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Abstract 

Cylindrical roller bearings typically employ roller profile modification to equalize load distribution, 
minimize stress concentration at roller ends and allow for a small amount of misalignment. The 1947 
Lundberg-Palmgren analysis reported an inverse fourth power relation between load and life for roller 
bearings with line contact. In 1952, Lundberg and Palmgren changed their load-life exponent to 10/3 for 
roller bearings, assuming mixed line and point contact. The effect of roller-crown profile was reanalyzed 
in this paper to determine the actual load-life relation for modified roller profiles. For uncrowned rollers 
(line contact), the load-life exponent is p = 4, in agreement with the 1947 Lundberg-Palmgren value but 
crowning reduces the value of the exponent, p. The lives of modern roller bearings made from vacuum-
processed steels significantly exceed those predicted by the Lundberg-Palmgren theory. The Zaretsky 
rolling-element bearing life model of 1996 produces a load-life exponent of p = 5 for flat rollers, which is 
more consistent with test data. For the Zaretsky model with fully crowned rollers p = 4.3. For an 
aerospace profile and chamfered rollers, p = 4.6. Using the 1952 Lundberg-Palmgren value p = 10/3, the 
value incorporated in ANSI/ABMA and ISO bearing standards, can create significant life calculation 
errors for roller bearings. 

Introduction 

Classical rolling-element fatigue is the process by which repeated cycles of a concentrated 
compressive surface load creates surface or near-subsurface cracks that propagate into a crack network 
that eventually generates a spall, creating a pit in the surface of the running track. The time to failure is 
related to the normal load, Pn, and resultant maximum Hertz stress, Smax, in the contact zone and the 
critical shearing stresses, τ, near the surface of two bodies in contact (Ref. 1). 

In 1947 Lundberg and Palmgren (Ref. 2) related rolling-element bearing life to the magnitude of the 
shearing stress τ, stressed volume V, depth to the critical shear stress z, and N, the number of stress cycles 
per inner-race revolution where for each race the life at a defined probability of survival. 
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They chose the maximum orthogonal shear stress, τo as the critical shearing stress. Exponents c, m 

and h were chosen to fit experimental data available at that time. The rationale for the term involving z, 
the depth to critical shear stress, is that a significant portion of the fatigue life represents the time required 
for a crack to propagate to the surface and produce a fatigue spall. The life of each raceway was 
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Lundberg and Palmgren (Ref. 2) related the fatigue life at a 90-percent probability of survival, L10, of 
a radially-loaded bearing to the ratio of the load capacity of the bearing, C, and the applied load, P, to the 
power p. Based on test data, they established that the exponent p = 3 for point contact on ball bearings 
and p > 3 for line contact on roller bearings. 
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In 1952, Lundberg and Palmgren (Ref. 3) revised their load-life model for roller bearing life, based on 
additional experimental data. Lundberg and Palmgren stated that for line contact on both bearing races 
p = 4, while for point contact on both races p = 3 and they suggested that for mixed point and line contact 
p = 10/3. The ANSI/ABMA and ISO bearing life standards (Refs. 4 and 5) use the 1952 Lundberg and 
Palmgren relation (Ref. 3), with p = 10/3 for roller bearings. Bearing lives as computed according to the 
standards are often adjusted by means of life factors (Ref. 6) to account for longer life due to improved 
bearing materials, manufacturing methods and lubrication.  

Zaretsky (Ref. 1) and Zaretsky et al. (Ref. 7) modified the Lundberg-Palmgren life model in 
Equation (1), to better fit post-1960 life data for bearings made from vacuum processed steel, which have 
much longer lives, particularly at light load 
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The Zaretsky life model Equation (4), which does not include the term involving the depth to the 

critical shearing stress, results in a larger value of the load-life exponent p in Equation (3). Zaretsky et al. 
(Ref. 7) suggest that p = 5 is more appropriate for contemporary roller bearings with line contact where 
crack propagation time does not dominate bearing life. In addition, Zaretsky chose the maximum shearing 
stress, τmax as the critical stress. This choice affects the stressed volume, since the volume is based on zmax, 
the depth to τmax, which occurs at a greater depth than zo, the depth to τo. A procedure for converting the 
life as computed from the Lundberg-Palmgren life model to the Zaretsky life model is described in 
Appendix B. 

Either life model above can be expressed in terms of the Hertz stress, Smax by Equation (5), where, 
with line contact, exponent n = 8 for the Lundberg-Palmgren model of Equation (1) or n = 10 for the 
Zaretsky life model of Equation (4). Derivations for Equations (1) to (4), including an explanation of how 
the exponents were determined are given in Zaretsky (Ref. 1).  
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Although bearing researchers have long recognized that roller edge loading can significantly reduce 

roller bearing fatigue life, the stress concentration at the roller ends is generally not included in roller 
bearing life calculation. The usual procedure is to choose a roller profile that minimizes edge loading at 
the highest expected load and allow for a small amount of misalignment and then to ignore the effect in 
the life calculation, which is based on the stress at the center of the roller.  
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Sugiura, et al. (Ref. 8) performed rolling contact tests using fully-crowned rollers with five different 
values of the crown radius and four loads to find an optimal crowning that produced a stress distribution 
to equalize the distribution of fatigue failures between roller center and edge. They found that the effect of 
higher edge stresses resulted in an approximate 30 percent reduction in life when compared to the effect 
of the stress at the center of the contact area. This indicates that the stress at the edge of the rollers must 
be controlled for long bearing life.  

