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Introduction

Modeling Crustal Deformation near Active
Faults and Volcanic Centers—A Catalog of
Deformation Models

By Maurizio Battaglia'2, Peter F. Cervelli', and Jessica R. Murray!

Abstract

This manual provides the physical and mathematical concepts for selected models used to
interpret deformation measurements near active faults and volcanic centers. The emphasis is on
analytical models of deformation that can be compared with data from the Global Positioning
System (GPS) receivers, Interferometric synthetic aperture radar (INSAR), leveling surveys,
tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and
horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes
and faults are described following the mathematical notation for rectangular dislocations in
an elastic, homogeneous, flat half-space. All the analytical expressions were verified against
numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis
software (http://www.comsol.com). In this way, typographical errors present were identified
and corrected. Matlab scripts are also provided to facilitate the application of these models.

Introduction

Deformation of the Earth’s crust can arise from tectonic and volcanic forces and from
human activities such as aquifer withdrawal or geothermal exploitation. Mathematical
models of how the crust deforms in response to different physical processes are required
to distinguish among possible sources of deformation. These models can also help to
characterize deformation-driving processes and to constrain source location, size, orientation,
and strength. This information is valuable for hazards forecasting and mitigation, assessment
of anthropogenic environmental impact, land-use planning, and other applications. A key
assumption behind geodetic monitoring of faults and volcanoes is that ground deformation of
the Earth’s surface reflects tectonic and volcanic processes at depth (for example, fault slip and
mass transport) that are transmitted to the surface through the mechanical properties of the crust
(Dzurisin, 2003).

This paper discusses the application of analytical models to fit and interpret ground
deformation. Analytical models offer a closed-form description of the source of crustal
deformation (table 1). This means that, in principle, it is possible to readily infer the relative
importance of any of the source parameters. Although analytical models are based on numerous
simplifications (for example, the assumption that the crust is a homogenous, isotropic, elastic,
flat half-space) that make the set of differential equations describing the problem tractable,
they can take into account a vast array of source geometries. The careful use of analytical
models, together with high-quality data sets, can yield valuable insights into the nature of the
deformation source.

This report is intended as a practical reference for readers interested in applying
mathematical models to investigate volcano and earthquake physics. Under each of the models
described, the report first explains the assumptions, applications, and limitations of the model,
and then introduces the corresponding analytical formulation. Finally, the report provides tables
with numerical examples and Matlab scripts to aid in the use and coding of the formulas.

1 U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California, 94025.

2 Department of Earth Sciences, Sapienza University of Rome, Italy.
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Table 1. List of earthquake and volcano deformation sources described in this report.

Model Source Reference

Volcano source

Sphere Magma chamber McTigue (1987)
Spheroid Conduit Yang and others (1988)
Pennyshaped crack Sill Fialko and others (2001)
Tensile dislocation Dike Okada (1985), Okada (1992)
Earthquake source
Rectangular dislocation Dip- and strike-slip fault Okada (1985), Okada (1992)
(single rectangular segment)
Superposition of rectangular Fault composed of several Jonsson and others (2002)
segments rectangular segments

A zipped file with MATLAB scripts can be downloaded from pubs.usgs.gov/tm/13/
b1. The scripts are organized in folders, with each folder corresponding to a chapter in this
publication (for example, the folder named “Geodetic transformations” contains MATLAB
scripts for the geodetic transformation discuss in the section “Geodetic transformations” of
this report). Folders may include subfolders with results from COULOMB 3.3 (“coulomb™)
and Finite Element Method models (“FEM”), scripts verifying the algorithms (“verification™)
and MATLAB functions (“functions”). The zipped file includes MATLAB functions for all
the sources discussed in this publication and examples of the inversion of Global Positioning
System (GPS) data for a spherical, spheroidal and sill-like source (the MATLAB Optimization
Toolbox is required to run these examples). Online help can be obtained for each MATLAB
function by typing “nameofthefunction help” in the MATLAB command line.

This publication is also designed to allow the user to turn directly to the desired model
without reading any other sections (although a general understanding of the concepts and
calculus behind the models from other literature will could enhance user experience, see for
example Segall, 2010). As a result, some repetitions will be apparent if the manual is read
sequentially. Many of the models described in this publication were taken from other credited
or standard sources, but the authors themselves derived or rearranged many equations for this
publication. All formulas have been checked for possible errors and verified against numerical
models (COULOMB 3.3; http://earthquake.usgs.gov/research/modeling/coulomb/; FEM
models). Since our emphasis is on describing the characteristics of the models and how they are
used, the reader interested in the derivation and calculus of original equations is referred to the
original literature. To limit the number of typographical errors, the formulas have been edited
directly from the corresponding Matlab functions by using Mathtype.

Geodetic Transformations

Coordinates can be expressed in systems defined by various datums, all of which are
related to each other through geometrical transformations. Geodetic datums describe the size
and shape of the Earth, and the origin, orientation, and time derivatives of the coordinate
system (fig. 1). The list below includes four common coordinate systems:

1. global Cartesian (XYZ) system—International Terrestrial Reference Frame 2005 (ITRFO05;
http://itrf.ensg.ign.fr); units are in meters.

2. global geographic system, either latitude, longitude, height (LLH) or latitude, longitude
(LL)—International Terrestrial Reference Frame 2000 (ITRFO0-WGS 84 ellipsoid; http://
itrf.ensg.ign.fr); units are in degrees for latitude and longitude, and in meters for height.

3. local east-north-up (ENU) Cartesian coordinate system; units are in meters.

4. local Cartesian (XY) system—Universal Transverse Mercator coordinate system (UTM—
WGS 84 ellipsoid); units are in meters.


pubs.usgs.gov/tm/13/b1
pubs.usgs.gov/tm/13/b1
http://earthquake.usgs.gov/research/modeling/coulomb/
http://itrf.ensg.ign.fr
http://itrf.ensg.ign.fr
http://itrf.ensg.ign.fr

Geodetic Transformations

WGS 84 (World Geodetic System), released in 1984 and last revised in 2004 (National Imagery
and Mapping Agency (NIMA), 2004) is the standard datum used by the Global Positioning
System.
GPS solutions from processing software like GIPSY (https://gipsy-oasis.jpl.nasa.gov) or
GAMIT/GLOBK (https://www-gpsg.mit.edu/~simon/gtgk) are usually defined in the ITRF
(XYZ) Cartesian coordinate system. GPS cooordinates can also be referenced to a local
topocentric datum. The origin of this datum is an arbitrary point on the surface of the Earth
(fig. 1). It has three right-handed orthogonal axes: E (for “east”) is in the local horizontal plane
and points to the geographic east, N (for “north”) is in the local horizontal plane and points
to the geographic north, U (for “up”) is vertical (in other words, perpendicular to the local
equipotential surface) and points upwards; units are meters. UTM is a local Cartesian (XY)
coordinate system based on the Universal Transverse Mercator projection and defined for the
whole Earth (U.S. Army, 1987); units are meters. Modeling deformation velocities from GPS
requires the transformation of the original ITRF coordinates into local Cartesian coordinates.
Coordinates in ITRFOS5 can be transformed into ITRF00 by means of a 14-parameter
Helmert transformation. ITRFO0 and WGS 84 (G1150), the latest realization of the WGS 84
coordinate system, are the same within one cm (NIMA, 2000 and 2004). The OpenGIS Web
Map Service (www.opengeospatial.org/standards/wms) offers georeferenced maps in UTM
(WGS84). The report provides formulas and Matlab functions to transform coordinates from

1. ITRFOS to ITRF00,

2. ITRF (XYZ)to LLH,

3. LLto UTM (XY), and

4. ITRF (XYZ) to the east-north-up coordinate system (ENU).

Figure 1. Coordinate systems. XYZ, global Cartesian coordinate
system; ENU, local Cartesian coordinate system; (k, d)) global
geographic coordinate system (latitude, longitude).


https://gipsy-oasis.jpl.nasa.gov
https://www-gpsg.mit.edu/~simon/gtgk
www.opengeospatial.org/standards/wms
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ITRFO5 to ITRFOO

The 14-parameter Helmert transformation is (Dawson and Woods, 2010)

Xoo dx+drx(t_t0) Xos
Yoo |=|d, +dr,(t-1,) +[1+Sc+src(t—to)]R Yos | ()
Zoo d, +dr,(1—1)) Zos

where [dx d, dz] is the origin shift in m, [drX dr, drz] is the shift rate in m/yr, t is the time (epoch) in years,
t, =2000.0, sc is the dimensionless scaling in ppb and src the scaling rate in ppb/yr (table 2).

The rotation matrix R is the sum of steady (R,) and time dependent (R ) components (see table 3 for a comparison
between itr052itrf00.m and standard NGS software)

1 R -R, 0 Rr,(t—t)) —Rr,(t—1,)
Ry=|-R, 1 R, | and R =|-Rr(1—¢) 0 Rr (1-1,) |. (2)
R, -R. 1 Rr,(t=t,)) —Rr (t-1,) 0

Table 2. The 14 transformation parameters between ITRF05 and ITRFOO.

[See http://itrf.ensg.ign.fi/ITRF_solutions/2005/tp_05-00.php; ITRF, International Terrestrial Reference Frame; d, d,, and d,, Cartesian parameters measured in
meters; RX, Ry, and RZ, angular coordinates; mas, milliarcseconds; Sc, scaling; ppb, part per billion; drx, dry, and drz, Cartesian shift rates; m/yr, meters per year;
Rr, Rry, and Rr, angular shift rates; mas/yr, milliarcseconds per year; SIc, scaling rate; ppb/yr; part per billion per year].

d, (meters) d, (meters) d,(meters) R, (mas) R, (mas) R,(mas) Sc (ppb)
0.0001 -0.0008 -0.0058 0.000 0.000 0.000 0.40

dr, (m/yr) dry(m/yr) dr, (mfyr) Rr, (mas/yr) Rry (mas/yr) Rr, (mas/yr) Src (ppb/yr)
-0.0002 0.0001 -0.0018 0.000 0.000 0.000 0.08

Table 3. Comparison of IRTFO0 and IRTF05 parameters from itrf052itrf00.m with results from the
National Geodetic Survey code HTDP for epochs 2000 and 2010.

[The difference A between the coordinates is less than 1 millimeter. See http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.
shtml; ITRF, International Terrestrial Reference Frame; HTDP, horizontal time-dependent positioning; coordinates for
both epochs are for site FLIN.; A, difference]

Epoch 2000.01.01

X Y Z
(meters) (meters) (meters)
ITRFO05 -766174.473 -3611375.309 5184056.243
ITRFOO (HDTP) -766174.473 -3611375.311 5184056.239
ITRFOO -766174.473 -3611375.311 5184056.239
A -0.0002 -0.0002 0.0003
Epoch 2010.05.14
X Y z
(meters) (meters) (meters)
ITRFO5 -766174.661 -3611375.333 5184056.209
ITRFOO (HDTP) -766174.664 -3611375.337 5184056.191
ITRFOO -766174.664 -3611375.337 5184056.191
A 0.0001 -0.0002 -0.0001



http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml
http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml
http://itrf.ensg.ign.fr/ITRF_solutions/2005/tp_05-00.php

Geodetic Transformations

XYZ to LLH

The formulas implemented in xyz21lh.m compute longitude, latitude (both in decimal
degrees), and height (in meters) from the ITRFOO cartestian coordinates XYZ. Geodetic
positioning LLH is in the WGS 84 (G1150) reference frame. Horizontal datum is referred to
WGS 84, and the vertical datum to the WGS 84 ellipsoid. Sign conventions are positive for E
and longitude; positive for N and latitude. The constants for the WGS 84 ellipsoid are (NIMA,
2000, paragraph 3.2)

a=6378137 semimajor axis, in meters, and 3)
f =1/298.257223563 flattening.

The geometrical parameters of the ellipsoidal coordinate system (Hoffmann-Wellenhof
and others, 1997, equations 10.11-10.13) are

b=(1-f)a semi-minor axis, in meters “)
et =2 f—f 2 eccentricity squared
€y = (a2 -b? ) / b? second numerical eccentricity

p=VX*+Y? radius of a parallel

The longitude (¢), latitude (1), and height (H) are given by

¢ =—tan™' (%j > (5)
Z +eybsin® 0
o= tan!| b 0 9(2] ©
p—e-acos” 0 pb
H=—P_ -N, and Ne——2 | ™

CoSA VJ1-e?sin? 2

where
N is the radius of curvature.

Finally, longitude and latitude are converted to degrees and the sign is changed so that E
longitude is positive (table 4).

Table 4. Comparison of Matlab function xyz2llh.m with NGS code HTDP.

[See http://www.ngs.noaa.gov/TOOLS/Htdp/Htdp.shtml. Values are for the International Global Navigation Satellite
System Survey site FLIN. ITRF, International Terrestrial Reference Frame; WGS, World Geodetic System; HDTP,
horizontal time-dependent positioning; DD, decimal degrees; X, Y, and Z, Cartesian coordinates; Long, longitude; Lat,
latitude; A, difference]

X (meters) Y (meters) Z (meters)
ITRFO05 -766174.473 -3611375.309 5184056.243

Long (DD) Lat (DD) Height (meters)
WGS 84 (HDTP) -101.978033 54.725584 311.5070
WGS 84 -101.978033 54.725584 311.5068

A -0.000000 -0.000000 -0.0002
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LL to UTM

The Matlab function I12utm.m computes the E (east, meters) and N (north, meters)
coordinates on the UTM grid from the WGS 84 (G1150) longitude (¢) and latitude ().
According to the Defense Mapping Agency (1989) report, “The computations (* * *) are
accurate to the nearest 0.001 arc second for geographic coordinates and to the nearest 0.01
meter for grid coordinates”, where 0.001 arc second =3x107" decimal degrees = 4.848 x 107
rad. The UTM horizontal datum is the WGS 84 ellipsoid, with sign convention positive for E
longitude and positive for N latitude.

