

April 2013

NASA/CR–2013-217978

Vehicle Integrated Prognostic Reasoner (VIPR)
Metric Report

Dennis Cornhill, Raj Bharadwaj, and Dinkar Mylaraswamy

Honeywell International, Inc., Golden Valley, Minnesota

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA scientific and technical information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI program operates under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving, and
disseminates NASA’s STI. The NASA STI
program provides access to the NASA Aeronautics
and Space Database and its public interface, the
NASA Technical Report Server, thus providing one
of the largest collections of aeronautical and space
science STI in the world. Results are published in
both non-NASA channels and by NASA in the
NASA STI Report Series, which includes the
following report types:

 TECHNICAL PUBLICATION. Reports of

completed research or a major significant phase
of research that present the results of NASA
Programs and include extensive data or
theoretical analysis. Includes compilations of
significant scientific and technical data and
information deemed to be of continuing
reference value. NASA counterpart of peer-
reviewed formal professional papers, but
having less stringent limitations on manuscript
length and extent of graphic presentations.

 TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or of
specialized interest, e.g., quick release reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

 CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION.

Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or co-
sponsored by NASA.

 SPECIAL PUBLICATION. Scientific,

technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

 TECHNICAL TRANSLATION.

English-language translations of foreign
scientific and technical material pertinent to
NASA’s mission.

Specialized services also include organizing
and publishing research results, distributing
specialized research announcements and feeds,
providing information desk and personal search
support, and enabling data exchange services.

For more information about the NASA STI
program, see the following:

 Access the NASA STI program home page

at http://www.sti.nasa.gov

 E-mail your question to help@sti.nasa.gov

 Fax your question to the NASA STI

Information Desk at 443-757-5803

 Phone the NASA STI Information Desk at

443-757-5802

 Write to:

 STI Information Desk
 NASA Center for AeroSpace Information
 7115 Standard Drive
 Hanover, MD 21076-1320

http://www.sti.nasa.gov/
file:///C:/Users/shstewar/Documents/Templates_Reports/Templates_PubWebSite/Templates_RevJan2009/help@sti.nasa.gov

National Aeronautics and
Space Administration

Langley Research Center Prepared for Langley Research Center
Hampton, Virginia 23681-2199 under Contract NNL09AD44T

April 2013

NASA/CR–2013-217978

Vehicle Integrated Prognostic Reasoner (VIPR)
Metric Report

Dennis Cornhill, Raj Bharadwaj, and Dinkar Mylaraswamy

Honeywell International, Inc., Golden Valley, Minnesota

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
443-757-5802

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an official endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Contents
1 Introduction .. 3

2 VIPR Architecture and Functionality ... 5

3 VIPR Metrics .. 9

3.1 Accuracy and Computation Metrics .. 9

3.1.1 Accuracy Metrics ... 9
3.1.2 Computational Metrics ... 10

3.2 Monte Carlo Experiments ... 11

4 VIPR Evaluation Approach .. 12

5 Failure Mode Simulator .. 13

5.1 Selection of Failure Modes for Simulation .. 16

6 Profiling the Reasoner .. 18

6.1 Overview ... 18
6.2 Metrics Generation Protocol .. 18

6.2.1 Failure Mode Simulator Parameters ... 19
6.2.2 Reasoner Parameters .. 19

6.3 Accuracy Analysis .. 19

6.3.1 Accuracy of Flat and Hierarchical Models ... 21
6.3.2 False Alarms .. 22

6.4 Isolating Node ... 23
6.5 Time to Isolate .. 23
6.6 Safety Impact and Accuracy of Prognostics .. 23
6.7 Communications Volume .. 25
6.8 Communications Latency .. 25

6.8.1 Latency Model ... 25

6.9 Cost Analysis ... 28

6.9.1 Cost Model .. 28
6.9.2 Cost Analysis Results ... 29

6.10 Prognostic: Time to Failure Metrics .. 31
6.11 Reasoner Floating point Operations ... 35
6.12 Other Metrics .. 37

7 Metrics Derived from the VIPR Hardware-in-the-Loop Demonstration ... 37

8 Summary and Conclusions .. 39

9 References .. 41

1

Table of Figures
Figure 1: Functional View of VIPR ... 5
Figure 2: Hierarchical Reasoning ... 7
Figure 3: Central Reasoning .. 8
Figure 4: Types of intermittent faults ... 10
Figure 5: VIPR Evaluation Approach ... 12
Figure 6: VIPR Data Flow Showing Four Opportunities for Evaluating Results and Refining Inputs 13
Figure 7: Graphical representation of the reference model ... 15
Figure 8: Reference model example ... 15
Figure 9: (a) Three thresholds for monitor generation; (b) Diagnostics monitors 15
Figure 10: Types of evidence generated by the failure mode simulator .. 16
Figure 11: Failure mode to detection matrix .. 17
Figure 12: Components in the VIPR metrics analysis .. 18
Figure 13: Results of single fault simulations.. 22
Figure 14: Results of multiple fault simulations ... 22
Figure 15: Fusion of two prognostic vectors ... 24
Figure 16: Discovery of prognostic monitors using data mining on an airlines database 24
Figure 17: A notional representation for latency when sending a burst of messages over a periodic
communications system. .. 26
Figure 18: Communications latency computed from the single and multiple fault simulations................ 27
Figure 19: Fault information flows from the sensor monitors through the reasoner entities to the users
of the reasoner's conclusions ... 28
Figure 20: Cost is computed as the sum of transaction costs. ... 28
Figure 21: Relative cost of hierarchical and flat reference models .. 30
Figure 22: Relative costs for the two models, assuming processing cost is equivalent to the
communications cost for a 1000 byte message ... 30
Figure 23: Fault prediction using the Rising Start trend monitor ... 31
Figure 24: Fault prediction using the Fast Start trend monitor .. 32
Figure 25: Fault prediction from fusing results from the Rising Start and Fast Start trend monitors 33
Figure 26: Fault prediction using the Fuel HMA diagnostic monitor .. 34
Figure 27: Fault prediction fusing all three monitors ... 35
Figure 28: The logical architecture of the VPR Hardware-in-the-Loop demonstration. 38

2

3

1 Introduction
This document outlines a set of metrics for evaluating the diagnostic and prognostic schemes developed
for the Vehicle Integrated Prognostic Reasoner (VIPR). A number of diagnostic and prognostic metrics
are defined in the literature (e.g., [1, 2, 3]), but these standards are defined for well-circumscribed algo-
rithms that apply to small subsystems. VIPR is designed to be a system-level reasoner that encompasses
multiple levels of large, complex systems such as those for aircraft and spacecraft. The wide variety of
reasoners employed in such systems span from individual line replaceable unit (LRU) health managers to
area health managers (AHM) and the vehicle health manager (VHM) [4]. These health managers are or-
ganized hierarchically and operate together to derive diagnostic and prognostic inferences from symp-
toms and conditions reported by a set of diagnostic and prognostic monitors (DMs and PMs) [5]. A brief
description of the layered VIPR architecture is presented in Section 2 of this document.

Existing metrics for evaluating fault detection, fault isolation, and prognostics schemes are directly ap-
plicable to the DMs, PMs, and LRU health managers. For layered reasoners such as VIPR, the overall per-
formance cannot be evaluated by metrics solely directed toward timely detection and accuracy of esti-
mation of the faults in individual components. Among other factors, overall vehicle reasoner perfor-
mance is governed by the effectiveness of the communication schemes between monitors and
reasoners in the architecture, and the ability to propagate and fuse relevant information to make accu-
rate, consistent, and timely predictions at different levels of the reasoner hierarchy.

To address these issues, we outline an extended set of diagnostic and prognostics metrics in this report.
These metrics can be broadly categorized as evaluation measures for: (1) diagnostic coverage, (2) prog-
nostic coverage, (3) accuracy of inferences, (4) latency in making inferences, and (5) sensitivity to differ-
ent fault and degradation conditions. We also discuss possible cost-benefit metrics to capture the im-
proved performance-to-cost calculations for the VIPR layered architecture.

Our overall approach involves a systematic study of the effectiveness of the VIPR system using a simula-
tion testbed designed to generate off-nominal events corresponding to several fault scenarios [5]. A set
of these fault scenarios is documented in a previous report [5]. The evaluation studies involve systemat-
ic generation of degradation and fault data, realistic analysis using the monitors and reasoners in the
VIPR architecture, and a methodology to compute the values for the chosen metrics using the perfor-
mance data collected from the software testbed. Benchmarking VIPR makes it possible to assess how it
can increase aviation safety. To achieve a benchmark, we evaluate VIPR’s performance using the diag-
nostics and prognostics metrics described in Section 4.

Section 7 discusses the Hardware-in-the-Loop demonstration and reports on additional metrics extract-
ed from a VIPR demo and test configuration that now includes a piece of avionics equipment, Honey-
well’s LaserRef VI Inertial Reference Unit (IRU).

The rest of this report outlines the VIPR architecture, the simulation testbed for benchmarking studies,
the metrics chosen for diagnostic and prognostics reasoner evaluation, and the summary and conclu-
sions for this report.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

2 VIPR Architecture and Functionality
The primary function of VIPR is to detect and isolate faults and failures at the aircraft level. A simplified
functional view of VIPR is shown in Figure 1. VIPR is organized into a hierarchical architecture. At each
level or layer of the hierarchy, the VIPR processing blocks maintain relationships with other blocks at the
same level.

