the data locations and makes pos-

sible the direct comparison of the objectively filtered fields with the pred-

ictions of the response theory which was derived assuming a continuum of data.

The final filtered value at each grid point after one correction pass

through the data is the weighted average of M*N observations plus the correc-

tion pass according to
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M N

Z _'Wn,m,nv f(m,n)
m=l n=l

gl(i,j) -- + c1 , (3)
M N

Z =Zlw0,m, nm=l n

where

M N

Z Wl,m, n [f(m,n) - go(m,n)]
m=l n=l

C 1 = (4)
M N

Z n_lWl,m,nm=l

The weight function, w _,m,n ( _ = 0, 1), is given by

w _,m,n = exp (-r2m,n I <_ ) (5)

The analytical fields, f(m,n), describe monochromatic sine and cosine

waves that range from 2S to 12S in wavelength. The modeling approach for this

study requires that the 100 data points are recalculated for each of 24 pairs

of objective analyses with the Barnes method. The statistic of relative per-

formance is the difference between the respective RMS errors (the RMS errors

are between the analysis and the true field) for the analyses with Y = 1.0 and

7 = 0.2 normalized by the amplitude of the analytical wave. It is a measure

of the accuracy of the method in restoring the whole wave, not just the ampli-

tude. However, this statistic is approximately comparable with the percent of

the amplitude of the original wave used for the theoretical part of the com-

parative studies.

Figure 4 shows the results of this study for the grid interior. The

solid line taken from Fig. 2 is the difference between the two methods as

predicted by theory and expressed as percent of the amplitude of the original
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wave. The results from the analyses compare well with theory foT wavelengths

between 2S and 4S. Negative values are indicative of smaller RMS errors (a

measure of a better analysis) for the analyses with y = 1.0. As expected,

there is no significant difference between the methods for the 2S wave. The

analyses depart from theory for wavelengths greater than 4S, the analytical

results consistently show that the accuracy of the fixed influence area method

is comparatively better than predicted by theory although the improvement is

only several percent.

Achtemeier (1986) showed that the absence of data beyond the boundaries

of a data network can have deleterious impacts upon waves defined within the

interior of objective analyses in the form of smoothing of long waves and

phase shifting of short waves. The distance these effects intrude into the

interior of an analysis domain is a function of the influence area. This

poses no serious problem for the analysis of large data sets. The analysis

area can be set up so that some data fall outside the grid or so that several

rows and columns of the grid can be discarded after the analysis. These

options are not always possible for the analysis of smaller data sets, how-

ever, because there may not be enough observations. Then the choice for y

becomes a determining factor in the accuracy of the Barnes method near the

boundaries of the data field.

Figure 5 compares the analysis methods at the grid boundaries. The solid

line shows the relative accuracies for the theoretical amplitude responses for

cosine waves in percent of the amplitude of the original wave. The theory

predicts that the method with = 1.0 will restore about 5 percent more of the

2S wave and thus can he expected to give noisier gridded fields near data

boundaries. The advantage of the = 1.0 method is that from five to eight
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percent more of the other wavelengths will be restored by the Y = 1.0 method.

The analyses with the irregularly spaced data (pluses) tend to verify the

theoretical results for the amplitude response.

The dashed line in Fig. 5 compares the two methods for the phase shift

responses for the sine waves. Because the phase shift responses are negative,

the interpretation of the curve and the analytical results differs from the

interpretation of the curves on other figures. The change of sign between 3S

and 4S means that the theory predicts the method with y = 1.0 to cause less

phase-shifting of the original long waves and more phase-shifting of the ori-

ginal short waves.

The analysis results (boxes) for the phase shift response are in agree-

ment with theory for the short wavelengths and the crossover point near 4S.

The Barnes method with y = 1.0 fares more poorly than expected in comparison

with y = 0.2 for the wavelengths between 2S and 4S and compares more favorably

for the longer wavelengths. We found from an examination of the magnitudes of

the RMS errors that analyses with both values for y were quite acceptable for

the longer wavelengths. However, 7 = 1.0 produced better analyses with very

small RMS errors at the data boundaries.

3. DISCUSSIOll

The method of successive corrections has found widespread use for the

gridding of meteorological data collected at irregularly spaced locations.

There has been for many years a NOTION among users of these methods that the

best objective analysis is obtained by first analyzing for. the long waves and
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then building in the short waves through decreasing the radius of influence on

correction passes through the data. Using a 2-pass successive corrections

method developed by Barnes (1973), we have examined this notion with theoreti-

cal and analytical studies and have tested its validity in the grid interior

and at the boundaries of the data field. The Barnes method was chosen for

this study because it has found widespread use in the gridding of special net-

work weather data and because it has been made part of comprehensive meteoro-

logical data acquisition and processing systems (GEMPAK by Koch et al.,

(1983); PROAM by Smith and Leslie (1984)).

The major finding from this study is that the NOTION is incorrect -- at

least for the Barnes method. Using a classical hypothesis/null hypothesis

approach, the analyses indicate acceptance of a null hypothesis which states

that "the best objective analysis as measured by filter fidelity (how well the

filter restores desired wavelengths and removes undesired wavelengths) is

obtained when the influence radius for the second pass is the same as the

influence radius for the first pass". The null hypothesis is valid at least

for the range of waves (2S _ _ _ 12S) and over the entire analysis domain

except for a few short wavelengths near the boundary of the data field which

suffer from greater phase shifting.