Takata, et al. (Ref. 9) investigated both fully-crowned circular arc and optimized custom profiles on 
tapered roller bearings under six loading conditions, including radial and axial loads with and without 
misalignment to create a new design technique for optimized rollers. Fujiwara and Kawase (Ref. 10) 
developed an optimized logarithmic profile to exclude edge loading and maximize rolling fatigue life.  

Roller crowning affects the stress distribution along the roller, increasing the maximum Hertz stress; 
therefore it affects the load-life and stress-life relationships. Poplawski, et al. (Refs. 11 and 12) considered 
the effect of crowning on roller bearing life but assumed a constant Hertz stress-life exponent in 
Equation (5) that did not change with different roller profiles, with n = 8.1 for the Lundberg-Palmgren life 
model and n = 9.9 for the Zaretsky life model.  

Based on the discussion above, the objective of this work was to extend the work of Poplawski, et al. 
(Refs. 11 and 12) by using COBRA-AHS, a commercially-available bearing analysis code (Ref. 13) to 
include the effect of five roller profiles on the actual load- and stress-life relationships using both the 
Lundberg-Palmgren and Zaretsky bearing life models. Results are given for five different roller profiles 
as plots of predicted roller bearing life vs. applied radial load and vs. maximum Hertz stress. Our analysis 
assumes a cylindrical roller bearing with “zero” clearance in a rigid housing on a stiff shaft with no 
misalignment. 

Nomenclature 

b semiwidth of Hertzian contact area in direction of rolling, mm (in.) 
C dynamic load capacity, N (lb) 
Ci magnitude of crown drop relief at location i, mm (in.) 
C0 roller crown drop amplitude based on a gage point along roller, mm (in.) 
C(x) roller crown drop at a lamina location, mm (in.) 
c stress-life exponent 
d roller diameter, mm (in.) 
E Young’s modulus of elasticity, MPa (ksi) 
f ratio of ball bearing raceway groove radius to ball diameter (conformity) 
h exponent in Equation (1) 
Ki inner-race stiffness for roller lamina 
k1 constant in Equations (B1), (B2), (B3) mmh/m (in.h/m) 
L life, millions of inner-race revolutions or hours 
le effective roller length, mm (in.) 
LB life of bearings in gearbox, stress cycles, millions of inner race revolutions or hours 
LG life of bearings in gearbox, stress cycles, millions of inner race revolutions or hours 
L10 10-percent life:  life at which 90 percent of a population survives, millions of  
 inner-race revolutions or hours 
m Weibull modulus (slope) 
N number of stress cycles per inner-race revolution 
n Hertz stress-life exponent in Equation (5) or number of lamina in Equation (13) 
P, Pn bearing, normal or roller load, N (lb)  
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p load-life exponent 
pj load acting on lamina slice i, N (lb) 
R Radius, mm (in.) 
S stress, MPa (ksi) 
Smax maximum Hertz stress, MPa (ksi) 
V stressed volume, mm3 (in.3) 
w width of roller lamina, mm (in.) 
x dimension along roller length, mm (in.) 
Y0 roller displacement (compression) in normal direction 
Z axial location along roller 
z distance below surface to critical shear stress due to Hertzian load, mm (in.) 
 exponent 
δ deflection between axis of a finite-length cylinder and an infinite plane, mm (in.) 
δi deflection in roller spring element i, mm (in.) 
θ roller misalignment angle, radians 
θa, θb elastic constants for two bodies in contact 
ν Poisson’s ratio 
σ stress, MPa (ksi) 
τ shear stress, MPa (psi) 
τmax maximum shear stress, MPa (psi)  
τo maximum orthogonal shearing stress, MPa (psi) 
ξ roller lamina location, measured from roller center, mm (in.) 

Subscripts: 

B bearing 

G gear 
j jth lamina on roller 
ir, or inner- or outer-race of bearing 
LP refers to Lundberg-Palmgren life model, Equation (2) 
max refers to maximum Hertz stress or maximum shear stress 
o refers to maximum orthogonal shearing stress 
r residual stress 
RE rolling element set 
S shaft and inner-ring bore 
s system 
x tangential direction 
Z refers to Zaretsky life model, Equation (3) 
z normal direction 
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Roller Bearing Geometry 

A representative cylindrical roller bearing is shown in Figure 1. The bearing comprises an inner and 
outer ring and plurality of rollers interspersed between the two rings and positioned by a cage or 
separator. The drawing shows a bearing with guiding flanges on the outer race only, which allows axial 
movement between the inner race and rollers.  