Figure 1: Functional View of VIPR

To satisfy bandwidth and power constraints [4, 5], only a subset of messages is allowed to flow from one
level to another. At the lower level LRU, HMs receive measurements from the sensors, and they perform
diagnostic and prognostic (DP) monitoring tasks to compute DP indicators. The next level is organized in-
to multiple AHMs that follow the principal spatial and temporal decomposition of the aircraft functional-
ity and behavior. The main task of an area HM is to perform DP reasoning using the indicators provided
by the LRU HMs. Finally, a VHM is responsible for collecting the data from all AHMs and solving any am-
biguities with the assistance, if necessary, of off-vehicle health management services. In the following,
we first describe the candidate algorithms that can be used for the VIPR and then discuss the infor-
mation flow between the various levels of the VIPR.

6

At the LRU level, the objective is twofold: (1) discover information that can be used for DP reasoning in
raw and noisy measurements by performing feature extraction and (2) compress the data so that they
can be efficiently transmitted and used by the higher levels for more integrated analyses (e.g., reasoning
about the effects of fault propagation between subsystems). Both tasks are accomplished by a suite of
DP monitors that can be classified into two categories: (1) simple DP monitors and (2) advanced DP
monitors.

Simple DP monitors test whether a sensor measurement or measurement rate exceeds a threshold. All
major subsystems in an aircraft have built-in tests (BIT) that perform such operations and present the
simplest form of feature extraction, generating binary health indicators. Mathematically, these tests are
based on well-defined detectors such as likelihood ratio test, z-test, and t-test. In addition to such algo-
rithms, advanced DP monitors are used for discovering and extracting information from multivariable
measurement sets.

A representative algorithm for such a monitor is principal component analysis (PCA), which transforms a
number of possibly correlated variables into a smaller number of uncorrelated variables called principal
components. After using multivariate signal processing algorithms, advanced DP monitors can use sim-
ple classification and trending algorithms to encapsulate information to DP indicators that are forward-
ed to the Area HMs. Candidate algorithms include bin classifiers, nearest-neighbor classifiers, and dis-
criminant analysis. The computed indicators include: (1) condition indicators that can describe, for ex-
ample, the engine compressor efficiency and spectral energy content from a vibration signal; (2) health
indicators that capture, for example, inlet filter, compressor rub, or foreign object damage (FOD) inci-
dents; and (3) prognostic indicators that show, for example, the evolution of engine health for the next
100 hours of a specific mission.

Area Health Manager
AHMs conduct DP reasoning for aircraft subsystems, including multiple LRUs. They are organized along
spatial and temporal boundaries of fault manifestation and propagation to minimize the communication
between aircraft subsystems. Since perfect containment of a fault in one area cannot be guaranteed,
AHMs can query remote LRUs if necessary. Candidate algorithms at this level include decision trees, dis-
crete event system diagnosers, failure propagation graphs, neural networks, fuzzy classifiers, and Bayes-
ian networks. Heterogeneous reasoners deal with binary, discrete, and continuous indicators provided
by the LRUs as well as with event-driven and time-driven dynamics of the underlying aircraft compo-
nents.

Vehicle Health Manager
The VHM is responsible for reasoning across spatial and temporal boundaries of the various areas and
possibly uses off-vehicle health management services. The VHM resolves ambiguities that may arise
from the AHMs, initiates additional DP tests, and provides warnings. The DP reasoning technologies are
similar to those in the AHMs, but special care must be taken to deal with multiple temporal scales.

Reference Models
Managing and evaluating the operation of VIPR requires a database of the health management compo-
nents that are available at the LRU, area, and vehicle levels. Every component is associated with a refer-

LRU Health Manager

7

ence model (implemented as an XML file) that captures the interface of the component and information
about the internal functionality if available. At the very least, it defines the input output relations for the
associated component.

Figure 2 and Figure 3 show hierarchical and central/flat reasoning. Both reasoners use corresponding
reference models that define the monitors source and diagnostic relationships. In the hierarchical refer-
ence model, the LRU reference model defines all the monitors at the LRU level as well as the bipartite
graph that connects the monitors to the LRU failure modes. The fault cascade/common causes are cap-
tured at the area level along with the faults in area level systems such as the fuel lines, electrical buses,
etc. At the vehicle level, the reasoner model captures the relationships in between the area-level faults
and defines the inhibitors to suppress nuisance faults.

VIPR uses a reference model designed to support a VIPR-type hierarchical system. In such a system,
monitor generation and active queries initiation resolve the LRU-level ambiguity. The area-level
reasoner uses the area-level reference model to isolate faults and discover fault cascades. In contrast,
the central reasoners use a flat reference model. In this type of reasoning, the monitors may be gener-
ated at LRU level. All other functions of the reasoner, including query, isolation, cascade reasoning, fu-
sion, and inhibits are performed at the vehicle level. The VIPR reasoner code is designed to use either
reference model for reasoning, which allows comparison of results from the distributed (hierarchical)
and central (flat) reasoners.

Figure 2: Hierarchical Reasoning

8

Figure 3: Central Reasoning

Information Flow
VIPR’s basic information flow starts from the sensors that communicate raw measurements to the LRU
HMs. The LRU HMs compute DP indicators using simple or advanced DP monitors and send them to the
AHMs. The DP reasoners in the AHMs generate fault candidates that are sent to the VHM. At the vehicle
level, reasoners generate detections and predictions of failure modes and advisories.

In addition to communicating the output of the health management components at this level, VIPR con-
siders an enhanced information flow that complements the component results with metadata that pro-
vide valuable information related to how these results have been computed. The metadata communi-
cated instantiate the attributes of the reference model of the corresponding component in the VIPR ar-
chitecture constructing an accurate runtime representation of the VIPR configuration.

The information flow can then follow two paradigms. First, low-level components can forward important
messages to higher levels upon detection, for example, of adverse events. Second, high-level compo-
nents can actively query low-level components for specific information that can be used to disambiguate
fault candidates or improve fault prediction. In addition, VIPR supports active sensor tests that are in-
voked on demand.

Evaluation
Evaluation of the vehicle-level health management architecture, such as VIPR, must assess how it can in-
crease aviation safety. This goal is directly linked to the following measures:

1. Diagnostic coverage
2. Prognostic coverage
3. Accuracy
4. Latency
5. Sensitivity

Given VIPR’s hierarchical architecture, the benchmarking process must consist of two steps:

1. Quantifying the effectiveness of each VIPR in terms of the above metrics

9

2. Determining the accumulated inaccuracies as information is passed up the architecture

Well-defined metrics that can be used to evaluate VIPR performance (see next section). In addition to
such measures, it is important to evaluate the efficiency and scalability of VIPR in terms of the computa-
tional resources needed as well as to quantify the trade-offs between performance and resource usage.
The enhanced information flow and the active querying described above, for example, can improve per-
formance and increase safety but they require increased computation and communication capabilities.
Cost-benefit analysis is then necessary to determine the optimal VIPR configuration. The following sec-
tion describes the metrics to be computed along with the discussion on the cost analysis.

3 VIPR Metrics
This section defines what and how we generate summary statistics from the algorithm performance and
message logs and describes the Monte Carlo experiments run to exercise the reasoner and generate
performance and message logs.

A number of diagnostic and prognostic metrics exist, but these standards are defined for well-
circumscribed algorithms that apply to small subsystems. For layered reasoners such as VIPR, the overall
performance cannot be evaluated by metrics directed solely toward timely detection and accuracy of es-
timation of the faults in individual components. Among other factors, the overall vehicle reasoner per-
formance is governed by the effectiveness of the communication schemes between monitors and hier-
archical reasoners and the ability to propagate and fuse relevant information to make accurate, con-
sistent, and timely predictions at different levels of the reasoner hierarchy. An added functionality of
this architecture is the ability of the vehicle- and area-level reasoners to generate specific queries for the
component monitors. To address these issues, we have developed an extended set of diagnostic and
prognostics metrics that can be used to evaluate the performance of the layered architecture. The met-
rics are summarized in the following sections.

3.1 Accuracy and Computation Metrics
3.1.1 Accuracy Metrics
Generation of the reasoner accuracy metrics: The reasoner accuracy metrics are generated by running
the reasoner in tandem with the fault simulator. The fault simulator works as an evidence source that
generates the monitors for the seeded faults. The reasoner accuracy metrics are captured directly from
the MATLAB® run. It is not necessary to run the GUI to capture the reasoner accuracy metrics; however,
the reasoner accuracy metrics are calculated for all runs, including the non-metrics collection runs from
the GUI and are displayed on the MATLAB console at the end of the reasoner run.

The following data is collected to capture the reasoner accuracy metrics:

� Simulated fault is captured for metrics computation.
� List of all monitors that fired and the time at first firing.
� Diagnostic accuracy, which is the accuracy of the reasoner’s diagnostic conclusions. It is accom-

plished by comparing the final reasoner conclusion for all the simulated faults. The diagnostics
accuracy captures the following sub-metrics:

10

o Rate to false alarms: given absence of faults, detecting faults when no faults are pre-
sent.

o Rate of true detects: given presence of detected faults, detecting the faults that are pre-
sent.

o Rate of false detects: given presence of some faults, detecting faults that are not pre-
sent/simulated in the scenario.

o Rate of miss detects: given the presence of some faults, missing the detection of a simu-
lated fault.

