
Potentiometric Surface

The potentiometric-surface map of the Ozark aquifer is a two-dimensional depiction of a 
three-dimensional view of the surface. The groundwater altitudes used in the map construction 
represent altitudes at which the water level would have stood in a tightly cased well; the map 
should not be used to determine the absolute water-level altitude or depth to water at any given 
location because of the variable geology and hydrologic properties of the study area and because 
of the changing nature of water levels through time. The potentiometric surface indicates 
the general direction of groundwater flow; under isotropic conditions, groundwater flow is 
perpendicular to the lines of equal hydraulic head and in the direction of hydrologic gradient. 

The Ozark aquifer is unconfined across more than 50 percent of the potentiometric 
map area, and groundwater flow is predominantly driven by topography. A radial flow 
pattern moving north from the central Ozarks towards the Missouri River, west towards the 
freshwater-saline water transition zone, east towards the Mississippi River and Mississippi 
River Valley alluvial aquifer, and south towards the Arkansas River is a key characteristic of 
the flow system (fig. 3). A well in Lawrence County, Mo., with a maximum groundwater-level 
altitude of 1,366 ft, located in a topographic high, and a well in Randolph County, Ark., with a 
minimum groundwater-level altitude of 178 ft, located in a topographic low, are examples of 
how groundwater flow in the Ozark aquifer is driven by hydraulic head. Topographic control of 
flow and the connection between groundwater and surface water are illustrated where contours 
crossing streams form a “V” pointing towards higher altitudes where water from the aquifer is 
discharging into the streams. Streams, incised in lower altitude valleys, across the study area 
have V-shaped contours that point towards the lower altitudes, indicating reaches where streams 
act as discharge points for the Ozark aquifer. This pattern of V-shaped contours is well illustrated 
in lower water-level altitude areas along streams such as the Big Piney River, Current River, 
Eleven Point River, Gasconade River, Jacks Fork River, and Roubidoux Creek in the north-
central part of the study area, west of the Saint Francois Mountains (fig. 3). 

Within the limitations of the regional-scale dataset, the groundwater-flow directions 
show good agreement with previously constructed, local- and regional-scale Ozark aquifer 
potentiometric maps (Imes and Emmett, 1994; Richards and Mugel, 2008; Schrader, 2015). 

Differences in these potentiometric surfaces may be ascribed to the size of the mapped area 
(regional or local scales), number of wells that were measured (data density), and timing 
(such as the season, year, decade) of measurements. On the regional potentiometric surface in 
the southwestern part of the study area in Jasper and McDonald Counties, Mo., groundwater 
declines are evident when compared to the predevelopment potentiometric-surface map by 
Imes and Emmett (1994). Groundwater-level altitudes in Kansas range from a low of 596 
ft to a high of 805 ft in Cherokee County, Kans., and from a low of 660 ft to a high of 702 
ft in the southeastern corner of Crawford County, Kans. While the southeastern corner of 
Crawford County, Kans., does show a slight decline (42 ft difference between the low and high 
groundwater-level altitudes), smaller scale cones of depression are not evident because of the 
large scale of the regional potentiometric surface. In Oklahoma (Gillip and others, 2008) and 
in Springfield, Greene County, Mo. (Richards and Mugel, 2008), two cones of depression on 
a local scale are displayed to compare with the current regional potentiometric surface and to 
highlight the historical importance of groundwater-level declines in these areas. Past water-level 
measurement data and resulting previously constructed, local-scale potentiometric maps detail 
water-level declines and the formation of cones of depression in southeastern Kansas (Cherokee 
and Crawford Counties), Missouri (Barry, Barton, Cedar, Dade, Greene, Jasper, Lawrence, 
McDonald, and Newton Counties), and northwestern Oklahoma (Craig and Ottawa Counties) 
(Czarnecki and others, 2009; Czarnecki and others, 2014; Gillip and others, 2008; Richards, 
2010; Richards and Mugel, 2008). 

The population increase, growing demand for water, and water-quality issues in 
southwestern Missouri are causing communities such as in Jasper and McDonald Counties, Mo., 
to assess the Ozark aquifer and its ability to sustain long-term population growth (Czarnecki 
and others, 2009; Gillip and others, 2008; Wittman and others, 2003). Low groundwater-level 
altitudes of 574 ft measured in an observation well northeast of Carthage, Jasper County, Mo., 
and 589 ft in a well in Webb City, Jasper County, Mo., indicate local groundwater-level declines 
(Wittman and others, 2003). Conversely, a well in Oronogo, Mo., located north of Webb City, 
had a groundwater-level altitude of 895 ft, and an observation well southwest of Carthage, Mo., 