Properties for the 210-size cylindrical roller bearings analyzed in this paper are shown in Table 1. 
Rollers are assumed to have a “square” cross-section, with the roller length equal to the roller diameter. 
Roller crowning is represented by six profiles, with profiles summarized in Table 2. The amount of 
crowning is expressed in terms of the maximum profile relief or “crown drop” at a “gauge point” near the 
ends of the rollers. The roller profiles (roller drops) for five of the profiles are plotted in Figure 2. For 
clarity, the scale in the vertical (crowning) direction is exaggerated by approximately 400 times compared 
to the horizontal direction. 

The stress (or pressure) distribution across the rollers is shown for six different profiles and at three 
different radial loads by 18 small “thumbnail” plots in Figure 3. These plots are provided by the analysis 
code (Ref. 13) to help the analyst avoid excessive edge loading. The loads shown include the “reference” 
load of 29,190 N (6562 lb) plus a light load of 24 percent of the reference load and a heavy load of 
280 percent of the reference load. 

Flat (Uncrowned) Rollers 

Flat rollers have a cylindrical profile of constant diameter. Flat rollers would provide pure line contact 
and thus the lowest contact stress. However, as shown in the top row of plots in Figure 3, flat rollers do 
not compensate for edge loading, which produces significant stress concentration at the ends, particularly 
at high loads. 

Aerospace Profile 

The aerospace (partially crowned) profile modeled for this paper has a flat central portion (flat length 
of 8.0 mm) comprising 61.5 percent of the roller length) and circular arc relief at the roller ends with a 
radius of curvature (1300 mm) that is 100 times the roller diameter. The stress distribution is shown in the 
second row of plots in Figure 3. The modification parameters were interactively chosen to control stress 
concentration in the middle plot. At the light load, there is no contact at the roller ends, which increases 
the stress at the center. Although stress concentrations appear at the roller ends at the heavy load, this 
stress is reduced by about 28 percent from the flat roller case. 

Chamfered Profile 

The chamfered (partially crowned) profile is similar to the aerospace profile. The modeled profile has a 
flat central portion (8.0 mm) and linear relief at the roller ends equal to the roller diameter divided by 1500. 
The stress distribution along the rollers (row 3 of Fig. 3) is very similar to that of the aerospace profile. 

In theory, the aerospace and chamfered profiles have discontinuities in their shape: the chamfered in 
the slope and the aerospace in the curvature. However, in actual manufacturing practice any such 
discontinuities will be blended in to the flat part of the roller. 
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Logarithmic Profile 

The logarithmic profile has a very gentle curve at the center of the roller that gradually increases, 
becoming theoretically infinite (tangent) at the ends. The crown drop is defined by Equation (6), where 
we have chosen the gauge point as 0.999 times the distance from the center to the end of a roller, this is 
0.0065 mm from the ends of a 13 mm roller. 
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The stress distribution for the logarithmic profile modeled for this paper is shown in row 4 of 

Figure 3. At both the reference load and at the light load, this profile provides a more uniform stress near 
the roller center than any of the other profiles considered here. 

 
Full Crowning 

Fully-crowned rollers have a constant radius of curvature across the roller length, which concentrates 
the load and thus the contact stress towards the roller center in order to avoid loading at the roller ends. 
For the reference level of loading considered in this paper of 29,190 N (6562 lb), a crown radius, R equal 
to 150 times the roller diameter, d avoids creating stress concentration at the roller ends without excessive 
stress at the center of the roller. The stress distribution for this profile is shown in row 5 of Figure 3. At 
the heavy load, the stress distribution is similar to the preceding three profiles. 

We also included more severe crowning, with R = 100d to show the increased Hertz stress at the 
center of the rollers, particularly at lighter loads. See row 6 of Figure 3. 

Laminated Roller Model 

The Laminated Roller model approach to quantify the load distribution and stress pattern developed 
along cylinders in misaligned contact was first introduced by Daring and Radzimovsky (Ref. 14) in 1962. 
The method was applied to cylindrical roller bearings having crowned rollers by A.B. Jones in his early 
computer software (Ref. 15). The application of the laminated roller model to roller bearings is further 
documented by Harris (Ref. 16) in 1969. This method has been incorporated into ISO/TS 16281 
(Ref. 17). The treatment of the elastic contact between the crowned roller and raceway incorporated 
within the software used in this study and presented in ISO/TS 16281 are both consistent with the 
historical publications (Refs. 14 to 16). 

Anderson (Ref. 18), based on Palmgren (Ref. 19), shows that the approach (deflection) between the 
axis of a finite-length cylinder and an infinite plane can be expressed as: 
 

  8.09.09.0 /)(39.0 eba lP  (7) 
 
where P is the load, le is the effective cylinder (roller) length, and θ is defined in terms of the elastic 
constants E and ν as θ = 4(1 – ν2)/E. The constants need not be the same for bodies a and b.  
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Solving for the force P and substituting for (θa + θb) gives 
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Defining the stiffness K = P/δα (recall that for line contact, α = 10/9 ≈ 1.11), gives 
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If bodies a and b are the same material, the denominator of Equation (10) simplifies to 2(1 – ν2)/E. 

Dareing and Radzimovsky (Ref. 14) introduced a method to estimate the load distribution across a 
misaligned roller (cylinder). In their model, the roller was approximated as a series of n thin disks or 
lamina where each lamina is of width w (Fig. 4). The shear stress between adjacent lamina disks due to 
the variation of load along the roller was neglected. Since this method is an approximation, the laminated 
roller model cannot predict stress concentration such as at the edge of a roller contact. 