� Prognostic accuracy: Accuracy of the prognostics. The metrics captures the fusion of two or
more prognostic vectors and discovery of precursors through data mining

� Time to detect as measured as time from the first appearance of the indicting monitor.
� Time to isolate two or more faults. This is also measured from the time of initiation of the first

set of monitors corresponding to the simulated faults.
� Detection rate for intermittent faults. The types of intermittent fault are shown in Figure 4. For

accuracy metrics, we concentrate on the intermittent evidence leg.

Figure 4: Types of intermittent faults

� Isolation layer/reasoner: This metric captures information about the reasoner that isolated the
fault for all simulated faults. The conjecture is that complex faults are isolated by higher level
reasoners (such as the AHM, VHM reasoner) and, this metric will verify that hypothesis.

This study is repeated for a select set of faults with multiple reasoner parameters, such as:

� Threshold for splitting/merging
� Threshold for acceptance/rejection
� Threshold for isolation/ambiguous
� Threshold for fault condition closeout

3.1.2 Computational Metrics
Communication and profiling data is collected at run time to compute the complexity cost. The commu-
nication metrics are utilized to compare the distributed layered reasoner architecture with the central
reasoner architecture. In the distributed reasoner, the computations occur at all the layers and only the
conclusions, active queries, and broadcasts are sent out to the next reasoner level. In the central
reasoner, all the computations and disambiguation occurs at the central reasoner.

11

To better understand the communication tradeoffs the following data is collected:
� Communication costs: Communication costs are computed from the total number of communi-

cations and the bandwidth utilization required to isolate a fault by the reasoner in a given archi-
tecture. Computation begins at the time of fault inception. To compute the communication
costs, these data items need to be logged:

o Message source ID
o Destination ID
o Timestamp
o Message number
o Packet type
o Packet subtype
o Payload size

Message cost can be described as by cost function that is proportional to the payload size
from source to destination layers.

� Message delays can be incorporated in the communication cost through post analysis. For ex-
ample, for a message from an LRU reasoner to the AHM, the communication delay could be
modeled with a bounded delay.

� Bandwidth utilization computation is accomplished by assuming that VIPR has a fixed maximum
percent of the communication bandwidth and then computing the latency implied by the band-
width limitation. For example, the communication bandwidth can be assumed to be 10Mbps,
and VIPR can be assumed to be limited to, at most, 1% of the communication bandwidth. The
bandwidth utilization computation compares the communications in both the central and dis-
tributed reasoner architectures.

� At the reasoner level, the following information is also collected:
o CPU execution times
o CPU utilization
o Memory utilization

3.2 Monte Carlo Experiments
We use Monte Carlo experiments to exercise the reasoner and generate performance and message logs.
The objective of these experiments is to generate the:

� Accuracy metrics
� Computation metrics

The accuracy metrics are generated by running the reasoner using the complete VIPR reference model
along with the fault simulator under the following combinations of conditions:

� Faults number:
o No fault baseline
o All possible single complex faults
o All combinations of two complex fault conditions

� Fault types

12

o Latched faults
� Evidence/Monitors

o Random evidence coming on line, i.e. the monitors fire based on stochastic probabilities
� Evidence type:

o Latched monitors
o Chattering monitors (only for non-indicting monitors)

� Special cases:
o Two or more prognostic monitors need to be fused to generate the accuracy metrics
o Multiple fault cases that lead to ambiguity in the reasoner conclusions

� Time of inception of fault
o 200 seconds into flight

� Reasoner parameters: Repeated simulations for the selected set of faults with multiple reasoner
parameters, such as:

o Threshold for splitting (3 thresholds)
o Threshold for merging (3 thresholds)

The computational metrics are run over all faults for the small reference model with both flattened and
layered reference models. We consider all 1-fault and 2-fault combinations and study only latched fault
and monitor states. The effect of simultaneous-versus-staged evidence is also studied. The communica-
tions costs are logged and analyzed further by fitting multiple communication delay/cost models.

4 VIPR Evaluation Approach
The VIPR evaluation approach is illustrated in Figure 5. We used a regional airline data base to enhance
the reference model and to generate monitors to test VIPR. The reference model is also an input pa-
rameter to the failure mode simulator. The failure mode simulator generates evidence streams that
correspond to a selected failure mode from the reference model. The evidence stream is then fed to
the VIPR reasoner. Reasoner outputs such as isolated faults, detected faults, time of isolation, isolating
reasoner, etc. are logged and analyzed by the metrics analysis scripts. The metrics analysis scripts sum-
marize the results and calculate false alarm rates, true detect rates, average time to isolate, number of
reasoner messages, etc., which is then used for reasoner and reference model improvements.

Figure 5: VIPR Evaluation Approach

Reference
Model

Failure Mode
Simulator

VIPR
Reasoner

Evidence
Stream GUI

Metrics
Analysis

Data
Mining

13

Figure 6 shows four places in the overall system flow of information where inputs to the reasoning pro-
cess can greatly affect the quality of the reasoner’s results.

Figure 6: VIPR Data Flow Showing Four Opportunities for Evaluating Results and Refining Inputs

❶ is the reference model for describing the vehicle—clearly, it needs to be an accurate reflection of
the vehicle.

❷ is the quality of the evidence stream—low-fidelity evidence will erode the reasoner’s ability to accu-
rately isolate a fault.

❸ indicates the settings that tune the reasoner’s operation, such as the confidence threshold for de-
claring a fault isolated.

❹ measures the reasoner’s effectiveness and use those results to fine tune the reference model.

We evaluated the sensitivity of the reasoner settings and reported results in Section 6.2.2. The other
three evaluations need to be done in the context of a specific vehicle, high-fidelity reference model, and
actual evidence streams.

5 Failure Mode Simulator
We developed the failure mode simulator to enable exhaustive testing of the VIPR reasoner because it is
not possible to extract all types of failure modes from the regional airline data base. The failure mode
simulator uses the reference model to generate the monitor evidence for the simulated faults. The sim-
ulator uses stochastic processes for setting monitor firing and monitor activation times, and for generat-
ing false alarms.

14

Figure 7 and Figure 8 show the reference model in graphical and textual format. Figure 9 shows the
three thresholds that are used to generate the diagnostic monitors. The three thresholds are used
against uniformly distributed random numbers to simulate the stochastic nature of the monitors. The
first threshold, the Monitor Valid threshold, is an exponential threshold that captures the behavior of
monitors as they come on-line at the beginning of the flight. This threshold is used to generate an inva-
lid/cannot compute (represented as -1) monitor response. The false alarm threshold is used to generate
false monitor firing throughout the simulation window. The fault detect threshold becomes active only
after the injection of fault. It is used to decide if the corresponding monitor fires on/or not when the
fault is present (injected). Both the false alarm and the detection threshold can be read off the reference
model as highlighted in Figure 7.

Following steps capture working of the fault simulator and monitor /evidence generation. It is assumed
that the simulated failure mode is represented in the reference model. Then:

1. Find all monitors (M) in the reference model
2. Simulate an array of M times T, where T is the number of frames of evidence to be generated
3. The monitor generation program includes some additional logic that first determines the valida-

tion of the monitor. The validity is determined by checking if the simulated sample value is
greater than the Monitor valid threshold. If this condition is not met then Mj is set to -1. If the
monitor is valid then Monitor False alarm or the fault injection threshold is used to set the moni-
tor Mj = 0 or 1.

4. After sample time >=fault injection time
a. Get all evidence of interest (monitors) and their detection probability
b. Find if there are any prognostic monitors associated with the diagnostics monitors. Sim-

ulate the time of issue for the prognostics monitors. Simulate the prognostics vector.
c. For all indicting diagnostics monitor check if evidence of interest Mj>1-dij, then, Mj = 1

otherwise 0
5. Time Mj first becomes >1-dij is set as monitor time stamp

Figure 10 shows the sample diagnostics and prognostics vectors. Simulations are run multiple times us-
ing different random number seeds.

15

Figure 7: Graphical representation of the reference
model

Figure 8: Reference model example

Figure 9: (a) Three thresholds for monitor generation; (b) Diagnostics monitors

Asset1

Asset2

Asset3

FM1

FM2

FM3

FM4

FM5

E1

E2

E4

CA1

CA2

CA3

CA4

Func1

Func2

Func3

FM6

E5

E6

E7

E8

E3

CA5

CA6

Func4

Part of the reference model needed
for VIPR inferencing

E Diagnostic Evidence

FM Failure Mode

CA Corrective Action

Asset Model Element
Hardware

Func Platform Function

E9

<referencemodel>, 1, 121, lru1
<diagmonitors>, 4
10, 0.01, 1, E1
11, 0.01, 0, E2
12, 0.01, 1, E3
13, 0.01, 0, E4
<progmonitors>, 2
% ID, ID
14, 10, -100, -70, -30, 30, PE1
…………………………………
<failuremodes>, 3
100, 0.001, FM1
101, 0.001, FM2
102, 0.001, FM3
<detection>, 8
100, 10, 0.85
100, 11, 0.6
100, 12, 0.7
…………….
102, 10, 0.2
102, 12, 0.7
102, 13, 0.6

<referencemodel>, 2, 121, lru2
<diagmonitors>, 5
% some comment
16, 0.01, 1, E5
..
20, 0.01, 0, E9
<progmonitors>, 3
……………………………………
<failuremodes>, 3
103, 0.05, FM4
…….
105, 0.05, FM6
<detection>, 10
103, 16, 0.9
…………

