
NREL is a national laboratory of the U.S. Department of Energy, Office of Energy
Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Contract No. DE-AC36-08GO28308

Scripted Building Energy
Modeling and Analysis
Preprint
Elaine Hale, Daniel Macumber, Kyle Benne,
and David Goldwasser
Presented at IBPSA-USA SimBuild 2012
Madison, Wisconsin
August 1-3, 2012

Conference Paper
NREL/CP-5500-54774
August 2012

NOTICE

The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC
(Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US
Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of
this contribution, or allow others to do so, for US Government purposes.

This report was prepared as an account of work sponsored by an agency of the United States government.
Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.

Available electronically at http://www.osti.gov/bridge

Available for a processing fee to U.S. Department of Energy
and its contractors, in paper, from:

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: 865.576.8401
fax: 865.576.5728
email: mailto:reports@adonis.osti.gov

Available for sale to the public, in paper, from:

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
phone: 800.553.6847
fax: 703.605.6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/ordermethods.aspx

Cover Photos: (left to right) PIX 16416, PIX 17423, PIX 16560, PIX 17613, PIX 17436, PIX 17721

 Printed on paper containing at least 50% wastepaper, including 10% post consumer waste.

http://www.osti.gov/bridge�
mailto:reports@adonis.osti.gov�
mailto:orders@ntis.fedworld.gov�
http://www.ntis.gov/help/ordermethods.aspx�

1

SCRIPTED BUILDING ENERGY MODELING AND ANALYSIS

Elaine Hale (elaine.hale@nrel.gov), Daniel Macumber (daniel.macumber@nrel.gov),
Kyle Benne (kyle.benne@nrel.gov), and David Goldwasser (david.goldwasser@nrel.gov)

National Renewable Energy Laboratory, Golden, CO

Building energy modeling and analysis is currently a
time-intensive, error-prone, and nonreproducible
process. From mundane file management tasks, to
repeated entry of model parameters, to the application
of often-used design transformations, to the execution
of large-scale analyses, workflow automation via user-
defined scripts has the potential to reduce costs and
improve the quality of energy modeling. Many
sophisticated building energy modelers already know
this and regularly create various scripts to automate
portions of their workflows; however, each practitioner
must create custom solutions from scratch, which lead
to new inefficiencies and potential errors. This paper
describes the scripting platform of the OpenStudio tool
suite (

ABSTRACT

http://openstudio.nrel.gov) and demonstrates its
use in several contexts.
Two classes of scripts are described and demonstrated:
measures and free-form scripts. Measures are small,
single-purpose scripts that conform to a predefined
interface. Because measures are fairly simple, they can
be written or modified by inexperienced programmers.
Because measures have a known interface, they can be
shared among users and selected for use at several
places in the OpenStudio tool chain. We demonstrate
the use of measures in an interactive mode from the
OpenStudio SketchUp plug-in and in a noninteractive
mode from the OpenStudio application. More
experienced users can design and write free-form
scripts to automate their work. We demonstrate the
advantages of conducting large-scale analysis using
free-form scripts through a case study. Finally, a vision
for future work in which measures are shared through
online libraries is described.

The state of the art in building energy modeling and
simulation requires the coordinated use of graphical
user interfaces (GUIs), spreadsheets, and text editors.
Most users prefer to use GUIs when the interface meets
their needs. A GUI application may not, however,
provide all the functionalities a user needs to modify

input data, present output data, and create and compare
multiple related models for a particular project. A GUI
tool may also make it easy to execute a particular task
once and in one place, but not provide a good workflow
for repeating that task across a wider range of situations
or systems. When a GUI comes up short in one or more
of these areas, the user is forced to perform some
manual steps in a spreadsheet or with the command
line, which often takes additional time, introduces
transcription errors, and results in a nonreproducible
process.