The rolling-element bearing analysis code (Ref. 13) used for the analysis in this paper embodies both 
the laminated roller model (Ref. 14) and a method based on the numerical approach of Hartnett (Ref. 20) 
to calculate the contact stresses between a profiled roller and raceway. The more rigorous approach of 
Hartnett (Ref. 20) yields stress concentration estimates not available from the laminated roller approach. 
Experimental validation of the Hartnett methodology was presented by Hartnett and Kannel in 
Reference 21. 

The load distribution along a loaded and misaligned roller to raceway contact can be determined by 
representing the lamina to raceway contact with an equivalent spring (Fig. 5). The stiffness of the ith 
equivalent lamina spring can be determined from applying the line-contact load/deflection relationship of 
Equation (10), replacing the roller width, l, with the lamina width, w: 
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The force pj in a roller lamina becomes: 
 

 9/109/8
jjj wKp   (12) 

 
From Figure 5, the compression, δi within each of the n lamina springs can be calculated for small angles 
of misalignment, θ as: 
 
 jj CZY 20   (13) 

 
Misalignment is not considered in this paper, therefore, θ = 0 in Figure 5. The compression force in the 
lamina spring element, pj is found from the displacement, δj using Equation (13). The total roller load Pir 
at a particular location is found by summing the individual lamina forces, pj as shown in Equation (14). 
For equilibrium, the roller loads must equal the applied loads on the bearing. 
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The equations above apply to both the inner and outer race contacts. 

The fatigue life estimates presented by the authors use the classical Lundberg-Palmgren (L-P) life 
models since the authors do not accept the fatigue limit stress life method contained in ISO/TS 16281 
(Ref. 17). Furthermore, that method has not been accepted in the United States per the American Bearing 
Manufacturers Association ANSI/ABMA-11:1990 (Ref. 4). Therefore, the load-life exponent using the 
L-P life model will not be a variable as implied by the fatigue limit stress life approach. 

Finally, the software incorporates the method for calculating the life of the inner and outer raceways 
and combining those into a bearing life as is consistent with the original L-P approach and used within 
ISO/TS 16281 (Ref. 17). 

Results and Discussion 

Analysis 

A commercial rolling-element bearing analysis code (Ref. 13) was used to calculate the fatigue lives, 
maximum Hertz stresses at the inner- and outer-race and the depth to the maximum shearing stress for 
radially-loaded cylindrical roller bearings with 50-mm bore in 1910-, 110-, 210-, and 310-size and for 
30-mm bore, 1906-size and 100 mm bore, 220-size bearings. This paper shows the results for only the 
210-size bearings. The calculations were performed for six loads for each of the five roller profiles. The 
analysis assumed a cylindrical roller bearing with “zero” clearance in a ridged housing on a stiff shaft 
with no misalignment. 

The code can analyze the effect of typical roller profiles on bearing stress and life. Lives predicted by 
the code, which is based on Lundberg and Palmgren theory (Refs. 2 and 3), were adjusted for the 
Zaretsky (Refs. 1 and 7) life model for comparison with the Lundberg-Palmgren results. The Weibull 
slope for roller bearings was taken to be m = 1.125.  

The reference roller profile for this paper has an aerospace profile with flat length (8.0 mm) 
comprising 61.5 percent of the roller length and with a radius of curvature (1300 mm) that is 100 times 
the roller diameter. These parameters were chosen interactively in the analysis software to avoid stress 
concentration at the ends of the rollers for the reference load of 29,190 N (6562 lb). The reference load 
produces an inner-ring maximum Hertz stress of 2240 MPa (325 ksi) with the aerospace profile. The 
computed stress distribution across the roller width at the reference load for each of the six roller profiles 
is shown in Figure 3.  

Six load cases ranging from 6,940 to 81,994 N (1,560 to 18,443 lb) were chosen for the analysis. 
These loads produced inner-ring maximum Hertz stress ranging from 1200 to 3620 MPa (174 to 525 ksi) 
for the aerospace profile. The loads and resulting maximum Hertz stresses are given in Table 3 for each of 
the 36 cases analyzed.  

Effect of Roller Profile 

The effect of roller profile on life for the six load cases for six profiles is shown in Figure 6. For each 
profile, the computed life is plotted vs. the applied load to produce a load-life plot. The longest computed 
life at any load would be produced by flat rollers (where stress concentration at roller ends was 
neglected). For flat rollers, the load life exponent p = 4 from Equation (3), which is in agreement with the 
Lundberg-Palmgren life model. Crowning decreases the effective roller length and increases the 
maximum stress at the center of the roller, which decreases the life, particularly at light loads.  
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At the highest load in Figure 6, for the most severe crowning, where R = 100d, the life is 17 percent 
less than the calculated life for flat rollers. At the lightest load, the life is reduced much more, by 
86 percent compared to flat rollers. The greater effect at light loads is reflected in the load-life exponent p, 
which is reduced from p = 4 for flat rollers to p = 3.1 with severe crowning. This case was included to 
show the effect of excessive crowning. For the more moderate full crown, where R = 150d, the load-life 
exponent p = 3.2. The analysis shows that the 1952 assumption by Lundberg and Palmgren (Ref. 3) of a 
load life exponent of p = 10/3 (or 3.33) applies only to crowned rollers. 