<referencemodel>, 10, 122, area1
<failuremodes>, 2
106, 0.05, FMA1
…………
<detection>, 4
106, 10, 0.6
106, 16, 0.7
………………
<faultcascade>, 2
100, 103, 0.8
100, 104, 0.5
<symptomcascade>, 2
101, 16, 0.8
104, 10, 0.8

<referencemodel>, 50, 123, vehicle
<failuremodes>, 0
<detection>, 0
<faultcascade>, 0
<symptomcascade>, 0

<referencemodel>, 101, 127, layout
<parents>,
1, 10
2, 10
10, 50
50, 45
45,-1

<referencemodel>, 1, 121, lru1
<diagmonitors>, 4
10, 0.01, 1, E1
11, 0.01, 0, E2
12, 0.01, 1, E3
13, 0.01, 0, E4
<progmonitors>, 2
% ID, ID
14, 10, -100, -70, -30, 30, PE1
…………………………………
<failuremodes>, 3
100, 0.001, FM1
101, 0.001, FM2
102, 0.001, FM3
<detection>, 8
100, 10, 0.85
100, 11, 0.6
100, 12, 0.7
…………….
102, 10, 0.2
102, 12, 0.7
102, 13, 0.6

<referencemodel>, 2, 121, lru2
<diagmonitors>, 5
% some comment
16, 0.01, 1, E5
..
20, 0.01, 0, E9
<progmonitors>, 3
……………………………………
<failuremodes>, 3
103, 0.05, FM4
…….
105, 0.05, FM6
<detection>, 10
103, 16, 0.9
…………

LRU Ref
Model

Area Ref
Model

Connectivity
& Cost50, 50, 5050, 50, 00, 0 4545454555

45,45,45,45,45,45,5545,4 -----1111111
& C& C& C& C&& C& C& oooostostostostostostto

2, 12, 12, 12, 12, 1100000
10, 10, 010, 10, 10, 10,0 50505050500
505050505050 4545454545545

ConConConConConConConCoonn
& C& C& C& C& C& C& C&& oooooo

nnnnnnnecnecnecnecnecnecneecectitititititititit
ostostostostostostostst

vvvvvvvityityityityitytyittty

<par<par<par<par<parpar<parenenennenee
1, 11, 11, 11, 111, 1, 11 000000
2 12 12 12 12 12 1100000

ntsntsntsntsntstsn >, >, >>, >, >, ,

CCCCCCCC titititit ititititit

<<<<<<<referefereferefefereferefefef rrrrrr
<par<par<par<par<parpara<parenenenenene

rencrencrencrencrencncemoemoemoemoemome
ntsntsnntsntsntsn s>>>>>>>

odododododododelelelelelelele >, 1>, 1>, 1>, 1>, 1>, 1>, 1111101, 01, 01, 01, 01, 01,0 1271271271271271277,7,7,7,777 lay lay lay lay layaylayoutoutoutoutoutouo ttttt

)1|1(��� jiij fmePd
Probability that the evidence is present

when the failure mode is present

Probability of Monitor false alarm

)0|1(���� jii fmeP�

Aproiri probability for
failure mode FM1

1

time ->

fault injection

Monitor false alarm threshold

Indicting monitor
trigger threshold

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x

x
x

x
x

x
x
x
x
x

x
x

x
x

x
x
x

x
x

X sim array
sample

M
on

ito
rs

time ->

Indicting monitors

Other monitors

Monitor
valid

threshold

16

Figure 10: Types of evidence generated by the failure mode simulator

5.1 Selection of Failure Modes for Simulation
The failure modes to be simulated by the simulator are selected only if they satisfy the following criteria
for complex failure modes (Figure 11):

1. Select monitors that indict two or more failure modes. Monitors that are linked to a single fault
have been eliminated because they do not generate interesting tests.

2. Select failure modes that have two or more indicting monitors.

The hierarchical and flat reference models each defined these 22 complex fault conditions:

� APU
o EC Blade Rub
o Fuel Metering Fault
o Starter Fault
o Igniter Assembly Fault
o Turbine Erosion
o Nozzle Clogging
o ECB Fault
o No Fuel
o Bearing Fault
o Inlet Blocked

Probability of NOT
crossing the

threshold

(t1, 0.1)

(t2, 0.0)

(0, 1.0)

Time �

Threshold
crossing

(crossed, 1)

Time �

(not crossed, 0)

1

2

Supplier can provide 0/1
threshold crossing or

diagnostic monitor

Supplier can provide future
crossings or prognostic

monitor

Supports prognostic
reasoning

PEID, EID, t1, t2, t3, t4, PEName
14, 10, -100, -70, -30, 30, PE1

(current time)

X
t1

X
t2

X
t3

X
t4

1
0

-1

-1, -1, -1, -1 START OF SCENARIO
0, 1, 13, -1 MONITOR UNAVAILABLE
10,1,13,0 MONITOR PASS
126 1 14, 1, 0, 1.0, 25, 0.81, 50, 0.2 PROGNOSTIC MONITOR
200 ,1, 10, 1 DIAGNOSTIC MONITOR 1
200, 1, 11, 1 DIAGNOSTIC MONITOR 2
220, 1, 12, 1 DIAGNOSTIC MONITOR 3

Evidence Stream

17

� Engine
o AI Stuck Valve
o Fan/LPC Degradation
o HPC Degradation
o AC Duct Rupture
o Fadec Fault
o Fuel Metering Fault
o HPT Degradation
o Igniter Fault
o Inlet Fouling
o Shutoff Drain Valve Fault
o Starter Fault
o Nozzle Clogged

The simulations are configured to exercise only the complex failure modes, which ensures that the sta-
tistics are not skewed by the simple faults which are easy to detect and isolate.

Figure 11: Failure mode to detection matrix

E1 E2 E3 E4 E5 E6 E7 SR
FM1 1 0 0 0 0 0 0 1
FM2 0 1 0 0 0 0 0 1
FM3 1 1 0 0 0 0 0 2
FM4 0 0 1 1 1 0 0 3
FM5 0 0 1 0 1 1 1 4
FM6 0 0 0 1 1 0 1 3
FM7 0 0 1 0 0 0 0 1
FM8 0 1 0 0 1 0 0 2

2 3 3 2 4 1 2

0
0
1
0

E6

0
1

0 1FM1 1 0 0 0 0 0
0 1FM2 0 1 0 0 0 0

0FM7 0 0 1 0 0 10

18

6 Profiling the Reasoner
6.1 Overview
Figure 12 illustrates the overall approach for measuring the performance of the VIPR reasoner.

Figure 12: Components in the VIPR metrics analysis

For a given aircraft fault scenario, the failure mode simulator was used to generate an evidence stream
that contained symptoms of the inserted faults as well as randomly generated evidence for spurious
faults. Using the generated evidence stream, the VIPR reasoner was then executed for both the hierar-
chical and flat aircraft reference models. During its execution, the reasoner logged information about its
execution that was analyzed by an offline tool that computed the accuracy, performance, and cost met-
rics reported in this section.

6.2 Metrics Generation Protocol
The hierarchical and flat aircraft reference models define more than 40 failure modes. Of these, 22 fail-
ure modes were considered complex (see Section 5.1).

We simulated single and multiple fault scenarios. The 22 single fault scenarios were each simulated 10
times using different evidence streams that each contained 0.1% randomly generated false evidence.
Therefore the single fault data for each reference model was generated from the simulated insertion of
220 faults.

The 22 faults combine into 231 sets of double faults, and each two fault combination was simulated
once. Therefore the multiple fault data was generated from the simulated insertion of 462 faults, two
insertions for each of 231 test cases.

This means that the analysis was performed over data accumulated from running each reference model
over 451 evidence streams that simulated 682 failure modes.

19

6.2.1 Failure Mode Simulator Parameters
We ran all failure mode test cases for a simulated time of 2,000 seconds, with evidence of faults provid-
ed in 10 second increments. Fault insertion, for both single and multiple fault scenarios, always occurred
at simulated time 200, and randomly generated erroneous evidence could appear at any time during the
2,000 second simulation.

We assumed that the vehicle was able to completely process a set of evidence from LRU HM through
the VHM before the arrival of the next set of evidence 10 seconds later. That is, we assumed that pro-
cessing latency was always less than 10 seconds.

Each diagnostic monitor was supplied with false information 0.1% of the time. The aircraft reference
models each contain about 40 diagnostic monitors, and during a simulation, each monitor is supplied
with 200 values (2,000 seconds divided by the 10 second time increment). The generation of 8000 moni-
tor values over a test case means that, on average, eight monitor values were caused by false infor-
mation.

At simulation start, all monitors were considered inactive and became active at an exponential rate with
a mean of 20 seconds. This means that by 20 seconds into the simulation, half of the monitors had been
activated, and by the fault insertion time 200 seconds, there was a very high probability that all moni-
tors were active.

6.2.2 Reasoner Parameters
The reasoner contains several parameters for tuning its operation. We focused on the DELTA_I parame-
ter, which affects the reasoner’s fault isolation sensitivity. With too high a value, the reasoner may have
difficulty isolating the inserted faults, while too low a value may cause it to incorrectly isolate faults that
were not inserted.

