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Conversion Factors and Datums

Conversion Factors

Inch/Pound to SI

Multiply By To obtain

Length

foot (ft) 0.3048 meter (m)
mile (mi) 1.609 kilometer (km)

Area

acre 0.004047 square kilometer (km2)
Volume

gallon (gal)  3.785 liter (L) 
gallon (gal)  0.003785 cubic meter (m3) 

Flow rate

cubic foot per second (ft3/s)  0.02832 cubic meter per second (m3/s)
gallon per minute (gal/min)  0.06309 liter per second (L/s)

Hydraulic conductivity

foot per day (ft/d)  0.3048 meter per day (m/d)
Hydraulic gradient

foot per mile (ft/mi)  0.1894 meter per kilometer (m/km)

SI to Inch/Pound

Multiply By To obtain

Volume

milliliter (mL) 0.03381402 ounce, fluid (fl. oz)
liter (L) 33.82 ounce, fluid (fl. oz)
liter (L) 1.057 quart (qt)
liter (L) 0.2642 gallon (gal)

Mass

gram (g) 0.03527 ounce, avoirdupois (oz)

Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheit (°F) as follows:

°F=(1.8×°C)+32

Specific conductance is given in microsiemens per centimeter at 25 degrees Celsius (µS/cm at 
25 °C).

Concentrations of chemical constituents in water are given either in milligrams per liter (mg/L) 
or micrograms per liter (µg/L).

Datums

Vertical coordinate information is referenced to the North American Vertical Datum of 1988 
(NAVD 88).

Horizontal coordinate information is referenced to the North American Datum of 1983 (NAD 83).

Elevation, as used in this report, refers to distance above the vertical datum.
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Abstract 
Pipe Spring National Monument in northern Arizona 

contains historically significant springs. The groundwater 
source of these springs is the same aquifer that presently is 
an important source of drinking water for the Pipe Spring 
National Monument facilities, the Kaibab Paiute Tribe, and the 
community of Moccasin. The Kaibab Paiute Tribe monitored 
lead concentrations from 2004 to 2009; some of the analytical 
results exceeded the U.S. Environmental Protection Agency 
action level for treatment technique for lead of 15 parts per 
billion. The National Park Service and the Kaibab Paiute 
Tribe were concerned that the local groundwater system that 
provides the domestic water supply might be contaminated 
with lead. Lead concentrations in water samples collected by 
the U.S. Geological Survey from three springs, five wells, two 
water storage tanks, and one faucet were less than the U.S. 
Environmental Protection Agency action level for treatment 
technique. Lead concentrations of rock samples representative 
of the rock units in which the local groundwater resides were 
less than 22 parts per million. 

Introduction 
Pipe Spring National Monument (PISP) is a 40-acre 

tract of land within the Kaibab Paiute Indian Reservation in 
northern Arizona at the base of the Vermillion Cliffs north of 
Grand Canyon (fig. 1). Several springs, such as West Cabin, 
Tunnel, and Spring Room Springs, discharge from a local 
aquifer within the Navajo Sandstone and upper facies of 
the Kayenta Formation, and are known collectively as PISP 
(Sharrow, 2009). The springs have historically provided 
water for Native American settlement and farming, and later 
ranching and settlement. PISP was established in 1923 to 
preserve the remote historic ranching site that developed 
around the springs (Sharrow, 2009). The area around PISP 

has remained rural, where communities are small and widely 
separated. Water from the local aquifer is used by the National 
Park Service (NPS), the Kaibab Paiute Tribe (KPT), the 
Cattleman’s Association, and the non-tribal community of 
Moccasin. Discharge from the springs within PISP is shared 
by the NPS, the KPT, and the Cattlemen’s Association under 
a historical agreement. These three parties also maintain 
water-supply wells that withdraw groundwater from the local 
aquifer. Routine water analysis of lead concentrations in tap 
water between 2004 and 2009 by the KPT indicated elevated 
concentrations of lead that exceeded the U.S. Environmental 
Protection Agency action level for treatment technique 
(USEPA TT) for lead of 15 µg/L. In response to these findings, 
groundwater samples were collected in 2009 from the KPT 
water-supply well. Lead concentrations exceeded the USEPA 
TT before purging the well, but were less than the USEPA 
TT after purging the well. Groundwater geochemical results 
from a previous investigation by the U.S. Geological Survey 
(USGS) of groundwater recharge, age, flowpaths, and water 
and rock interaction also indicated concentrations of lead near 
or greater than the current USEPA TT (Truini, 1999).