had a groundwater-level altitude of 953 ft; these communities reported no groundwater declines 
according to Wittman and others (2003). The contrast in relatively high and low groundwater 
levels over short distances emphasizes the local influence of pumping from the Ozark aquifer. 
In areas where the Ozark aquifer is confined, groundwater levels respond differently to water 
withdrawals compared to groundwater levels in unconfined areas of the aquifer. Water-level 
declines induced by a given amount of pumping are greater in confined areas as compared 
to unconfined areas because water is yielded primarily by the compressibility of the rock 
matrix rather than by dewatering of the saturated porosity. Additionally, for wells where water 
withdrawals are high and the aquifer has low transmissivity and storage, longer recovery periods 
and more expansive cones of depression may be expected. 

South of Jasper County, Mo., groundwater declines can be seen in the town of Noel, 
McDonald County, Mo., in an observation well with a groundwater-level altitude of 349 ft that 
lies in a distinct cone of depression. When the well for the town of Noel was drilled in 1936, it 
was a flowing artesian well, but by 1962, water levels had declined to 48 ft below land surface 
(Missouri Department of Natural Resources, 2015). The groundwater-level measurement made 
for this study in late 2014 to early 2015 indicates that water levels in Noel, Mo., have declined 
116 ft since 2006. The MODNR reported that the potentiometric surface has declined more than 
400 ft since 1936 when the well was drilled. In contrast, the water-level altitude measured in 
a well in Benton County, Ark., approximately 20 miles southwest of Noel, Mo., is 1,011 ft, a 
difference in the water-level altitude of 662 ft. While the potentiometric surface does indicate 
considerable groundwater declines in northwestern Arkansas as a result of the cone of depression 
or in comparison with the Imes and Emmet (1994) map, declines have been noted over time 
in areas of development and population growth for individual wells in Benton, Carroll, and 
Washington Counties, Ark. (Czarnecki and others, 2014; Kresse and others, 2014); however, 
groundwater use from the Ozark aquifer in northwestern Arkansas has decreased, and surface 
water for public-supply use has increased as more communities convert to surface-water use 
because of issues arising over groundwater quantity and quality (Kresse and others, 2014). 
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Figure 3 Regional potentiometric surface for the Ozark aquifer from November 2014 through January 2015.
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The regional Ozark aquifer potentiometric-surface map shows the altitude at which the water level 
would have risen in tightly cased wells and represents conditions during the period from November 
2014 through January 2015 (fig. 3). Water levels were measured during this period to ensure that wells 
had adequate time to recover from previous summer pumping and prior to the start of the 2015 summer 
pumping season. Groundwater-level data from 178 wells cased completely in and open to the Ozark 
aquifer are available from the USGS National Water Information System (NWIS; data available at http://
waterdata.usgs.gov/nwis). Groundwater wells were determined to be completed within Ozark aquifer 
geologic units (fig. 2) by evaluating lithology from geophysical logs, groundwater driller logs, total depth, 
casing depth, publications, and available historical groundwater-level data. Groundwater-level data were 
collected for Arkansas, Kansas, and Missouri; however, groundwater-level data were not collected for 
Oklahoma because of the local practice of completing wells in both the Springfield Plateau and Ozark 
aquifers and a lack of completion data to indicate wells that were completed solely in the Ozark aquifer. 

Streams and springs in the study area represent the intersection of the groundwater table with land 
surface; these features were used in the construction of the potentiometric-surface map. In Arkansas and 
Missouri, where the Ozark aquifer crops out, altitudes of select gaining stream reaches, compiled from 
previous reports on gaining and losing streams (data available at http://dx.doi.org/10.5066/F7W9577Q) 
and select springs (data available at ftp://msdis.missouri.edu/pub/Inland_Water_Resources/MO_2010_
Springs_shp.zip), were calculated from 10-meter digital elevation data (Knierim and others, 2015; 
Missouri Department of Natural Resources and others, 2010). 

Representative and uniform data distribution is important when developing a potentiometric-surface 
map; therefore, a spatial analysis of sites in a geographic information system by using data from the 
USGS NWIS, Missouri Spatial Data Information Service, and Missouri Department of Natural Resources 
(MODNR) was conducted to identify areas with sparse data. Kansas groundwater-level measurements 
were collected from observation wells by the Kansas Department of Agriculture–Division of Water 
Resources personnel. 