The chamfered profile and the similar aerospace profile have a very similar stress distribution (Fig. 2) 
and produce almost identical load-life curves (Fig. 6). A full crown with crown radius 150 times roller 
diameter also avoids stress concentration at the ends but at the expense of higher stress at the roller center 
and thus lower life because of the greater crown drop.  

The life data of Figure 6 were replotted in Figure 7 to show the relationship between maximum Hertz 
stress and life. For flat rollers, the load life exponent c = 8 in Equation (1), which agrees with the 
Lundberg-Palmgren life model. Because crowning increases the Hertz stress at the center of the rollers, 
the stress at each condition differs for the various profiles. As shown in Figure 6, increased crowning will 
decrease life. However, because crowning increases stress at the center of the rollers, the Hertz stress-life 
exponent n increases with crowning instead of decreasing. Note that the two fully crowned profiles 
(crown radius, R = 150d and R = 100d) produce approximately the same value of exponent n = 8.8 even 
though these profiles have different values of the load-life exponent p (see Fig. 6).  

The load-life relation for both the Lundberg-Palmgren (Refs. 2 and 3) and Zaretsky (Refs. 1 and 7) 
life models is compared in Figure 8 for three roller profiles. With the Zaretsky model, the load-life 
exponent p = 5.0 for a flat profile. An aerospace profile reduces the load-life exponent to p = 4.6. The full 
crown reduces the exponent further, to p = 4.3. With an aerospace crown, the Zaretsky model (where 
p = 4.6) yields lives ranging from 5 to 45 times the lives predicted by the Lundberg-Palmgren model 
(where p = 3.5) for the range of loads shown.  

Figure 9 shows the same life data from the Zaretsky model as Figure 8 except the vertical axis shows 
the maximum Hertz stress, rather than the applied radial load. As in Figure 7, roller crowning increases 
the stress-life exponent, c, from 10.1 for flat rollers to 10.8 for fully crowned rollers according to the 
Zaretsky life model.  

The calculated load-life exponent, p and the Hertz stress-life exponent, n for radially-loaded 210-size 
roller bearings are summarized in Table 4 for each of the five roller profiles analyzed in this paper. For 
flat rollers, n = 8.0 for the Lundberg-Palmgren model and n = 10.1 for the Zaretsky model, which nearly 
agree with the values 8.1 and 9.9 assumed in Poplawski, et al. (Refs. 11 and 12). However, as the crown 
drop increases, the exponent n becomes greater than the constant values assumed in Reference 12. 

In addition to the results for 210-size bearings described herein, a similar life analysis was conducted 
for 50-mm bore bearings in 1910-, 110- and 310-size and for 30-mm bore, 1906-size and 100-mm bore, 
220-size cylindrical roller bearings. Computed results (not shown in this paper) for the load-life exponent, 
p and the stress-life exponent, n were identical to results given in Table 4 for 210-size bearings. 

Roller Bearing Field Data 

The application of both the Lundberg-Palmgren model and the Zaretsky model to predict roller life 
and reliability need to be benchmarked and verified under a varied load and operating profile. The cost 
and time to laboratory test a statistically significant number of roller bearings of different roller 
geometries to determine their life and reliability is prohibitive. A practical solution to this problem is to 
benchmark the analysis to field data. Fortunately, these data were available for a commercial turboprop 
gearbox (Ref. 22).  

Field data were collected for 64 new commercial turboprop gearboxes. From these field data, the 
resultant time to removal of each gearbox is presented in the Weibull plot of Figure 10. The failure index 
was 59 out of 64. That is, 59 out of the 64 gearboxes removed from service were considered failed. For 
these data, there was no breakdown of the cause for removal or the percent of each component that had 
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failed. The resultant L10 life from the field data was 5627 hr and the Weibull slope m was 2.189. The 
lowest lived components in the gearbox are the roller bearings. As a result, the Weibull slope assumed for 
the planetary gear spherical roller bearings is assumed to be the Weibull slope m of the entire gearbox 
system. Using the Lundberg-Palmgren model the predicted L10 life was 774 hr and the Weibull slope m 
was 1.125. The field data suggest that the L10 life of the gearbox was under predicted by a factor of 7.56 
(Ref. 22). 

Although errors in the assumed operating profile of the gearbox may account for the difference 
between actual and predicted life, it is suggested that using the Lundberg-Palmgren equations results in a 
life prediction that is too low for the bearings. 

With reference to Equation (3), in their 1952 publication (Ref. 3), Lundberg and Palmgren proposed a 
load-life exponent p = 10/3 for roller bearings, where one raceway has point contact and the other 
raceway has line contact. The 10/3 load-life exponent has been incorporated in the ANSI/ABMA (Ref. 4) 
and ISO (Ref. 5) standards first published in 1953. Their assumption of point and line contact may have 
been correct for many types of roller bearings in use at that time. However, it is no longer the case for 
most roller bearings manufactured today, and most certainly not for cylindrical roller bearings. The 
analysis employed for the bearing life calculations used a value of p = 3 for ball bearings and p = 4 for 
roller bearings. Poplawski, Peters, and Zaretsky (Refs. 11 and 12) suggest the use of p = 4 for ball 
bearings and p = 5 for roller bearings (Ref. 22).  