Lead is a toxic metal that was used for many years in 
products used in and around homes. Lead is a soft, malleable 
metal and is considered a heavy metal. Lead is used in paints, 
building construction, lead-acid batteries, bullets, weights, 
and plumbing materials. Lead is often used in the solder 
or flux used in water service lines. A prohibition on lead in 
plumbing supplies has been in effect since 1986, and “lead 
free” pipe, solder, and flux are used to install or repair public 
and residential water systems (U.S. Environmental Protection 
Agency, 2009). Lead, however, does get into drinking-water 
systems and can cause health issues. Infants and children who 
drink water containing lead in excess of the action level could 
experience delays in their physical or mental development. 
Children could show slight deficits in attention span and 
learning abilities. Adults who drink water containing lead over 
many years could develop kidney problems or high blood 
pressure (U.S. Environmental Protection Agency, 2009).
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For most contaminants, U.S. Environmental Protection 
Agency (USEPA) sets an enforceable regulation called a 
maximum contaminant level (MCL). However, because 
lead contamination of drinking water often results from 
corrosion of the plumbing materials belonging to water system 
customers, USEPA established a treatment technique rather 
than an MCL for lead. The treatment technique regulation 
for lead (referred to as the Lead and Copper rule) requires 
water system managers to control the corrosivity of the 
water (U.S. Environmental Protection Agency, 2009). The 
regulation also requires water systems to collect tap samples 
from sites served by the system that are more likely to have 
plumbing materials containing lead. If more than 10 percent 
of tap water samples exceed the lead action level of 15 parts 
per billion, then water system managers are required to 
take additional actions including: (1) taking further steps to 
optimize the corrosion control treatment (for water systems 
serving 50,000 people that have not fully optimized corrosion 
control); (2) educating the public about lead in drinking water 
and actions consumers can take to reduce their exposure to 
lead; (3) replacing the portions of lead service lines (lines 
that connect distribution mains to customers) under the 
water system’s control (U.S. Environmental Protection 
Agency, 2009). 

This investigation was undertaken to address concerns 
that the groundwater system that supports Pipe Spring and 
provides the domestic water supply for PISP, and adjacent 
communities on the Kaibab Paiute Indian Reservation could 
have elevated levels of lead. The USGS in cooperation with 
the NPS developed a study to determine the presence, source, 
and concentrations of lead in the local water supply for PISP, 
the KPT, the Cattleman’s Association, and the community 
of Moccasin. Water-quality data results from this study will 
provide the NPS, the KPT, the Cattleman’s Association, and 
the community of Moccasin with information to determine if 
the source and presence of the elevated lead concentrations 
are from the infrastructure and water supply wells, and (or) 
are naturally occurring within the rocks of the local aquifer. 
The results from this study will complement a study by the 
Indian Health Services for the KPT, which also focused 
on the presence and concentration of lead in the wells and 
infrastructure of the Tribal water-supply distribution system. 

Purpose and Scope

The purpose of this report is to (1) describe the water-
quality analysis results that were collected and analyzed for 
lead and other constituents, (2) determine the presence of lead 
in the water-supply wells, (3) determine if the source of lead 
is from the infrastructure and water-supply wells and (or) is 
naturally occurring within the rocks of the local aquifer, and 
(4) confirm if the concentrations of lead from water samples 
from wells and springs exceed the USEPA TT.

This report presents water-quality analysis results from 
sampling of wells, springs, and selected distribution points 
from the water-supply infrastructure. Lead chemistry analysis 
of rock samples that are associated with the local aquifer also 
are presented in this report. 

Previous Investigations

In a USGS groundwater study (Truini, 1999), 
geochemical analytical results yielded lead concentrations 
from Spring Room Spring at 20 µg/L, Moccasin Community 
well at 20 µg/L, NPS Culinary well at 12 µg/L, West Cabin 
Spring at 10 µg/L, and Moccasin Spring at 10 µg/L. Lead was 
undetectable at concentrations less than 10 µg/L in samples 
from Tunnel Spring, the NPS Monitoring well, and the Tribal 
Irrigation well. The USGS National Water Quality Laboratory 
detection limit, at the time of this study (Truini, 1999), 
was 10 µg/L, which is only slightly less than the current 
USEPA TT. 

Routine monitoring of lead concentrations between 
2004 and 2009 by the KPT determined that 10.4 percent 
of 77 tap-water samples exceeded the USEPA TT of 15 
µg/L (Olsen, Water Program Manager, Kaibab Paiute Tribe, 
written commun., 2009). In response to these findings, 
groundwater-quality samples were collected by the KPT at 
the well heads from the NPS supply well, the Tribal supply 
well, and the Moccasin Community Well on July 22, 2009. 
Lead concentrations in water-quality analytical results, 
collected before purging the wells, exceeded the USEPA TT 
and were 16 (NPS supply well), 21 (Tribal supply well), 
and 22 µg/L (Moccasin Community Well) (U.S. Department 
of Health and Human Services, Indian Health Services, 
2010). After the wells were purged, the lead concentrations 
decreased to 6.8 (NPS supply well), 12 (Tribal supply well), 
and 5.6 (Moccasin Community Well) µg/L (U.S. Department 
of Health and Human Services, Indian Health Services, 
2010). Possible sources of the elevated lead concentrations 
that were considered included (1) natural or anthropogenic 
contamination of the groundwater, (2) contamination 
in the well, pump, or plumbing at the well site, and 
(3) contamination in the storage or distribution system 
(U.S. Department of Health and Human Services, Indian 
Health Services, 2010). Contamination in the plumbing system 
is possible because lead is commonly a component of the 
metal used to solder together pipes from the infrastructure. 
Natural contamination is considered to be a source of 
contamination, but the geologic strata in the study area are not 
known to contain high concentrations of lead or other heavy 
metals. Additionally, industrial sources of lead contamination 
are not present in the area. Besides the sources previously 
listed, it is possible that water samples could have been 
inadvertently contaminated at the time of collection or may 
have been subject to laboratory errors. 
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Description of Study Area 