The first step is to set the constants for the WGS 84 ellipsoid (NIMA, 2000,
paragraph 3.2):

a=6378137 semimajor axis, in meters, and (8)
f =1/298.257223563 flattening.

and the WGS 84 ellipsoid parameters (Defense Mapping Agency, 1989, paragraph 2-2.1):

b= (l -f ) a semiminor axis, in meters )
P =2f-f? eccentricity squared
€ = a* —b* ) / b* second numerical eccentricity
P radius of curvature in the prime vertical
1-¢? sin? ¢
f
2—f

A, =a[1-n+5(n” =) [4+81(n" -n%) [64]

(
B, =(3/2)a[n-n”+7(n’ -n*) 8+ 55n°/64]

"))

n
(15/16)a[ n” = +0.75(n* -
D, :(35/48)a(n3—n4+11n5/16)

E, =(315/512)a(n* - n°)
S = Ajp— B, sin(2¢) +C, sin(4¢) - D, sin (6¢) + E, sin (8¢)

Co

where S is the meridional arc.

The UTM projection parameters (Defense Mapping Agency, 1989, paragraph 2-2.2) are
the longitude measured with respect to the central meridian (A,), the central scale factor K,
false easting (FE), and false northing (FN):

AL =Ah—2g, ko =0.9996 , (11)
FN =0 or 10,000,000 FE =500,000

where FN is 0 for the northern hemisphere and 10,000,000 for the southern hemisphere.



Geodetic Transformations

The following terms are used to calculate the general equations which follow in this
section (Defense Mapping Agency, 1989, paragraph 2-2.3):

T, = Sk, (12)
T, =vsindcosdpk, /2

L= <T2 cos’ (|)/12)(5—tan2 d+9e, cos? (|>+4e§p cos* (I))
T, = (T2 cos* ¢/360)(61 —58tan” ¢+ tan* ¢+270e,, cos” p—330tan” e, cos? ¢
+445¢3, cos* ¢ +324e3, cos® g — 680tan” de3, cos* p+
+8Se§¢ cos® ¢ — 600 tan> ¢e§¢ cos® ¢ —192 tan? ¢e§¢ cos® ¢)
T, = (T2 cos® ¢/20160)(1385 —3111tan> ¢+ 543 tan* ¢ — tan’ ¢)
Ty = vcos dk,

T, = (T6 cos? ¢/6)(1—tan2 b+ey cos? (I))
T = (T6 cos? ¢/120)(5 —18tan? ¢+ tan” 0+14ey, cos” ¢— 58 tan* ey cos® ¢+
+13e§¢ cos* o+ 4e§¢ cos® ¢ — 64 tan? ¢e22¢ cos* ¢ —24 tan? ci)eib cos® d))

Ty = (T6 cos® ¢/5040)(61 —479tan* p+179 tan* ¢ — tan® ¢)

The general formulas for the conversion of geographic coordinates to north (N) and east
(E) grid coordinates (Defense Mapping Agency, 1989, paragraph 2—5; table 5) are

N = FN + T, + AV + T,ALY + T, AL + T5 AL (13)
E = FE + TA o+ T,AN + T, AN +TyAL

Table 5. Comparison of coordinates for the International Global Survey site FLIN computed in
the UTM system in ArcGIS and ll2utm.m (datum WGS 84).

[WGS, World Geodetic System; UTM, Universal Transverse Mercator; GIS, geographic information system; DD,
decimal degrees; X, Y, and Z, global Cartesian coordinates; Long, longitude; Lat, latitude; A, difference]

Long (DD) Lat (DD)
WGS 84 (G1150) -101.9780327 54.7255844

E (meters) N (meters)
UTM (ArcGIS) 308230.414 6068325.668
UTM 308230.413 6068325.666

A -0.001 -0.002
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Local Coordinates (ENU)
XYZ to ENU

The Matlab function xyz2enu.m transforms global Cartestian coordinates (XYZ) into local
east-north-up (ENU) Cartesian coordinates. The origin of the local coordinate system is set to
the minimum value of the (XYZ) coordinates. The transformation comprises two steps:

1. Transform the origin from XYZ coordinates (Xo, Yo, Zg) to LL coordinates (®o. 20), and

2. Convert XYZ coordinates to ENU (Hoffmann-Wellenhof and others, 1997, p. 149) through
the equation

E —sini, cos i 0 X-X,
N |=| —sind,cosh, —sind,sinr, cosd, || ¥ -Y, |- (14)
U cosdycosh, cosdysini, sing, || Z-Z,

ENU to XYZ

This function (enu2xyz.m) implements the inversion of the XYZ to ENU transformation.
A local reference point (for example, the origin) in XYZ is used to tie the coordinates to ITRF
(see example in table 6 for the Augustine volcano in Alaska):

X —sinA, —sin¢,cosi, cosd,cosh, || E | |X,
Y |=| cosh, -—singysink, cosd,sind, || N |+| ¥, | (15)
z 0 cos sin ¢, Ul | %,

Table 6. Conversion of coordinates of GPS sites near the Augustine volcano from IRTF to ENU.

[See Cervelli and others (2006) for original coordinates; ITRF, International Terrestrial Reference Frame; ENU, east north up (local
coordinates); (A, ¢ ) are the latitude and longitude of the local origin (Augustine volcano); (XO,YO,ZO) are the ITRF Cartesian
coordinates of the local origin (Augustine volcano). Footnotes 1 and 2 are the numerical values of (ko, ¢0) and (XO,YO,ZO)]

ITRF coordinates

X Y Z
(meters) (meters) (meters)
AC59 -2900773.239 -1440890.357 5476476.756
AUGL -2911728.045 -1461015.567 5465156.878
AVO01 -2915632.507 -1456172.186 5464818.582
AV02 -2916881.537 -1458858.111 5463145.488
AV03 -2913037.130 -1456338.750 5466001.512
AV04 -2915070.452 -1456916.823 5465417.529
AVO05 -2914535.420 -1458049.359 5465541.274
ENU coordinates
E N U
(meters) (meters) (meters)
AC59 2606.223 9556.053 8918.654
AUGL 15009.630 -5668.214 -595.141
AVO1 -7450.800 240.078 2191.218
AV02 -3437.328 6941.531 -1299.731
AV03 2404.740 1320.257 -752.401
AV04 679.336 -816.519 4293.685
AVO05 -16943.480 11095.571 238.721

(kg b): (-153.394502 59.325519).

2(XO,YO,ZO): (-2916881.537 -1461015.567 5463145.488).
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Spherical Source (Magma Chamber)

The deformation due to an expanding or contracting magma chamber has frequently been
modeled by a dilatation source in an elastic half space. The most commonly used is the Mogi,
or point, source (Masterlark, 2007). The model simulates a small spherical source embedded in
a homogeneous, isotropic, elastic, flat half-space (fig. 2).

The appeal of Mogi’s model lies in its combination of computational simplicity and
remarkable ability to predict radially symmetric deformation caused by magma intrusion. The
accuracy of an interpretation based on Mogi’s model, however, is subject to the suitability of
the initial assumptions—an often overlooked consideration (Masterlark, 2007). For example,
Mogi’s point-source model can explain stresses and displacements far away from the magma
chamber, but the stresses are infinite at the source. In contrast, McTigue’s (1987) formulation
provides an analytical solution with higher order terms that account for the finite shape of a
spherical body. Thus, the local stresses at, and far from, the boundary of a chamber remain
finite and can be calculated. McTigue’s results (1987) for vertical (u, ) and radial (#,) surface
deformation caused by a pressurized ( AP ) spherical magma chamber of radius a and at
position (x,, ¥y, Zo) (fig. 2) can be written in the form

o APLI3 Z ~ a 3 1+v _15(2—\/) Zg 16
u: = (=) u (r2+22)3/2{1 (Zj {2(7_5‘/) 4(7-5v) 24z || "

and

N r 1_(ij3 1+v _15(2—V) zg a7
e e e

where z, is the depth of the source (a positive number), v the Poisson’s ratio, and p the
shear modulus. A direct consequence of the assumption of a point source of dilatation is that
the magma-chamber radius a and pressure change AP are inseparable because APa3 is the
strength of the point singularity. This is why point source models typically calculate volume
rather than pressure changes.

When the radius a is small relative to the depth Z,, so that (a/z, )3 is much less than
1, the Mogi assumptions are reasonable, and the McTigue (1987) correction is not needed.

For example, when a =z, /2, the correction is only 12 percent, and it decreases to 3 percent
for a=z,/3. This means that, if the overall accuracy of the geodetic survey is within

3—12 percent, the Mogi’s model is sufficient to fit the deformation. If the site effects induced by
shallow heterogeneities and topography account for as little as 3—12 percent of the deformation
signal, the Mogi’s model is again a good approximation.

We can use equations 16 and 17 and to compute the three components of surface
deformation (for example, the components measured by GPS receivers) aligned to geographic
east (x-axis), north (y-axis) and up (z-axis), as shown in figure 3 (See table 7 at the end of
chapter for numerical examples).

[ux u, uz]:{urf ur% uz] (18)
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B

ZO T—“‘_..-ﬂw....

G, = -AP
6, =0

(X0YoZo)

y (N)

(X0YoZo)

x (E)

12= (X-X0)2 + (¥-Yo)?

Figure 2. Definition of boundary conditions and geometry for a spherical source (modified from
McTigue, 1987). A, Vertical cross section showing he boundary conditions: the normal stresses

o,, and o, are equalto zero at the free surface, whereas the normal stress G, is equal to the
pressure change at the surface of the spherical magma chamber, and the tangential stress G, is
zero. r and z are local cylindrical coordinates, a is the radius of the spherical source, (xo,yo,zo) is the
source location, u, is the uplift. B, The local coordinate system at the earth’s surface. x (east) and y

(north) are local Cartesian coordinates, u, is the radial displacement.
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Figure 3. Free-surface deformation caused by a pressurized spherical magma chamber. Comparison between

the three-dimensional (3D) semianalytical solution (equation 22), the two-dimensional (2D) analytical model
(equations 16 and 17), and a numerical finite element method (FEM) model of the same source. The source is

at the origin of the coordinate system, and its parameters are a =500 meters, z, =2a =1,000 meters, and

AP/ =0.001273.



Volume Change

Spherical Source (Magma Chamber) 1"

The change in the volume of the sphere is

4
AV:na3£[1+(£j ] (19)

When (a/ Zy )4 is much smaller than 1, equation 19 will return the well known result for the volume change caused by a
pressurized point source (Amoruso and Crescentini, 2009; fig. 4).

Ground Tilt

1.20
EXPLANATION
115 L O FEM i
—— Analytical
—_
5‘ 110 T
<
™
o]
B
S
2 1.05 B
1.00 B
095 1 1 1
0.0 0.2 0.4 0.6 0.8
a/ZO

Figure 4. Comparison between the dimensionless volume change ( AV/(na® AP/p)) of

a pressurized sphere calculated by use of equation 19 (analytical, solid line) and a finite
element method numerical model (FEM, open circles). a/z, is the ratio of the radius of the
magma chamber to the depth of the centroid of the chamber below the free surface. Source
parameters for the FEM model are a =1,000 meters and AP/ =0.001273.

Measuring tiny changes in the slope angle or tilt of the ground near a volcano is one of the oldest methods for monitoring
deformation caused by moving magma. When magma forces the ground upward, the slope of adjacent areas will usually tilt
away from the center of uplift by a small amount. Conversely, if the ground subsides as a consequence of depressurization of
a magma body, the slope of adjacent areas will tilt toward the center of subsidence. The components of the tilt vector are the
horizontal derivatives of the vertical deformation u,_ (fig. 5; see table 7 at the end of chapter for numerical example).

du APE  xz 1 (a) 22
M (- 0 3- = 1.5(1+v)-18.75(2- 0
( V) )5/2{ 7_5\)(20] |: ( +V) ( V)I"2+Zg :|}

dx H (r2+z§

duZ:—(l—v)APa3 yZ°)5/2{3 ! [ijs{l.s(nv)—lsvs(z—v) 2232}}

dy il (7,2_'_23 T-5v\ z, rT+z

(20)
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Figure 5. Comparison between calculations of ground tilt in the east and north
direction by a two-dimensional (2D) analytical model (equation 20), and a finite
element method (FEM) numerical model. As in figure 3, source parameters are
a =500 meters, z, =2a=1,000 meters, and AP/u=10.001273.

Internal Deformation and Strain

The internal deformation and strain is better described using the dimensionless notation
shown in fig. 6.The spatial coordinates are scaled by the depth of the spherical source z,. The
radius of the spherical cavity is defined by € = a/z,. The deformation is scaled by z, the
pressure change AP, and the shear modulus M

X=X, y=y
g=—"L y=——"= p=g'+y’
Z, Zy ’ 1)
u§3D) L _ (D) u£3D) L _ L7(3D) _ p—(3D)
zy AP 5 zy AP P e

The internal deformation caused by a spherical source is given by the superposition of a
leading-order solution T, a first free-surface correctlon a®, a higher order cavity correction

a® , and a sixth-order free surface correction U (See tables 7 and 9 at the end of chapter for
numerical examples):

78D — ;O 4 S (1) =(3) (6)
l230) u(O) ' 83 (1) - u(3) e (6) (22)
C = ug +&eu C + 8 uc + 8 C

At the free surface (£ =0), equations return equations 16 and 17.

Leading-Order Solution

The internal displacements in cylindrical coordinates system are

1
=0 _ 31 P
u,” =¢ 47 5 532
[p +(1-¢) ] -
0 31 1-¢ '
U’ =& —

4 |:p2 +(1_C)2 T/z

At the free surface (£ = 0), equations return McTigue’s (1987) equations 14 and 15.



Spherical Source (Magma Chamber)

u, v (N)

_ { : %EGT:
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Figure 6. Definition of dimensionless boundary conditions and coordinates for a spherical
source. A, Vertical cross section showing the boundary conditions: the normal stresses

o, and o, are equal to zero at the free surface, whereas the normal stress o, is equal -1
at the surface of the spherical magma chamber, and the tangential stress G _ is zero. p and £
are local cylindrical coordinates, a is the radius of the spherical source, (§,,y,,,) is the source
location, U, is the uplift. B, The local coordinate system at the earth’s surface. & (east) and v
(north) are local Cartesian coordinates, Uy is the radial displacement.