When the reasoner receives evidence of a failure, it computes the likelihood for each fault condition
that could have caused the evidence. One criterion for achieving fault isolation is for the likelihood of
the isolated fault to be much higher than the likelihood for other faults. DELTA_I is the measure for how
much higher. For lower values, the reasoner requires less evidence to indict a failure condition. Conse-
quently, the reasoner is faster at isolating failure modes but more likely to indict a failure condition that
does not exist.

DELTA_I is expressed as the log of the ratios of the likelihood. Therefore, setting DELTA_I = 2 means that
to achieve isolation, the fault’s likelihood must be at least 100 times greater than the likelihoods of the
other faults.

We tried three values of DELTA_I (1.5, 2.5 and 3.0) and determined that for these aircraft reference
models and our analysis protocol, the 3.0 value produced the best results: fewest incorrect indictments
without a significant drop-off in indicting the inserted faults.

6.3 Accuracy Analysis
The accuracy analysis was based on the VIPR reasoner’s final state after each 2,000 second simulation.

20

As the reasoner receives evidence of failure modes, it builds ambiguity groups consisting of a group
state and a set of failure modes. The likelihood that the particular failure condition is the cause of the
evidence is associated with each failure mode. These likelihoods are relative to the other failure modes
listed in the same ambiguity group. The likelihood of a failure condition in one ambiguity group cannot
be compared to the likelihood of a failure condition in a different ambiguity group.

For analysis, ambiguity groups were in one of these two states at the end of the simulation:

Isolated
Isolated is a terminal state. In this state, the reasoner has completed analysis for the ambigu-
ity group and has identified a failure mode, which is the only failure condition remaining in
the ambiguity group. Additional evidence will not improve the solution.

Waiting

In this state, the reasoner has received sufficient evidence to form the ambiguity group con-
taining one or more potential failure conditions, but the evidence is not sufficiently strong to
indict any one of them. Typically, the likelihood of one of the faults is very high, but not high
enough to meet the DELTA_I threshold.

In an operational environment, we expect the reasoner results to be presented to an aircraft technician
trouble shooting the fault in three lists:

� The isolated faults
� The faults detected with high likelihood (but not isolated)
� Remaining fault conditions reported by reasoner (fault conditions listed in an ambiguity but with

low likelihood)

We expect the technician to use this information to develop a troubleshooting strategy by subjectively
comparing the value of isolated and detected faults and integrating this information with specific
knowledge about the aircraft.

We expect the technician to focus on the isolated fault conditions first and use information about the
other reported fault conditions only when either the isolated fault list is empty or when investigation of
the isolated faults does not lead to the malfunction.

We used the following paradigm for computing the accuracy metric. If the reasoner isolated one or
more faults, we computed accuracy using just the results for the isolated faults and ignored the results
for faults that were detected but not isolated. However, if no faults were isolated, then we based the
accuracy analysis on just the faults detected with high probability.

This procedure for measuring accuracy can understate accuracy for the multiple-fault scenarios. Consid-
er a case in which the reasoner correctly isolates one fault (and does not isolate any other fault condi-
tions) and correctly detects, with high probability, the second fault (and does not detect with high prob-
ability any other fault conditions). If the two faults were injected in two single-fault scenarios, the out-
come for isolating the first fault would be “very good” and the outcome for detecting the second fault
with high probability would be “good.” However, if the two faults were injected during the same test
case, the reasoner would have a “very good” outcome for isolating the first fault but a “poor” outcome

21

for the second fault, since in the presence of an isolated fault, we would not consider that the faults
were detected with high probability.

6.3.1 Accuracy of Flat and Hierarchical Models
We measured the reasoner accuracy to the flowing outcomes:

� Inserted fault conditions isolated
� Incorrect fault isolations
� Inserted fault conditions detected with high probability (but not isolated)
� Incorrect fault conditions detected with high probability
� Missed fault conditions: inserted fault conditions that were not even detected

We developed the following notation for marking these conditions:

I Fault isolated.

D Fault detected with high likelihood but not isolated.

* Inserted fault. For example, *I indicates that the inserted fault was isolated.

+ A fault that was not inserted. For example, I+ indicates a fault that was isolated but not inserted.

M Missed fault condition.

The ‘*’ and ‘+’ annotations can both be combined with the ‘I’ and ‘D’ annotations. For example, a test
outcome with the annotation ‘*I+’ indicates that the inserted fault was correctly isolated, but other fault
conditions were incorrectly isolated as well.

We ran the hierarchical and flat reference models for the same set of evidence streams and got very
similar accuracy results for the two models, as shown in Figure 13 below.

Of the 220 single fault test cases, 38% ended with the best result: the inserted fault, and only the insert-
ed fault, was isolated (the *I column in the figure). In an additional 5% of the test cases, the inserted
fault was isolated, but other fault conditions were isolated as well. This outcome is less useful since,
while it identifies the fault, it does so with ambiguity.

Considering test cases that contained no fault isolations, in 37% only the inserted fault was detected
with high likelihood (the *D column) and in an additional 18%, the inserted faults were among several
fault conditions detected with high likelihood.

In 2% of the test cases, the reasoner produced a result that would mislead the maintenance technician
(the I+ column) by not including the inserted fault among its list of isolated faults.

In summary, for the single fault case, the reasoner provided an unambiguous and correct result in 75%
of the test cases and a correct but ambiguous result in an additional 23% of the test cases.

22

Figure 13: Results of single fault simulations

Outcomes for multiple fault case were not quite as good, as shown in Figure 14 below. The outcome was
correct and unambiguous in 45% of the test cases (columns *I and *D) and correct but ambiguous in
31% of the test cases. In 14% of the test cases the reasoner indicted other fault conditions without in-
dicting an inserted fault, and it failed to detect 5% of the fault insertions.

Figure 14: Results of multiple fault simulations

6.3.2 False Alarms
A false alarm is a fault detection caused by false evidence that appears in the evidence stream before
fault insertion and that is not cleared by the reasoner by the end of the simulation. Twenty-one false
alarms occurred in the 220 single fault test cases and no false alarms occurred during the 231 double
fault test cases. Note that the 21 false alarms occurred in just three test cases; conversely no false
alarms occurred in 448 of the 451 test cases.

20

40

60

80

100
*I

*I
+ I+

*D

*D
+ D+

M

220 Outcomes

Single Fault Insertion

hierarchical

flat

Single Fault

*I

*D

*I+

*D+

I+

D+

M

50

100

150

200

*I

*I
+ I+

*D

*D
+ D+

M

462 Outcomes

Multiple Fault Insertion

hierarchical

flat

Multiple Fault

*I

*D

*I+

*D+

I+

D+

M

23

6.4 Isolating Node
An important difference between the hierarchical and flat reference models is that reasoning is distrib-
uted in the hierarchical model (reasoning can occur at any of the LRU, area and vehicle levels), while, for
the flat model, reasoning is centralized at the vehicle level. This difference is reflected in the table be-
low, which reports the vehicle architectural level for each fault isolation. This data combines results for
both single and multiple fault insertion, and includes all isolations, not just isolations of the inserted
faults.

While isolation for the flat reference model will always occur at the
vehicle level, for this hierarchical model, isolation almost always oc-
curred at the LRU level. This may be an advantage since computing
resources at the LRU level tend to be less expensive and more avail-
able than at higher levels of the architecture.

6.5 Time to Isolate
We measure the time to isolate in steps of the discrete event simulation. Each step was 10 seconds long,
and we assumed that computation for one step completed before the start of the next step. This as-
sumption held true when computing latency was less than 10 seconds. So for example, if a fault required
three steps to isolate, and a step was 10 seconds long and computing latency was less than 10 seconds,
then the fault would take 30 seconds to isolate. Time to isolate was the same for the two reference
models.

For the single fault test cases, the worst case time to isolate was 15 steps, and the average case was only
0.6 steps. The wide difference between the average and worst cases occurs because most isolations oc-
curred during the step when the fault was inserted.

For the multiple fault test cases, isolation time was dramatically longer. The worst case time to isolate a
fault was 153 steps and the average case was 13.6 steps.

6.6 Safety Impact and Accuracy of Prognostics
We tested two measures for prognostics. First, using the fault simulator, we tested the prognostic fu-
sion accuracy. This measure tests the accuracy of the prognostics fusion rule. The fusion rule was found
to be accurately implemented (example in Figure 15).

Our second prognostic measure was to generate monitors to detect precursors to significant safety inci-
dents such as in-flight engine shutdown. Figure 16 shows three such incidents. In the first incident,
starting from the left of Figure 16, the precursors were detected onboard and isolated approximately 30
flights early, therefore, VIPR could provide the maintainer time to intervene and prevent the safety inci-
dent. While the “discovered prognostic monitor” is very accurate, VIPR takes an “engine-wide view”
and also suspects some secondary damage in the hot section, as defined in the manufacturer’s FMEA.

 Hierarchical Flat

LRU 519

Area 1

Vehicle 519

24

In the second case, the precursors were detected and isolated approximately 20 flights early. While the
“discovered prognostic monitor” is very accurate, VIPR is taking an “engine-wide view” and looking for
more supporting evidence such as those defined in the manufacturer’s FMEA.

VIPR conclusions from the third case show that the precursors were detected onboard with high likeli-
hood. The precursors appear as different problems in the two engines. VIPR uses cascade reasoning and
active query of the remaining two engines (#2 and #3) to identify a common cause – fuel delivery mani-
fold. This then suppresses the net result of a high false alarm monitor at individual engine level.

These three cases show the prognostic accuracy of VIPR case by case and have also illustrated how the
VIPR approach detects precursors to safety incidents well in advance of the actual event (in-flight shut-
down).

Figure 15: Fusion of two prognostic vectors

Figure 16: Discovery of prognostic monitors using data mining on an airlines database

25

VIPR prognostics do not predict the time when a failure will occur or otherwise provide an estimate of
the remaining useful life of a component.

6.7 Communications Volume
Communications volume is characterized by the number of messages sent by the reasoner, and the size
of the messages. Message format was defined by the ARINC 624 standard. Tabulations for the two ref-
erence models under single and multiple fault scenarios are shown in Table 1.

As expected, the distributed hierarchical model required more messages than the flat model to achieve
equivalent fault detection and isolation results. For the single and double fault test cases, the hierar-
chical model required 28% and 29% more messages, respectively, than were required for the flat refer-
ence model. The messages for the hierarchical model tended to be a bit larger as well, and in total, the
hierarchical model required the transmission of about 40% more bytes.

The multiple fault test cases required significantly more messages than the single fault cases. On a per-
inserted-fault basis, the double fault test cases sent 70% more messages per fault than the single fault
cases, and twice as many bytes. This held true for both the hierarchical and flat models.

Table 1: Communications volume for the two reference models under single and multiple fault conditions

Transactions Bytes Bytes/Tran Trans/Fault Bytes/Fault

Hierarchical, single fault 40,972 7,907,861 193 178 34,382

Flat, single fault 32,053 5,594,980 175 139 24,326

Hier, multiple fault 142,304 31,805,968 224 308 68,844

Flat, multiple fault 110,264 23,019,124 209 239 49,825

6.8 Communications Latency
Safety-critical aircraft communications systems, such as AFDX and ASCB, are designed with statically de-
fined periodic schedules. Therefore, each message that can be sent during operational use of the aircraft
must fit into a preallocated slot in the schedule for that message. This paradigm works well for systems
that continuously produce information that must be propagated to other parts of the aircraft.

In contrast to the periodic communications system, reasoner messaging is sporadic. The reasoner does
not send messages when there is no evidence of faults or the fault evidence is unchanging. However,
the arrival of evidence triggers activity that results in the transmission of a sequence of messages.

6.8.1 Latency Model
Computational latency is the time required to execute a transaction. In an avionics system, we expect
the communication latency to be much longer than the processing latency, and hence, considered just
the communication’s contribution to latency.

The reasoners produce transactions at sporadic times. That is, when the monitors are not reporting any
fault symptoms, the reasoners are quiet. However, when a fault occurs, one or more monitors may initi-
ate transactions, the effect of which can then ripple through the network of reasoners.

26

Avionics communications protocols tend to have periodic schedules that are static, and hence are not
well-suited for handling sporadic communication. In a static, periodic schedule, every message that can
be sent must be allocated a place in the predetermined schedule. If the message is not periodic and
needs to be sent infrequently, then the message could be allocated a very small part of the communica-
tions bandwidth. But when there is a flurry of activity, a small bandwidth can result in long latencies. Al-
ternatively, the message could be allocated a larger bandwidth, but at a loss in communications utiliza-
tion since the larger bandwidth would be used infrequently.

This effect is illustrated in Figure 17, which shows the arrival of three messages, represented by the yel-
low spikes, and message transmission bursts for two communications rates, shown in green and blue.
Message transmission begins on the arrival of the first message and continues through the second mes-
sage, because the transmission of the first is not completed when the second arrives—at either rate.
The green rate is high enough to complete sending the second message before the arrival of the third,
while the blue rate is not. Hence, when the third message is ready to be sent, the green rate begins
sending it immediately, while the blue adds it to its transmission queue.

Figure 17: A notional representation for latency when sending a burst of messages
over a periodic communications system.

We express communications latency by extrapolating from the durations of the message transmission
bursts. In Figure 17, the green rate requires two bursts to transmit the three messages while the blue
rate has just the one long burst.

We measured both the average and maximum durations of bursts for a range of transmission rates and
fault conditions and for the two reference models. While average burst length tends to be very low, the
more important metric is the worst case burst, which can be quite long.

27

For each fault scenario, the maxi-
mum burst was calculated for
bandwidths in the range 10
bytes/second, 100 bytes/second,
1000 bytes/second, etc., stopping
when the maximum burst for a fault
scenario was less than ten seconds
long. The fault scenarios required a
message transmission rate of
10,000 bytes/second to achieve the
worst case ten second threshold.

Figure 18: Communications latency computed from the single and mul-
tiple fault simulations

0.0

0.1

0.1

0.2

0.2

0.3

0.3

Hier 1 fault Flat 1 fault Hier 2 faults Flat 2 faults

Average Latency - 10 KB/s

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Hier 1 fault Flat 1 fault Hier 2 faults Flat 2 faults

Maximum Latency - 10 KB/s

28

6.9 Cost Analysis
6.9.1 Cost Model
The VIPR reasoner consists of a collection of entities that
exchange messages. Messages tend to flow from the sen-
sor monitors and up through the hierarchy of LRU, area
and vehicle reasoner entities, and finally to a consumer of
the vehicle health information, such as an aircraft display.
This flow of information is depicted in Figure 19.

Cost is computed as the sum of the costs for each reasoner
transaction. A transaction embodies the computation and
communications required to send a message from a source
entity to a destination entity, as depicted in Figure 20.

Figure 19: Fault information flows from the
sensor monitors through the reasoner entities
to the users of the reasoner's conclusions

Figure 20: Cost is computed as the sum of transaction costs.

A transaction includes half of the source entity’s processing, the communication needed to transmit the
message and half of the destination’s processing.

The model assumes that an entity’s processing cost is the same for all transactions, and that communi-
cations cost is proportional to the size of the message being transmitted. Each reasoner entity is as-
signed these two cost parameters:

1. P expresses the entity’s processing cost.
2. C expresses the entity’s communications cost for transmitting/receiving a byte of information.

29

The communications overhead for a transaction is assumed to be shared equally by source and destina-
tion, hence the cost of a transaction for a message containing M bytes is:

The ratio of P:C specifies the processing cost relative to the per byte communications cost. This ratio de-
pends on a specific vehicle architecture. To gauge the cost over a range of values, we performed the
cost analysis using ratios of 10, 100, 1000, and 10,000 to one (that is, the processing cost is equivalent to
the cost of sending 10 bytes, 100 bytes, 1,000 bytes or 10,000 bytes, respectively).

We assigned all entities at the same architectural level (LRU, Area, Vehicle and Display) the same values
of P and C. We expected the cost of processing resources to be specific to the architecture of each vehi-
cle, so we performed the analysis for these three cases:

1. Cost does not vary by level (LRU = 1, Area = 1, Vehicle = 1, Display = 1)
2. Cost increases linearly by level (LRU = 1, Area = 2, Vehicle = 3, Display = 4)
3. Cost increases exponentially by level (LRU = 1, Area = 2, Vehicle = 4, Display = 8)

For a given entity, the value of its C parameter is the value for the level that contains the entity. The val-
ue of its P parameter is the P:C ratio selected for the simulation multiplied by the level value. For exam-
ple, if cost is assumed to be linear across levels and the selected P:C ratio is 1,000, then the cost param-
eters for a reasoner entity at the area level are:

1. C = 2
2. P = 2,000

The cost for a transaction containing 200 bytes that is sent from an entity in the area level to an entity in
the Display level is the average of the costs at the two levels. The cost expression above evaluates to
3,600 for P:C = 1,000 and a linear increase in cost with level:

Reasoner entities sometimes send messages to themselves. In this case, the communications cost is as-
sumed to be zero, and we computed the processing cost entirely from entity’s processing cost metric.

6.9.2 Cost Analysis Results
We combined the cost data for the 220 single fault insertions and 231 multiple fault insertions and com-
pared the relative costs for the hierarchical and flat reference models. The cost advantage for the flat
model is that it requires less communication than for the hierarchical model. The advantage for the hi-
erarchical model is that it can have entities on any of the levels while all entities in the flat model exist at
the vehicle level, which may be a more expensive computing resource.

30

The charts in Figure 21 show the relative
cost of the hierarchical model to the flat
model over the four combinations of the
P:C ratio and the constant, linear and
exponential cost assumptions.

Costs are shown relative to the lowest
cost option, the flat model with P:C ra-
tion = 10, and constant cost across levels
of the architecture. Note that this cost
value is the missing red column in the
first chart—the value of the column is
one, but when displayed on a logarith-
mic axis that starts with value 1, the
length of the column is zero.

As expected, the flat model is consist-
ently cheaper when computing cost is
constant across the system architecture
because it requires fewer transactions.
The hierarchical model is less costly for
systems where computing costs are
higher at the higher architectural levels.

Figure 21: Relative cost of hierarchical and flat reference models

For the P:C = 1000 case, the flat model is
32% less costly than the hierarchical
model when costs are constant across
architectural levels, but the hierarchical
model is 24% less costly for a linear in-
crease across levels and 51% less costly
for an exponential increase across lev-
els.

Figure 22: Relative costs for the two models, assuming
processing cost is equivalent to the communications
cost for a 1000 byte message

1

10

100

1,000

10 100 1,000 10,000

Constant Cost [1,1,1,1]

Hier

Flat

1

10

100

1,000

10 100 1,000 10,000

Linear Cost [1,2,3,4]

Hier

Flat

1

10

100

1,000

10 100 1,000 10,000

Exponential Cost [1,2,4,8]

Hier

Flat

0

20

40

60

80

[1, 1, 1, 1] [1, 2, 3, 4] [1, 2, 4, 8]

P:C = 1000

Hier

Flat

31

6.10 Prognostic: Time to Failure Metrics
A measure of value of prognostic warning is how far into the future it can predict a fault. We studied the
effect of these three monitors reported in the airline database for predicting the engine bleed fault:

1. Rising start
2. Fast start
3. Fuel HMA

The first two monitors are trend monitors; they predict the occurrence of a fault by tracking the changes
in a parameter value over time. The third is a “super” diagnostic monitor that integrates several param-
eter values to predict a looming failure. Unlike a typical diagnostic monitor, this monitor fires before the
actual fault occurs, and hence is a prognosticator. Unlike trend monitors which use the change in a pa-
rameter’s value to predict a fault, a “super” monitor bases its prediction on the current values of several
parameters.

Figure 23 below shows the fault prediction based on the rising start trend monitor.

Figure 23: Fault prediction using the Rising Start trend monitor

The Y-axis in this figure indicates the relative likelihood of a fault occurrence against the likelihood that
the fault will not occur. It is plotted on a log scale, so the 0 point indicates that there is an equal proba-
bility that the fault will occur or not.

-60 -50 -40 -30 -20 -10 NOW
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Flights before Incident

Fa
ul

t L
ik

el
ih

oo
d

P(Fuel metering fault)

32

The trend monitor first started predicting a fault about 30 flights before the actual fault occurrence. One
flight later the fault:no fault ratio increased to 10:1, and 20 flights before the fault occurrence the likeli-
hood increased to 13:1.

The Fast Start trend monitor yielded a similarly shaped prediction, as shown in Figure 24.

Figure 24: Fault prediction using the Fast Start trend monitor

For this monitor, the prediction of a fault started about 10 flights earlier but yielded a somewhat lower
likelihood than did the Rising Start trend monitor.

Fusing the results of these two trend monitors improved the prediction by incorporating the earlier de-
tection of the Fast Start monitor but also retained the lower likelihood that monitor. The result f fusing
the two trend monitors is shown in Figure 25.

-60 -50 -40 -30 -20 -10 NOW
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Flights before Incident

Fa
ul

t L
ik

el
ih

oo
d

P(Fuel metering fault)

33

Figure 25: Fault prediction from fusing results from the Rising Start and Fast Start trend monitors

The shape of the prediction curve for the Fuel HMA diagnostic monitor is different from the shape for
the trend monitors, as shown in Figure 26. A diagnostic monitor fires when its preconditions are met, and
in this case, the preconditions were met, and continued to be met for 27 flights before the failure.

-60 -50 -40 -30 -20 -10 NOW
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Flights before Incident

Fa
ul

t L
ik

el
ih

oo
d

P(Fuel metering fault)

34

Figure 26: Fault prediction using the Fuel HMA diagnostic monitor

The best results are achieved by fusing the results of all three monitors, as shown in Figure 27. The fused
results begin predicting the fault nearly 40 flights before the occurrence and with a likelihood of greater
than 2:1. By 25 flights before fault occurrence, the likelihood has increased to 10,000:1 and increases to
100,000:1 by 20 flights before the fault occurrence.

-60 -50 -40 -30 -20 -10 NOW
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Flights before Incident

Fa
ul

t L
ik

el
ih

oo
d

P(Fuel metering fault)

35

Figure 27: Fault prediction fusing all three monitors

Another benefit of the fused result is that it yields fewer false alarms. The Fuel HMA monitor on its own
is prone to generating false alarms. But the influence of the other two monitors, which do not by them-
selves generate many false alarms, greatly reduces the incidence of false alarms. So the prediction from
the fused results provides the longest forecast before incident, the highest confidence level, and a low
false alarm rate.

6.11 Reasoner Floating point Operations
The number of floating point operations (FLOP) is calculated as follows:

1. The calculation in VIPR is event-driven and consists of several steps.
2. Two events drive the calculations:

a. : A member system provides it a new diagnostic or prognostic monitor.
b. : The active query provides it receives a parametric value from any of the aircraft

member system.

Only five steps within VIPR do floating point operations. Other operations are a comparison step, array
indexing or messaging; these are excluded in the FLOPS calculation. These steps are labeled

as follows:

1. : Prognostic Monitor Generation. This step occurs only when the calculations are driven by .
Since VIPR supports four mechanisms, this step is classified as follows:

a. Condition indicator-based – options include linear and hidden-state trending.
b. Exceedance-based – options include simple counting and latched-counting.

-60 -50 -40 -30 -20 -10 NOW
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Flights before Incident

Fa
ul

t L
ik

el
ih

oo
d

P(Fuel metering fault)

36

The number of floating point operations is a function of the buffer size (the number of samples
in the trend history window) and the prediction size (the number of samples in the prediction
window). Since both these include the calculation of statistical standard deviation, the FLOP
count is a function of where is the prediction window size and is the buffer size.
Typically, the number of points in the buffer window and the trend window will be the same or-
der-of-magnitude. We approximate this as . Further, all evidence defined in the reference
model may have a prognostic monitor. In this case, these operations will be repeated
times, where is the number of evidence defined in the VIPR reference model. Hence, the FLOP
count for this step is .

2. Prognostic vector fusion. The fusion process includes linear interpolation for lining up two
vectors and obtaining a mean at each piecewise-interpolated point. Since an interpolation func-
tion consumes FLOPs, we use the same notation to indicate the average number of
points in the trend window and, hence, the samples in the prognostic window. Further, the fu-
sion operation is distributive, which makes the fusion independent of the order in which two
vectors are fused. In the worst case, if the reference model defines evidence, we need
fusion at each step. Hence, the FLOP count for this step is .

3. Hypothesis likelihood update. This uses a noisy-OR Bayesian model to calculate the posterio-
ri probabilities for various fault condition hypothesis. Specifically VIPR calculates the log-
likelihood values for various fault condition hypothesis. If the reference model defines evi-
dence, in the worst case, a given failure mode can be connected to every one of these evidence.
Further, evidence has a detection probability and a false alarm probability or 3 floating point
calculations per evidence connected to a failure mode. Hence, the FLOP count for the noisy-OR
calculation per failure mode hypothesis is here, the subscript log indicates that the
number must be multiplied by the FLOP required to perform a natural logarithmic function cal-
culation.
VIPR performs the noisy-OR calculation for both single and two-fault hypothesis. In the worst
case, all failure modes defined in the reference model may be occurring simultaneously. In

this case, we will have hypothesis for which the noisy-OR calculations must happen,

which implies we will end up with floating point operations for this step.
4. Likelihood normalization. Normalizing is done only for single fault hypothesis. It involves sub-

tracting a minimum value and dividing the result by a maximum value—the three-FLOP-per-
single-fault hypothesis. Hence, this step will need FLOPs.

5. FM distance. New failure modes are assigned to the ambiguity group of a fault condition us-
ing a pairwise distance calculation. Since the number of failure modes are pre-defined in the

reference model, there can be only pairs; hence, this step will need FLOPs every

time a change is made to the reference model and not every VPR update cycle.

Summarizing from the above calculations, we conclude that the number of FLOP per VIPR update step is
bounded by an upper limit. The order of magnitude of this upper limit is:

37

Here:

1. is the number of failure modes defined in the reference model, is the number of evidences
defined, is the number of samples used for generating prognostic monitors. Further, we as-
sume that the prediction window for VIPR will be .

2. denotes the order of magnitude for performing a single precision logarithmic calculation.
The exact number of steps will depend on the processor architecture.

The run-time computations of VIPR described above are summarized in Table 2.

Table 2: Floating point operations within VIPR and its upper bound.

Assumptions FLOPs Notes

: CI-based prognostic Per VIPR update cycle

: Prognostic vector fusion Per VIPR update cycle

Hypothesis likelihood update Per VIPR update cycle

Likelihood normalization Per VIPR update cycle

FM distance Per new reference model load

Total Upper bound

6.12 Other Metrics
The VIPR software contains about 7000 lines of MATLAB code, half of which implements the reasoner.
The remaining code is split among messaging, monitors, parsing the reference model (about 1000 lines
each), and the fault simulator (500 lines). For a reference model that defines N failure modes, the
reasoner will allocate data structures that consume O(N2) storage space.

Other software metrics, such as code complexity, links between software components, etc., have value
when measured for a production grade implementation and were not computed for the prototype VIPR
software.

7 Metrics Derived from the VIPR Hardware-in-the-Loop
Demonstration

The VIPR program included a hardware-in-the-loop (HIL) demonstration (Figure 28) that featured Hon-
eywell’s LaserRef VI inertial reference unit (IRU). The demonstration configuration allowed us to expand
the metrics analysis to include data from commercial avionics equipment.

38

Figure 28: The logical architecture of the VPR Hardware-in-the-Loop demonstration.

A version of the LaserRef VI IRU, known as the acceptance test vehicle (ATV), was used in the demo. An
ATV is a LaserRef VI without sensors for measuring linear and angular acceleration. An ATV is used in
place of a LaserRef VI during product development when providing test sensor data from a file is more
desirable than using the actual sensors.

The demo consisted of providing the VIPR reasoner with fault evidence from the fault simulator, the air-
line database, and the ATV. An evidence stream from the ATV could be received either from the ATV in
real-time or replayed from a file of recorded ATV output. The demo configuration contained evidence
streams for two IRUs, one of which had to be the replay of a recorded ATV output file and the other
could either be the ATV producing the evidence in real-time or a second replay.

The LaserRef VI output consists of about 30 parameters for expressing the navigation solution and de-
vice status. The output is formatted as ARINC 429 words and transmitted at a 50 Hz rate. For the demo,
we replaced the ARINC 429 interface with Ethernet and used it to send a data structure containing about
half of the LaserRef VI outputs. Because the PC on the receiving end could not keep up with the LaserRef
VI 50 Hz output rate, we reduced the transmission rate to 25 Hz.

ATV output processing occurred in an output process that gathered the data, packed the data into a
structure, and sent the data to a TCP protocol stack for transmission to the PC. Using a development
tool provided for the ATV, we measured the CPU time of the output process and incremental overhead
on the TCP network processes for sending our data structure at about 4% of the processor’s capacity.
This value is consistent with the performance of the LaserRef VI, which for production usage is allocated

39

17% of the CPU throughput. This larger budget must support output at 50 Hz instead of 25 Hz, and the
full complement of LaserRef VI outputs, while in our configuration we transmitted only half. However,
since the output used in the demo is already being sent for use by other aircraft systems (the FMS in
particular), VIPR would pose no additional processing on the LaserRef VI.

The evidence stream generated by the ATV had high fidelity and did not compromise the reasoner’s ac-
curacy. Although the simulation environment used for gathering metrics data did not include the ATV,
evidence received from the ATV after processing by the diagnostic monitors appears to the reasoner the
same as monitor input from evidence generated by the fault simulator. Hence, adding the ATV to the
simulation environment would not have affected results, but would have greatly complicated the pro-
cess of gathering the metrics because of the difficulty of performing Monte Carlo simulations using the
ATV. In addition, the ATV’s essential need to run in real-time would have significantly slowed the data
gathering, since simulations that don’t include the ATV can run much faster than real-time.

8 Summary and Conclusions
We have computed metrics that measure the Reasoner’s accuracy, latency, communications bandwidth,
computational cost and the rate of false alarms. Data was gathered from the insertion of 22 complex
faults in both single and multiple fault cases, and for both hierarchical and flat aircraft reference models.

For each single fault condition, we generated 10 evidence streams for the inserted fault that also con-
tained 0.1% erroneous fault evidence and then ran simulations for each evidence stream. For each of
the 231 two fault insertion cases, we generated a single evidence stream containing 0.1% erroneous ev-
idence and ran simulations for each of these evidence streams. A total of 902 simulations containing
1364 fault conditions were run.

From the simulation results, we conclude the following:

� Accuracy The reasoner’s ability to correctly isolate a failure from a given evidence stream
is dependent on the quality of the evidence stream and the correctness of the
reference model. When simulated with evidence streams that contained 0.1%
erroneous data, the reasoner correctly and exactly identified the inserted faults
75% of the single fault cases and 45% of the multiple fault case. In addition, it
correctly identified the inserted faults, but not uniquely, for an additional 23%
of the single fault insertions and 31% of the multiple fault cases. Therefore, the
Reasoner correctly identified 98% of the single fault insertions and 76% of the
multiple fault insertions.

Accuracy for the hierarchical and flat reference models were the same.

The prognostics were accurate on three cases discovered from the airline data-
base. The case studies on prognostics precursors have shown that the VIPR ap-
proach detects precursors to safety incidents multiple flights in advance of the
actual event (in-flight shutdown).

� Isolation time For the single fault test cases, the typical time to isolate was immediately after

40

fault insertion. The worst case time to isolate was 15 steps and the average time
was 0.6 steps.

The time to isolate for the multiple fault scenarios was about 10 times longer
than for the single fault insertions: the worst case time to isolate was 153 steps
and the average case was 13.6 steps.

� Communications
bandwidth

For sending the ARINC 624 messages generated by the reasoner over a periodic
safety critical communications system, we computed that 1 KB/second band-
width would yield, on average, message latency of 1-3 seconds depending on
reference model and number of faults inserted. However, to reduce the worst
case latency below the 10 second goal for all simulations required a 10
KB/second communications bandwidth.

� Isolating node For the flat model, the isolating reasoner entity is always in the vehicle node.
However, for a hierarchical model, reasoning may occur at any node. For our
aircraft hierarchical model, isolation occurred at the LRU level 519 times, once
at the Area level, and never at the Vehicle level.

� Communications
volume

The flat model required 22% fewer messages and 28% fewer bytes in total than
did the hierarchical model.

� Computation cost Where computation cost is the same at all aircraft levels (LRU, area, and vehi-
cle), the computation cost for the flat model was lower than for the hierarchical
model because the flat model requires fewer transactions to achieve the same
results as the hierarchical mode.

However, where computing at higher nodes is more expensive than at the lower
levels, the distributed hierarchical model is less costly because it can perform
much of its computation on the lower cost computing resources.

The cost of computation for the reasoner is proportional to the log of the num-
ber of faults square and the square of the number of samples used for generat-
ing prognostic monitors.

� False alarms The 0.1% rate of false evidence generated false alarms in only three of the 902
simulations run.

� ATV Integration The high quality of the LaserRef VI self-diagnostics allowed us to use the de-
vice’s existing output for input to the VIPR software; consequently, integrating
the LaserRef VI with VIPR added no overhead to the device’s operation.

41

9 References
1. C.S. Byington, M. Watson, P Kalgren, and R. Safa-Bakhsh, “Metrics Evaluation and Tool Devel-

opment for Health and Usage Monitoring System Technology,” Third International Conference
on Health and Usage Monitoring - HUMS2003, Melbourne, Australia, G.F Forsyth (editor), pp.
27-35, 2003.

2. T. Kurtoglu, O. Mengshoel, and S. Pol, “A Framework for Systematic Benchmarking of Monitor-
ing and Diagnostic Systems,” International Conference on Prognostics and Health Management
Conference, Denver, CO, 2008.

3. A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, and M. Schwabacher, “Metrics for
Evaluating Performance of Prognostic Techniques,” in International Conference on Prognostics
and Health Management (PHM08), Denver CO, 2008.

4. T. Felke, G. Hadden, D. Miller, and D. Mylaraswamy, “Architectures for Integrated Vehicle Health
Management,” AIAA-2010-3433, 2010.

5. G. D. Hadden, D. Mylaraswamy, Craig Schimmel, Gautam Biswas, Xenofon Koutsoukos, and Dan-
iel Mack, “Vehicle Integrated Prognostic Reasoner (VIPR) 2010 Annual Final Report,” NASA/CR–
2011-217147

6. M. Christensen, “Boeing 787 Central Maintenance Computing Function Summary,” Technical
Report, Honeywell Labs., March 2010.

7. R.M. Button and A. Chicatelli, “Electrical Power System Health Management”, In Proc. 1st Inter-
national Forum on Integrated System Health Engineering and Management in Aerospace, Napa,
CA, November 2005.

8. G. Biswas, R. Kapadia, and X.W. Yu, “Combined Qualitative–Quantitative Steady-State Diagnosis
of Continuous-Valued Systems,” IEEE Transactions on Systems, Man, and Cybernetics—Part A:
Systems and Humans, vol. 27, no.. 2, pp. 167-185, March 1997.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

2. REPORT TYPE

Contractor Report
 4. TITLE AND SUBTITLE

Vehicle Integrated Prognostic Reasoner (VIPR) Metric Report

5a. CONTRACT NUMBER

 NNL09AD44T

 6. AUTHOR(S)

Cornhill, Dennis; Bharadwaj, Raj; Mylaraswamy, Dinkar

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

NASA

13. SUPPLEMENTARY NOTES

Langley Technical Monitor: Paul S. Miner

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified - Unlimited
Subject Category 06
Availability: NASA CASI (443) 757-5802

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

14. ABSTRACT

This document outlines a set of metrics for evaluating the diagnostic and prognostic schemes developed for the Vehicle Integrated Prognostic Reasoner
(VIPR), a system-level reasoner that encompasses the multiple levels of large, complex systems such as those for aircraft and spacecraft. VIPR health managers
are organized hierarchically and operate together to derive diagnostic and prognostic inferences from symptoms and conditions reported by a set of diagnostic
and prognostic monitors. For layered reasoners such as VIPR, the overall performance cannot be evaluated by metrics solely directed toward timely detection
and accuracy of estimation of the faults in individual components. Among other factors, overall vehicle reasoner performance is governed by the effectiveness
of the communication schemes between monitors and reasoners in the architecture, and the ability to propagate and fuse relevant information to make accurate,
consistent, and timely predictions at different levels of the reasoner hierarchy. We outline an extended set of diagnostic and prognostics metrics that can be
broadly categorized as evaluation measures for diagnostic coverage, prognostic coverage, accuracy of inferences, latency in making inferences, computational
cost, and sensitivity to different fault and degradation conditions. We report metrics from Monte Carlo experiments using two variations of an aircraft
reference model that supported both flat and hierarchical reasoning.

15. SUBJECT TERMS

Aircraft health; Diagnostics and prognostics; Evaluation measures; Performance metrics; System-level reasoner
18. NUMBER
 OF
 PAGES

46
19b. TELEPHONE NUMBER (Include area code)

(443) 757-5802

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39.18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

534723.02.03.07

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

NASA/CR-2013-217978

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

04 - 201301-