Geology 

The existence of the springs at PISP is the result of local 
stratigraphy, geologic structure, and landforms that control 
the movement, direction, and discharge of groundwater in the 
study area (Levings, 1974; Ingles, 1990, 1997; Truini, 1999; 
Billingsley and others, 2004; Truini and others, 2004). PISP 
is located west of the Sevier Fault and lies at the intersection 
of the northern parts of the Uinkaret and Kaibab Plateaus on 
the southwestern part of the Colorado Plateau physiographic 
province. Although the region is dominated by nearly flat 
Paleozoic and Mesozoic sedimentary strata, there are notable 
faults and folding in the vicinity of PISP (fig. 2; Billingsley 
and others, 2004). 

Stratigraphy
Stratigraphic layers exposed in the vicinity of PISP are 

shown in a stratigraphic column in figure 3 and are described 
by Billingsley and others (2004). These layers constitute a 
thick sequence of Triassic and Jurassic age sediments that can 
cover an interval ranging from 980 to 1,970 ft thick. Given 
the relatively small range of land-surface elevation in the park 
of 200 ft, the number of strata of interest would be limited; 
however, the 1,500-ft offset of the Sevier Fault exposes 
several more stratigraphic layers in and near the park.

The oldest exposed layer near PISP is the Shnabkaib 
Member of the Moenkopi Formation, which is widely exposed 
on the eastern side of the Sevier Fault and is considered 
to be a barrier to groundwater movement (figs. 2 and 3; 
Levings, 1974; Ingles, 1990, 1997; Truini, 1999; Truini and 
others, 2004). The Chinle and Moenave Formations overlie 
the Shnabkaib Member in places to the east of the Sevier Fault 
(figs. 2 and 3; Billingsley and others, 2004).

The most prominent rock layer at PISP is the red 
sandstone and mudstone of the Kayenta Formation (fig. 3). At 
PISP, the Navajo Sandstone is exposed as a thin, light-colored 
remnant that caps the top of the upper sandstone beds of the 
Kayenta Formation (fig. 3). Groundwater in the local aquifer 
resides in the Navajo Sandstone and Kayenta Formation. 
Bedding planes, faults, and fractures within the rocks provide 
primary and secondary groundwater porosity (Levings, 1974; 
Ingles, 1990, 1997; Truini and others, 2004). 

Geologic Structure
The Sevier Fault is the dominant structure within the 

study area, extending for more than 100 mi to the north and 
south. Displacement on the normal Sevier Fault in the study 
area is 1,500–2,000 ft down and to the west (Billingsley and 
others, 2004). It is believed that the Sevier Fault has been 
active for 12–15 million years coincident with the initiation 
of the extension of the Basin and Range Province to the west 
(Lund and others, 2008). The west segment of the Sevier 

Fault branches from the main segment just north of PISP. 
Groundwater movement in the local aquifer is bounded by 
the west segment of the Sevier Fault (referred to as the West 
Branch by Truini, 1999) in the north and central parts of 
the study area, and the Sevier Fault in the southern part of 
the study area (Truini and others, 2004). The Sevier Fault 
influences the movement of groundwater in the local aquifer in 
the three ways: 
1.	 Associated with the west segment of the Sevier Fault is an 

east dipping monocline named the Moccasin Monocline 
(figs. 2 and 4). The Moccasin Monocline descends 
the eastern side of Moccasin Mountain providing a 
continuous connection of permeable Navajo Sandstone 
for groundwater movement from the higher terrain down 
to the valley (Truini, 1999; Billingsley and others, 2004; 
Truini and others, 2004). 

2.	 At the base of the Moccasin Monocline is a small syncline 
that parallels the strike of the monocline (fig. 2). The 
syncline forms a trough-shaped local aquifer roughly 
6 mi long and 6 mi or less wide, with PISP at its 
southern terminus (Billingsley and others, 2004). Along 
the syncline is the location of many of the springs and 
productive wells in the area. Erosion has exposed the 
southern terminus permeable rock in this syncline at PISP 
(figs. 2 and 4; Sharrow, 2009).

3.	 The offset of the Sevier Fault brings relatively 
impermeable Moenkopi Formation to the surface as a 
barrier to eastward movement of groundwater across the 
fault (fig. 4; Truini, 1999; Truini and others, 2004;  
Martin, 2007).