Groundwater levels were measured by using a calibrated, graduated steel tape and an electric 
water-level indicator or by making an air-pressure gage measurement. Calibrated tapes are accurate to 

within 0.01 foot (ft), but the accuracy of air-pressure gage measurements ranges from 1 to 10 ft (Garber 
and Koopman, 1968; Gillip and others, 2008). Field-collected groundwater levels are subject to potential 
measurement errors including nonrepresentative water-level measurements possibly caused by recent or 
nearby pumping, inaccurate airline measurement or inaccurate airline length reported, and nonavailability 
and inaccuracy of well-construction information. Well-construction information was collected from well 
owners or from posted information at well sites. To reduce possible errors or data inconsistencies, all field 
sheets and water-level collection software data files were reviewed for accurate well location, altitudes, 
and construction information. Well driller logs, State and Federal agency well databases, and aerial 
photographs were used to check for accuracy and consistency. To verify field measurements, historical 
water-level data and recent well driller logs from each State, which include static groundwater-level 
measurements obtained during well installation, were reviewed and compared to groundwater levels 
measured for this study. Groundwater-level measurements were converted from depth below land surface, 
in feet, to groundwater-level altitude, in feet. Well altitudes, used to calculate groundwater-level altitudes, 
originally reported with respect to the National Geodetic Vertical Datum of 1929 (NGVD 29), were 
converted to the North American Vertical Datum of 1988 (NAVD 88), for consistency. 

After collecting and processing the data, a potentiometric surface was generated by using the 
interpolation method TopotoRaster in ArcMap. This tool is specifically designed for the creation of 
hydrologically correct digital elevation models while imposing constraints that ensure a connected 
drainage structure and a correct representation of the surface from the provided contour data (Esri, 2011). 
Once the raster surface was created, 100-ft contours were generated by using Contour (Spatial Analyst), 
which is a spatial analyst tool (available through ArcGIS Spatial Analyst Toolbox) that creates a line-
feature class of contours (isolines) from the raster surface (Esri, 2008). Contours were manually adjusted 
based on topographical influence, a comparison with the regional map of Imes and Emmett (1994), and 
data point water-level altitudes to more accurately represent the potentiometric surface.

Methods

Introduction

The Ozark aquifer, within the Ozark Plateaus aquifer system (herein referred to as the “Ozark system”), is the 
primary groundwater source in the Ozark Plateaus physiographic province (herein referred to as the “Ozark Plateaus”) 
of Arkansas, Kansas, Missouri, and Oklahoma (fig. 1) (Fenneman, 1938; Fenneman and Johnson, 1946). Groundwater 
from the Ozark system has historically been an important part of the water resource base, and groundwater availability 
is a concern in some areas; dependency on the Ozark aquifer as a water supply has caused evolving, localized issues. 
The construction of a regional potentiometric-surface map of the Ozark aquifer is needed to aid assessment of 
current and future groundwater use and availability. The regional potentiometric-surface mapping is part of the U.S. 
Geological Survey (USGS) Groundwater Resources Program initiative (http://water.usgs.gov/ogw/gwrp/activities/
regional.html) and the Ozark system groundwater availability project (http://ar.water.usgs.gov/ozarks), which seeks to 
quantify current groundwater resources, evaluate changes in these resources over time, and provide the information 
needed to simulate system response to future human-related and environmental stresses. 

The Ozark groundwater availability project objectives include assessing (1) growing demands for groundwater 
and associated declines in groundwater levels as agricultural, industrial, and public supply pumping increases to 
address needs (Dintelmann and others, 2006; Emmett and others, 1978a; Richards, 2010; Richards and Mugel, 
2008); (2) regional climate variability and pumping effects on groundwater and surface-water flow paths (Imes 
and Emmett, 1994; Macfarlane and Hathaway, 1987); (3) effects of a gradual shift to a greater surface-water 
dependence in some areas (Kresse and others, 2014); and (4) shale-gas production requiring groundwater and 
surface water for hydraulic fracturing (Kresse and others, 2012; U.S. Environmental Protection Agency, 2010). Data 
compiled and used to construct the regional Ozark aquifer potentiometric surface will aid in the assessment of those 
objectives. 