INTRODUCTION

Expert users may cobble together their own sets of tools
for generating models, running simulations, and
tracking results for many building energy simulations.
This involves writing code for interacting with the
simulation engine’s inputs and outputs, invoking the
simulation engine, and comparing results from multiple
models. Most practitioners choose to implement such
solutions using an interpreted scripting language (e.g.,
batch files, Python scripts, Ruby scripts, or MATLAB
scripts) rather than a compiled language (e.g., C, C++,
C#, or Fortran). This preference is attributable to the
ease of use and rapid development/test cycles of
interpreted languages. Furthermore, interpreted scripts
can be deployed to multiple platforms without having to
build a new package for each type of system. One
disadvantage of scripting languages, however, is that
there is no compile step to catch argument type
mismatches and other common problems that can lead
to runtime failures.
Such homegrown systems, which often involve a
combination of manual and automated steps, certainly
provide time savings, reduce errors, and improve
reproducibility for the individual investigator. These
custom solutions do, however, trade the manual
transcription errors for the unavoidable syntatic and
semantic errors of computer programming (bugs),
especially for code that is not thoroughly tested. The
proliferation of homegrown systems also wastes effort
across the building energy simulation community, as
opportunities for code reuse are lost.
Several software systems aim to fill this niche by better
empowering building energy modelers and researchers

mailto:elaine.hale@nrel.gov�
mailto:daniel.macumber@nrel.gov�
mailto:kyle.benne@nrel.gov�
mailto:david.goldwasser@nrel.gov�
http://openstudio.nrel.gov/�

2

to 1) easily and reproducibly perform oft-repeated
tasks; and 2) run large-scale analyses. GenOpt provides
a library of optimization algorithms, a mechanism to
associate variable values with particular manipulations
of a text input file, and configuration settings that point
to the simulation engine and establish a protocol for
exchanging data (Wetter 2001). A generic software tool
for multidisciplinary design optimization, Phoenix
Integration’s ModelCenter, has been applied to building
design problems in which energy efficiency, as
predicted by EnergyPlus, is one of the objectives to be
optimized (Flager, Welle et al. 2009). Both tools
automate some low-level tasks, such as file
management and new model generation based on
algorithm requests, but require users to define low-level
manipulations of simulation input files to set up their
problems. GUI tools are also available for running
large-scale analyses. BEopt optimizes residential
building designs simultaneously over an energy and an
economic metric. As a GUI tool, it constrains the user
by specifying exactly what and how features of the
design can be manipulated. This makes the tool easy to
use but sacrifices flexibility (NREL 2012).
In this paper we describe the OpenStudio scripting
environment specifically designed for building energy
modeling and analysis (BEMA). The OpenStudio
scripting environment is integrated with the OpenStudio
GUI applications so users can combine the benefits of
graphical data representation and customized task
automation. In particular, measures, which are scripts
that follow a certain structure, can be used directly from

the GUI applications, which then exercise the set
structure to provide on-demand user interfaces. Free-
form scripts may also be written and then run outside
the GUIs, that is, from a command line. Because the
scripting framework contains a formal mechanism for
using measures as discrete or continuous variables,
measures can also be used within free-form scripts.
In the following sections we describe the architecture of
the system and the technologies that enable BEMA
scripting. We then describe measures in more detail,
giving examples that span several use cases. Next we
provide a case study about how free-form scripts were
used to develop and revise a Web tool in support of the
U.S. 179D federal tax deduction. Finally, we provide a
vision for future work in which measures are shared in
an online repository and can be used to compose
problem definitions for large-scale analysis, including
design optimization.

The software architecture of the OpenStudio project is
shown in

ARCHITECTURE AND TECHNOLOGIES

Figure 1. At the center of the project is the
OpenStudio software development kit (SDK), which is
an open source (GNU lesser general public license)
collection of reusable libraries implementing BEMA
functionality. The building model library (Building
Modeler) is at the center of SDK, and provides classes
and methods for creating and modifying building
energy models. For instance, the building geometry is