Hydrogeology 
Studies of the relation between spring discharge and 

the local aquifer near PISP have been conducted because of 
concerns about decreasing spring discharges. In the mid-1970s 
the NPS began to measure the discharge from the springs at 
PISP on a regular basis and began to notice a steady decrease 
(Sharrow, 2009). The decrease in spring discharge became 
more apparent by 1990, and a series of investigations were 
undertaken to better understand the groundwater system 
feeding the springs and to determine the cause for the decrease 
in spring discharge (Ingles, 1990, 1997; Truini, 1999; Truini 
and others, 2004; Martin, 2007; Sharrow, 2009). Truini (1999) 
used a survey of water-surface elevations, water chemistry, 
isotope characteristics, and geology to draw the following 
conclusions about groundwater flow:
1.	 Groundwater movement is north to south through 

fractured and consolidated rock on the western side of 
the Sevier Fault and the west segment (“Branch”) of 
the Sevier Fault. This is indicated by low water-surface 
elevations in springs and wells from north to south, and 
also by increasing sulfate concentrations, which indicates 
greater contact with the underlying Kayenta Formation.
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2.	 Two sets of springs (at PISP and the community of 
Moccasin, fig. 1) and at least 15 wells share this common 
aquifer.

3.	 The elevation gradient along the aquifer (measured from 
the Tribal Irrigation Well, 4 mi north of Moccasin Spring, 
fig. 1) ranges from 20 to 70 ft/mi.

4.	 Water throughout the groundwater system appears to 
share a common recharge area as indicated by similarities 
in oxygen/deuterium isotopic concentrations.

5.	 The estimated travel time for groundwater from north to 
south is about 800 years. (Carbon dating produced a wide 
range of water ages between 50 and 9,000 years, and 
800 years was selected as a reasonable estimated value.) 
Five springs were identified by Truini (1999) as 

discharging from the Pipe Spring aquifer, with four of the 
springs located within PISP (figs. 1 and 2). Tunnel Spring 
has the highest discharge of the five springs, which varies 
seasonally between 8 and 12 gal/min and has been decreasing 
for the past decade. West Cabin Spring is on the slope above 
and to the northwest of Tunnel Spring and has had a relatively 
constant discharge of 0.5–1.0 gal/min since 1976. Spring 
Room and Main Springs are located in or near Winsor Castle, 
but these springs dried up in 1999 and were not available for 
sampling during this study.

The other spring discharging from the local aquifer is 
Moccasin Spring, which is within the small community of 
Moccasin, 2.5 mi north-northwest of Pipe Spring (fig. 1). 
The spring discharges where Moccasin Wash cuts across the 
syncline at a right angle, and water flowing in fractures up 
gradient is pooled behind the sandy alluvium of the wash 
(Sabol, 2005). Water from this spring is used jointly by the 
residents of Moccasin and the KPT. 

Water-Supply Systems

The KPT and NPS have community water-supply 
wells about 1.6 mi north of PISP (fig. 1). The NPS well was 
originally drilled in 1975 and replaced in 2007 with a new 
well 200 ft to the south. The old well is used for monitoring. 
The KPT drilled their well in 1980 about 700 ft southwest of 
the NPS well. Although the NPS and Tribal supply wells are 
only about 700 ft apart, they supply two independent storage 
and distribution systems (Sharrow, 2009). The systems can be 
interconnected if either well is inoperative, but under ordinary 
circumstances the two systems are operated independently. 
The NPS well pumps water to a buried 500,000-gal metal 
storage tank located about 0.5 mi south of the NPS well. 
Water from the NPS well is then distributed to the south to 
NPS facilities at PISP, the Tribal-NPS partnership visitation 
center, and Tribal facilities. The Tribal facilities include 
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Figure 3.  Stratigraphic columnar section, Pipe Spring National Monument area, northern Arizona.
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Figure 4.  West-east section showing stratigraphy of the Vermilion Cliffs, the Moccasin Monocline, and the west 
branch of the Sevier Fault, northern Arizona (Billingsley and others, 2004).

the multipurpose building, the NPS-leased office building, 
the campground, Red Hills Village, Tribal Court building, 
Red Cliffs gas station and convenience store, and the Tribal 
administration building. The Tribal well pumps water to two 
metal storage tanks with a combined capacity of 100,000 gal 
on the hilltop about 1,000 ft northeast of the well (fig. 1). 
Water from the Tribal well primarily is used to supply the 
water needs at Kaibab and Juniper villages, totaling 47 homes, 
and the Tribal park and community center near Kaibab.

By virtue of the water supply system being located 
on an Indian Reservation, regulatory responsibility for 
drinking-water supplies is through the USEPA directly rather 
than through the State. The NPS system is classified as a 
Transient Non-Community Water System, a public water 
system that provides water to a place such as a gas station 
or campground where people do not remain for long periods 
of time (Sharrow, 2009). The Tribal system is classified as a 

Very Small Community Water System, a public water system 
that supplies water to the same population year-round and that 
serves 25–500 people (Sharrow, 2009).