The purpose of this report is to document a regional potentiometric surface of the Ozark aquifer representing 
synoptic conditions from November 2014 through January 2015. The potentiometric surface can be used to evaluate 
groundwater-level changes, provide calibration and simulation targets for the Ozark system regional groundwater 
flow model, and provide complementary data to the Ozark system groundwater availability project. A regional 
potentiometric map of the Ozark aquifer has not been completed since the detailed hydrogeologic studies of the 
Ozark Plateaus aquifer system investigated by Imes (1990) and Imes and Emmett (1994, figs. 28 and 40), as part of 
the 1981 Central Midwest Regional Aquifer-System Analysis (Jorgensen and Signor, 1981) of the 1978–96 USGS 
Regional Aquifer-System Analysis Program, approximated a predevelopment surface (Gillip and others, 2008). The 
regional potentiometric surface for this report shows large-scale groundwater-level characteristics, but the regional 
potentiometric surface does not show smaller, local-scale detail, such as localized cones of depression that may 
be indicative of evolving local issues. The regional map does not invalidate previous local-scale observations and 
efforts, as the scope of this regional study did not include the extensive measurements required to delineate local-
scale depressions. The potentiometric surface, however, shows regionally important details such as water-level 
patterns highlighting the intimate connection between surface water and groundwater across large areas and regional 
groundwater-flow directions. For information on local-scale conditions, the reader is referred to studies that include 
finer scale water-level measurement data for the study area (Aley, 1988; Czarnecki and others, 2009, 2014; Dintelmann 
and others, 2006; Emmett and others, 1978b; Gillip and others, 2008; Imes, 1989a, 1989b, 1990, 1991; Imes and 
Emmett, 1994; Imes and Kleeschulte, 1995; Imes and others, 2007; Juracek and Hansen, 1996; Kleeschulte, 2001, 
2006; Macfarlane and Hathaway, 1987; Mugel and Imes, 2003; Mugel and others, 2009; Pugh, 1998, 2008; Richards, 
2010; Richards and Mugel, 2008; Schrader, 2001, 2005, 2015; Steinkamp, 1987; Vandike, 1992).

Hydrogeologic units and geology of the study area have been studied extensively (Adamski and 
others, 1995; Banner and others, 1989; Ethington and others, 2012; Harrison and McDowell, 2003; 
Harrison and others, 2002; Hudson, 2000; Hudson and others, 2006; Hudson and Turner, 2007, 2009, 
2014; Imes, 1989b, 1989c, 1990; Imes and Emmett, 1994; Jorgenson and others, 1993; Kleeschulte and 
Seeger, 2003; Kresse and others, 2014; McDowell and others, 2000; Miller and Appel, 1997; Mugel and 
Imes, 2003; Orndorff, 2003; Orndorff and Harrison, 2001; Smith and Imes, 1991; Turner and Hudson, 
2010; Weary, 2015; Weary and McDowell, 2006; Weary and others, 2013, 2015; Weary and Schindler, 
2004; Weems, 2002; Whitfield and others, 1994). In this report, hydrogeologic characteristics are 
briefly discussed, and geologic units of the Ozark aquifer follow naming conventions used in Missouri. 
Figure 2 lists the stratigraphically equivalent geologic units names for Arkansas, Kansas, and Oklahoma, 
and the units are divided into the upper, middle, and lower Ozark aquifer (Imes and Emmett, 1994). 
Figure 1 shows aquifers and confining units, which compose the physiographic province and sections 
in the study area. The reader should note that aquifer systems in figure 1 refer to a “heterogeneous body 
of intercalated permeable and poorly permeable material that functions regionally as a water-yielding 
hydraulic unit; it comprises two or more permeable beds (aquifers) separated at least locally by confining 
units that impede groundwater movement but do not greatly affect the regional hydraulic continuity 
of the system” (Poland and others, 1972). Aquifers and confining units are named for province and its 
subdivisions; nomenclature associated with the correlation of hydrogeologic formations will have the 
designation of aquifer or aquifer system implied for any formation or group of formations for this report. 

The study area is bounded to the north by the Missouri River, to the south by the Arkansas River 
and Boston Mountains of the Ozark Plateaus, to the west by a freshwater-saline water transition zone 
along the Central Lowland-Ozark Plateaus province boundaries, and to the east by the Mississippi River 
and Mississippi River Valley alluvial aquifer of the Coastal Plain province (fig. 1). The Ozark system is 
primarily located in the physiographic province, Ozark Plateaus, which comprises three physiographic 
sections: Salem Plateau, Springfield Plateau, and the Boston Mountains (fig. 1). The Ozark system is 
divided into five hydrogeologic units (youngest to oldest) (fig. 2): Springfield Plateau aquifer, Ozark 
confining unit, Ozark aquifer, St. Francois confining unit, and St. Francois aquifer (Imes and Emmett, 
1994). The Ozark system is geologically complex and includes Cambrian- to Mississippian-age strata. 
The Ozark system aquifers, comprising carbonate karst and granular-media strata, are bound by confining 
layers of variable extent and competency. The Ozark system aquifers have experienced fracturing, 
faulting, and extensive dissolution of soluble rocks that have modified primary rock properties and 
the ability to convey and store water. For the carbonate units, fracturing and faulting provided initial 
pathways for dissolution and karst development, resulting in intimate connection of groundwater with 
surface water across large areas. 