Figure 1: OpenStudio software architecture

Credit: Marjorie Schott/NREL

3

represented by a set of spaces, each of which is
bounded by a collection of surfaces. Thermal zones are
defined by grouping spaces. Each such class (Space,
Surface, and ThermalZone) has methods for inspecting
and modifying low-level data and relationships. Classes
often also define high-level methods which modify
many low-level data fields and relationships. As an
example, the Surface method for setting window to wall
ratio will be described later in this paper.
The building model library is built on top of utility
libraries for accessing the input and output data at a low
level, opening and parsing related file types, performing
geometric operations, etc. These low-level utility
methods are also included in the SDK. Finally, the
SDK includes modules for running simulations
(EnergyPlus, EnergyPlus auxilliary programs, and
Radiance), defining and running analyses, and storing
results for multiple models and simulations (DOE 2011;
Ward 2011). The OpenStudio SDK can be used to build
additional applications and projects. Some current
examples are shown in Figure 1. Several of these GUI
tools are available directly from the OpenStudio
project.
The OpenStudio SDK is implemented in C++. The
functionality of the SDK is tested by an automated
system that regularly checks out the source code, builds
the project on several platforms, runs a series of unit
tests on each, and posts results to a Web-based
dashboard. Documentation for the SDK is generated
using Doxygen and is posted to the OpenStudio project
website for each release (van Heesch 2012).
Functionality from the C++ SDK is then exposed to
other languages using the Simplified Wrapper and
Interface Generator (SWIG) (Beazley, Ballabio et al.
2009). SWIG enables export of C++ code to
approximately twenty different languages. We have
chosen to support Ruby as our primary scripting
language in order to integrate with the Ruby plug-in
architecture provided by Google SketchUp. We also
export bindings to the C# language because several of
our collaborators program in C#. Because C# is a
compiled language, we will not discuss it further in this
paper. Ruby, on the other hand, is an interpreted
language, and we have made significant use of it
beyond the basic need for communicating with
SketchUp.

A building energy analysis typically consists of four
phases: 1) define the seed model or models; 2) define
the problem to be investigated; 3) run the simulations
supporting the analysis; and 4) generate, interpret, and
incorporate tables and figures based on the simulation
results into reports. The OpenStudio scripting

environment exposes portions of the OpenStudio SDK
relevant to each phase.

PHASES OF A BEMA PROJECT

The seed model can be created with the GUI tools, the
scripting environment, or a combination of both. In
each case, classes and methods exposed in the
OpenStudio SDK building model library are used to
create objects relevant to the simulation study, assign
values to their parameters, and define relationships
between objects. A key feature of the building model
library is that the objects and their methods are
responsible for maintaining model validity. Other
models in the analysis are generated from the seed
model as described below.
Once the seed model is complete, the analysis problem
must be defined. The problem consists of a parameter
space, a number of response functions, and a prescribed
simulation workflow. The parameter space is a list of
variables, each of which defines how the seed model
should be mainipulated to set the value of that variable.
If the variable is discrete, it is a list of discrete (perhaps
even unrelated) changes that can be made to the model;
if the variable is continuous, some method for setting
the variable to a particular value must be defined.
Discrete and continuous variables may be defined using
Ruby scripts (measures or free-form scripts). These
scripts typically use methods from the building model
library. For example, the building model library
contains methods to loop over all surfaces in the model
and set the window to wall ratio to a particular value.
Response functions are typically high-level outputs
such as site energy use; however, these may also be
implemented using free-form scripts and can be
configured to compute any value the user wants to
analyze in detail. The simulation workflow consists of a
string of jobs to be executed on each new model, such
as: 1) translate to EnergyPlus syntax; 2) simulate with
EnergyPlus; and 3) run the basic postprocess job to
extract high-level results.
Once the problem has been defined, the user may select
an algorithm to apply. Two algorithms are currently
available directly in OpenStudio: a full factorial mesh
over discrete variables, and a bi-objective optimizer
over discrete variables. We are also creating an
interface to relevant DAKOTA algorithms (Adams,
Bohnhoff et al. 2009). We have exposed several
sampling algorithms from the DDACE library,
including Latin hypercube sampling, orthogonal array
sampling, and grid sampling. Once the problem and
algorithm are in place, OpenStudio functionality from
the analysis driver portion of the SDK may be used to
run the analysis. This functionality makes heavy use of
the run manager library to queue jobs and keep
communications synchronized. After each new building
model is generated and simulated (by setting the

4

variable values and running the simulation workflow),
the results are pushed to a database.
When the analysis is complete, the final phase of work
begins, that is, figures and graphs are generated. The
OpenStudio scripting environment includes
functionality for making database queries to pull out
high-level and detailed results for each data point, and
for automatically preparing figures, graphs, and tables.
Repeatability is a key benefit of using scripts in each
BEMA project phase. If an error is found in some part
of the process, the seed model changes, a new variable
is proposed, or a different algorithm is to be
investigated, the analysis can be rerun with minimal
effort. In the following sections we will discuss the use
of measures and free-form scripts in automating a
BEMA project.