The USGS operates three real-time monitoring wells 
in the vicinity of PISP (fig. 2). The longest period of 
record dating from 1976 is available for the Kaibab-Paiute 
monitoring well (station No. 365403112452801), which 
is 1 mi northwest of the water-supply wells. This well 
was equipped for real-time monitoring in 2010. The NPS 
monitoring well (station No. 365236112442501) was drilled in 
1989 and manually monitored until 2004 when the real-time 
telemetry was installed, and is located about 1 mi south of the 
water-supply well. Real-time monitoring was installed in the 
PVC well (station No. 365602112460201) in 2010 to provide 
information from the aquifer 1.5 mi north of the community of 
Moccasin near the northern end of the local aquifer.
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Methods 
Collection and analysis of water-quality data and rock 

composition were designed to help identify the presence, 
source, and concentrations of lead in the water-supply 
systems for PISP, the KPT, the Cattleman’s Association, and 
the community of Moccasin. From February 7 to 9, 2011, 
water-quality samples were collected from 10 sites. A single 
water-quality sample was collected on June 3, 2010, as part 
of a separate USGS investigation (Bills and others, 2010), 
and results from the analysis were included as part of this 
study. Counting the sample from one site collected by Bills 
and others (2010) plus samples collected from 10 sites for 
this study, 11 sites were sampled including 5 wells, 3 springs, 
2 storage tanks, and 1 faucet at the NPS facilities at PISP. Of 
the five wells sampled, two wells were the water-supply wells 
for for PISP and the KPT, one well was an old NPS supply 
well, and two wells were observation wells. The two water 
storage tanks were part of the infrastructure in connection 
to the NPS and Kaibab Paiute water-supply systems. A 
single faucet was sampled at PISP, which was part of the 
infrastructure connected to the NPS supply well and the NPS 
storage tank. The source of the three springs that were sampled 
is the same local aquifer as the source of drinking supply at 
PISP. 

All analytical results were compared to the USEPA 
drinking-water standards. Maximum contaminant levels 
(MCLs) are the primary regulations, and are legally 
enforceable standards that apply to public water systems 
(U.S. Environmental Protection Agency, 2009). MCLs 
protect drinking-water quality by limiting the concentrations 
of specific contaminants that can adversely affect public 
health. Secondary maximum contaminant levels (SMCLs) 
provide guidelines for the control of contaminants that may 
cause cosmetic effects (such as skin or tooth discoloration) 
or aesthetic effects (such as taste, odor, or color) in drinking 
water (U.S. Environmental Protection Agency, 2009). The 
USEPA recommends compliance with SMCLs for public 
water systems; however, compliance is not enforced. 
Treatment technique (TT) is a required process intended to 
reduce the level of contaminant in drinking water and the 
action level at which that treatment technique is required is 
the action level treatment technique (U.S. Environmental 
Protection Agency, 2009).

Water-chemistry samples were collected and analyzed for 
major ions, nutrients, and trace elements. Field measurements 
were done in accordance with standard USGS protocols 
documented in the USGS National Field Manual for the 
Collection of Water-Quality Data (U.S. Geological Survey, 
variously dated). Field measurements include pH, specific 
conductance, temperature, barometric pressure, dissolved 
oxygen, alkalinity, and discharge rates at springs. Field 

alkalinities were determined using incremental equivalence 
(Rounds, 2006). Major ion, nutrient, trace element, and 
alkalinity samples were filtered through a 0.45-µm pore size 
filter and preserved with 2.0 mL of 7.7N HNO3 according 
to sampling and analytical protocol. Laboratory analyses 
for samples were done at the USGS National Water Quality 
Laboratory (NWQL) according to techniques described in 
Fishman and Friedman (1989), Fishman (1993), Struzeski and 
others (1996), American Public Health Association (1998), 
Garbarino (1999), Garbarino and others (2006), and Patton 
and Kryskalla (2011). 

Water-quality samples from water-supply wells were 
collected from a hose spicket near the wellhead prior to any 
water treatment, such as disinfection, softening, or filtration. 
Polyethylene tubing connected the hose spicket of a well 
to a splitter that directed water to a flow-through chamber, 
a sample line, and an overflow line. A Hydrolab minisonde 
multi-parameter probe was used in conjunction with a closed 
flow-through chamber to determine field parameters for 
pH, water temperature, specific conductance, and dissolved 
oxygen. All wells, except the PVC well, were purged using 
a portable pump or existing pumps in the water-supply wells 
for at least three well casing volumes and until field parameter 
readings stabilized for two readings at 15 min intervals: pH 
within ±0.1 units, temperature ±0.2°C, specific conductance 
±5 percent, and dissolved oxygen ±0.3 mg/L. Once the well 
was purged and the field parameters stabilized, water samples 
were collected from the sample line using USGS protocols 
for the specific types of analysis (U.S. Geological Survey, 
2006). The PVC well could not be purged for three well casing 
volumes because of the slow recovery of the well after one 
purge volume and therefore the well was only purged for one 
well casing volume.