Theoretical responses indicate that the use of a fixed effective influ-

ence radius will cause the Barnes filter to restore from about 6 to 7 percent

more of the short waves in the range from 3S to 5S than will the same filter

with the effective influence radius determined with the GEMPAK default cri-

teria. These wavelengths are typical of the scales of meteorological phenomena

sought through the use of limited-area special networks. There were no impor-

tant differences in the final responses for the longer wavelengths. The
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improvements from corresponding analytical studies with irregularly spaced

(and also regularly spaced) data sets ranged from five to eight percent for

the important short waves to about 2.5 percent for the longer waves. These

improvements are relatively small but could be significant for studies

designed to retain the maximum details permitted by the data without amplify-

ing undesirable short wavelengths. Conversely, an analyst can choose the

influence area parameters to reduce slightly more of the short 2S wavelength

without loss of amplitude of important longer wavelengths.

These results suggest that, rather than attempt to build desired detail

into analyses, the analyst should determine the detail permitted by the data

quality and distribution and analyze directly for these motion scales.

Perhaps the major advantage of an objective data gridding technique that

requires only one effective influence radius per analysis is that there can be

an immense savings in computation time if large quantities of data are to be

processed. Koch et al., (1983) noted that the most time consuming part of the

objective analysis is the computation of exponentials. They recommended that

the same calculated weights be applied to many different parameter fields or

to the same parameter field over many different times as long as the data

quality and distribution do not vary appreciably. The number of exponentials

computed for some versions of the Barnes method is approximately

NI=K(L)(M)(KX)(KY), where K is the number of data sets to be analyzed, L is

the number of passes through the data for which the exponentials must be

recalculated, M is the number of observations, and KX and KY are, respec-

tively, the number of grid points in the X and Y directions.

For a more efficient objective analysis, it is best to compute the

exponential array once and to use it for all subsequent analyses if the data
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quality and distribution permit. Therefore, K=I. Further, L=2 fo_ the 2-pass

objective analysis. However, it is immediately apparent that the size of the

exponential array can be cut in half if Y = 1.0 since the exponentials calcu-

lated for the first pass can be used for the second pass. Therefore, L=l for

the efficient objective analysis.

Achtemeier (1986) found for a point located at the center of an idealized

circular limited-area data set that detrimental impacts of data boundaries are

not significant unless the distance from the central point to the data boun-

dary is less than about 1.6S times the average spacing between the observa-

tions. These results also apply to the filter response for a truncated circu-

lar influence area. The value of 1.6 was used by Barnes (1964) and was found

by Stephens and Stitt (1970) to be the optinmm influence radius for the Cress-

man (1959) successive corrections method. An influence area of radius 1.6S

contains approximately 9 regularly spaced observations. Our studies with

irregularly spaced data sets indicate that from i0 to 12 observations should

be included within the influence area.

The total number of exponentials calculated for an efficient objective

analysis is N2=I0(KX)(KY). The ratio of the exponentials needed for the two

methods is r=NI/N2=0.1K(L)(M) if M>10. If, for example, there were to be

objective griddings of I0 data sets consisting of 50 observations each, there

would be a 100-fold reduction in the number of exponentials needed if an effi-

cient form of the Barnes objective analysis method were used in place of some

existing versions.
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Figure Captioas

Fig. 1. Departures between the fixed influence area final response and
selected variable influence area final responses for which the influence areas

are increased on the correction pass. Differences expressed in percent of the

amplitude of the original wave.

Fig. 2. Departures between the fixed influence area final response and

selected variable influence area final responses for which the influence areas

are decreased on the correction pass. Differences expressed in percent of the
amplitude of the original wave.

Fig. 3. Departures between the fixed influence area final response and the
full range of variable influence area final responses for the 1.5 _* wave.

Differences expressed in percent of the amplitude of the original wave (POW).

Fig. 4. Departures between analyses with the fixed influence area method and

the variable influence area method compared with predictions by response
theory. Analyses carried out with irregularly spaced data. Differences

expressed in percent of the amplitude of the original wave (POW).

Fig. 5. Departures between analyses with fixed influence area method and the

variable influence area method compared with predictions by response theory.
Solid lines and pluses are for amplitude response for cosine waves. Dashed

lines and boxes are for phase shift response for sine waves. Analyses carried

out with irregularly spaced data and differences expressed in percent of the
amplitude of the original wave (POW).
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It is also shown that the diagnoses of local tendencies of the horizontal velocity
components are in good comparison with the observed patterns and tendencies calculated
with unadjusted data.

In addition, it is found that the day-night difference in TOVS biases are
statistically different (95% confidence) at most levels. We also develop a hybrid
nonlinear sigma vertical coordinate that eliminates hydrostatic truncation error in
the middle and upper troposphere and reduces truncation error in the lower troposphere.
Finally, it is found that the technique used to grid the initial data causes boundary
effects to intrude into the interior of the analysis a distance equal to the average
separation between observations.
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