From (Ref. 22), the Weibull plot of Figure 10 showing the predicted life of the gearbox, has a Weibull 
slope or modulus, msys = 1.125. It was based on Weibull slopes for roller bearings of mB = 1.125 
(Lundberg and Palmgren (Ref. 3)). And, from experimental data (Ref. 23), the Weibull modulus (slope) 
mG of gears equals 2.5.  

The Weibull plot of the field data in Figure 10 for the lives of the turboprop gearboxes contained 
59 failures out of 64 gearboxes. These failures were ~90 percent the result of planetary bearing failures, 
less than 2 percent from gear failures and the balance from other bearing failures (Ref. 22). The resulting 
Weibull slope or modulus of the gearbox failures ms was 2.189. It is assumed that the Weibull modulus 
(slope) of the gearbox system is the same as that of the shortest-lived components in the system, which 
are the planetary bearings. Hence, the Weibull modulus (slope) of the bearings mB was assumed also to be 
2.189. From Reference 23, the Weibull slope mG of the gears, from experimental data, was assumed to be 
2.5. From Strict Series Reliability (Appendix A), 
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and solving for the bearing system life, results in a value of 
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From Lundberg-Palmgren (Ref. 2), the predicted bearing system life is 
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Calculating a revised value for the load-life exponent p for the gearbox bearings based on the actual 
bearing system life of 5627 hr, 
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Solving for load-life exponent p, 
 2.5p  (17b) 
 
For line contact (roller bearing) the Hertz stress-life exponent n = 2p. From Equation (17b), n = 10.4 for 
line contact for the turboprop gearbox data. Referring to the Zaretsky model, Equation (4), for line contact 
the shear stress-life exponent is 
 

 
m

nc
1

  (18a) 

 
and where n = 10.4 and m = 2.189, 
 

 943.9
189.2

1
4.10 c  (18b) 

 
Using the value of c from Equation (18b) to solve for the Hertz stress-life exponent n for point contact 
where m is assumed to equal 1.11, then 
 

 
74.11

11.1

2
943.9

2




m

cn

 (19a) 

 
and for point contact, 
 

 91.3
3

74.11

3


n
p  (19b) 

 
The apparent load-life exponent p for the roller bearings is equal to 5.2 and correlates with the Zaretsky 
model. Were the roller bearing lives to be recalculated using a load-life exponent p = 5.2, the predicted 
L10 life of the gearbox would be equal to the actual life obtained in the field, 5627 hr. It should be noted 
that if an exponent p = 5 were used; the predicted L10 life of the gearbox would be 4065 hr. This result 
suggests a strong reliance of the predicted bearing life upon the load-life exponent p and correlates with 
reasonable engineering certainty with the analysis of the load-life relation for the Zaretsky life model 
shown in Figure 8. The values of the load-life exponent p for roller bearings equal to 10/3 from the 
ANSI/ABMA and ISO standards (Refs. 4 and 5) and 4 from computer codes may provide predicted roller 
bearing lives that are too conservative for design purposes.  
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Summary of Results 

A commercial bearing analysis code (Ref. 13) was used to calculate the fatigue lives for radially-
loaded cylindrical roller bearings with five different roller profiles. Lives predicted by the code, which is 
based on the Lundberg-Palmgren life model (Refs. 2 and 3), were adjusted to also predict roller bearing 
life based on the Zaretsky (Refs. 1 and 7) life model. The following results were obtained. 

 
1. The Zaretsky life model for rollers with an aerospace or chamfered crown predicts roller bearing life 

between 5 and 45 times the life predicted by the 1952 Lundberg and Palmgren model depending on 
load. The Zaretsky model better fits post-1960 bearing life data for vacuum processed steel bearings. 

2. The Zaretsky life model produces a load-life exponent p = 5, for flat (uncrowned) rollers if stress 
concentration effects at the ends of the rollers is neglected. This compares with p = 4 for the 
Lundberg-Palmgren theory with flat rollers. 

3. Using the Zaretsky life model, the load-life exponent p is reduced from 5.0 for flat rollers to 4.6 for 
either aerospace or chamfered rollers and to 4.3 for fully-crowned rollers. 

4. The analysis shows that the 1952 assumption of Lundberg and Palmgren of a load life exponent of 
p = 10/3 applies only to crowned rollers. Using the Lundberg-Palmgren life theory, the load-life 
exponent is reduced from a value of 4 for flat rollers to approximately 10/3 for fully-crowned rollers. 
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Appendix A.—Derivation of Strict Series Reliability 

As discussed and presented in Reference 11 and 23, G. Lundberg and A. Palmgren (Ref. 2) in 1947, 
using the two parameter Weibull equation for rolling-element bearing life analysis, first derived the 
relationship between individual component lives and system life. The following derivation is based on but 
is not identical to the Lundberg-Palmgren analysis (Ref. 1). 

The two parameter Weibull equation which is a cumulative distribution function can be written as 
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where L is the number of cycles to failure, Ssys is the system probability of survival; m is the Weibull 
modulus or slope designating the type of distribution, e.g., where m = 1, exponential distribution, 2, 
Raleigh distribution, and 3.57, Gaussian or normal distribution; and Lβ is the characteristic life or the life 
at a 63.2 percent probability of failure (Ref. 1). 

Figure 11 is a sketch of multiple Weibull plots where each Weibull plot represents a cumulative 
distribution of each component in the system. The system Weibull plot represents the combined Weibull 
plots 1, 2, 3, and so forth. All plots are assumed to have the same Weibull slope m.  

The slope m can be defined as follows: 
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From Equations (A1) and (A2b), 
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and 
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where Ssys = S in Equation (A1). For a given time or life L, each component or stressed volume in a 
system will have a different reliability S. For a series reliability system 
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 ...321sys  SSSS  (A5) 

 
Combining Equations (A4) and (A5) gives 
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It is assumed that the Weibull slope m is the same for all components. From Equation (A6b) 
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Factoring out L from Equation (B7a) gives 
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From Equation (A3) the characteristic lives L1, L2, L3, etc., can be replaced with the respective lives L1, 
L2, L3, etc., at Sref (or the lives of each component that have the same probability of survival Sref) as 
follows: 
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where, in general, from Equation (A3) 
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Factoring out ln (1/Sref) from Equation (A8) gives 
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or rewriting Equation (A10) results in 
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Equation (A11) is identical to Equations (2) and (15a) of the text. 
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Appendix B.—On Converting Calculated Life From the Lundberg-Palmgren 
Life Model to the Zaretsky Life Model 

Zaretsky et al. (Ref. 7) modified the equation for the Lundberg-Palmgren bearing life model (Refs. 2 
and 3), by making three changes:  (1) replacing the orthogonal shear stress with the maximum shear 
stress; (2) eliminating the dependence on the Weibull modulus (slope), m in the first term (which involves 
the shear stress, τ) and (3) removing the term involving the depth to critical shear stress. 

If we solve for the life for the life LZ from the Zaretsky model Equation (3) in terms of the Lundberg-
Palmgren life, LLP, Equation (2), we have: 
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Constant k1 incorporates the dimension of zh//m, where z is the depth to the critical shear stress. The 

value of k1 is unknown. The value of k1 will vary with different units of z. In this paper, we assume that k1 
is unity when z is expressed in mm. For z in inches and with line contact, where exponent h/m = 2.071, 
the value converts to k1 = (1 / 25.4)2.071 = 0.001232. It will take a series of life tests to establish the actual 
value of this constant. 

For roller bearings with line contact, the maximum orthogonal shear stress τo = 0.25Smax, while the 
maximum shear stress, τmax = 0.300Smax and Smax is the maximum Hertz stress. Therefore the ratio τo/τmax = 
0.25/0.300 = 0.833. 

The Lundberg-Palmgren life model is semi-empirical. The exponents for the various terms were 
chosen to fit the experimental data available at the time. In their 1952 paper (Ref. 3), they show the 
Weibull slope for ten roller bearing tests, with thirty bearings in each test. The test bearings included 
tapered, cylindrical and spherical roller bearings. The exponents varied from 0.7 to 1.4. Thus, they stated 
“The value e = 10/9 can be taken as a mean value as with ball bearings.” 

Lundberg and Palmgren (3) adjusted their exponents in order to have an integer value for p, the 
load/life exponent, where p = (c-h+1)/(2m). For roller bearings with line contact, they chose m = 9/8 
which makes p = 4. 

Lundberg and Palmgren (Refs. 2 and 3) chose for their exponent involving the critical shearing stress 
in Equation (1) c = 10.33 for either ball bearings or roller bearings Therefore, for roller bearings with line 
contact, where L~1/τc/m, c/m = 10.33/1.125 = 9.182. 

When he modified the life relation, removing the dependence on the Weibull slope, Zaretsky adjusted 
the exponent c so that it is equal to the published values of the Lundberg-Palmgren quotient c/m. This 
exponent will not vary if the Weibull exponent is changed from the nominal value. Therefore, for roller 
bearings, the term (τo/τm)c = (0.833)9.182 = 0.1875. 

The stressed volume in either life model is the product of the circumference of the rolling-element 
running track, times the width of the contact times the depth to the critical shear stress. In changing from 
the orthogonal to maximum shear stress, the only parameter for the stressed volume that changes is the 
depth to the critical shear stress.  

The maximum shear stress occurs at greater depth than the maximum orthogonal shear stress; 
therefore, zm is greater than zo. For cylindrical roller bearings, zo = 0.5b, while zm = 0.786b, where b = the 
half-width of the Hertzian contact stress zone and the Weibull slope m = 1.125. Therefore, the term 
(VLP/VZ)1/m = (zo/zm)1/m = (0.50/0.786)1/1.125 = 0.6689.  
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To remove the dependence on the depth to the critical shear stress for the Zaretsky (Z) life model, the 
LP life is divided by zo

h/m, where for line contact, the exponent h/m = 2.33/1.125 = 2.071.  
For roller bearings with line contact, Equation (B1) simplifies to Equation (B2) 
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For ball bearings, with m = 1.11, c/m = 10.33/1.11 = 9.306. The term (τo/τm)c = (0.785)9.306 = 0.1056. 

For ball bearings with typical conformity, f = 0.52, zo = 0.49b while zm = 0.767b. Thus, (VLP/VZ)1/m = 
(0.49/0.767)1/1.11 = 0.6679. 

As above, to remove the dependence on the depth to the critical shear stress for the Zaretsky (Z) life 
equation, the LP life is divided by zo

h/m, where for point contact, h/m = 2.33/1.11 = 2.099. 
Thus, for ball bearings with point contact, Equation (B1) simplifies to Equation (B3) 
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Table 1.—Bearing properties 
Bearing description Bore, 

mm 
Outside 

diameter, 
mm 

Number 
of 

elements 

Roller diameter, 
d 

Roller length 

mm in. mm in. 

210-size cylindrical roller bearing 50 90 10 13 0.5118 13 0.5118 
 

TABLE 2.—ROLLER PROFILE PARAMETERS 
Profile Flat length Radius of 

curvature 
Drop at gauge 

point, 
mm 

Max. deflection at 
ref load, 

mm 
Flat (no crown) 13 mm (100%) n/a n/a 0.0355 
Full crown, R = 150d 0.0 (0%) 1950 mm 0.010812 0.0443 
Full crown, R = 100d 0.0 (0%) 1300 mm 0.016218 0.0484 
Chamfered 8.0 mm (61.5%) n/a 0.008677 0.0395 
Aerospace 8.0 mm (61.5%) 1300 mm 0.010064 0.0398 
Logarithmic 0.0 (0%) n/a 0.020000 0.0401 

 

TABLE 3.—LOAD LEVELS AND CORRESPONDING INNER-RACE MAXIMUM HERTZ STRESS, MPa (ksi)  
FOR CYLINDRICAL ROLLER BEARINGS WITH FIVE ROLLER PROFILES AT SIX LOAD LEVELS 

Profile 

Radial load, N (lbf) 

6,940 
(1,560) 

15,980 
(3,592) 

20,100 
(4,519) 

29,190 
(6,562) 

58,780 
(13,214) 

81,994 
(18,433) 

Flat (no crown) 1025 (149) 1556 (226) 1745 (253) 2102 (305) 2984 (433) 3534 (513) 
Full crown, R = 150d 1406 (204) 1883 (273) 2052 (298) 2376 (345) 3200 (464) 3716 (539) 
Full crown, R = 100d 1507 (219) 2011 (292) 2178 (316) 2496 (362) 3300 (479) 3806 (552) 
Chamfered 1200 (174) 1713 (248) 1891 (274) 2232 (324) 3086 (448) 3614 (524) 
Aerospace 1200 (174) 1720 (249) 1900 (276) 2240 (325) 3092 (448) 3620 (525) 
Logarithmic 1240 (180) 1730 (251) 1910 (277) 2250 (326) 3110 (451) 3620 (525) 

 

TABLE 4.—LOAD-LIFE AND HERTZ STRESS-LIFE EXPONENTS FOR A 
CYLINDRICAL ROLLER BEARING WITH RADIAL LOAD 

Profile Lundberg-Palmgren Life Model Zaretsky Life Model 
Load-life exp., 

p 
Stress-life exp., 

n 
Load-life exp., 

p 
Stress-life exp., 

n 
Flat (no crown) 4.0 8.0 5.0 10.1 
Full crown, R = 150d 3.2 8.8 4.3 10.8 
Full crown, R = 100d 3.1 8.8 4.1 10.8 
Chamfered 3.5 8.2 4.6 10.3 
Aerospace 3.5 8.2 4.6 10.3 
Logarithmic 3.7 8.2 4.6 10.5 
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Figure 1.—Schematic of cylindrical roller bearing. 

 
 
 
 

 
Figure 2.—Crown drop (vertical dimension exaggerated) for various roller profiles. 
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Figure 4.—Lamina representation of a roller. 
 
 
 
 

 
Figure 5.—Lamina to raceway equivalent spring. 
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Figure 8.—Comparison of Lundberg-Palmgren and Zaretsky life models for roller bearing life and load-life 

relationship for a 50-mm bore, cylindrical roller bearing with three roller profiles. 

 

 
Figure 9.—Comparison of Lundberg-Palmgren and Zaretsky life models for roller bearing life and Hertz stress-life 

relationship for a 50-mm bore, cylindrical roller bearing with three roller profiles. 
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Figure 10.—Weibull plot of field data for lives of turboprop 

gearboxes compared with predicted lives using Lundberg-
Palmgren life model. Failure index, 59 out of 64 (Ref. 22). 

 
 

 
Figure 11.—Sketch of multiple Weibull plots where each numbered plot 

represents cumulative distribution of each component in system and 
system Weibull plot represents combined distribution of plots 1, 2, 3, 
etc. (all plots are assumed to have same Weibull slope m) (Ref. 11). 