Water samples collected from water tanks were 
collected as depth-integrated samples. A peristaltic pump 
with 1/8-in. silicone tubing was used to pump water from the 
bottom, middle, and top of the tank into a 4-L high-density 
polyethylene (HDPE) sample bottle. The silicone tubing was 
weighted at the end with a large rubber stopper and lowered 
into the water tanks from the access port on the top of the 
tank. Water was pumped through the tubing into a 4-L HDPE 
bottle from which water-chemistry samples were processed 
for shipment to the USGS National Water Quality Laboratory 
(NWQL) in Lakewood, Colorado. The water-chemistry sample 
from the faucet at PISP was collected directly from the faucet 
into a 4-L HDPE sample bottle and processed out of the 4-L 
HDPE bottle into smaller polyethylene bottles for shipment to 
NWQL (U.S. Geological Survey, 2006).

Water samples from springs were collected as close to 
the source as possible. Water was collected directly into a 4-L 
HDPE sampling bottle and then processed into smaller bottles 
for shipment to NWQL. Field parameters were measured at 
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each site using individual probes for pH, water temperature, 
specific conductance, and dissolved oxygen. When no flow 
was present, but water was pooled, a peristaltic pump was 
used to pump water into a 4-L HDPE sampling bottle, and 
then samples were processed from that 4-L HDPE bottle for 
shipment to NWQL (U.S. Geological Survey, 2006).

Lead isotope water-chemistry samples were collected 
and planned for analysis in this study, but it was determined 
that the total lead concentrations in water samples was too 
low for accurate isotopic analysis (Thomas Bullen, Research 
Geochemist, U.S. Geological Survey, oral commun., 2011). 
Metals analyses were used to determine if the concentration 
of lead and other metals associated with the presence of lead 
might be from the plumbing system at PISP. Metals that were 
analyzed include barium, beryllium, cadmium, chromium, 
cobalt, copper, iron, lithium, manganese, molybdenum, nickel, 
silver, strontium, thallium, tungsten, vanadium, and zinc. 

Rock samples were collected as part of this study to 
determine the lead concentration within the rocks associated 
with the local aquifer near PISP. Eleven rock samples were 
collected during the same time period as the water-quality 
samples from February 7 to 9, 2011 (fig. 1; table 1). Seven 
samples of the Navajo Sandstone and Kayenta Formation, 
which form the local aquifer, were analyzed. Rocks from the 
local aquifer are in continual contact with water from the 
local aquifer and the potential exists for lead to dissolve out 
of aquifer rocks and into the aquifer water. Other analyzed 
samples include three samples from the Moenkopi Formation, 
two of which were from the Shnabkaib Member and one 
from the middle red member. One sample of the Moenave 
Formation (fig. 5) also was collected. The Moenkopi and 
Moenave Formations are in continual contact with the local 
aquifer because they have been faulted near the surface by the 
west segment of the Sevier Fault. Because these formations 
are in contact with the local aquifer, lead could dissolve out 
of the rocks and potentially impact the local aquifer. Lead 
isotopic ratios were analyzed from rock samples in an attempt 
to characterize the type of lead present in the stratigraphic 
units. Lead isotopic ratios would have been compared to lead 
isotopic ratios in water-chemistry samples as an indicator 
of source rock, but the water chemistry samples were 
not analyzed for lead isotopes for the reasons previously 
described. Rock samples were prepared and analyzed for 
total lead concentration and lead isotopic ratios at Northern 
Arizona University (Ketterer and others, 1991; Halliday and 
others, 1998). 

Lead isotopic ratios of 206Pb/205Pb, 207Pb/204Pb, 
208Pb/204Pb, 207Pb/204Pb, and 208Pb/206Pb were analyzed 
by inductively coupled plasma mass spectrometry (ICPMS) 
using a VG Axiom MC instrument following procedures 
outlined in Ketterer and others (1991) and Halliday and others 
(1998). Isotopic ratios were corrected for instrument bias using 
the National Institute of Standards and Technology (NIST) 

981 as a standard and the analysis accuracy was evaluated 
using a NIST 2711 control sample and compared to control 
values from Unruh and others (2000). Analysis of NIST 2711 
indicated that the isotopic ratios of the average of five 
analyses to be very close to control values, within 0.015 for 
206Pb/204Pb, 0.01 for 207Pb/204Pb, 0.02 for 208Pb/204Pb, 
0.0005 for 207Pb/206Pb, and 0.0015 for 208Pb/206Pb. Lead 
concentration was determined using quadropole ICPMS 
and a Thermo X Series II instrument. The detection limit is 
0.8 µg/g lead. 

Quality Assurance

Quality assurance for this study was maintained through 
the use of proper training of field personnel, use of standard 
USGS field and laboratory protocols, collection of a sample 
blank, and a thorough review of the analytical results. All 
USGS scientists involved with this study have participated in 
the USGS National Field Quality Assurance Program, which 
requires participants to successfully determine pH, specific 
conductance, and alkalinity of reference samples supplied 
by the USGS Branch of Quality Systems. Field crews were 
trained in water-quality field methods by USGS personnel or 
through formal instruction at the USGS water-quality field 
methods class.