In OpenStudio, measures are scripts that implement a
formal interface. This interface provides a way for host
applications to get the name of the measure, identify the
required and optional arguments, and run the measure
with a given set of argument values. In this section, we
provide two examples of applying measures. In the first
example, the user works within the OpenStudio
SketchUp plug-in and applies a measure interactively to
the model. In the second example, the user defines a
measure that is applied noninteractively each time the
model is simulated. In both examples, the simplicity of
the code snippets is directly traceable to the use of high-
level methods implemented in the (documented, tested,
and open source) C++ code base. These methods are
responsible for all low-level tasks, such as file parsing,
input file editing, and input file saving, thereby freeing
the user to work with higher level abstractions.

MEASURE SCRIPTS

Interactive Measures
Measures were initially developed for integration with
the OpenStudio SketchUp plug-in, where they are
referred to as user scripts. The purpose of these scripts
is to allow users to automate tedious portions of their
workflows. For example, a user may want to apply
some property to each surface in a model. Rather than
visit each surface individually and set the property
through the GUI, the user can write a script that loops
over all surfaces and sets the property in one step. To
create a new user script, the user writes a Ruby script
containing a class that implements the formal measure
interface and places this script in the designated folder.
The next time she launches SketchUp, the new script
will show up next to all the others in the “OpenStudio
User Scripts” menu. The user can then run this script at
any time by selecting it from the menu, as shown in
Figure 2.

Credit: David Goldwasser/NREL

Figure 2: Menu showing available user scripts

Several example user scripts are packaged with the
plug-in. The packaged examples include a “Hello
World” template script illustrating the syntax at its
simplest, a summary table generator, a script that blends
the OpenStudio and SketchUp APIs to create
architectural plan views, and several single-task
manipulations of the underlying energy model. In the
latter category, the “Set Window to Wall Ratio”
example user script removes any existing windows
from the selected surfaces, and then replaces them with
new windows matching the window to wall ratio and
offset (from floor or ceiling) parameters given by the
user. Each time the script is run, an input dialog, as
shown in Figure 3, is dynamically generated to request
argument values from the user.
The code that affects these changes in the model, with
error checking code removed for brevity, follows:
def run(model, runner, arguments)
wwr = arguments["wwr"]
offset = arguments["offset"]
application_type =

arguments["application_type"]

heightOffsetFromFloor = nil
if (application_type.valueAsString ==

"Above Floor")
heightOffsetFromFloor = true

else
heightOffsetFromFloor = false

end

model.getSurfaces.each do |s|

next if not runner.inSelection(s)
next if not (s.outsideBoundaryCondition ==

"Outdoors")
new_window = s.setWindowToWallRatio(
wwr.valueAsDouble,
offset.valueAsDouble,
heightOffsetFromFloor)

end
end

The script makes it easier to perform this modeling task
in at least two ways. First, the user’s selection within

5

the host application determines to which surfaces the
transformation is applied. This allows the measure to
take advantage of particular features of the host
application which are useful for selecting objects of
interest. Second, the processes of removing the old
windows, and creating new ones of appropriate size
(balancing the user’s inputs and what is physically
possible), is encapsulated in one high-level function,
setWindowToWallRatio. Because this method is
written, tested, and documented as part of the SDK, the
user can simply use it without worrying about
implementation details. Additional SDK methods and
functions can be discovered for other tasks by browsing
the building energy model documentation (Ball, Benne
et al. 2012).

Credit: David Goldwasser/NREL

Figure 3: Dynamically generated input dialog for a
“Set Window to Wall Ratio” measure

Noninteractive Measures
The interactive measures can be used to automate
certain portions of a user’s workflow; however, this
method of running measures requires user input each
time the script is invoked. In contrast, the OpenStudio
application can run the same measure many times with
the same set of arguments. To use this noninteractive
mode, the user fills out the input dialog once and then
saves the argument values for future use. The window
to wall ratio script example can be run in this
noninteractive mode with minor modifications that use
a different mechanism for selecting the appropriate
surfaces. In this section we will focus on another
example.
Like the OpenStudio SketchUp plug-in, the OpenStudio
application is built on the OpenStudio SDK; both
applications use the run manager library to manage
simulation workflows. The OpenStudio run manager
library defines a simulation workflow as a tree of jobs
in which the output of each job is available as input to
any child jobs. The jobs in the basic workflow that the
OpenStudio application uses to perform simulations
are:

• ModelToIdf: Translate the OpenStudio model
(OSM) into an EnergyPlus input data file
(IDF).