First Free-Surface Correction

The displacements for the first-order free-surface correction are given by the appropriate
combination of the following Hankel transforms (McTigue, 1987, p. 12939)

0

up (p,6) = %IE[(I—ZV)—zQ]e*’GJl (tp)dt
0

o0

u,(p,C) = %J‘?l [2(1 —v) —t(;} eitc’J1 (tp)dl
: (24)

uc(p.0) == [S[2(1-v)— 1L |e“J, (1R)dt

cte—8 oe—3g

N[—= ==

u(p.0) == [T [(1-2v)—1C]e"J, (R)dt

where 6 =T, = %le_’ and R=+/p?+¢% . The integrals in equation 24 can be solved

numerically. At the free surface (£ =0), equations return McTigue’s (1987) equations 24
and 25 (fig. 7; see table 8 at the end of chapter for numerical examples).
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050 First Free Surface Correction
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Figure 7. First free-surface correction. Blue points, numerical solution
of equation 24 at £ =0; red/green line, analytical representation of
free-surface deformation, equations 16 and 17. Up , dimensionless radial
deformation; ug , dimensionless vertical deformation.

Higher Order Cavity Correction

The displacements for the higher order cavity correction are given by

17;3) =up sinO+ug cosO

) (25)
ﬁg) =up cosO—uysind
where
sinG:B; cos6=5
R R (26)
R=yp>+(1-¢)
McTigue’s (1987) equations 38—41 provide these expressions for # and Ug :
1 Df” ® 3D | Py
up=———2p 4| CP (5-4v)-2 2|2, (27)
R 2 g2 0 > ( ) 2 R R
109 | 1 dp
Uy =—| C (1-2v)+=—=2- | =2
0 |: 2 ( ) 2 R2 R2 de
where the C and D coefficients are
Cf) =5¢° _2=v , Dé” =—¢ Iy and D§3) =g 2;\,, (28)
25(7—5v) 12 4(7-5v)



Spherical Source (Magma Chamber)

and the Legendre’s polynomial and derivatives are

B =1, I’2=%(3c0s29—1) and c;—%=3cose. (29)

Equation 25 return McTigue’s (1987) equations 46 and 47 (fig. 8) at the the free surface
(E=0).

" Higher Order Cavity Correction
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Figure 8. Higher order cavity correction at the free surface, { = 0. Blue
points, numerical solution of equation 25 at £ =0 red/green line, analytical
representation of surface deformation, equations 16 and 17. Up , dimensionless
radial deformation; UQ , dimensionless vertical deformation.

Sixth-Order Free-Surface Correction

The procedure to determine the sixth-order free-surface correction is identical to that for
obtaining the first-order surface effect (equation 24). The following expressions describe the
normal and shear stresses at the free surface:

u, —> 6:§(t+t2)
P 2 7-5v, (30)
e—t
7-5v
and
e—t
7-5v

For £ =0 and the stresses given by equations 30 and 31, equation 24 returns McTigue’s
(1987) equations 50 and 51 (fig. 9; see table 8 at the end of chapter for numerical examples).
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Sixth-order surface correction
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Figure 9. Sixth-order surface correction at £ = 0. Blue points, numerical
solution (equations 24, 30, and 31) at { = 0; red/green line, analytical
representation of surface deformation, equations 16 and 17. U _,
dimensionless radial deformation; UC , dimensionless vertical deformation.

Internal Deformation

Figure 10 on the next page shows the verification for the expression for internal
deformation (equation 22).

Strain

Strainmeters can resolve changes in strain of less than one part per billion (1 mm in
1,000 km) over short periods, which makes them ideal for capturing transient deformation
over time intervals ranging from seconds to months. Gladwin Tensor Strainmeters (GTSMs),
the instruments used by the Plate Boundary Observatory (PBO), are designed to measure three
components that describe the horizontal strain tensor: the areal strain &,, and shear strains 11
and Y2. Traditional engineering analysis has led to these quantitative definitions of quantities
€,, 1 and Y2:

€, :Sxx+8yy3 Y1 zexx_gyyn andYZ :ngy;
(3D) (3D) (3D) (3D)
U, auy 1 aux 8uy . (32)
w =T & = ;and g, =g, =—| ——+
Ox Oy 2| oy Ox

Because of the complexity of the equation 22 for the internal deformation, we compute the
strain components shown in equation 32 by use of numerical derivatives (see appendix 1).
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Spherical Source (Magma Chamber)
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Internal deformation caused by a spherical source. The first row shows internal deformation at z, = 0.5a, and the

second row internal deformation at Z, = a. Blue points (3D), analytical solution, equation 22; dashed green line (FEM), finite
element method numerical solution. Source parameters for the FEM model are Z, =1,000 meters and AP/p = 0.001273 . It
was necessary to change some of the signs of § in the original integrals A7— A18 in McTigue (1987) to improve the fit between

the analytical and the numerical solution at depth € greater than zero.
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Figure 11. Internal strain caused by a spherical source. The first row shows internal strain at Z, = 0.5a, and the second
row internal strain at zy = a . Blue points (3D), analytical solution, equation 32; dashed green line (FEM), finite element
method numerical solution. Source parameters for the FEM model are zo =1,000 meters and AP/p =0.001273.
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Examples of Surface Deformation, Tilt, Internal Deformation, and Strain for a Spherical Source

Table 7. Surface deformation, tilt, and internal deformation.

[Surface deformation, tilt and internal deformation at z = 0 from equations 18, 20, and 22. See figures 3 and 5. Parameters are a = 500 meters, z, = 2a = 1,000
meters, and AP/p = 0.001273. x and y, local Cartesian 3coDordinates; Uy, Uy, and U, displacements at the free surface OU, /6X
and aUZ / 0Y, tilt components; us",u ), and, u; ) , internal deformation]

y
x y u, u, u, du /dx du /dy u 30 uy‘m’ ul3D
(103 meters) (10° meters) (103 meters) (10 meters) (10 meters)  (x 10°F) (x10) (10 meters) (103 meters) (103 meters)
-4.0 -4.0 -2.4949 -2.4949 0.6237 0.2275 0.2275 -2.4973 -2.4973 0.6305
0.0 0.0 0.0000 0.0000 134.7482 0.0000 0.0000 0.0000 0.0000 138.3455
2.0 2.0 8.8603 8.8603 4.4301 2.9846 2.9846 8.8631 8.8631 4.4876

Table 8. Corrections for internal deformation.

[Corrections at (=0 from equations 24, 25, 30, and 31. See figures 7 through 9. Parameters are a = 500 meters, Z, = 2a = 1,000 meters and
AP/p =0.001273. p, dimensionless distance, equation 21; «" and uil) , first-order correction; ui ) and uf ), higher order correction;

r

uiﬁ and , uié] sixth-order correction]
p uM (X107 uM (X103 u® (X 103) uf® (X 103) u® (X 10%) u® (X103
0.0 0.0000 500.0000 0.0000 35.1751 0.0000 673.9130
2.0 89.4426 44.7213 -0.3950 0.9202 18.6663 8.9443
4.0 28.5339 7.1329 -0.4097 0.0697 1.7514 -0.0219

Table 9. Internal deformation and strain.

[Internal deformation and strain (z = a=500 meters) from equations 22 and 32. See figures 10 and 11. Parameters are a = 500 meters, z = 2a =1, 000

meters and AP/,u = 0.001273. x and y, local Cartesian coordinates; ux(SD), uy(SD:and uz(3D), internal deformation; €4,V and v, strain. The strain

component Y = 0forx=y]

X y u 3D u D) 3D s 7 X y 7
’'e y z a
(X 10% meters) (X 10° meters) (103 meters) (103 meters) (103 meters) (X 10°) (X10% (X 10° meters) (X103 meters) (X 10°)
-4.0 -4.0 -2.3320 -2.3320 0.5283 -0.4610 -1.6271 -4.0 0.0 -3.9171
0.0 0.0 0.0000 0.0000 251.5401 639.9259 -0.0000 0.0 0.0 0.0000

2.0 2.0 7.1229 7.1229 3.9175 -1.3665 -8.4895 2.0 0.0 -16.7005
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Prolate Spheroid Source (Magma Conduit)

A simple model of a volcanic system includes two principal elements: a magma reservoir and a conduit through which
magma may reach the surface. When the volcano is quiescent, the conduit will close, allowing pressure to build up in the

reservoir. Yang and others (1988)! formulated an approximate but accurate half-space double-force and center-of-dilatation
solutions for a dipping prolate ellipsoid in an elastic half-space. The general solution for a prolate spheroid depends on seven
parameters (fig. 12): the dimensionless pressure change AP/, the geometric aspect ratio A =b/a between the semimajor axis a
and the semiminor axis b, the source location (X, ¥y, 2 ), the dip angle 0 (measured from the free surface), and the strike (or
azimuth) angle ¢ (measured clockwise from the positive North direction).

The expressions for the three components of deformation in the near field are quite complex. Coding the expressions for
near-field displacement, tilt, and strain required writing the four nested functions described below (fig. 13). The formulas are
introduced in the same order as their use in the corresponding Matlab functions.

A y (North) B 00) c
~Jo X
(Xor yo) P
¢ c,=0,.=0
T
.0 x (East)
¥p
a
a ) b
7 b
G, =-AP
. =0
z z
(side view) (top view)

Figure 12. Diagrams showing A, definition of coordinates system and boundary-value problem for a spheroidal source. x, yand z,
local Cartesian coordinates; X, ¥,and z, source location; 0, dip angle; ¢, strike (or azimuth) angle; a, semimajor axis; b, semiminor
axis; the normal stress &, and shear stress G are equal to zero at the free surface, whereas the normal stress o, is equal to the
pressure change at the surface of the spherical magma chamber, and the shear stress G _ is zero. B and C, coordinate system used
by Yang and others (1988). X, Y, and z local Cartesian coordinate system; the source centroid is at the origin of the coordinate
system, and the strike ¢ is equal to zero.

( lVANG . \ ( YANGDISP \ VANGPAR
(main function) computes the input parameters of

calls YANGPAR and the spheroidal model
calls YANGDISP to <:> YANGINT to compute the
compute displacement caused b
3D deformation P m- U' ° ; ! VANGINT
. , a pressurized ellipsoid <:> computes the
strain, and elementary deformation (primitive)

\ tilt } \ }

Figure 13. Flow chart for coding Yang and others’ (1988) expressions for displacement, tilt,
and strain.

Corrections to Yang and others’ (1988) equations are reported in Newman and others (2006), and in this publication.
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Coordinates and Displacement (YANGDISP)

To compute the displacement, coordinates must be transformed from the Cartesian
coordinate system (UTM) onto the coordinate system used by Yang and others (1988). The
displacement vectors then can be back-transformed onto the original system (fig. 12).

We first translate and rotate the coordinates

X, :cosd)(x—xg)—SiIld)(y—J’o) (33)

y, =sind(x—x,)+cosd(y—yy)
and then we compute the general expressions

Up, =-U(E=¢)-U,(E=—¢) (34
Up, =-U,(§=¢)=U,(E=~¢)
Up. = Us(€=¢c)+U;(E=—0)

for the displacement in Yang and others’ (1988) coordinate system, where

U, =U+U =123 (35)
U| :U|(Xp1 ypv2120191a11b11a1b1é1u1\/1 PT)

are the primitive of the displacement for a prolate ellipsoid. The formulas for U; and Uﬂ' are
given by equations 49 and 50. Finally, the displacement vector Up is back-transformed onto the
original coordinate system (see figs. 14 and 15 in the Verification section, p. 25):

u, =cos¢-Up, +sin¢-Up,
u, =—sin¢-Up, +cos¢-Up, - (36)
u, =U

z

Primitive (YANGINT)

To compute the primitive Ui* and UiT, we must first introduce new coordinates and
parameters (see Yang and others, 1988, p. 4251):

E, =8C0s0 &3 =Esin6 (37)
X=X, Xo=Y, Xg =1-2) X3=1+1

Yi=X Yo =X -8 VY3 =X-& V3=%X+&;

I, = %X SiN0—X;C080 Q, =X,SiN0+X;cos6

I; =X, C0SO+X3SiNO g3 =—X, COSO+X;SiN0O

B =r-¢ 0g=03+&

Ro=y Y, +Y5+Y: Ry=yy+Y5+V;

To make the formulas valid for dip angles 6 unequal to 90° (in other words, a spheroid
that is not vertical), we must correct the parameter C,, (see Yang and others, 1988, p. 4251, for
the original expression):

21
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To prevent a “divide by zero” warning at the origin, we must add g, = 1-107" at the
denominator in the formula for

_ gy0080+(1+sin0)(R, +73) (39)
B cosOy, +¢,

&

Additional parameters used to simplify the expressions for the deformation are

B §3=R1+73 _ﬁngszqs d_y_3:R2+73 , (40)
Irs =In(R, +%) lag =In(Ry +T) lys =IN(R, +¥5)

A =—2 iy [l_rg+r3_+§j

Rldl"?, d}"3 , (41)
N _b{z?,3+qs_‘§j
R,dq, dq,
&l Aof
==+ Ir =——|
A R, 3 A R, 4z
A =Ri—nlrs A, =R, —qslay° and (“42)
48 ~ _ &0
==>+R ===-R
=R BT,
B = (%+2b1A2J+(3—4v)[;—1+2b122]
1 2 . (43)
+C, - —
B = —§(§ O)—Az—col%
R,

The following four parameters F are called in Ui* and UiT (see equations 49 and 50). They
were modified from the original formulation of Yang and others (1988) to improve the fit with
the numerical FEM solution for internal deformation (fig. 16):

F =0
F=0. (44)
F=0

F,=0
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The parameters f also are called in Ui* and UiT (see equations 49 and 50). While the
formulas for f; and f, are from Yang and others (1988), the equation for f3 was corrected
by Newman and others (2006):

&, , 3 i 4 = fanp 45
f==2+ sinOly, — y;10, +2(,.* tan +2y,lq, —4X, ——- (45)

5. oo - (asin6ly; — i, 20, B)+2yild; 4% =

& e~ P o
fr==+— (q2 sin0lgy —q,ly; + 2y, sinOtan™ B+cosO(R, - J; ))

dy; cos” 0 .and  (46)

~2c0s04, + 2 (973];3_%1_93)

cos0
fs=——(:0q5 ~ g, sinBly; + 2y, tan ™' B)+ 25in 04, + g3 lyy —&- (47)
cos 0
The following coefficients are used to compute the displacement
2/¢3

o UL i and ¢’ =2c"PT (48)

T 16p(1-v)

The displacement components are given by equations 2 to 7 of Yang and others (1988).
They are the primitive of equation 1 of Yang an(i others (*1988). Compared to the original
formulation, we deleted the z-contribution in U, and U5 to improve the fit to internal
deformation computed by use of the FEM model (fig. 16)

Uy =c |:A1*yl +(3-4v) Ay +F oy J
U,=c [sin@(/ll*r2 +(3-4v)4'q, + F ¢, ) +cos G(B* -F, )] , (49)
U;=¢ [—cos O(A]*r2 +(3-4v)4'q, - F ¢, ) +sin G(B* +F, )J

U] = cf[(Ay+(3-4v) Ay + Ry ) —4(1-v)(1-2v) |

U] = c'[sin( AL, +(3-4v) Ag, + Fd, ) - 4(1-v)(1-2v) f, -
+4(1—v)cos9(A2+Kz)+cose(A3—(3—4v)K3—F2)] - (50)
uj = cT[cose(-Alr2+(3—4v)Kiq2+F1q2)+4(1—v)(1—2v) oo

+4(1-v)sinO( A, + Ay ) +sin0( Ay +(3—4v) Ay + F, ~2(3-4v)B)|

23
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General Parameters (YANGPAR)

The general parameters necessary to compute the displacement for a prolate spheroid are listed in table 10 in the same order
as their use in the code.

Table 10. General parameters.

[after Yang and others, 1988, p. 4250]

Expression Description Source
Prolate ellipsoid focus

c=va?-b?

acratio = (a-c)/(a+c)

coef, = 2nab’

den, = 8n(l-v)

O = 3/den,

R =(1-2v)/den,

1, =—coef, (2/ (ac2 )+ In(acratio) / e )

1,, =—coef| (2/(301362) + 2/(ac4) + ln(acml‘io)/c5 )

ay, =2 R( I,- 471:) Newman and others (2006)

aj, =—2R(I,, +4) Newman and others (2006)

) Newman and others (2006)
ay =Qa’l,, +RI,~1

2 Newman and others (2006)
apy = _Qa Iaa _Ia(zR - Q)

den, =3\ +2n
num, =3a,, —ay,
deny = ay\ay, — ayyay,

numy = ay, —3a,,

Pressure N d others (2006
P = AP (2u/den, )(num, —num; ) /den, ewman and others (2006)
" Pressure N d others (2006
P :AP(I/denz)(numzk+2(k+p)num3 )/den3 ewman and others (2006)
Force
a, =—2b*P’
Pressure

b, = 3(b?/c’)P' +2(1-2v)P"
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We tested the complete derivation by comparing analytical results to three-dimensional FEM solutions for vertical, tilted,
and rotated prolate spheroids (figs. 14 and 15).

Results for the internal deformation are shown in figure 16. Although there is no significant difference between our

formulation and that of Yang and others (1988) for shallow depths, our formulation provides a better fit to the FEM solution for

greater d
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Figure 14. Free-surface deformation caused by the inflation of a vertical prolate spheroid (¢ = 0') for different values of the
geometric aspect ratio A. Comparison between the three-dimensional semianalytical solution (analytical; equation 36), and a
numerical finite element method model (FEM) of the same source. Source parameters are x, = y, =0, z, = 3,000 meters,
length of semimajor axis a =1000 meters, AP/u=0.1 , p=9.6 Gigapascals and v = 0.25. Because of a mathematical
singularity at 8 =90°, we used 0 =89.99°. U: horizontal deformation (x or East component); V: horizontal deformation (y or
North component); W vertical deformation (z or Up component).
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U, in meters
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Figure 15. Free-surface deformation caused by the inflation of a tilted (8 unequal to 0°) and rotated (Punequal to 0°) prolate
spheroid. Comparison between the three-dimensional semianalytical solution (analytical; equation 36), and a numerical

finite element method model (FEM) of the same source. Source parameters are x, =y =0, z, = 3,000 meters, length

of semimajor axis a =1,000 meters, AP/u = 0.1, u = 9.6 Gigapascals and v = 0.25. U: horizontal deformation (x or East
component); V% horizontal deformation (y or North component); W vertical deformation (z or Up component). See table 11 for
numerical examples.



U, in meters

0.8

0.6

0.4

0.2

0.8

EXPLANATION
0.6

———Yang (1988)

0.4

FEM

Analytical 0.2

V, in meters

-0.6

Figure 16. Internal deformation caused by the inflation of a tilted and rotated prolate spheroid. Comparison between the
three-dimensional semianalytical solution described in this publication (analytical; equation 36), the original formulation by
Yang and others (1988), and a numerical finite element method model (FEM) of the same source. Source parameters are
Xo = Yo =0, z, = 3,000 meters, length of semimajor axis a =1,000 meters, AP/u=0.1, p=9.6 Gigapascals and
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v =0.25. First row—displacements at the free surface; second row—displacements at shallow depths (z equals 150 meters);

third rov—displacements at greater depths (z equals 1,500 meters). U: horizontal deformation (x or East component); V:
horizontal deformation (y or North component); W vertical deformation (z or Up component). See table 11 for numerical

examples.
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Volume Change

The volume change of the ellipsoidal cavity is given by

yo -2y Vﬁ(i_ J (51)
2(1+v) p (AP

where V is the volume of the ellipsoidal cavity, and P is the trace of the stress inside the
ellipsoidal cavity (Amoruso and Crescentini, 2009). According to Amoruso and Crescentini
(2009), the formula obtained by Tiampo and others (2000) for the volume change of an
ellipsoid, AV = 3APV/(4p), was derived by using a formula for strain which is valid for
spheres only. As a consequence, Tiampo and others’ (2000) expression is correct for spheres but
incorrect for ellipsoids and always underestimates the volume change for an ellipsoid cavity.

The rigorous expression 51 can be approximated by the following empirical formulation
for the volume change (fig. 17):

2
a0 Loz )
p

The constants in equation 52 are determined by the polynomial best fitted to the numerical
values from Amoruso and Crescentini (2009) and several FEM models (fig. 17).

EXPLANATION

AVI(VAP/y)
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—— Empirical correction
o Amoruso and Crescentini (2009) -|

° Finite Element Method solution

1 2 3 4 5 6 7 8 9 10 1
A-l

Figure 17. Verification of the empirical correction

(equation 52) for the volume change of a pressurized

prolate spheroid. AV/(VAP/u) is the dimensionless
volume change; 1/A, the reciprocal of the aspect ratio.
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Ground Tilt

Because of the complexity of Yang and others’ (1988) expressions for the displacement, the ground tilt is computed by
using finite-difference derivatives (see appendix 1). Figure 18 below shows the verification of ground-tilt calculations.

=0, 0=60°, $p=30°, A=0.5
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Figure 18. Ground tilt caused by the inflation of a tilted and rotated prolate spheroid.
Comparison between the three-dimensional semianalytical solution described in this publication
(analytical; equation 36 and appendix 1), and a numerical finite element method model (FEM) of
the same source. Source parameters are Xy = yo =0, z, = 3,000 meters, length of semimajor

axis @ =1,000 meters, AP/u=10.1, u=9.6 Gigapascals and v = 0.25. See table 11 for numerical
examples.
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Strain

Finite-difference derivatives (see appendix 1) are used to compute the components of the displacement-gradient tensor
(equation 32), verified in figure 19.
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Figure 19. Internal strain caused by the inflation of a tilted and rotated prolate spheroid. Comparison between the three-
dimensional semianalytical solution described in this publication (analytical; equation 36 and appendix 1), and a numerical finite
element method model (FEM) of the same source. €, is the areal strain, Y1 and Y2 the shear strains. Source parameters are

xg =y =0,2,=3,000 meters, length of semimajor axis a = 1,000 meters, AP/u = 0.1, u = 9.6 Gigapascals and v = 0.25. See
table 12 for numerical examples.

Examples of Parameters Calculated for a Prolate Spheroid

Table 11.  Surface deformation and ground tilt.

[See equation 36 and appendix 1. Parameters are X, = 0 meters, Yo = O meters, z, = 3,000 meters, a = 1,000 meters, A= 0.5, AP/u = 0.1, u = 9.6

GigapascalPa, v = 0.25, 8 = 30", ¢ = 60"; x and y, local Cartesian coordinates; Uy, U, and 2, displacements at the free surface Ou,, /ax and auz/ay, tilt
components]

X y u, u, u, du /dx du /dy
(10° meters) (10° meters) (meters) (meters) (meters) (X1073) (X103
-4.0 -4.0 -0.1591 -0.1736 0.1427 0.0368 0.0429
0.0 0.0 0.0625 0.0361 2.3388 0.2229 0.3862
2.0 2.0 0.6528 0.6737 1.0415 -0.3015 -0.2824

Table 12. Internal deformation and strain.

[See equation 36 and appendix 1. Parameters are x, = 0 meters, Y, =0 meters, z, = 3,000 meters, a = 1,000 meters, A = 0.5, AP/u=0.1,p=96

GigapascalPa, v = 0.25, 6 = 30", ¢ = 60”; x and y, local Cartesian coordinates; u , ; &,, Yp»and ¥y, strain]

u, and u_, internal deformation; ¢,

X y z u, u, u, e, Y Y,
(103 meters)  (10° meters)  (10° meters) (meters) (meters) (meters) (X103) (X103) (X103)
-4.0 -4.0 1.5 -0.1464 -0.1597 0.1652 -0.0041 -0.0163 -0.0922
0.0 0.0 1.5 0.5138 0.2966 3.7764 4.1151 -0.4081 -0.7067

2.0 2.0 1.5 0.5923 0.6309 0.8141 0.0412 -0.0226 -0.6365




Sill-Like Source

Sill-Like Source

A simple 3—-D model of a sill intrusion is a horizontal penny-shaped crack in a semi-
infinite elastic body (Fialko and others, 2001). The analytical expressions of Fialko and others
(2001) are appropriate for a sill-like source with a radius as much as five times larger than its
depth.

We consider a horizontal penny-shaped crack with radius a and depth z, in an elastic half-
space (fig. 20A). The vertical axis in figure 20A is the axis of symmetry (positive downwards),
with an origin at the crack center. The surface of the half-space is assumed to be stress-free; r
and z are spatial coordinates, and the index in parentheses corresponds to the upper and lower
domains of the crack (i=1 and 2 in fig. 20B). The boundary conditions for the problem are
shown in figure 20A. Figure 21 shows the implementation of the model in the Matlab function
fialkoO1.m

We translate and normalize all variables having dimensions of length with respect to
the crack radius a and all variables having dimensions of pressure with respect to the shear
modulus p of the elastic half-space:

a a . (53)

The general solution for the vertical and horizontal deformation of a half-space is given by
equations 12 and 13 of Fialko and others (2001):

U;n—j[(@ 2v)B-E(2+)4)sinh (&(Z +71))

+(2 (1-v)4-¢ z+h) )cosh(§(2+f_z))JJ0(§7)d§ . (54)
yo _I[((l 2v)A+E(Z+h)B)sinh(&(Z+7))

+(2(1-v)B+&(z+h)4 )cosh(é‘;(2+h))]J1(§7)di

All of the variables in equation 54 above are nondimensional, unless noted otherwise. The
original equations 12 and 13 of Fialko and others (2001) have been changed in equation 54 as
follows:

3. 20 and 2U " must be replaced by US" and U, respectively, and
4. d&/sinh(&j_z) must be replaced by d&.

The functions A and B in equation 54 can be defined through the functions ® and ¥ as
follows:

A=e “5}7’(@‘}’+(1+§5)®). (55)
B= —ih((l gh)¥ aﬁcb)

31



32 Modeling Crustal Deformation near Active Faults and Volcanic Centers—A Catalog of Deformation Models

The expression (1 - e’zéﬁ) in the original equation 24 of Fialko and others (2001) should be

replaced by e ", Finally, the functions ® and W can be expressed in terms of finite Fourier
transforms:

1
]
0 . (56)
]
0

The integrals in equation 56 can be solved numerically (for example, by using the Gauss-
Legendre quadrature method; Press and others, 1992, section 4.5). For a hydrostatic pressure
distribution inside a penny-shaped crack with the boundary conditions given in figure 20A, the
functions ¢ and V are the solutions of the following Fredholm equations of the second kind:

)=~ 2 2 11,7 )0()+ T (7w ()P

1 (57
v () =2 ([T (7)) + 1, (17w () ]
where
T(t.r)=4R[B(1-7)-R(1+7)]
T () =[P (=7) = B (04 ) B[ 1-F) R (147)] .
T3(z,r):é{a(t—r)—a(zﬁ)—zr[(t—F)Pl(z—7)+(t+7)1>1(t+7)]}
T,(t,r)=T"
and
B 1202 -2
A )
Pz(s):log(4}_zz+sz)+%
) (4h +s ) (59)
8kt 257k +5*
B ey
4 S
&(S)_(452+s2)2

The Fredholm equations 57, 58, and 59 can be solved numerically by using the Nystrom routine
with the N-point Gauss-Legendre rule (Press and others, 1992, section 18.1).

Finally, solutions of the dimensionless equations 54 give the following expressions for the
deformation (fig. 22; see tables 13 and 14 for numerical examples):

u, = agU(l)z‘

X u r }’"

u, = PEUSGORE (60)
1) r

u, = —agUgl)
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0= free surface
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OJ
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(1)
e
¥

-h = free surface

Figure 20. Definition of boundary conditions and geometry for a sill-like source (after Fialko
and others, 2001). A, Dimensional coordinates and boundary-values. x, y, and z local Cartesian
coordinates; a, source radius; the normal stress o, and shear stress o, are equal to zero at the

free surface; the source center is (xo,yo,zo), and the free surface is at Z=0. B, Dimensionless
coordinates and boundary-values. rand z local cylindrical coordinates; the source radius is equal

to 1; the normal stress o, and shear stress G, are equal to zero at the free surface; the source
center is at the origin of the coordinate system, and the free surface is at z = —A.

FIALKOO1

3D displacement, tilt, and strain

T

Figure 21. Matlab function fialko01.m flow chart for calculating and coding the parameters for a

sill-like source.
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Sill-Like Source
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U, in meters
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z=0, a=1,000m, z3=1,000m
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Figure 22. Graphs showing (top) surface deformation due to the inflation of a sill-like (or penny-crack) source; (bottom) internal
deformation. Comparison between the three-dimensional semianalytical solution (analytical; equation 60), and a numerical finite
element method model (FEM) of the same source. Source parameters are location xy = yo =0, depth z, =1,000 meters,
radius a =1,000 meters, AP/u=0.01, p=9.6 Gigapascals, and v =0.25. U horizontal deformation (x or East component);
V: horizontal deformation (y or North component); W: vertical deformation (z or Up component). See table 13 for numerical
examples.