Laboratory analyses were completed at the NWQL using 
methods approved by the USGS or the USEPA. The detection 
level used by the NWQL for most analytes is the laboratory 
reporting level (LRL; Childress and others, 1999). The LRL is 
determined through a statistical procedure designed to yield a 
false positive or false negative rate of less than 1 percent at the 
LRL (Childress and others, 1999), and is twice the long-term 
method detection level (LT-MDL). For more discussion of 
LRLs and LT-MDLs, see Childress and others (1999). 

One field blank was collected during the sampling 
effort. The blank was collected at the NPS supply well by 
pumping certified blank water from the USGS NWQL. This 
sample was analyzed to determine if bias existed in the 
data from contamination during sample collection and (or) 
analysis. Cobalt and manganese were detected in the field-
blank sample, at 0.17 and 0.3 µg/L, respectively. In order 
to further investigate these detections, analytical results for 
all field blank samples were compiled for samples analyzed 
for cobalt and manganese collected during 2010–11 by the 
same personnel using the same equipment as this study. The 
results for four cobalt blank samples indicate that potential 
cobalt contamination is estimated with 76 percent confidence 
to be no greater than 0.18 µg/L in at least 70 percent of the 
blank samples since 2010. The six manganese blank samples 
indicate that potential manganese contamination is estimated 
with 74 percent confidence to be no greater than 0.3 µg/L in at 
least 80 percent of the samples since 2010.
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12    Water-Quality Data Collected to Determine Lead in Drinking Water, Pipe Spring National Monument, Northern Arizona

Water-Quality Results 
Water-quality analytical results from the 11 samples 

were similar in composition for all sites except for Moccasin 
Spring and the PVC well (table 1). Lead concentrations ranged 
from less than the reporting limit (0.025 µg/L) at Tunnel 
Spring, Tribal Storage Tank, Moccasin Spring, Cabin Spring, 
PISP monitoring well, and the PVC well to a maximum of 
0.369 µg/L at the NPS supply well. Lead concentrations in 
the remaining four sites were 0.027 µg/L at the NPS storage 
tank, 0.148 µg/L at the Tribal supply well, 0.176 µg/L at 
the old NPS supply well, and 0.181 µg/L at the NPS facility 

water at the faucet. Dissolved-solids concentrations ranged 
from 113 mg/L at Moccasin Spring to 415 mg/L at the PVC 
well with all other sites ranging from 325 to 350 mg/L. 
Chloride concentrations were 4.05 mg/L at Moccasin Spring 
and 4.70 mg/L at the PVC well. Chloride concentrations in 
the remaining nine samples ranged from 24.4 to 34.4 mg/L. 
Concentrations of calcium, magnesium, and sodium in water 
samples from Moccasin Spring were substantially lower 
than samples from all other sites (table 1). Nitrate + nitrite as 
nitrogen concentration was 17.3 mg/L at the PVC well and 
concentrations for the remaining 10 samples were less than 
7 mg/L. 

men13-2103_fig05

A. B.

C. D.

Navajo Sandstone

Kayenta Formation

Figure 5.  Stratigraphic units and outcrops where rock composition samples were collected. (A) Windsor Mountain, cliffs 
composed of Navajo Sandstone and Kayenta Formation. (B) Outcrop of Moenkopi Formation where rock sample 8 was collected. 
(C) Outcrop of Dinosaur Canyon Member of the Moenave Formation where rock sample 9 was collected. (D) Outcrop of Shnabkaib 
Member of the Moenkopi Formation where rock samples 10 and 11 were collected. USGS photographs taken by Jamie P. Macy.
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The concentrations of chemical constituents in samples 
from 10 sites were compared to the USEPA TTs, MCLs, and 
SMCLs for drinking-water standards (U.S. Environmental 
Protection Agency, 2009). The USEPA TT for lead in drinking 
water is 15 µg/L, and all analytical results for lead were 
less than the USEPA TT, with the highest concentration of 
0.369 µg/L. Low concentrations of lead in water from storage 
tanks and faucets indicate that the water-supply system does 
not contribute significantly to lead concentrations in drinking 
water. The MCLs and SMCLs for all other analyzed chemical 
constituents were not exceeded at any site, except at the PVC 
well where the concentration of dissolved nitrate + nitrite as 
nitrogen was 17.3 mg/L. Nitrogen is measured as the sum 
of nitrite and nitrate. The nitrite concentration in the sample 
from the PVC well was less than 0.001 mg/L, making the 
concentration of nitrate in the sample about equal to the total 
concentration of nitrogen, 17.3 mg/L; therefore, the sample 
exceeded the USEPA MCL of 10 mg/L for nitrate. However, 
this result is viewed with caution because this sample did not 
meet the requirement for purging three well volumes before 
sample collection because of the extremely slow recovery 
of the well after one pumping. Residual nitrate could have 
remained in the well after one casing volume was purged and 
therefore influenced the results. 