• ExpandObjects: Call the EnergyPlus auxiliary
tool ExpandObjects if necessary.

• EnergyPlus: Run an EnergyPlus simulation.

The scripts tab of the OpenStudio application, shown in
Figure 4, allows users to call scripts (measures or free-
form) at three points in the simulation workflow. Model
scripts are run before the ModelToIdf job. At this point
in the workflow, the building model library
functionality may be applied to the input model. IDF
scripts are run after the ExpandObjects job. At this
point in the workflow, the input model has already been
converted to EnergyPlus IDF and building model
functionality cannot be used. The IDF file can,
however, be modified using low-level data
manipulation methods in the OpenStudio SDK. Finally,
Post-EnergyPlus scripts are run after the EnergyPlus
simulation, and may be used to generate reports or other
outputs from the final OSM model, final IDF model, or
the EnergyPlus simulation results stored in SQLite
format (eplusout.sql).

Credit: Elaine Hale/NREL

Figure 4: OpenStudio application scripts tab

The particular script shown in Figure 4,
ImportImfSection.rb, allows users to access their legacy
EnergyPlus input macro files (IMFs). This feature is
useful to advanced users because it allows them to work
on their models in the OpenStudio format using the
OpenStudio GUI tools, and directly access EnergyPlus
features not yet available in the OpenStudio model.
The motivating example for this section is the need to
include utility rate information in the energy simulation.
The OpenStudio application does not yet have an
interface to enter utility rate information, but many
users have utility rate models in IDF or IMF format. To
incorporate these utility rates in an OpenStudio model

6

simulation, the user drags the “Import IMF Section”
measure into the model from the application’s script
library. The user then presses the button labeled
“Refresh User Script Arguments”. This action
dynamically generates input dialogs that the user can
use to set arguments for the script. Unlike the previous
interactive example, the arguments for the measure are
now stored for later use. Each time the model is
simulated, this script is executed with the saved
arguments. The code this particular script runs to
import objects from a named section in an EnergyPlus
IMF into the EnergyPlus IDF, with error checking code
removed for brevity, is:
def run(workspace, runner, arguments)
imf_file_path = arguments["imf_file_path"]
imf_section_name =

arguments["imf_section_name"]

imfFile = ImfFile::load(

imf_file_path.valueAsPath,
"EnergyPlus".to_IddFileType)
imfFile = imfFile.get

objects = imfFile.section(

imf_section_name.valueAsString)

wsObjects = workspace.addObjects(objects)

end

The examples in the previous section show the potential
for measures to extend the capability of OpenStudio
GUI applications without touching the underlying
application code. More advanced users may require
solutions that do not fit into the measure script
paradigm. They may thus opt to write free-form Ruby
scripts that use the OpenStudio scripting environment.
These scripts run outside the OpenStudio GUI tools and
are designed to meet specific user needs.

FREE-FORM SCRIPTING APPLICATIONS

179D Case Study
Figure 5 depicts the workflow used to construct a Web
tool for prescreening buildings to see if they might be
eligible for the Federal 179D tax deduction. This
analysis has now been run twice, once in spring 2011,
when this analysis was the first large-scale project to
use the scripting platform; and again in winter 2012.

In both cases, about 250,000 simulations were run on
cluster resources in the span of one to two weeks, after
about a month spent developing, testing, and debugging
the scripts set up to do the analysis. The scripting
platform was key to enabling such a large-scale study
and resulting Web application to be set up and run in
such a short time by two to three full-time modeler-
developers plus one Web developer. Scripts developed
on Windows machines were easily adjusted to also
work on a Linux cluster; energy simulation data were
fit to regression models using another freely available
software program, R, with communications between the
energy models, R, and the website done using comma
separated value (CSV) files (Deru, Griffith et al. 2012).