The Ozark aquifer lies between the Springfield Plateau and St. Francois aquifers (fig. 2) in the 
Ozark system and is the largest and most important aquifer of the region; many public and private 
supplies depend entirely upon the Ozark aquifer because of the productivity and widespread availability 
of the aquifer (Vandike, 1992). The Ozark aquifer has been separated into upper, middle, and lower Ozark 
aquifer hydrogeologic units (fig. 2) as part of the USGS Groundwater Resources Program initiative, based 

upon previously compiled data on the geologic characteristics and hydrologic properties of the rocks and 
modified from Imes and Emmett (1994); however, groundwater-level measurements collected for this 
map did not distinguish between upper, middle, and lower units because of completion practices typical 
of the region and lack of sufficiently detailed completion information for many wells. The upper Ozark 
aquifer is carbonate dominated, comprising Devonian-, Silurian-, and Ordovician-age rocks. The middle 
Ozark aquifer comprises the Cotter Dolomite and Jefferson City Dolomite of Ordovician age. The lower 
Ozark aquifer includes Ordovician-age (Roubidoux Formation, Gasconade Dolomite, and Van Buren 
Formation-Gunter Sandstone Member) and Cambrian-age (Eminence Dolomite and Potosi Dolomite) 
hydrogeologic units. 

The Ozark aquifer is generally under unconfined conditions where it crops out across the Salem 
Plateau section (Miller and Appel, 1997); in the Saint Francois Mountains (fig. 1), the aquifer has been 
removed by erosion. The Ozark aquifer is generally under confined conditions across the Springfield 
Plateau (fig. 1), where the aquifer is overlain by the Ozark confining unit, which in turn is overlain by the 
Springfield Plateau aquifer. The middle Ozark aquifer does have limited exposures along river valleys 
in McDonald, Lawrence, Dade, and St. Clair Counties in Missouri, as well as in Madison and Benton 
Counties in Arkansas. Recharge to the Ozark aquifer, where unconfined, is primarily by infiltration of 
rainfall, and where confined, recharge originates from downgradient flow from outcrop areas of the Ozark 
aquifer and leakage from the Springfield Plateau aquifer (Kresse and others, 2014). 

To the west of the Salem-Springfield Plateaus and south of the Boston Mountains lies the Western 
Interior Plains confining system within the Central Lowland-Ozark Plateaus provinces. The Western 
Interior Plains confining system overlies the Ozark system and the Western Interior Plains aquifer system 
and consists of a thick sequence of Pennsylvanian sedimentary rocks of low permeability. Groundwater 
discharged from the Western Interior Plains aquifer system is slightly saline (around 1,000 milligrams 
per liter or more dissolved solids) because of leakage from saline formations, particularly from the 
Permian strata of the Western Interior Plains confining unit (Banner and others, 1989; Imes, 1985; Imes 
and Emmett, 1994). The Western Interior Plains aquifer system merges into the freshwater-saline water 
transition zone where flow gradients induce a vertical component of flow resulting in discharge into 
streams as base flow and into alluvial deposits in stream valleys (Miller and Appel, 1997). 

Recharge in the higher altitude water-level areas (indicated by blue shading on the potentiometric-
surface map, fig. 3), where the Ozark aquifer is exposed is generally by direct recharge from precipitation. 
Short, shallow flow paths are important in outcrop areas of the Ozark aquifer where precipitation 
quickly infiltrates into the subsurface and groundwater moves quickly to deeply incised streams in these 
high-relief, upland areas (Adamski and others, 1995; Kresse and others, 2014). Because of the rapid 
recharge and drainage occurring in these unconfined, upland areas of the Ozark aquifer, highly variable 
groundwater-gradient reversals are common (Aley, 1988; Kresse and others, 2014); hence, regional flow 
is controlled by regional topographic highs, and shallower, shorter local flow systems controlled by local 
topography are superimposed on this larger framework. Water discharged from the Ozark aquifer moves 
into the streams, springs, and karst features, such as dissolution-enlarged fractures, bedding planes, and 
caves, located along flow paths. 

Hydrogeologic Setting

Figure 2.   Stratigraphic units and regional geohydrologic units (modified from Imes and Emmett, 1994).  

[Blue lines mark boundaries between hydrogeologic units. Shading represents divisions between the upper (green), middle (red), and lower (blue), Ozark aquifer. Modified from Imes and Emmett, 1994 (table 1)]
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Figure 1. Study area map showing surficial extent of aquifers and confining units of the Ozark Plateaus aquifer system, which compose the physiographic 
province and regions.
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Physiographic areas modified from Fenneman, 1938;
Adamski and others, 1995
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