Rock Composition Results
Rock sample analytical results indicated that naturally 

occurring lead concentrations were low. Rock samples 
were analyzed from 11 sites in and around PISP (figs. 1 and 
5). Rock samples were collected from areas where it was 
determined that the rocks would be representative to those 
rocks associated with the local aquifer (fig. 5). Results of lead 
isotopic ratio and lead concentration analysis are presented in 
table 2. Lead concentrations in rock samples ranged from 2.8 
to 21.1 µg/g. Concentrations of lead were highest (20.7 and 
21.1 µg/g) from rock samples 5 and 6 (fig. 1) of the Kayenta 
Formation collected near the back of the tunnel at Tunnel 
Spring. Concentrations of lead were lowest (3.7 and 4.9 µg/g) 
from rock samples from the Moenkopi Formation. Measured 
concentrations of lead in rock samples collected at PISP were 
average or low when compared to average rock compositions 
for the Western United States (Connor and Shacklette, 1975). 
Average lead concentrations in sandstones, limestones, and 
shales for the Western United States range from about less 
than 3 to less than 20 µg/g (Connor and Shacklette, 1975). A 
low concentration of lead in Pipe Spring aquifer rocks would 
indicate that total dissolved lead in water samples also would 
be low. Water-chemistry samples and rock samples from PISP 
indicate that naturally occurring lead concentrations are low 
and water from the local aquifer would be expected to have 
low concentrations of lead. 

Table 2.   Sample locations, stratigraphic reference, lead isotopic ratios, and lead concentration analysis from rock samples around 
Pipe Spring National Monument area, northern Arizona. 

[Sample ID: Reference to rock sample number on figure 1. Abbreviations: Pb, lead; µg/g, microgram per gram]

Sample 
ID

Latitude 
(decimal 
degrees)

Longitude 
(decimal 
degrees)

Stratigraphic unit
206/204 

Pb
207/204 

Pb
208/204 

Pb
207/206 

Pb
208/206 

Pb

Total Pb 
concentration 

(µg/g)

Rock 1 36.870861 112.740389 Navajo Sandstone 18.778 15.643 38.462 0.83295 2.0482 9.0
Rock 2 36.870639 112.740778 Navajo Sandstone 18.513 15.615 38.233 0.84336 2.0650 6.1
Rock 3 36.870694 112.74075 Navajo Sandstone 18.419 15.612 38.189 0.84755 2.0732 7.3
Rock 4 36.870528 112.740667 Navajo Sandstone 18.669 15.621 38.335 0.83718 2.0533 8.0
Rock 5 36.863611 112.739444 Kayenta Formation 19.688 15.712 39.128 0.79794 1.9871 21.1
Rock 6 36.863611 112.739444 Kayenta Formation 19.586 15.705 39.092 0.80176 1.9956 20.7
Rock 7 36.86325 112.740222 Kayenta Formation 18.408 15.605 38.156 0.84763 2.0726 14.8
Rock 8 36.845306 112.750806 Middle red member of Moenkopi Formation 19.199 15.667 38.954 0.81598 2.0288 4.9
Rock 9 36.847556 112.750833 Dinosaur Canyon Member of Moenave 19.527 15.690 38.984 0.80344 1.9963 8.8
Rock 10 36.861611 112.73525 Schnabkaib Member of Moenkopi 18.547 15.601 38.199 0.84115 2.0595 2.8
Rock 11 36.861611 112.73525 Schnabkaib Member of Moenkopi 19.425 15.678 39.211 0.80703 2.0185 3.7
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Summary
Water-quality and rock sample analytical results yielded 

undetectable to low concentrations of dissolved lead in water 
samples and low concentrations of lead in rock samples. 
Water-quality analysis from five wells, three springs, two 
storage tanks, and one water faucet was completed to 
determine the presence, source, and concentration of lead in 
the water-supply system for the PISP, the Kaibab Paiute Tribe, 
the Cattleman’s Association, and the town of Moccasin. Water-
quality analytical results from water samples from the 11 sites 
that were evaluated in this study indicated low concentrations 
of lead in water from any of the sites. Concentrations of lead 
and all other chemical constituents in sampled water were 
less than U.S. Environmental Protection Agency maximum 
contaminant level, secondary maximum contaminant level, 
and treatment technique action level. Analytical results 
for nitrate + nitrite as dissolved nitrogen in the PVC well 
(17.3 milligrams per liter) exceeded the MCL of 11 milligrams 
per liter. Concentrations of lead in water from the two storage 
tanks (<0.01 and 0.18 micrograms per liter) and the facility 
water at the faucet (0.18 micrograms per liter) indicate that 
the water-supply system does not contribute significantly to 
lead concentrations in drinking water. The lead concentration 
of samples from rock units representative of the rocks within 
the local aquifer are less than 22 micrograms per gram. Lead 
concentrations in water samples were too low for isotopic 
analysis, so differentiation between sources of lead was not 
possible by the techniques of this study. Lead isotope data 
from rock samples were measured, and are included in this 
report. 
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