The study was rerun in 2012, primarily to add variable
speed fans and heat pumps, which could not be
included the first time because of severe time
constraints. Although the scripts were updated to catch
up with changes to the SDK during the intervening
year, most of the modeling logic was directly preserved
and reused. Because the initial study was completed
before the building energy model was sufficiently built
out, this work uses EnergyPlus IDF (specifically the
DOE Commercial Reference Buildings (Deru, Field et
al. 2011)) as the primary input. Then, 576 distinct
analyses are constructed, run, and evaluated, one for
each combination of building type (12), climate zone
(16), and system type (envelope, lighting, and HVAC).

Credit: Daniel Macumber/NREL

Figure 5: Workflow for 179D analysis

7

For each building and system type, a problem is defined
from discrete variables whose values are either null
(which leaves the seed model unchanged), or defined
by a Ruby script with some particular argument values
set ahead of time. Examples of script arguments include
heating coil efficiency, roof U-factor, and lighting
power density multiplier. Each simulation workflow, in
addition to the normal simulation steps, is concluded by
a custom postprocess, also written as a Ruby script.
Each analysis runs a full mesh of all the options using
our full factorial design of experiments algorithm.

Once the analysis is run, another set of Ruby scripts
extracts results from the database populated by the
analysis driver, and places them in a CSV format.
These files are then consumed by R scripts that
calculate one data fit per CSV file. The data fits are
then compiled and pushed to the Web application for
use in estimating proposed building performance
relative to the 179D requirements. Quality control data
are also collected and evaluated along the way, which
routinely prompts tweaks in one or more scripts, and a
partial rerunning of the analysis.

As the OpenStudio SDK matures, more capability will
become available for use in measures and free-form
scripting. As this functionality increases, we expect that
more users will become familiar with the OpenStudio
scripting environment and begin to author their own
measures and free-form scripts. The next transformative
step will then be to add measure scripts to the content
available from the online Building Component Library
(BCL), currently hosted at

FUTURE WORK

http://bcl.nrel.gov. When
this is complete, users will be able to search for
measures to download and apply using the OpenStudio
GUI tools. In this way, one user can benefit from scripts
written by another. Similarly, we also envision users
downloading measures to compose BEMA problem
definitions, which they can then apply to their own seed
models.

The problem formulation concept is depicted in Figure
6. In this example, the user’s model is placed in an
eight-dimensional parameter space. Each axis is defined
by a measure, or set of measures, downloaded from the
BCL. Each point on each axis corresponds to a
particular discrete measure or a particular input
argument value. Once the parameter space has been
defined, the user can choose to run one of OpenStudio’s
built-in algorithms or one available from the DAKOTA
library (Adams, Bohnhoff et al. 2009). In this way,
many more users will be able to perform advanced,
customized analyses.

Credit: Marjorie Schott and Elaine Hale/NREL

Figure 6: Measure scripts used to compose a parameter
space

Building energy modelers and analysts typically use
several tools. Most projects use a mix of GUIs,
spreadsheets, and text editors. Expert users may write
custom scripts to implement portions of their workflow.
These custom solutions are usually written from scratch
and result in significant duplication of effort across the
BEMA community.

CONCLUSION

In this paper we demonstrated the use of a BEMA
software platform accessed through the Ruby scripting
language. Measures are scripts with a defined interface
that allows them to be used in several contexts. Users
can also write free-form scripts using the portions of the
OpenStudio SDK exposed to the scripting environment.

Both types of scripts give the user more flexibility and
power than are typically provided by a GUI, and
minimize the risks typically associated with software
development. Because the platform is built on modular
code for modeling, algorithm-driven model generation,
data management, and run management, the amount of
code that must be written to do a particular task is
greatly reduced. Because the core code is written in
C++, documented, tested, and freely available, the
scripts run quickly and are widely shareable. Finally,
the available functionality will grow over time as
functionality is added to the OpenStudio project,
reducing duplicate efforts in the BEMA community.

In addition to adding functionality to the underlying
code base and enhancing application support of
measures, planned work includes extending an online
database of building energy data, the BCL, to contain
measures. This will allow users to easily search for and
apply measures to their own models. Eventually, users
will be able to construct customized parameter spaces
using downloaded measures, and explore this parameter

http://bcl.nrel.gov/�

8

space using their own seed models along with advanced
optimization, uncertainty quantification, and other
analysis routines.