Volume Change

For a uniformly pressurized crack, the expression for the volume change (fig. 23) is

AP ;1
AV =—-4r(l-v)— 1o(2)dt
n( V)u“£¢()

with ¢(t) given by equation 57.

2L EXPLANATION
= 0 —— Volume change from Fialko and others (2001)
% 8 8 Volume change from the Finite Element Method -
&) numerical model
S 6r
<
41

Z,/a

Figure 23. Volume change for a sill-like source
(equation 61). AV/(a3 AP/u), Ais the dimensionless
volume change; z,/a the dimensionless source
depth. The dimensionless pressure change is
AP/u=0.01.

Ground Tilt

(61)

Because of the complexity of Fialko and others’ (2001) expressions for the displacement,
the ground tilt is computed by using finite-difference derivatives (fig. 24, appendix 1).

Tilt (north), in radians x 103

0.5

=g
o

1
- 0
e
X
v -1
=
©
g
)
EXPLANATION c
=
FEM 2 3
KA
Analytical E
-4
-5
2 4 6 8 10 0 2 4 6 8 10
X, in kilometers Y, in kilometers

Figure 24. Ground tilt caused by the inflation of a sill-like source. Comparison
between the three-dimensional semianalytical solution (analytical), and a
numerical finite element method model (FEM) of the same source. Source
parameters are location x5 = ¥ =0, depth z, =1,000 meters, radius
a=1,000 meters, AP/u=0.01, u=9.6 Gigapascals, and v =0.25. See
table 13 for numerical examples.

Sill-Like Source
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Strain

The components of the displacement gradient tensor are computed by finite-difference derivatives (fig. 25, appendix 1).

15 8 2
EXPLANATION
6 0
10 FEM
Analytical -2
. ER 5
S 5 X < 4
X Ny x
~ >
" 2
-6
0
0
-8

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

Radial distance, in kilometers

Figure 25. Internal strain caused by the inflation of a sill-like source. Comparison between the three-dimensional
semianalytical solution described in this publication (analytical), and a numerical finite element method model (FEM) of
the same source. g, isthe areal strain, Y1 and v, the shear strains. Source parameters are location x; = y, =0, depth
z, =1,000 meters, radius a =1,000 meters, AP/pu=0.01, u=9.6 Gigapascals. See table 14 for numerical examples.

Examples of Parameters Calculated for a Sill-Like Structure

Table 13.  Surface deformation and tilt.

[See equation 22 and appendix 1. Parameters are X, = 0 meters, ¥, = 0 meters, z, =1,000 meters, a = 1,000 meters, AP/u =0.01, p=9.6GPa, v =025,
radial distance from source center; u_, u, and u_, displacements at the free surface; Ou, / ox and Ou_ / 0y, tilt components]

r u, u, u, du /dx du /dy

(10° meters) (meters) (meters) (meters) (X103) (X103)
0.0000 0.0000 0.0000 6.4302 0.0000 0.0000
1.0062 0.7493 1.4985 2.6405 -2.1202 -4.2405
2.0125 0.2207 0.4415 0.2980 -0.2867 -0.5734

Table 14. Internal deformation and strain.

See equation 22 and appendix 1. Parameters are X, = 0 meters, ¥, =0 meters, z, = 1,000 meters, a = 1,000 meters, AP/ = 0.01, p=9.6 GPa, v=025;r,
0 0

radial distance from source center; #,., U i and U, and internal deformation; €,, v, and 7,, strain]

r z u, u, u, e, Y1 12

(10° meters) (103 meters) (meters) (meters) (meters) (X103) (X103) (X103)
0.0000 0.5000 0.0000 0.0000 7.2591 1.2431 0.0000 0.0000
1.0062 0.5000 0.1759 0.3518 2.6398 -0.2045 0.5917 -0.7890

2.0125 0.5000 0.0415 0.0830 0.2585 0.0229 0.0416 -0.0554




Surface Deformation and Ground Tilt for Rectangular Dikes and Faults

Surface Deformation and Ground Tilt for Rectangular Dikes and Faults

The solutions proposed by Okada (1985) present a complete suite of closed analytical expressions (fig. 26) for the surface
displacements and tilts caused by a strike-slip, dip-slip or tensile rectangular dislocation in a half-space that is homogenous,
isotropic, flat, and elastic. These expressions are particularly compact and free from mathematical singularities

The rectangular source geometry is illustrated in the Cartesian coordinate system shown in figure 27A. The points
(x;,»;) and (x/,y,) represent the initial and end coordinates of the source trace at the surface. The elementary dislocations
U correspond to the strike-slip (U, ), dip-slip (U,), or tensile (U,) component of an arbitrary dislocation. In the convention
used by Okada (1985), coordinates are assumed to be in kilometers, whereas U and the displacements at the Earth’s surface,
u=[u,,u,,u,l,are in meters.

OKADA85
surface displacement and tilt
N N N
0K8525 0K8526 0K8527

strike-slip dislocation

1. general parameters
2. elementary displacement
3. displacement gradient

dip-slip dislocation

1. general parameters
2. elementary displacement
3. displacement gradient

tensile dislocation

1. general parameters
2. elementary displacement
3. displacement gradient

37

Figure 26. Program flow chart for rectangular dislocations (Okada, 1985).
y (north) z Yo
z (up) ﬂ‘
A
(s, y1)
o Davil et ‘

Vx (east)

Xp
z=-d

(xoYo20) A

B

Figure 27. A, Geometry of the dislocation model in a Cartesian coordinate system; B, Geometry of the source model (after Okada,

1985). In Okada (1985), input coordinates are assumed to be in kilometers, whereas the dislocations and displacements are in meters.

Strike-slip dislocation U, greater than 0 identifies a right lateral motion, dip-slip dislocation U, greater than 0 identifies a reverse
motion, and tensile dislocation: U, greater than 0 identifies a tensile opening.
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Displacement
The angle ¢ is the strike of the fault

p=y,cosd+dsind

q=y,sind—dcosd ’ (62)

and § is the dip angle. The length L and width W of the rectangular dislocation are

L:\/(xf—xi)2+(yf—yi)2 and (63)

W: Zb_Zt

sin o

and the coordinates of the lower corner of the dislocation are (fig. 27A)

xg =x; +(z, —z,)cotScos ¢

Yo =y;i—(z, =z )cotdsin¢ -
20 =2

(64)

Elementary expressions for surface deformation and the displacement-gradient matrix can
be written as functions of nine sets of variables:
1. the fault type,
2. the coordinates of each dislocation corner (as given by x,, L, and W),

3. X,=X—-Xy Y,=V—-Yy 2z,=—d=-z;, (65)

4, Xp=8iN¢-X, +COSP-y, (66)
Yp=—C0S- X, +sind-y,

5. the depth in kilometers of the lower left corner of the rectangular fault (d),
6. the Lame’s elastic parameters p and A,

7. the dislocation U,

8. the dip angle 6, and

9. the rotated coordinates p and g

p=y,c088+dsind. (67)
q=1y,sind—dcosd

To compute the displacement, the function okada85.m follows a three-step procedure:
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1. Compute the three components of the displacement and the six components of the displacement gradient matrix at the four
corners of the dislocation:

uoyow M v v owow = f; (&m0, %,U;,8) = fi (X, p. 0,12, U;,8)
Ox oy ox oy ox oy
uovow BM YN MWW (g U;L8) = f (X P-W, G AU
L Oox oy ox oy ox oy, ’ (68)
poyow M v owow = f (&m0, 2U;,8) = f;(x, - L, p,a,m,A,U;,9)
i ox gy oOx oy Oox 0oy,
by MM N Now oW = fi(&m,q.uAU;,8) = fi(x, L, p-W,q,u,1,U;,8)
L Oox oy ox oy ox oy,
where
(u, v, w) is the displacement, [--I identifies the corners of the dislocation (k = 1,2,3,4),
the subscript i refers to the three different types of dislocation (1=strike, 2=dip, 3=tensile),
E andn are dummy variables of integration.
2. Combine the displacements and displacement gradients from step 1 to compute the deformation, equation 69, and tilt,
equation 70, in Okada’s (1985) reference system (fig. 27B).
=[u], ~[ul, ~[u]; +[u],
(69)

and

OX OX - OX - OX OX . (70)
oup _ofw) ofwl, ofwl ofw],
oy oy oy oy oy

3. Rotate the deformation and tilts back to the original Cartesian reference system (fig. 27A):

East  u, =sin¢-U} —cos¢-UJ

71
North u, =sin¢-U? +cos¢-U?”’ 71
Up u,=UF
and
. 0 ou?t . ou’
tilt (East) Yz 0.001 “-sinp——=cos ¢
X Ox Oy
(72)

p P '
titt North) 2= =0.001) 2% sin ¢+ %Y= cos ¢
oy oy Ox

The scale 0.001 in equation 72 takes into account that, in Okada (1985), coordinates are in kilometers and displacements in
meters.


http://en.wikipedia.org/wiki/Bound_variable
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Parameters for Displacements and Displacement Gradients Functions /;

The parameters and variables, which are listed below in the order they are coded, are the

same for all the functions f;.

1.

Elastic parameter

a=—F_—1-2v; (73)
At+pu

Geometric transformations, equation 30 from Okada (1985), where & and n are dummy
integration variables whose upper and lower limits are defined in equation 68

§ =mcosd+qsind (74)
d =nsind—-qcosd
R2 =<";2+)72+(]2

X2 g2 42
Equation 28 (Okada,1985)
1 e . .
Iy =aFSS[In(R+d)—sm6ln(R+n)] ; (75)
I« 2 an-L n(X +qcosd)+ X (R+X)sind
cosd E(R+X)cosbd

1 9
=0 — ——In(R+ +tan dl
3 0L(cos& R+d ( ﬂ)j 4

I =oc(—L 3 ~J—tan8ls
cosd R+d
I, =a(-In(R+n))-1;

when & =0 (Okada, 1985, singularity condition ii, p. 1148), 15 =0;

when R +n =0 (Okada, 1985, singularity condition iii, p. 1148), replace ln(R + n)
with —In(R -n) in equation 74;

if c0sd=0, use equation 29 (Okada,1985);

I, =—0.50—=9 (76)

w
Il
o
()]
R
1
+
|
=)
—_
=
+
=
SN

I, = —a =
N R+d
gsind

-a -
R+d

—
Il

Equation 40 (Okada,1985)
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_& _
|RR+7 R(R+d)

1
K:
3 cosd
K= 5
cosd

1 sind 1 |; (77)
R(R+d) R R+n

K, =o _sm6+qcos€> 1 K,
R R R+n

if cosd =0, use equation 41 from Okada (1985):

o
K, = §q~2
R(R+d)
(78)
Koo S8 &
T R+d R(R-+d)
5. Equation 34 (Okada 1985)
2
J; = : 5 — = = |—tan 6K,
cosd R(R+d) +
S S A,
CoS3 R(R+d) ; (79)

cosd gsind 1

-3
R R+nj !

if cosd =0, use equation 35 from Okada,1985)

h=0sa— 9| 2
(R+d) R(R+d) &0
H 2
3, =050 230 |2 ool
(R+d) R(R+ )
6. Equation 36 (Okada,1985)
2R+¢& 2R+n
A R}(R+¢) R®(R+n)?

7. If R+n=0 (Okada, 1985, singularity condition iii, p. 1148), replace In(R+n) with

—In(R-mn) and set =0,

R+n

Ly
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Elementary Function f; for a Strike-Slip Fault

Elementary Displacement (Okada, 1985, equation 25)

——ﬂ & +tan”! Sl +1,sind
2n| R R+n qR
Uy 1

=X +gcosd +1,sind |°
2r\ R R

__Uifdg 1 +¢sind +1,5ind
2nl R R+n

if d =0 (Okada, 1985, singularity condition i, p. 1148), then
u=—Ul &9 1 ———+1;8ind
2n| R R+n

Displacement Gradient (Okada, 1985, equation 37)

ow U &g

o 2—{ &q Anc056+(R KljsmS}
w _U;

oy

Elementary Function f, for a Dip-Slip Fault

Elementary Displacement (Okada, 1985, equation 26)

u :—U—(E— Issmé‘)cosé‘)j

2
__Y ﬂ L cosstantSn —1;sindcossd |;
2n +& aR
we_Y2 d_q ! +sin6tan‘1§—n—lssin80056
2n| R R+¢ R

if 4 =0 (Okada, 1985, singularity condition i, p. 1148), then

v=—ﬁ yg_t _ I,sindcosd
R R+&

w=—U—2[d—qi— I sinécoséj

q ¥q ;
o {R3 0056+[§ 0A,C0Sd — TJFR szsméi}

(82)

(83)

(84)

(85)

(86)
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Displacement Gradient (Okada, 1985, equation 38)

U

N

[d_3+m 1 +K3sin6cos<‘3]
R R R+n (87)

= 2d 1 &sind 1
=_22| §doA. —
2n|:y W (R R+§+ R R+n

T

c N

2|z w2

sind + K, sin SCOSS}

Elementary Function f: for a Tensile Crack

Elementary Displacement (Okada, 1985, equation 27)

2
u-Jsfa 1 —15sin?§
2l R R+n
v=ds| 99 1 _gog[S9 1 _pafEn —1;sin%3 | (88)
271_ R R+§ r R+n qr
1 B = T SV ~I5sin?§
2n_ R R+§ r R+n qr

if =0 (Okada, 1985, singularity condition i, p. 1148), then

v:E —ﬂL—SiHS tg 1 —1I;sin* 3
R R+§ r R+n (89)

Ul
W= HL-FCOSS E"—q ! —]SSiIlZS
2n| R R+§ r R+n

Displacement Gradient (Okada, 1985, equation 38)

o 2nl R
ow_ U

5_ 2n

2 .
aw——ﬂ[m—fflncosfwKﬁinZSJ
(90)
}sin6+c7cos6q2Ac+§q2An sin5coso — 2—q;—K1 sin® &
R R+§
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Verification

Matlab solutions (function okada85.m) based on the analytical expressions by Okada (1985) for strike-slip (fig. 28), dip-slip
(fig. 29) and tensile (figs. 30 and 31) dislocations are compared to solutions from COULOMB 3.32 and numerical FEM models.

Strike-Slip Fault

Okada85 Coulomb
50 : ; ; ; ; 50 . . . . .
40 - B . . B B . . . . B . . ' ' ' ' . . . 4 40. . . . . . . . . . ' ' ' ' ' . . 4
30+ 3¢ 1
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50 n n n n n _50 n n n n n
-40 -20 0 20 40 -40 -20 0 20 40
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0.04 0.10 0.12
0.02 0.05 0.10
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© =) =
® b= I
o -0.02 005 ® 006
5 ® o
g g ©
£ -004 2 000 E om
£ E £
S oo EXPLANATION = 015 = o
Coulomb |
-0.08 -0.20 0.00
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-0.10 -0.25 -0.02
=50 0 50 50 0 50 50 0 50

X, in kilometers

Figure 28. Vector (top) and profile plots (bottom) of the displacement field of a strike-slip fault (thick red line). The profile
was taken along the green line. Okada85, Matlab script of Okada’s (1985) expressions; Coulomb, solution from COULOMB 3.3.
Fault parameters are x;= 4,000 meters, y; = 4,000 meters, x,= 25,000 meters, y,= 20,000 meters, 5 =60°, p = 1 Gigapascal,
v=10.25 U=1meter, z,=1000 meters, and z, = 10,000 meters. See table 15 for numerical examples.

3COULOMB, a free software package developed by the USGS Earthquake Hazards Program, covers many of the same deformation sources as our Matlab
codes, is based on Okada’s (1992) equations (earthquake.usgs.gov/research/modeling/coulomb/overview.php), and is widely used.
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Dip-Slip Fault

Okada8s Coulomb
50 T T ¥ T T 50 T
AOF - - -~ v v v T N
30+ NN 1 NN NN
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Figure 29. Vector (top) and profile plots (bottom) of the displacement field of a dip-slip fault (thick red line). The profile was
taken along the green line. Okada85, Matlab script of Okada’s (1985) expressions; Coulomb, solution from COULOMB 3.3.
Fault parameters are: x;= 4,000 meters, y; = 4,000 meters, x,= 25,000 meters; y,= 20,000 meters; 5 =60°; p = 1 GPa; v=10.25; U=
1 meters; z,=1,000 meters; z, = 10,000 meters. See table 16 for numerical examples.



46 Modeling Crustal Deformation near Active Faults and Volcanic Center—A Catalog of Deformation Models

Tensile Crack

Okada8b Finte Element Method numerical solution
L\\\\\\\\*'f’fff//// L\\\\\‘\‘T
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Figure 30. Vector (top) and profile plots (bottom) of the displacement field of a tensile crack (thick red line). The profile was
taken along the green line. Okada85, Matlab script of Okada’s (1985) expressions; FEM, numerical solution from FEM model.

Fault parameters are: x; = -5,000 meters; y, = 0 meters, x.= 5,000 meters; y,= 0 meters; 5 =90°;, p = 1 GPa; v=0.25; U= 1 meters;
2,=1,000 meters; z, = 6,000 meters. See table 17 for numerical examples.
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X, in kilometers

Figure 31. Profile plots showing tilt caused by a tensile crack. The profile was
taken along the green line shown in figure 30. Okada85, Matlab script of Okada’s
(1985) expressions; FEM, numerical solution from FEM model. Fault parameters:
X =-5,000 meters, y;= 0 meters, x,= 5,000 meters; y,= 0 meters; 5 =90°, y =1
GPa; v=0.25; U= 1 meters; z,=1,000 meters; z, = 6,000 meters. See table 17 for

numerical examples.
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Examples of Surface Deformation and Ground Tilt for Three Types of Faults

Table 15.  Strike-slip fault.

[Vector and profile graphs shown in figure 28. Parameters are x; = 4,000 meters, y; = 4,000 meters, X, = 25,000 meters, Y, = 20,000 meters, 3 = 60 degrees, p= 1
Gigapascal, v = 0.25, U = 1 meter, z, = 1,000 meters, z, = 10,000 meters; x and y, local coordinates; u. u, and u_, displacements at the free surface; ou, /ax
and ou, / 0y, tilt components]

X y u, u, u, du /dx du/dy

(10° meters) (10° meters) (meters) (meters) (meters) (X 105) (X 105)
-5.0000 0.0000 0.0274 -0.0141 0.0073 0.0837 -0.0250
0.0000 0.0000 -0.0132 -0.0529 0.0241 0.8793 -0.1957
5.0000 0.0000 -0.0837 -0.2261 0.1190 1.3779 2.0268

Table 16. Dip-slip fault.

[Vector and profile graphs shown in figure 29. Parameters are x; = 4,000 meters, y; = 4,000 meters, X, = 25,000 meters, y; = 20,000 meters, 3 = 60 degrees, p=
1 Gigapascal, v = 0.25, U = 1 meter, z, = 1,000 meters, z, = 10,000 meters; km, kilometers; x and y, local coordinates; u . u and u_ , displacements at the free
surface; Ou_ /c'}x and Ou, /6y , tilt components]

X y u, u, u, du,/dx du,/dy

(km) (10 km) (meters) (meters) (meters) (X10%9) (X10%)
-5.0000 0.0000 0.0035 -0.0057 -0.0126 -0.0321 -0.1479
0.0000 0.0000 -0.0269 -0.0175 -0.0025 0.7715 -0.4180
5.0000 0.0000 -0.0791 -0.0824 0.1071 3.1341 3.0545

Table 17. Tensile crack.

[Vector and profile graphs shown in figure 30; graphs of tilt profiles shown in figure 31. Parameters are x; = -5,000 meters, y, = 0 meters, xf = 5,000 meters, ;= 0
meters, 8 = 90 degrees, p= 1 Gigapascal,v = 0.25, U = | meter, z, = 1,000 meters, z, = 6,000 meters; x and y, local coordinates; u_, u, and u_, displacements at
the free surface; du_ / ox and Ou, / 0y, tilt components]

X y u, u, u, du /dx du/dy

(10% meters) (10% meters) (meters) (meters) (meters) (X 105) (X 105)
0.2010 0.2010 -0.0019 -0.0001 -0.0609 0.0128 11.4199
2.6131 2.6131 0.0159 0.2129 0.1378 -1.0750 -1.0556

5.0251 5.0251 0.0467 0.1428 0.0618 -1.2701 -1.2241
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Internal Deformation and Strain for Rectangular Dikes and Faults

The solutions proposed in Okada (1992) present a complete suite of closed analytical expressions for the internal
deformation and strain caused by a strike-slip, dip-slip, or tensile rectangular dislocation (fig. 32) in a half-space that is
homogeneous, isotropic, flat, and elastic. These expressions are particularly compact and free from mathematical singularities.

Source Geometry

The rectangular source geometry and the Cartesian coordinate system for Okada (1992) are identical to those in the coding
of Okada (1985, see section, “Surface Displacement and Tilt”; in this report, fig. 27, and equations 62—66).

Displacement

Elementary expressions for internal deformation and the displacement-gradient matrix can be written as functions of the
fault type (fault), the coordinates of each fault corner (as given by X L, and W), the depth in kilometers of the lower left corner
of the rectangular fault (c), the Lame’s elastic parameters p and 2, the dislocation U, the dip angle 3, the rotated coordinate y,,
and the depth of the point of internal deformation z.

The displacement and displacement gradient matrix are given by the superposition of four different contributions (Okada,
1992, table 6):

1. infinite medium at depth z (Okada, 1992, p. 1031) designated by A in equation 91
2. the mirror image of u, at depth —z (Okada, 1992, p. 1031) designated by A and ~ in equation 92
3. the free-surface deformation (Okada, 1992, equation 18) designated by B in equation 93

4. adepth-multiplied term (Okada, 1992, p. 1031) designated by C in equation 94

To compute the displacement, follow a four-step procedure:
1. Compute the value of the elementary displacement for each contribution at each fault corner a — d.

Combine the values computed in step 1 for each contribution.

Compute the deformation in Okada’s (1992) coordinate system (as shown in fig. 27B).

> w DN

Rotate the deformation back to the Cartesian coordinate system (fig. 27A).

OKADA92
internal deformation and strain
Y AN AN
0K92FA 0K92FB 0K92FC

infinite medium

1. general parameters
2. elementary displacement
3. displacement derivatives

free surface

1. general parameters
2. elementary displacement
3. displacement derivatives

depth multiplied term

1. general parameters
2. elementary displacement
3. displacement derivatives

Figure 32. Program flow chart for rectangular dislocations (Okada, 1992).
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Step 1—Elementary Displacement and Gradient

In the equations below, u is the displacement; j the x-derivative and k the y-derivative; and

1, 2, and 3 represent the strike-slip, dip-slip, and tensile components, respectively.
1. For an infinite medium at depth z (equations for f, are in tables 18-21, p. 58-59),

[ulA ug up it s st ki kg kf] = fu( fault, x,,0,c,u,2,U,3,y,,2)

AALAGA A A LA
U Uy Ug by Jo Js Ky kzksb

[ ] = fA(faU|t,Xp,W,C,u,k,U,6, yp,z>
[ulA up udt it is is ke kg k ] = fu( fault,x, -L,0,c,u,,U,3,y,,2)
[ A

C

uf ug ug i i i kK kG| = fa(fault,x, —LW,c,12,U.8,y,,7)

o

2. For an infinite medium at depth —z (equations for f, are in tables 18-21, p. 58-59),

o ol 00 IR B R R R,

[ fa( fault, x,,0,c,u,1,U,8,y,,-2)
[af ap a8 32 3 3 KA RS ks]

[ o

[

(
= fa
(
(

= 1, ( fault,x, —LW,c,u,,U,8,y,,~2)

l

X fault,xp,W,c,p,?»,U,S,yp,—Z)

2

iUl falToll Fal el Yol
A A AT A

= t,(fault,x, ~L.0,c,.1,U.8,y,,~2)

o

SA o~
a
1 d

3. The free-surface deformation (equations for fg are in tables 22-25, p. 60-61)

[ uf uf iP5 35 KKK |

[U up U3 it Bz 05 ke kg kg

fg fault,xp,O,C,u,K,U,S,ypl)

. fg fault,xp,W,c,u,k,U,S,yp,Z)

(
J, = fal

[ulB ug ud P 7 is k° kg ks] = fB(fault,xp—L,O,c,u,k,U,S,yp,z)
(

(0P ug ud P 35 35 K kg K3 ]

o

) fg fault,xp—L,W,C,M,K,U,S,yplz)

4. The depth-multiplied term (equations for f. are in tables 26-29, p. 62—-64)

[ulc ug us i is is k< ks kgc] fe (fault,x,,0,¢,u,1,U,8,y,,2)
U Uz U3 iz 05 K kg ksc] = fc
[uf uz° u§ J7 5 05 K kS KS ]

[ fault, x, W, c,u,1,U,3,y,,2)
[uf uf oS JF 35 05 KT K K

(
i fe (fault,x, —L,0,¢,p,2,U,8,y,,2)
= fc (fault,x, - L,W,c,1,1,U,3,y,,2)

C2))

92)

(93)

(94)
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Step 2—Combination of Values

1.

Step 3—Computation of Deformation in Okada’s Coordinate System (1992)

Step 4—Rotate Deformation Back to Cartesian Coordinate System

For, U,, an infinite medium at depth z,

For, | the free-surface deformation,
uf =[u? ], =[u? ], [ ] +[vf],
ug =[v? ], -[u2 ), -[v? ] +[ef ],
ug =[ug |, -[ug ], -[ug ] +[f],
For, U, the depth-multiplied term,

Ul =uf-at+uf +z-uf

p_ (A _A B C A <A B C\ei
Uy —(u2 —Uy +Uy +Z-Uy )0056—(u3 —U3 +Uz +2Z-U3 )smSl

uf :(u9—6§+u§ —z~u2°)sin6+(u3’*—a3’*+u3B —z-ug)coséi

U, =sin¢-U," —cos¢-U
u, =sin¢-UJ +cos¢-U, -
u, =U}

(95)

(96)

)

(98)

99)

(100)

51



52 Modeling Crustal Deformation near Active Faults and Volcanic Centers—A Catalog of Deformation Models

Displacement-Gradient Matrix

To compute the displacement-gradient matrix, follow a procedure similar to the one
described in the previous section (equations 95-98).

Combination of Values for X-Derivatives

These equations are based Okada’s equations (1992, table 7).
For, J 4, an infinite medium at depth z

- :|c +|:J2A:|d . (101)
A
3

Pyt
>
1l
| —
=
>
L1
QO
|
| —
=
>
[
o
|
—
=
L1
o
—
_
>
L1
o

it =[] 3] ][] .

For, Jg, the free-surface deformation,

=[], [, [
i =[is ] -[i5 ] -[if
g -Lis

=[], L] [
For, Jjc, the depth-multiplied term,

ir=[if] - I
ig =[5 ] -3
C C C
3 3 3

=[j

B
1
-ZBL . (103)
B
3

C

1

iClo 104

], (104)
j 5

Combination of Values for Y-Derivatives (Okada 1992, table 8)

For, k,, an infinite medium at depth z,

]d . (105)



For, %,
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, an infinite medium at depth —z (mirror image),

2 [, (2] %
ip=[kp] -[RA] [Re] +[k
RsA:[@Ja_[ 3A]b_[~3A]c+[lzsA}d

]

For, kj, the free-surface deformation,

kP =[] [k ] [k [k ],
€ =[] —[kzz . —[kz: .

¢ =[] [x

For, k.. the depth-multiplied term,

€ =[] -], [k [k,
§ =[ks ] [k
€ =[], [k

®o No
| E—
o
|
=
®o NO

Computation of X and Y Derivatives

aup,

OX

ouUp,

OX

oup,

OX

Rotation of the Displacement-Gradient Matrix Back to Cartesian Coordinate System

u
ox

ou

oy
v
o
v
oy

=(k2A—IZ§+kZB+z~kZC)cos

:le_ilA+le+Z‘j1(:

=(i7 - 05+ ig +2- 5 )eos

(J'zA—izAJFJ'zB—Z'jg)Sin5+(j3A—T3A+j33—z-j3c)0038

=k{* —k* + k2 +2 -k

= (k' kg k5 =2k Jsind + (I kg +kg’ —2-k§ ) cosd

ou ouU
O i - (9P TPy i gcos g+ Y cos? ¢
OX oy X
ou ouU
s i ¢+ (PP~ TPy in pos - - cos?
ox ay 8x
aUpX 6Upy i px
— sin ¢cos ¢ ——=*cos?
ax n? ¢+ (X 6y )sin¢cos— ¢
ouU
PPy Gin2 gt (8pr py)sm¢cos¢+ px cos” ¢
oy o X

8—(if - 38+ +2-i§ )siné

8- (kg — k3" + k3 +2-K§ Jsind -

(106)

(107)

(108)

(109)

(110)

(111)
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Strain

The three strain components that describe the horizontal strain tensor are the areal strain
€5, and Y1 and Y2 shear strains:

g, = 0.001(8)“ + syy)
7 =0.001(g, —¢, ) (112)
¥, =0.001-2¢,,

where

ou ov _ l[@u 6\/} (113)

€y=—, &, =—and &, ,=¢,=—| —+—
ool Y T 2 oy ox

The components of the displacement-gradient tensor are given in equation 111. The scale
0.001 in equation 112 takes into account that, in Okada (1992), coordinates are in kilometers
and displacements in meters.

General Parameters

The parameters and variables listed below are the same for /4, /5 and fc. They are listed
in the order in which they would be coded:

Okada (1992, table 6)
A+p 11 I-a
o= :——’ 1:_
A+2u 21-v a
p=Yy,c080+dsind gq=y,sind—dcosd
n=p-w (114)

RP=€24n+q?
y=mcosd+¢gsind, c?znsinﬁ—qcosfi
d=c-z, é=d+ z

where & and m are dummy integration variables used the first time in equations 68; their lower
and limits are defined in equations 91-94. For example, f, = £ (fault, & n.c, u,?»,U,S,yp,z) .

Okada (1992, equation 14; subscripts from tables 6-8)

v 1 _ 2R+E _ 8R® +9RE +3E?
"UR(R+E) TP R®+E? Y R(R+E)
v | y.__ 2R+n o 8R*+9Rn+3y’
11— ’ 327 3 P 53— 5 3
R(R+n) R*(R+m) R*(R+m) (115)
h=gqgcosd—z
sin & 3sind

Z3 :F_hYsz’ Zsy :T_hyﬁ

2 2
¥ :Yll_é Y, Z, :Z32_§ Zsy
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Okada (1992, footnote, table 6)

Fy =0,
¢ = |q| <0,
¢, =|g| >0 and (116)
O=cF)+c, tan™' [E’—n],
qR
where
q is a vector;
R is a vector of zeros the same size of q ;

¢ and c, are logical vectors (a logical vector is equal to 1 if a logical
condition is satisfied and is equal to 0 otherwise).

Singularity Condition iii (Okada,1992, p. 1034)

Fy=0
o =|R+E<0
C, =|R+§|>0
1
Ré :chO +C2R—+EJ
InR, =—¢,In(R-&)+c, In(R+E);

, (117)

where F, is a dummy vector of zeros the same size as R+¢&, and ¢; and ¢, are dummy logical
vectors.

Singularity Condition iv (Okada,1992, p. 1034)

Fy=0
o= |R+n<0
¢, = |[R+m[>0 (118)
1
RT] = CIFO +02R—+n
InR, = —¢In(R-m)+c, In(R+n);

where F, is a dummy vector of zeros the same size as R+n, and ¢, and ¢, are dummy logical
vectors.
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| Parameters (Okada, 1992, footnote, table 6)
Singularity Condition ii (Okada,1992, p. 1034)

Fy=0
o =[gl<0 (119)
e, =[€[>0

X=\/§2+q2

where F, is a dummy vector of zeros the same size of R+n, and ¢; and ¢, are dummy logical
vectors.

1 y 1 . ~
I, = —— In(R —sindIn(R+d
3 cosS R+d cos> 6[ n( +n) sinoln(R + )J

sind & N 2 tan”! N(X +gcosd)+ X(R+ X)sind
cosd R+d  cos> E(R+ X)cosd ; (120)

1, =k +cz{

Il =- 5 =cosd — I,sind
R+d

1, :log(R+c;') + I3sind

if cosd =0, then

I =05 -+ n(Ren)
frd (r+d) . (121)
&

Iy =cFy+cy-0.5 (R_,_j)

2

J and K Parameters (Okada, 1992, footnote, table 7)

1
R(R+c?)

-2

Sy
Jo=—|ld+-2—|D
> ( R+a’] H

Dy, =

(122)




if cosd=0,

Internal Deformation and Strain for Rectangular Dikes and Faults

Dy; —Y;;8ind
k=8 coss

_ QY- Y0y
3 cosd , (123)
3= Ki—=J,sind

({01 )

K; —Jssind
C0so

6

J; =J5C088—-J,sind
Jy =—€Y,, —J, 088+ J55ind

) : (124)
K2=E+K3sin6
K, =&Y, cosd—-K;sind
Kl—éqle
R+d
2 % _
K3=sin6‘:' chd
R+d
2
D,, 0.5 .
3= 9 u=03 -
(R+d)
] _E2Dy, - 0.5
6= 2
(R+d)
z sin6_y_q
R R
F=—+&%,sind
G= 2~X”sin6—)7qX32 (126)
H = dqX;, +&qY;, sind
cosd

P=?+q)’32$in5

Q=3;—6§—(2Y32 +Z3, +Z)sind
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Function /. (Infinite Medium)

Table 18.  Strike-slip fault (internal deformation and strain; function fa)

[Okada (1992), type strike—for displacement, see table 6; for X-derivative, see table 7, and
for Y-derivative, see table 8]

Displacement

uft 0.5(0+akqY;)

uz 0.5a.q/R

uz 0.5(1-a)In(R+1)-0.500%Y;
X-derivative

Ji ~0.5(1-a)q¥;, —0.507q¥;,

iz ~0.50£q/R

I 0.5(1= )Yy +0.5080%Ys
Y-derivative

Kk 0.5(1- o) &Yy, sin&+0.50X,, +0.50EF

% 0.5aE

ks' 0.5(1-0a)(cos8/R+ qYy;sind) —0.500F

Table 19. Dip-slip fault (internal deformation and strain; function S )

[Okada (1992), type dip—for displacement, see table 6; for X-derivative, see table 7, and
for Y-derivative, see table 8]

Displacement

ul 0.50.0/R

u? 0.50+0.5anqX;;

usy' 0.5(1-a)In(R+&)-0.50¢> X,
X-derivative

le —0.50L§q/R3

Js ~0.5¢Y;, —0.5anq/R’

ji 0.5(1-a)/R+0.504 /R?
Y-derivative

i 0.50E

ks 0.5(1-a)dX,; +0.58Y;; sin8+0.5amG

k3! 0.5(1-a) X, —0.509G
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Table 20. Tensile crack (internal deformation and strain; function S )

[Okada (1992), type tensile—for displacement, see table 6; for X-derivative, see table 7, and
for Y-derivative, see table 8]

Displacement

ui! -0.5(1-a)In(R+n)-0.50¢"Y;,

uj -0.5(1-a)In(R+&)-0.504" X},

s 0.50-0.50q (NXqy +EYy;)
X-derivative

P -0.5(1-a)&Y;, +0.508¢° Vs,

J3 ~0.5(1-a)/R+0.50.¢> /R’

Js ~0.5(1-a)q¥;, —0.504°Y;,
Y-derivative

ki -0.5(1-a)(cosd/R+ q¥], sind)—0.5agF |

Iy ~0.5(1-a) yXy4 —0.509G

k! 0.5(1-a)(dXy, +EY, sin8)+0.5agH

Table 21. Scaling used to compute the
dimensional displacement (function /).

[Okada (1992), i=1: strike-slip; i=2: dip-slip; i=3: tensile
e—for displacement, see table 6; for X-derivative, see
table 7, and for Y-derivative, see table 8]

Displacement (Okada, 1992; Table 6)

ui' (0.5U; /m)u"

uz (0.5U; /m)us'

uz (0.5U; /m)us
X-Derivative (Okada, 1992; Table 7)

J'1A (O'SUi/n)le

]54 (O'SUi/n)]éA

Ji (0.5U;/m) 3
Y-Derivative (Okada, 1992; Table 8)

kit (0.5U, /m) k"

k' (0.5U, /m) ks

k! (0.5U; /n)k5'
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Function /5 (Free Surface Deformation)
Table 22.  Strike-slip fault (internal deformation and strain; function S5 ).

[Okada (1992), type strike—for displacement, see table 6; for X-derivative, see table 7,
and for Y-derivative, see table 8]

Displacement
up —Eg1, —O—a,/;sind
ub —q/R+oc1)75in6/(R+c;’)
up ¢*Yy —oyl,sin

X-derivative

i %2‘])]32 —a,J; sind
jf c"q/R3 —a,J,sind
Js ~£¢° Yy, — a3 sind
Y-derivative
it —&F —dX,, +ay (Y, +J, )sind
ky ~E+oy (YR+J5)sind
o4 qF —o, (aY;; —Jg)sind

Table 23. Dip-slip fault (internal deformation and strain; function /5 ).

[Okada (1992), type dip—for displacement, see table 6; for X-derivative, see table 7, and for
Y-derivative, see table 8]

Displacement

T -q/R+((1-a)/a)lssin3cosd
uy —ann—@—((l—oc)/oc)(é/(R+&))5in60056
us 9’ X, +((1-a)/a) 1, sindcosd
X-derivative
i £q/R%+a,J,sin5cosd
iz na/R%+qY,, +a,Jssin5cosd
is ~g?/R® + I, 5in5c0s &
Y-derivative
le —E+0a,J;sin3c0sd
sz NG —-E&Y;;sina+o0yJ,Sindcosd

k3B qG+0,J5s8in5c0sd
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Table 24. Tensile crack (internal deformation and strain; function S5 ).

[Okada (1992), type tensile—for displacement, see table 6; for X-derivative, see table 7,
and for Y-derivative, see table 8]

Displacement

ul ¢*Y,, —oylysin &

up q’ X, +a, (&/(R+dtilde))sin® &

ug C](ﬂX11+E.;Y11)_®—°L1[4Sin25
X-derivative

i ~8¢° Yy — oy Jysin’ 8

jf —qz/R3—oc]J5 sin’ &

Js 'Yy — 0y Jgsin’ 8
Y-derivative

ik qF —a,J, sin” &

kf qG—a,J, sin® &

kP —qH —o,J;sin” &

Table 25. Scaling (internal deformation and
strain; function /5)

[Okada (1992), i=1: strike-slip; i=2: dip-slip; i=3: tensile
e—for displacement, see table 6; for X-derivative, see
table 7, and for Y-derivative, see table 8]

Displacement

ul (0.5U; /m)ul

ul (0.5U; /m)us

up (0.5U;/m)uy
X-derivative

Jt (05U, /m) ji

iz (05U, /m) jy

i (05U;/m) j3
Y-derivative

kE (0.5U; /n)k!

ky (0.5U,/m)ky

ky (0.5U,/m)ky
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Function /c (Depth Multiplied Term)

Table 26. Strike-slip fault (internal deformation and strain; function fe ).

[Okada (1992), type strike—for displacement, see table 6; for X-derivative, see table 7, and for Y-derivative, see table 8]

Displacement

u€ (I-a)&Y; cosd—akgZs,
u§ (1-a)(cos8/R+2qY, sind) - aiq/ R
ug (1—0L)qY110056—0L(En/R3—ZY11+§2Z32)
X-derivative
i€ (I-a)Y, cos8—agZ,
s —(1 —a)&(cos 8/ R® +2qY;, sin 5)+0ﬂ35§ g/ R’
s —(1-a)&gqYs, cosS+a§(35n/R5—ZY32—232_ZO)
Y-derivative
kE —(1-a)&Pcosd—atQ
kS 2(1-0t)(dR’ ~ Yy sind)sin& - Feos8/R* ~ai| (¢+d)sind/R* ~n/R’ ~337 /R’ |

ks —(l—oc)q/R3 +()7/R3 -Y, cos6)sin6+a[(5+3)cos§/R3 /+3¢d q/R® — (Y, cos8+qZO)sin6}
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Table 27. Dip-slip fault (internal deformation and strain; function Jec ).

[Okada (1992), type dip—for displacement, see table 6; for X-derivative, see table 7, and for Y-derivative, see

table 8]
Displacement
u (1-a)cosd/R—qY;, sind—aéq/R’
U (1_(1)_)7)(11 _aganSZ
us ~dX, ~EY) sind - aé (X, —¢" X, )
X-derivative
i —(1—a)§c0s8/R3+§qY32 sind+a3étq/ R’
s ~(1-a)7/R® +a3éng/R®
Js c?/R3—Y(,sin6+a5(1—3q2/R2)/R3
Y-derivative
ke ~(1-0)n/R® + ¥y sin 8- af (¢-+d)sin&/ R* ~32p4/ R’ |
ks (1-0)(Xyy = 52X, )-8 [ (@ +2c058) X, — g X, |
k< EPsin &+ FdX s, +a5[( §+2gsind) X;, - j/quSJ
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Table 28. Tensile crack (internal deformation and strain; function Jc ).

[Okada (1992), type tensile—for displacement, see table 6; for X-derivative, see table 7, and for Y-derivative, see table §]

Displacement
u —(1-a)(sin8/R+q¥;, cosS)—oc(zY11 —qu32)
s (1-0) 28 ¥ sin +dX,, —aé (X, - ¢’ Xy, )
ug (1-0)(3X,, +EY;  c0sd) +ag(nXs, +EZ3,)
X-derivative
i (1—a)§sin6/R3 +EqYs, cos8+om(35n/R5 27, —ZO)
Js (l—a)2Y0sin6—c7/R3+a5(1—3q2/R2)/R3
Js —(1—0()(5//R3—Yocosé)—a<35nq/R5—qu)
Y-derivative
k¢ (I—OL)(q/R3 +Y, sin80058)+0c(zc0s8/R3 +32dq/R® —qZ, sin6)
ky —(1-)2EPsin — X, +a5[(07+2qsin8))(32 - }qZXSJ
ks —(1—0()(EJPcos8—X11 +)72X32>+a5[(5’+2q0058)X32 —}an53]+a§Q

Table 29. Scaling (internal deformation and strain; function Je ).

[Okada (1992), i=1: strike-slip; i=2: dip-slip; i=3 tensile e—for displacement,
see table 6; for X-derivative, see table 7, and for Y-derivative, see table 8]

Displacement

ut (0.5U; /n)uf

us (0.5U; /r)us

ug (0.5U; /r)us
X-derivative

i (05U, /m) ji

Jz (05U, /m) j5

Js (05U, /m) j5
Y-derivative

ke (0.5U; /m)k’

ks (0.5U; /m)ks

ks (0.5U; /m)ks
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Verification and Examples

Strike-Slip Fault (see fig. 33 and table 30)
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Figure 33. Vector (top) and profile plots showing displacement field (center) and strain (bottom) caused by a strike-slip fault
(thick red line). The profile was taken at a depth of 1 kilometer along the magenta line (top). The difference between the Okada92
solution for Y2 and that from COULOMB 3.3 is due to an error in COULOMB 3.3 (R. Stein, U.S. Geological Survey, oral commun.).
Okada92, Matlab script of Okada’s (1992) expressions; Coulomb 3.3, solution from COULOMB 3.3; FEM, numerical solution from a
finite element method numerical model; numerical, strain from finite-difference derivatives (appendix 1). Fault parameters are x,= 0
meters, y;= 0 meters, x,= 3,000 meters, y,=0 meters, 6 =90°, u =1 Gigapascals, v =0.25, U= 1 meter, z,=2,000 meters, and z, =
4,000 meters. See table 30 for numerical example.
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Table 30. Internal deformation and strain around a strike-slip fault.

[See also figure 33. Parameters are x, = 0 meters, y; = 0 meters, X, = 3,000 meters; y,= 0 meters; z, = 2,000 meters; z, = 4,000 meters; X, y and z, local Cartesian
coordinates; #,. #, and u_, internal deformation; €,. v, and 75, strain; pstrain , a strain expressed in terms of parts per million]

X y z u, u, u, £, 7 72
(kilometers) (kilometers) (kilometers) (meters) (meters) (meters) (pstrain) (pstrain) (pstrain)
-5.0000 -5.0000 -1.0000 0.0103 0.0092 -0.0014 1.6162 1.1973 2.9945
-1.0000 0.0000 -1.0000 -0.0000 0.0186 -0.0000 0.0000 0.0000 -27.5646
3.0000 -1.0000 -1.0000 0.0283 -0.0259 0.0230 2.1363 -5.9239 -14.7870

7.0000 5.0000 -1.0000 -0.0116 -0.0113 -0.0023 1.9409 0.3598 3.8515
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Dip-Slip Fault (see fig. 34 and table 31)
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Figure 34. Vector (top) and profile plots of the displacement field (center) and strain (bottom) caused by a dip-slip fault (thick
red line). The profile was taken at a depth of 1 kilometer along the magenta line (top). The difference between the Okada92
solution for Y2 and that from COULOMB 3.3 is due to a error in COULOMB 3.3 (R. Stein, U.S. Geological Survey, oral commun.).
Okada92, Matlab script of Okada’s (1992) expressions; Coulomb 3.3, solution from COULOMB 3.3; FEM, numerical solution from
FEM model; numerical, strain from finite-difference derivatives (appendix 1). Fault parameters: x, = 0 meters, y, = 0 meters,
x; = 3,000 meters; y; = 0 meters; § =90°; u=1GPa; v =0.25; U= 1meters; z =2,000 meters; z, = 4,000 meters.
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Table 31. Internal deformation and strain around a dip-slip fault.

[See figure 34. Parameters are X; = 0 meters, y; = 0 meters, X; = 3,000 meters; y, = 0 meters; 8 =90° u= 1 GPa; v=0.25; U = | meters; 2,=2,000 meters; z, =
4,000 meters; X, y and z, local Cartesian coordinates; u_, u, and u_, internal deformation; €. y, and ¥, strain; pstrain , a strain expressed in terms of parts per

million]
X y z u, u, u, ca 7 7,
(kilometers) (kilometers) (kilometers ) (meters) (meters) (meters) (nstrain) (pstrain) (pstrain)
-5.0000 -5.0000 -1.0000 0.0041 -0.0038 0.0024 -0.7843 -1.0461 -1.9073
-1.0000 0.0000 -1.0000 0.0000 -0.0195 0.0000 -0.0000 0.0000 5.9463
3.0000 -1.0000 -1.0000 0.0177 -0.0486 0.0653 5.7981 0.4789 26.5485
7.0000 5.0000 -1.0000 0.0051 -0.0056 -0.0036 1.0556 0.8267 2.9135
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Tensile Crack (see fig. 35 and table 32)
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Figure 35. Vector (top) and profile plots of the displacement field (center) and strain (bottom) caused by a tensile crack
(thick red line). The profile was taken at a depth of 1 kilometer along the magenta line (top). The difference between the
Okada92 solution for Y; and that from COULOMB 3.3 is due to a error in COULOMB 3.3 (R. Stein, U.S. Geological Survey, oral
commun.). Okada92, Matlab script of Okada's (1992) expressions; Coulomb 3.3, solution from COULOMB 3.3; FEM, numerical
solution from FEM model; numerical, strain from finite-difference derivatives (appendix 1). Fault parameters: x, = 0 meters,
¥, = 0 meters, x,= 3,000 meters; y,= 0 meters; 5=90° p =1 GPa;v=025U=1m; 2,=2,000 meters; z, = 4,000 meters.
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Table 32.

Internal deformation and strain around a tensile crack.

[See figure 35. Parameters are x; = 0 meters, y; = 0 meters, X, = 3,000 meters; y; = 0 meters; =90°; p=1 Gigapascal;
v=0.25, U=1 meter, z=2,000 meters; z, = 4,000 meters. X, y and z, local Cartesian coordinates; u_, u, and u_, internal
deformation; €. y, and v,, strain; ustrain , a strain expressed in terms of parts per million]

X y z u, u, u, ca 7 7,
(kilometers) (kilometers) (kilometers) (meters) (meters) (meters) (pstrain) (pstrain) (pstrain)
-5.0000 -5.0000 -1.0000 -0.0041  -0.0079 0.0041 -0.0138 -2.6669 -1.9129
-1.0000 0.0000 -1.0000 0.0152 -0.0000 -0.0058 14.8157 -7.2473 -0.0000
3.0000 -1.0000 -1.0000 -0.0013  -0.0296 0.0141 27.4109 -32.0105 2.6374
7.0000 5.0000 -1.0000 0.0056  0.0114 0.0055 -0.2245  -2.9155 -3.4452
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Discretized Faults

Inverse modeling of surface-displacement measurements is required to estimate spatial slip variations along the faults
that ruptured in an earthquake. Appropriate analytical solutions can relate surface displacements to offsets across many small
rectangular dislocations (referred to as segments, subsegments, and tiles* in the model; see fig. 36) that may or may not slip in a
halfspace that is homogeneous, isotropic, flat, and elastic.
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=
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Figure 36. Representation of the fault geometry by segments, subsegments, and tiles. The fault above has 5 segments, 13
subsegments and 78 tiles. The fault is identified by its initial (xi,yi,z,) and final (xf,yf,zt) coordinates; z,, depth of the
top edge of the fault.

“Tiles may also be called patches in the literature.
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The chart below (fig. 37) describes the process for coding a discretized fault.

FAULT
define fault geometry; use matrix of tiles from PATCHES and OKADA Green's function to
compute displacement, tilt, and strain

I

OKADA
compute the Green's function
N

PATCHES
approximate a fault by a matrix of rectangular tiles

N

SEGMENTS
divide a fault into segments,
and each segment into several subsegment

Figure 37. The Matlab script for coding a discretized fault includes four major steps: (1) the
function SEGMENTS divides a fault into several rectangular dislocations (segments and
subsegments); (2) each segment/subsegment is divided into several tiles by the function
PATCHES, approximating the fault with a matrix of tiles; (3) the function FAULT uses the function
OKADA to compute the displacement of each tile, and then (4) add the displacements of all of
the tiles to compute the crustal deformation caused by the slip along the fault.



Discretized Faults

Fault Segments and Subsegments

Estimating the location, size, dip, orientation, and slip across multiple rectangular
dislocations that may or may not slip is a numerically challenging task given the number of
data points and the number of parameters required to estimate these dislocations. Information
from the mapped fault trace can be used to constrain several parameters of the fault geometry,
including the number of segments that could reasonably represent the fault trace at the surface:

N . 2 . 2
L:z\/(x;—x,{)) (v -2 (127)
n=1
and
N = length of fault trace , (128)
width of segment
where

L is the length of the fault trace,
(x> ¥,) and
CARTA are the initial and final points of the segment,
n  isindex of the n segment,
N is the number of segments, and
f 1 is the ceiling function (fig. 36). The (X, y) coordinates of points of the grid
along the upper edge of each subsegment (figs. 36 and 38) are defined by

_ foi
Xx =Xy +(0:1: S)M
(o (129)
i} XX—X
¥y = Yo +(¥n = vh )2
Xn — Xy
where S is the total number of subsegments, and each subsegment’s initial and final point
Xt =xx(1:9), ye=yy(1:8) (130)

X, =xx(2:S+1), yi =yy(2:5+1)

3
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Figure 38. Segment, subsegment and tile geometry. ( x’ y , horizontal coordinates for the left corner of segments,
subsegments, or tiles; x/ ,y . horizontal coordinates for the right corner segments, subsegments, or tiles; z, , depth of
the top edge of segments, subsegments ortiles; z, , depth of the bottom edge of segments, subsegments, or tiles; n, sor p,
subindex for segments, subsegments, or tiles.
Tiles
Each subsegment (figs. 36 and 38) can be divided into several tiles following the steps described below. First, define three
parameters:
1. the subsegment at the initial (lower left) corner

xézxi+( zé)cotScoscl)

b
Vo =y - (f zé)cotéisinq),

(131)
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2. the subsegment at the final (lower right) corner

x] = f+(zf—z§)cot5cos¢,and (132)
y({ =ysf—(z;’—z;)cot851n¢

3. the number of tiles P for each subsegment (the symbol F ] is the ceiling function)

_ Irhelght of subsegment-‘ ' (133)

height of tile

Then, compute the coordinates of the grid of tiles at the initial (left) and final (right) side of
each segment by using the formulas below:

1. grid along the depth
zz:zé-i-(O:l:P)(zf—zé)/P’ (134)

2. grid along the left side of the segment

xxi=x6+( xé,)( —zf)/(zé—zf) and (135)

wi = v+ (= ab)(z2=20) /(- 20)

3. grid along the right side of the segment

XX; = X} +(xsf -x )(zz—z?)/(zg—zg). (136)
wr =4 +(vd —vg )(z2-

—_—
N
0w o
-
—_—
N
w o~
|
N
0w o
—_—

Finally, we define the tile at the top left corner (initial point), the tile at the top right corner
(final point), and the tiles at the top and bottom as

'p =xx (1:P) yp yy; (1:P) - (137)
Xg =xx¢ (1:P) y, =yy; (1:P)
tp_zz(l P) zgzzz(Z:P+1)

Verification of the Discretized Fault Model

We approximate a fault by a matrix of rectangular tiles. The model computes the
deformation of a single tile by using Green’s function for a rectangular dislocation (Okada,
1985, 1992) and then adds the contributions to calculate the total deformation (see tables 33, 34
and 35 for numerical examples). We compared our Matlab coding of the analytical expressions
for discretized strike-slip faults (fig. 39), dip-slip faults (fig. 40), and tensile cracks (fig. 41)
faults against solutions from COULOMB 3.3.

15
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Figure 39. Fault geometry and vector plot (top row) and profile plots (bottom row) of the surface displacement caused by a right-
lateral strike-slip fault (thick red line). The profile is along the magenta line (top row, right). Top rov—Qkada85, Matlab script of Okada’s
(1985) expressions; COULOMB, solution from COULOMB 3.3. Bottom row—"Discretized fault” labels the solution obtained by applying
the Okada (1985) equations to a fault composed of 144 tiles (top row, left). “Single fault” labels the solution from COULOMB 3.3 for a
fault divided into five segments, each of which exhibited uniform slip. See table 33 for numerical example.

Table 33.

Parameters for strike-slip fault segments.

[Parameters given here are for right-lateral strike-slip fault segments. See figure 39. X, ¥;, X, and y;, coordinates of the initial and final positions along the top
edges of the fault segments; U, final right-lateral dislocation of segment; z, and z,, coordinates of the top and bottom of the segment]

X; ¥; X; ¥ A Dip angle z, z,
Segment Lo Lo . . . .
(kilometers) (kilometers) (kilometers) (kilometers) (meters) (degrees) (kilometers)  (kilometers)
1 5 6 9 8 1 85 2 10
2 9 8 11 13 0.5 90 2 10
3 11 13 15 16 1.5 75 2 10
4 15 16 18 18 0.5 80 2 10
5 18 18 21 20 0.75 70 2 10
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Fault geometry and vector plot (top row) and profile plots (bottom row) of the surface displacement caused by a reverse

dip-slip fault. The profile is along the magenta line (top row, right). Top row—OQkada85, Matlab script of Okada’s (1985) expressions;
COULOMB, solution from COULOMB 3.3. Bottom row—"Discretized fault” labels the solution obtained by applying the Okada (1985)
equations to a fault composed of 78 tiles (top row, left). “Single fault” labels the solution from COULOMB 3.3 for a fault divided into five
segments, each of which exhibited uniform slip. See table 34 for numerical example.

Table 34. Parameters for dip-slip fault segments.

[Parameters given are for reverse dip-slip fault segments. See figure 40. X;, ;, X, and y,, coordinates of the initial and final positions along the top edges of the
fault segments; U,, final reverse dislocation of segment; z, and z,, coordinates of the top and bottom of the segment.

X; ¥; X; ¥ U, Dip angle z, z,
Segment Lo Lo . . . .
(kilometers) (kilometers) (kilometers) (kilometers) (meters) (degrees) (kilometers)  (kilometers)

1 5 6 9 8 1 85 2 10
2 9 8 11 13 0.1 90 2 10
3 11 13 15 16 0.7 75 2 10
4 15 16 18 18 0.5 80 2 10
5 18 18 21 20 1.5 70 2 10