ACKNOWLEDGMENT
This work was financially supported by the U.S.
Department of Energy Building Technologies Program,
and by the California Energy Commission (Task No.
BEC7.1335 and WW2D.1000, respectively). The
authors are greatly indebted to our sponsors at those
organizations, and also to our colleagues at the National
Renewable Energy Laboratory. OpenStudio would not
be what it is today without Brian Ball, Larry Brackney,
Luigi Gentile Polese, Nick Long, Marjorie Schott, Alex
Swindler, Jason Turner, and Evan Weaver. The 179D
tax deduction case study work was largely done by
Brent Griffith, Matt Leach, Eric Bonnema, Katherine
Fleming, and Michael Deru, in addition to a subset of
the authors.

REFERENCES
Adams, B. M., W. J. Bohnhoff, K. R. Dalbey, J. P.

Eddy, M. S. Eldred, D. M. Gay, K. Haskell, P.
D. Hough and L. P. Swiler (2009).
"DAKOTA, A Multilevel Parallel Object-
Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis:
Version 5.0 User's Manual." Sandia Technical
Report SAND2010-2183. Sandia National
Laboratories.

Ball, B., K. Benne, K. Fleming, L. Gentile Polese, D.
Goldwasser, B. Griffith, R. Guglielmetti, E.
Hale, N. Long, D. Macumber, M. Schott, A.
Swindler, J. Turner, E. Weaver, K. Gowri and
R. Hitchcock (2012). OpenStudio SDK
Documentation, Version 0.7.0.
http://openstudio.nrel.gov/sdk-documentation.

Beazley, D., L. Ballabio, W. Fulton, M. Gossage, M.
Koppe, J. Lenz, M. Matus, J. Stewart, A.
Yerkes, S. Yoshiki, S. Singhi, X. Delacour and
O. Betts (2009). Simplified Wrapper and
Interface Generator (SWIG).
http://www.swig.org.

Deru, M., K. Field, D. Studer, K. Benne, B. Griffith, P.
Torcellini, B. Liu, M. Halverson, D.
Winiarski, M. Rosenberg, M. Yazdanian, J.
Huang and D. Crawley (2011). "U.S.
Department of Energy Commercial Reference
Building Models of the National Building
Stock." NREL/TP-5500-46861. National
Renewable Energy Laboratory, Golden,
Colorado.

Deru, M., B. Griffith, M. Leach, E. Bonnema and E.
Hale (2012). 179D Easy Calculator Technical
Support Document. Golden, CO, National
Renewable Energy Laboratory.

DOE (2011). EnergyPlus Energy Simulation Software,
Version 7.0. U.S. Department of Energy,
Washington, D.C.
http://www.eere.energy.gov/buildings/energyp
lus/.

Flager, F., B. Welle, P. Bansal, G. Soremekun and J.
Haymaker (2009). "Multidisciplinary process
integration and design optimization of a
classroom building." Journal of Information
Technology in Construction 14: 595–612.

NREL (2012). BEopt, Version 1.2.
http://beopt.nrel.gov.

van Heesch, D. (2012). Doxygen, Version 1.8.0.
http://www.stack.nl/~dimitri/doxygen.

Ward, G. (2011). Radiance: Synthetic Imaging System,
Version 4.1. Lawrence Berkeley National
Laboratory, Berkeley, California.
http://radsite.lbl.gov/radiance/HOME.html.

Wetter, M. (2001). GenOpt -- A Generic Optimization
Program. Proceedings of IBPSA's Building
Simulation 2001 Conference. Rio de Janeiro,
Brazil.

NOMENCLATURE
BEMA building energy modeling and analysis
CSV comma separated value
GUI graphical user interface
IDF (EnergyPlus) input data file
IMF (EnergyPlus) input macro file
OSM OpenStudio model
SWIG Simplified Wrapper and Interface

Generator

http://openstudio.nrel.gov/sdk-documentation�
http://www.swig.org/�
http://www.eere.energy.gov/buildings/energyplus/�
http://www.eere.energy.gov/buildings/energyplus/�
http://beopt.nrel.gov/�
http://www.stack.nl/~dimitri/doxygen�
http://radsite.lbl.gov/radiance/HOME.html�

