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Evaluating Coinciding Anomalies Along a Fault Trace or 
Other Traverse-Simulations and Statistical Procedures 

By Russell L. Wheeler and Katherine B. Krystinik 

Abstract 

If two or more types of data are mapped along the same 
traverse, such as a fault trace, anomalies in different data types 
can coincide. If the anomalies coincide because they have a 
common geological cause, the spatial coincidences are worth 
interpreting to understand that cause. Alternatively, the anom­
alies might coincide by chance, so that genetic interpretations 
of the observed patterns of anomalies would be misguided. 
Opinion is an unreliable guide for deciding which is the case. 

Numerical simulations and statistical tests aid in this deci­
sion. Each simulation produces a random scattering of the 
observed anomalies along the traverse and an anomaly pat­
tern that resembles, to some degree, the one observed. Ran­
domization tests are used to compare the observed pattern of 
anomalies to the collection of simulated patterns, in terms of 
numbers of triplets and larger groups of coincident anomalies. 
Test results show whether the anomalies of the observed pat­
tern coincide more than should be attributed to chance. If so, 
the group of coincident anomalies is worth interpreting. 

Jaccard coefficients detect those data types that tend to 
have anomalies together along the traverse. Two such highly 
associated data types can be combined. Together they might 
detect the occurrence of whatever causes the coincident 
anomalies more effectively than can either data type alone. 

INTRODUCTION 

A problem that is commonly encountered in the 
earth sciences is the evaluation of spatial associations be­
tween features on maps of two or more kinds of data that 
are collected over the same study area. For features that 
are represented on the maps as points, geographers and 
statisticians have developed many procedures for detect­
ing and evaluating spatial associations (for example, 
Lewis, 1977; Ripley, 1981). The problem becomes suc­
cessively more complex if the mapped features are repre­
sented as lines, as patches of similar sizes and simple, 
similar shapes, or as irregular areas of dissimilar sizes and 
shapes. Figure 1 illustrates this last case, which is a com­
mon one in geology. Anomalies in all three data types 
appear to coincide in the upper left part of the study area. 
Pairs of anomalies appear to coincide at two places on 

traverse A -A I • Are these spatial coincidences worth in­
terpreting, or should they be dismissed as chance overlaps 
of unrelated anomalies in different types of data? 

The general problem has four parts: (1) defining 
anomalies, (2) identifying coincident anomalies, (3) deter­
mining whether the coincident anomalies are likely to 
have coincided by chance instead of from some common 
cause, and (4) interpreting such coincidences. Solving 
each part requires solving all the preceding parts. The last 
part is usually the most fun, which might explain the com­
mon tendency to jump to it without explaining how (or 
if) the first three parts of the problem were solved. The 
resulting arguments are often more exciting than infor­
mative, perhaps because they might root in unrecognized 
disagreements about the first three parts of the problem. 

The evaluation of earthquake hazards encounters 
a simplified version of this problem. Instead of a map 
area, we have the trace of a fault on the Earth's surface, 
for example traverse A-A I in figure 1. Data were 

A 

Figure 1. Map made by superimposing three hypothetical maps 
of the same study area. Each superimposed map shows spatial 
distribution of a different type of geological, geophysical, or 
other earth-science data. Each data type has anomalies in one 
or more parts of ~udy area. Solid, dashed, and dashed-dotted 
lines outline anomalies in various data types, one line type per 
superimposed map. A-A' is traverse discussed in text. 
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collected or measured along the trace, or within a nar­
row strip around it. The problem and its four parts are 
unchanged. 

For anomalies that might coincide along a study 
traverse like A-A' in figure 1, we present a general pro­
cedure for solving the second and third parts of the prob­
lem. Most such traverses will be along fault traces, but 
the procedure can be used along any kind of linear or 
curvilinear traverse. 

We will not treat the first part of the problem, that 
of defining the anomalies, because the methods for do­
ing that depend on the types of data to be analyzed, on 
the ways in which the data are represented or summar­
ized on maps, and on the goals of the analysis. For ex­
ample, this report emerged from an attempt to identify 
places along the Wasatch fault zone in Utah where the 
fault zone might be segmented into lengths that tend to 
rupture independently of each other (Schwartz and Cop­
persmith, 1984; Wheeler, 1984; Machette and others, 
1986). The goal was to detect boundaries between 
segments. The approach was to examine kinds of data 
that ought to record the presence of a segment boundary 
as anomalies of predictable sorts. This goal imposed con­
ditions on the kinds of data to be analyzed and on the 
kinds of anomalies to be sought in each data type. 
Wheeler and Krystinik (1987a, b, in press) used anomalies 
along the north-striking fault zone that include east­
trending gravity and aeromagnetic gradients and large 
cross faults, and changes along the fault zone in abun­
dance of earthquake epicenters, in the geometry of the 
fault zone, and in the height and width of the upthrown 
fault block. Because many anomalies were identified sub­
jectively by inspection of maps of points, contour maps, 
and geologic maps, the anomalies had to be shown to be 
reliable, for example by being recognized by two or more 
independent and competent workers. Wheeler and 
Krystinik (in press) described how the data and anomalies 
from the Wasatch fault zone satisfied these conditions. 
Peculiarities of other investigations will impose their own 
conditions on data and anomalies. 

The second part of the problem, that of identify­
ing coincident anomalies, requires specifying objective 
rules for identification. We did this by developing a pro­
cedure for identification of coincident anomalies, pro­
gramming the procedure, and testing the program on 
artificial data. 

The third part of the problem, determining whether 
the observed coincidences of anomalies are or are not 
likely to have occurred by chance, is a statistical effort. 
If anomalies are randomly scattered, the exact form of 
the distribution that underlies the numbers of coincident 
anomalies is unknown, so we solve this part of the prob­
lem with simulations and statistical tests of the simulated 
anomaly patterns. (We describe the simulation and 
statistical procedures in detail because this report is 
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directed toward geophysicists and quantitatively oriented 
geologists, many of whom have little training in statistics.) 
The statistical nature of this part of the problem imposes 
two more conditions on the anomalies (Wheeler and 
Krystinik, in press). Some version of these two conditions 
will apply to any investigation of any types of data that 
can be represented as in figure 1. The anomalies in any 
one data type had to be identified without reference to 
any other data type used in the analysis, and also without 
reference to the segment boundaries that Schwartz and 
Coppersmith (1984) suggested in the report that prompted 
our investigation. 

The fourth part of the problem is that of inter­
preting the group of coincident anomalies that is unlike­
ly to be an artifact of chance. For the Wasatch fault zone, 
Wheeler and Krystinik (1987a, b) applied the methods of 
this report to the data of Wheeler and Krystinik (in press) 
and interpreted the results. 

COl NCI DE NT ANOMALIES 

For each data type, the presence and absence of 
anomalies along the length of the fault trace or other 
study traverse are summarized graphically. In an exam­
ple (fig. 2), three anomalies of different widths are located 
where variable v(i) has a value of 1. Along the other four 
sections of the traverse a value of 0 for v(i) records the 
absence of any anomaly in this data type. 

We need a rule to determine when anomalies coin­
cide. We define two anomalies as coincident if either 
anomaly contains the center of the other (fig. 3). For ex­
ample, the two anomalies labelled 1 in figure 3 coincide 
by this rule, because the wide anomaly in v(2) includes 
the center of the narrower anomaly in v(1). This exam­
ple illustrates why the rule does not require each anoma­
ly to contain the center of the other. The narrow anomaly 
in v(1) does not contain the center of the wide anomaly 
in v(2), but these anomalies coincide in any geologically 
reasonable sense of the word. The second two anomalies 
coincide because each contains the center of the other. 
The third two anomalies do not coincide because neither 
contains the center of the other. Finally, two anomalies 
in the same variable cannot coincide because they can­
not merge or overlap without becoming a single anomaly. 

We use a hypothetical pattern of anomalies in four 
data types (fig. 4) to illustrate procedures throughout this 
report. Each data type contains from one to six anom­
alies, which vary in width and separation. The 17 anoma­
lies have a median width of 3 km, and range from 1 to 
6 km in width except the single 30-km wide anomaly (K) 
in data type 3 (table 2). Depending on the data type, from 
70 to 83 percent of the traverse's length lacks anomalies. 
Pairs of coincident anomalies are found at four places 
along the traverse (fig. 4). At about d = 32 three types 
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Figure 2. Sketch showing locations 
of several anomalies in one data type 
(such as along a fault trace or other 
traverse of a study area). Table 1 de­
fines symbols. 

of data appear to be anomalous, and at about d = 55 all 
four types appear to be anomalous. 

A triplet of coincident anomalies can be identified 
by extending the rule for coincident pairs in this man­
ner: if two anomalies in different variables coincide, a 
third coincides with both if it coincides with each. The 
extended rule has several consequences that will form the 
bases of later analyses. For the three anomalies at d = 
32 (fig. 4), there are three possible pairs of coincident 
anomalies, and all three coincident pairs exist. The 
anomaly (C) in v(l) spans km 30-35, (H) in v(2) spans 

Table 1. Symbols used in representation of anomalies 

Symbol Definition 

n 

d 

Number of data types to be examined 
for anomalies. 

Distance along traverse in km, from 
d = 0 km at north end of traverse 
to d = D km at south end. 

v(i) Binary variable that can take 
values of 0 or 1 along traverse. 
In lengths of traverse that cross 
an anomaly in data type i, where 
i=1, ... , n, v(i)=1. In lengths 
between anomalies in data type 
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i, v(i)=O. Where v(i)=1, v(i) is 
said to have an anomaly or to be 
anomalous. 

v(1) v(2) 
0 0 0 I I 

2 j2 __ ___. 

d 

3 

0~.-... 

Figure 3. Sketch illustrating identification of coin­
cident anomalies. Table 1 defines symbols. Two 
types of data occur along traverse, and anomalies 
in them are located by values of v(1) and v(2). 
Numerals identify pairs of anomalies that fall at 
about the same places along traverse. 
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Figure 4. Hypothetical anomaly pattern in four data types along 
a traverse. Table 1 defines symbols. Data of types 1-4 have 
17 anomalies along length of traverse. Anomalies are where 
variables v(1) to v(4) have values of 1, by the convention il­
lustrated in figure 2. Letter to right of each anomaly keys it to 
table 2. Column at right shows where and which anomalies 
coincide. 

km 28-33, and (M) in v(4) sp~ns km 30-33; thus all three 
span and have centers within km 30-33 (table 2). The first 
two anomalies contain each others' centers, and so define 
a coincident pair. The anomaly in v(4) coincides with each 
of the other two anomalies. Thus, the three anomalies 
satisfy the extended rule that defines a triplet. However, 
suppose that the anomaly in v(l) were one km farther 
south, so that it spanned km 31-36. Its center would lie 
at d = 33.5. The anomaly in v(2) centers at km 30.5, so 
neither anomaly would contain the center of the other. 
The anomalies in v(l) and v(2) would no longer coincide. 
The triplet would then degenerate into two pairs, one link­
ing v(2) and v(4), and another linking v(l) and v(4). 

Identifying a quadruplet or larger coincidence of 
anomalies requires a more general rule, which also ap­
plies to triplets. For m (the number of coincident 
anomalies) greater than 2, an m-tuplet of coincident 
anomalies exists if and only if all possible coincident pairs 
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Table 2. Descriptions of anomalies illustrated in figure 4 

Distance from 0 (km) 
Anomaly Ends Center 

A 
B 
c 
D 
E 

F 
G 
H 
I 
J 

K 

L 
M 
N 
0 
p 

Q 

2-5 
8-12 
30-35 
52-56 
80-83 

2-7 
8-11 
28-33 
54-57 
90-94 

v ( 1 ) 

3.5 
10 
32.5 
54 
81.5 

v(2) 

4.5 
9.5 
30.5 
55.5 
92 

v(3) 

40-70 55 

15-17 
30-33 
44-46 
51-57 
73-74 
80-83 

v(4) 

16 
31.5 
45 
54 
73.5 
81.5 

Width 
(km) 

3 
4 
5 
4 
3 

5 
3 
5 
3 
4 

30 

2 
3 
2 
6 
1 
3 

Coincident 
with 

F 
G 
H,M 
I,K,O 
Q 

A 
B 
C,M 
D,K,O 

N,D,I,O 

C,H 
K 
D,I,K 

E 

of its component anomalies also exist. The number of 
possible coincident pairs is the number of ways that m 
anomalies can be chosen two at a time, or m(m-1)/2. A 
triplet requires three coincident pairs, a quadruplet re­
quires six, and a quintuplet requires 10. This more general 
rule shows that the four anomalies at km 55 of figure 
4 do define a quadruplet. Six coincident pairs create the 
quadruplet. However, if the anomaly in v(2) at d = 55 
were one km farther south, then the anomalies in v(l) 
and v(2) would no longer coincide. The quadruplet would 
degenerate into two triplets, one linking v(l), v(3), and 
v(4), and another linking v(2), v(3), and v(4). Each of 
these triplets would contain three coincident pairs of 
anomalies, and so would not degenerate. 

This extended rule for m-tuplets avoids a phenom­
enon that we call chaining. Chaining is illustrated by 



considering the hypothetical triplet that degenerated in­
to two pairs. If a pair links v(2) and v(4), and if a second 
pair links v(1) and v(4), then a chain of two pairs links 
all three anomalies in these variables. However, the 
anomalies in v(l) and v(2) do not coincide. If the anomaly 
in v(4) were wide enough, the anomalies in v(l) and v(2) 
might even be several km apart. To accept such chained 
anomalies as a triplet would blur the idea of coincident 
anomalies beyond usefulness. 

On cursory inspection of figure 4, v(1) and v(2) ap­
pear to be associated variables in the sense that most of 
their anomalies coincide. Variable 3 appears least asso­
ciated with most other variables. However, the single 
anomaly of v(3) is part of the only quadruplet of coinci­
dent anomalies. 

How much of the pattern described in the preceding 
paragraphs reflects some underlying structure that is 
worth trying to interpret, and how much should be 
dismissed as arising from chance? Two aspects of coin­
cident anomalies are of interest: individual places on the 
traverse where unusually many anomalies coincide 
(anomalous sections of the traverse), and variables that 
are highly associated over the whole length of the traverse 
(associated variables). 

Anomalous sections of the traverse differ in some 
way from adjacent sections. What this difference might 
be depends on what phenomenon the data were chosen 
to reveal. For the Wasatch fault zone, data were chosen 
to reveal segment boundaries, so anomalous sections of 
the fault zone could be segment boundaries. Highly 
associated variables might be more effective together than 
are single variables at identifying locations of the 
phenomenon that is under study. For example, if cross 
faults are thought to have localized mafic intrusions and 
volcanic rocks in an area, then coincident gravity and 
magnetic highs could identify hidden cross faults better 
than could either gravity or magnetic data alone. 

ASSOCIATED VARIABLES AND 
JACCARD COEFFICIENTS 

Associated variables are those that tend to have 
anomalies and lack anomalies together along the traverse, 
so that most of their anomalies coincide. Examples are 
v(l) and v(2) in figure 4. Association is observed, not in­
ferred, and for now we make no genetic interpretations 
of any observed association. In contrast, unassociated 
variables are those that tend to have and lack anomalies 
without regard to each other. For example, in figure 4, 
v(3) appears to be relatively unassociated with v(1) and 
v(2). 

The degree of association between pairs of variables 
that can take only values of 0 or 1 is measured by J, the 

Jaccard coefficient (Cheetham and Hazel, 1969). J 
measures the fraction of the anomalies that coincide. In 
a notation similar to that of Cheetham and Hazel (1969, 
p. 1131) J is defined as C/N(t). Cis the number of coin­
cident anomalies in each variable, that is, the number of 
sections of the traverse in which both variables have 
anomalies together. N(t) is the total number of anomalies 
present in both variables together, with each pair of coin­
cident anomalies counted only once. That is, N(t) is the 
number of sections of the traverse where one or more 
anomalies are present. N(t) is calculated as N(i) + N(j)­
C, where N(i) and N(j) are the numbers of anomalies in 
variables i and j. For example, variables 1 and 2 of figure 
4 have five anomalies each, and four of them coincide. 
Therefore, C = 4, N(t) = 6, and J = 0.67. For most ap­
plications J = 0 for variables that have no coincident 
anomalies, and J = 1 for variables whose anomalies coin­
cide completely (Cheetham and Hazel, 1969). Values of 
J that are near 0 characterize relatively less associated 
variables, and values near 1 characterize relatively more 
associated variables. 

In most applications of the Jaccard coefficient, J 
cannot exceed 1. Then, by the definition of J, C cannot 
exceed the average of N(i) and N(j). In this application, 
if all anomalies in v(i) and v(j) are about equally wide, 
then probably no anomaly will be wide enough to coin­
cide with more than one other anomaly. Then C is unlike­
ly to exceed the average of N(i) and N(j), and J is unlikely 
to exceed 1. However, if some anomalies are much 
wider than others, then a wide anomaly might coincide 
with more than one narrow anomaly, so that C increases 
and J might exceed 1. For an example, consider v(3) and 
v(4) and only kilometers 40-70 of figure 4. The wide 
anomaly K in v(3) coincides with both narrow anomalies 
Nand 0 in v(4). In this case N(3)= 1, N(4)= 2, and C= 
2. C exceeds the average of N(3) and N(4), and J = 
2/(1 +2-2)= 2. However, the effect of the wide anoma­
ly would be diluted if the entire traverse were considered. 
Then N(4) would increase to 6, so that C = 2 would 
no longer exceed the average of N(3) and N(4), and J 
would decrease to 0.40. Thus, J can exceed 1 if some 
anomalies are much wider than others, but such large 
values of J will be few if wide anomalies are few. In any 
case, large values of J will still identify highly associated 
variables. 

We use J to examine the structure of the anomaly 
pattern of figure 4 (fig. 5, table 3). Variables 1 and 2 ap­
pear to be the most strongly associated (fig. 4), and the 
point (1 ,2) that represents this pair plots in the right part 
of figure 5 as it should. Variable 3 is comparatively 
unassociated with variables 1 and 2 (fig. 4). Accordingly, 
variable pairs involving v(3) should plot in the left part 
of figure 5 as they do. Plotting J in figure 5 appears to 
separate pairs of variables in ways that identify relative­
ly more associated and relatively less associated variables. 

Associated Variables and Jaccard Coefficients 5 
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Figure 5. Illustration of use of jaccard coefficient (J). 
Data are from figure 4. Calculations are summarized 
in table 3. Numerals to right of plotted points identify 
pairs of variables that produce each point. Vertical axis 
has no meaning and serves only to separate points for 
legibility. 

Table 3. Calculation of jaccard coefficients to produce 
figure 5 from figure 4 
[C, number of coincident anomalies in a pair of variables; N(t), 
number of anomalies in both variables together, with coincident 
anomalies counted once; J, Jaccard coefficient, C/N(t)] 

Variables c N(t) J 
paired 

and 2 4 6 0.67 
and 3 1 5 .20 
and 4 3 8 .38 

2 and 3 1 5 .20 
2 and 4 2 9 .22 
3 and 4 2 5 .40 

SIMULATIONS AND ANOMALOUS SECTIONS 
OF THE TRAVERSE 

Simulations can help to identify sections of the 
traverse where anomalies in unusually many variables 
coincide. As explained earlier, the observed anomalies are 
identified and their widths determined by methods that 
depend on the data and goals of the investigation. 
However, once this is done, the number of anomalies in 
each data type and their widths are fixed. A simulation 
is performed by taking the observed number and widths 
of anomalies in each data type and placing the anomalies 
randomly along the traverse. The observed anomaly pat­
tern is unlikely to have arisen by chance if some specified 
aspect of the pattern, such as a large number of coinci­
dent pairs, is found in the observed pattern but only in 
a small percentage of the simulated patterns. Any aspect 
of the patterns can be specified as the basis for compar­
ing observed and simulated patterns. In this section we 
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examine separately the number of pairs, the number of 
triplets, and the number of quadruplets of coincident 
anomalies. In a later section we shall compare observed 
to simulated patterns on the basis of all three numbers 
considered together. The basis for comparison must be 
specified before the observed and simulated patterns are 
examined to avoid distortion of results by prior inspec­
tion (Freedman and others, 1978, p. 494; Moore, 1979, 
p. 294-295; Wheeler, 1985). 

The number and widths of anomalies in the ob­
served pattern for each data type are held constant in the 
simulations. Only the locations of the observed anomalies 
are varied. The number of anomalies is held constant 
because each data type is measured reliably enough and 
its coverage is complete enough, that probably no 
anomalies have been missed. In terms of the variables v(i), 
this means that a value of 0 is as reliable as a value of 
1. In fact, for any variable the locations of the O's along 
the fault give exactly the same information as do the loca­
tions of the 1 's, because either set of locations can be used 
to generate the other set. Anomaly widths are held con­
stant because the edges of most anomalies are located 
with an uncertainty that is small with respect to the width 
of a typical anomaly, and small with respect to the varia­
tion in anomaly widths. Wheeler and Krystinik (in press) 
described how the data from the Wasatch fault zone meet 
these conditions of data quality. 

As an example of this approach, 20 simulations 
were done using the data of figure 4. Randomly located 
anomalies were allowed to overlap the ends of the 
traverse, but could not overlap each other. The result was 
20 anomaly patterns, each resembling figure 4 to some 
degree. Whether the observed anomaly pattern has arisen 
by chance can be determined by comparison to the 20 
simulated patterns. Twenty simulations are too few to 
give conclusive results, but are enough to illustrate the 
procedure. In practice, many more simulations than 20 
would be used. For example, for the Wasatch fault zone 
we used 300 simulations. The number of simulations that 
is needed can be chosen by an experienced statistician. 
Alternatively, the number of simulations used can be in­
creased gradually, say in increments of 50 simulations, 
until results stabilize and cease changing much with each 
added increment. 

The pattern that is observed in figure 4 has no more 
pairs or triplets of coincident anomalies than do many 
of the simulations (fig. 6). Despite the striking appearance 
of the triplet of figure 4, it would be unwise to spend 
much time trying to interpret it. The observed triplet is 
about as likely to reflect random processes as it is to 
betray the existence of any common cause of the three 
coincident anomalies. However, the observed pattern ap­
pears to be unusual in having a quadruplet. Only one of 
the 20 simulations has such a quadruplet. The observed 
quadruplet might merit investigation. 
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Figure 6. Histograms of numbers of pairs (A), triplets (8), and 
quadruplets (C) of coincident anomalies that occur in anomaly 
pattern of figure 4 (shown by asterisks) and in 20 randomized 
simulations of that pattern. Anomaly pattern of figure 4 has four 
pairs, one triplet, and one quadruplet. Thus, four simulated pat­
terns contain same number of pairs (4) as does hypothetical observ­
ed pattern offigure 4. Four simulated patterns (not necessarily the 
same four) contain same number of triplets (1) as does figure 4. 
Only one simulation produced same number of quadruplets (1) 
as is observed. 

RANDOMIZATION TESTS quadruplets and triplets of coincident anomalies than one 
would expect to occur by chance. Note that whole pat­
terns are to be compared, not individual coincidences of 
anomalies. Interpretation of an individual triplet or 
quadruplet would require information that is not included 
in this randomization test. 

Two-Dimensional Case 

Triplets and quadruplets are of more interest than 
are pairs, because we seek places along the fault where 
several anomalies coincide. We do this because two ran­
domly located anomalies are more likely to coincide than 
are three or four. A two-dimensional graph like that of 
figure 7 allows triplets and quadruplets to be examined 
together, instead of separately as with figure 6. 

We examine the graph of figure 7 with a randomiza­
tion test (Siegel, 1956; Conover, 1971; permutation test 
of Mosteller and Rourke, 1973) to determine whether the 
observed pattern of anomalies (fig. 4) contains more 

To avoid distortion of the test result by prior in­
spection, the test and testable hypothesis must be for­
mulated before examining the data. The population 
consists of--the 20 randomized simulations of the observed 
anomaly pattern. The sample is the observed pattern. The 
goal of this randomization test is to tell whether the coin­
cident anomalies in the sample are likely to have arisen 
from the same random processes that produced the 
population. 

Randomization Tests 7 
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Figure 7. Numbers of coincident 
anomalies counted in anomaly pattern of 
figure 4 (shown by asterisk) and in 20 ran­
domized simulations of that pattern. Pat­
tern of figure 4 has one place along 
traverse where anomalies in three variables 
coincide and one place where anomalies 
in four variables coincide. Dashed line has 
a slope of -t/q

5
, where t

5 
is total number 

of triplets in all 20 simulations together and 
q

5 
is total number of quadruplets. Dashed 

line is drawn to pass through the center of 
cell that contains asterisk and is used to 
determine whether asterisk plots signifi­
cantly farther to upper right than do 
simulated patterns. 

The alternative hypothesis, H(a), is one-sided, and 
states that the observed pattern was drawn from a popula­
tion of patterns that typically have more triplets and 
quadruplets than occur in the simulated patterns. The null 
hypothesis, H(o), states that typical patterns in the 
population that yielded the observed pattern do not con­
tain more triplets and quadruplets than do the simulated 
patterns. 

The randomization test will produce a P-value 
(Moore, 1979; descriptive level of significance of 
Mosteller and Rourke, 1973; associated probability of 
Siegel, 1956, and Gibbons, 1976). The P-value is the prob­
ability of getting a simulated pattern at least as extreme 
as the observed pattern if H(o) is true. The extremeness 
of a pattern is defined as how far the pattern plots toward 
the upper right of figure 7. We will need a quantitative 
definition of "toward the upper right": in a direction 
perpendicular to the straight, dashed line in figure 7. To 
allow comparison to the observed pattern, the dashed line 
passes through the center of the cell that contains the 
asterisk. The dashed line has an orientation that reflects 
the approximate shape of the cloud of points from the 
simulated patterns. 
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Use of a straight line to approximate the shape of 
the point cloud in figure 7 requires justification, because 
this approximation influences the P-value of the ran­
domization test. The choice of the slope of the dashed 
line also needs justification, because the slope influences 
the P-value. The purpose of the randomization test is to 
compare the observed anomaly pattern to the collection 
of simulated patterns, by comparing numbers of coinci­
dent anomalies (here, triplets and quadruplets). The 
number of triplets and quadruplets in the collection of 
simulated patterns must be summarized in some way in 
figure 7. 

For the following reasons, the simplest though not 
necessarily optimal such summary is a straight line that 
slopes steeply down to the right or is vertical. First, ran­
dom processes are more likely to cause anomalies in three 
variables to coincide than anomalies in four variables, 
so many simulations will have more triplets than 
quadruplets. Second, random processes are unlikely to 
produce a simulation with no triplets and no quadruplets, 
so comparatively few simulations will plot in the lower 
left corner of figure 7. Third, random processes are also 
unlikely to produce a simulation with many triplets and 
many quadruplets, so comparatively few simulations will 
plot in the central and upper right parts of figure 7. 
Fourth, the number of anomalies is fixed, so an increase 
in the number of triplets in a simulated pattern will usu­
ally mean a decrease in the number of quadruplets in that 
pattern. The result of these four reasons will usually be 
an elongated cloud of numerical entries in figure 7, slop­
ing steeply down to the right and approaching or reaching 
the vertical in some cases. This elongated cloud of en­
tries expresses the numbers of triplets and quadruplets 
in the various individual simulations. Because this cloud 
of entries is elongated, the simplest summary of its center 
is a straight line. The dashed line is drawn parallel to this 
center line to smooth out vagaries in the proportions of 
triplets and quadruplets in the individual simulations. The 
dashed line is offset to the right from the center line to 
pass through the center of the cell that contains the 
asterisk. 

The optimal way to determine the slope of the 
dashed line is unknown, because the distribution that 
underlies the numbers of triplets and quadruplets in the 
simulations is unknown. However, a simple and straight­
forward expression for the slope is the ratio of the ex­
pected values of the numbers of triplets and quadruplets 
in the simulations, or E(t) and E(q), respectively. There 
are 20 simulations, which together have ts triplets and qs 
quadruplets. Therefore, the slope of the dashed line is 
-E(t)/E(q), which is estimated by -(t/20)/(q/20) = -t/ 
q = -23. s 

The P-value is calculated as N(e)/N(p), where N(e) 
is the number of simulated patterns at least as extreme 
as the one observed and N(p) is the total number of 



simulated patterns. For the example of figure 7, 
N(p) = 20. No simulation plots on or to the upper right 
of the dashed line (the steeply sloping dashed line passes 
slightly to the right of the cell [1 ,0]). The P-value is 
0/20 = 0. P-values from as few as 20 simulations can be 
unstable. If this P-value had arisen from many more than 
20 simulations, the observed pattern would be concluded 
to have significantly more triplets and quadruplets than 
do the simulations. Then the triplet and quadruplet 
together could be interpreted as deserving further 
investigation. 

Three-Dimensional Case 

The example of figure 4 has four variables, so figure 
7 ignores pairs and plots triplets against quadruplets. If 
there were five variables, we would need to replace figure 
7 with a three-dimensional graph of triplets, quadruplets, 
and quintuplets against each other, again ignoring pairs. 
If there were six variables, we could ignore triplets as well 
as pairs and graph quadruplets, quintuplets, and sex­
tuplets against each other. Alternatively, if the simula­
tions for six variables contained few triplets, we might 
wish to consider them. If triplets are not abundant in the 
simulations, then sextuplets probably will be rare or ab­
sent. Then we could plot triplets, quadruplets, and quin­
tuplets against each other, and could consider the few 
simulated patterns with sextuplets by adding them to the 
count for N(e). In any case, the replacement for figure 
7 is unlikely to need more than three dimensions. The 
following discussion is in terms of triplets, quadruplets, 
and quintuplets; it could as easily be in terms of 
quadruplets, quintuplets, and sextuplets, or septuplets, 
octuplets, and nonuplets. 

The problem is to recast figure 7 and its associated 
randomization test from two dimensions to three. Recall 
that the crux of the randomization test of figure 7 is to 
identify and count the simulated patterns that are at least 
as extreme as is the observed pattern, that is, the simula­
tions that plot on or to the right of the dashed line that 
passes through the asterisk of figure 7. A more exact 
definition of extremeness could involve contouring the 
values of figure 7. Then, the simulated patterns that are 
at least as extreme as the observed pattern would be those 
that plot on or to the right of whichever contour passes 
through the center of the cell that contains the asterisk. 
For the example of figure 7, that contour would have a 
value of one, and two entries would plot on the contour, 
so N(e) = 2 and the P-value would be 2/20 or 0.1. Use 
of the dashed line gave a P-value of 0. Because the P­
values are based on only 20 simulations the values might 
be unstable, but part of the difference between 0 and 0.1 
reflects the difference between the two definitions of ex­
tremeness, that using the dashed line and that using 
contours. 

At first glance it might seem that a three-dimen­
sional version of figure 7, its dashed line, and its ran­
domization test could be constructed straightforwardly 
from three two-dimensional figures and tests: triplets vs. 
quadruplets, triplets vs. quintuplets, and quadruplets vs. 
quintuplets. However, with much algebraic and geometric 
scribbling it can be shown that such an approach pro­
duces a result that is internally inconsistent. An alternative 
would be to contour in three dimensions. It is not clear 
to us how this could be done, either graphically or 
analytically. A remaining alternative is to construct direct­
ly a three-dimensional version of figure 7, its dashed line, 
and the associated randomization test (fig. 8, table 4). 

In the two-dimensional case (fig. 7) the orientation 
of the dashed line was determined by the expected values 
of the numbers of triplets and quadruplets in the simu­
lated patterns. The position of the dashed line was deter­
mined by requiring the line to pass through the point with 
the coordinates of the observed pattern. This point is 
shown in the figure by an asterisk. The randomization 
test involved identifying and counting all simulations that 
plotted on or outside the dashed line. 

By analogy, the plane S' and the point P of figure 
8 correspond to the dashed line and the asterisk of figure 
7, respectively. The orientation of S' can be calculated 
from the values of t/n, q/n, and r/n, which estimate 
the expected values of ti, qi, and ri. The position of the 
plane S' can be calculated from the known coordinates 
of P. The randomization test will involve identifying and 
counting all simulations that plot on or outside S' (on 
the side of S' away from 0). 

Use of a planar significance surface S' requires 
justification. The ith simulated pattern has coincident 
anomalies that determine values of ti, qi' and ri. These 
three values define a point in three-dimensional space 
(fig. 8). There are n such points and they form a cloud 
of points. The significance of the observed pattern of 
anomalies depends on whether the point P lies farther 
from the origin 0 than does most of this cloud of points. 
Accordingly, we must construct a surface that passes 
through P and approximates the shape and orientation 
of this cloud of points. The plane S' is such a surface, 
for the following reasons. 

First, few if any simulated patterns will have so few 
coincident anomalies that they plot far inside S' , near 
0. Also, few if any simulations will have so many coin­
cidences that they plot far outside S' . Most simulated pat­
terns likely will have moderate numbers of triplets, 
quadruplets, and quintuplets, so that the cloud of points 
will tend to be thin in the direction perpendicular to S ' . 

Second, the number of anomalies that are available 
to coincide is fixed, so that any increase in one of ti, qi, 
or ri requires a decrease in one or both of the others. 
This relationship will be strictly true if all anomalies are 
involved in triplets, quadruplets, and quintuplets. The 
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Figure 8. Sketch of oblique view of orthogonal coordinate 
system and points, lines, and planes used for three-dimensional 
case of anomalies of dissimilar widths. Table 4 defines sym­
bols. Axes rand t lie in plane of page, axis q rises perpendicular­
ly out of page. Taper of line from origin (0) to point P indicates 
that the line rises obliquely out of page toward reader. In 
general, line OP is not perpendicular to planes S' or 5

5
• Point 

Pis three-dimensional analogue of asterisk of figure 7, and is 
shown here as an asterisk to emphasize the analogy. For more 
than a few simulations t > t', q > q', and r > r', so that 5 
lies outside S', that is, ~n oppdsite side of S' from 0. Ran: 
domly located anomalies are more likely to coincide to form 
a triplet than a quadruplet, and more likely a quadruplet than 
a quintuplet. Therefore, for more than a few simulations, the 
cloud of points from simulations will be distributed asym­
metrically with respect to axes: t

5 
> q

5 
> r

5 
and t' > q' > r'. 

However, single points need not share this asymmetry: it is not 
necessarily true that t

0 
> q > r 

0
, or that ti > qi > ri for any 

single simulation. Values of t
0

, q
0

, r
9

, t
5

, q
5

, r
5

, n, and (ti, qi, 
ri; i = 1, ... , n) are known. Values ott', q', and r' are to be 
calculated. 

relationship will also tend to be true if most anomalies 
are involved in such m-tuplets. The cloud will tend to 
spread out along the t, q, and r axes, so that the dimen­
sions of the cloud in these directions will tend to exceed 
its thickness in the direction perpendicular to S 1 

• The 
cloud will tend to be wide and thin. 

Third, the wide, thin cloud of points will tend to 
undulate little, approximating a plane more than a highly 
curved surface. To see why, consider figure 8. For a con­
stant number of quintuplets in a simulation, a quadruplet 
that loses one of its six component pairs will degenerate 
into three triplets. This conversion of quadruplets into 
triplets is roughly linear. Similarly, three triplets that are 
formed from five overlapping pairs can form one 
quadruplet if the missing sixth pair is added. This con-

10 Evaluating Coinciding Anomalies 

Table 4. Symbols used for three-dimensional case, which has 
anomalies of dissimilar widths 

Symbol Definition 

t Number of triplets of coincident 
anomalies . 

q Number of quadruplets of coincident 
anomalies . 

r Number of quintuplets of coincident 
anomalies. 

t 0 ,q0 ,r0 Values of t, q, and r, 
respectively, for observed 
pattern of anomalies. 

ts,qs,rs Values of t, q, and r, 
respectively, summed over all 
simulated patterns of anomalies. 

n Number of simulated patterns. 
ti,qi,ri Values oft, q, and r, 

respectively, in the ith 
simulated pattern, i = 1, ... ,n. 

0 Origin of orthogonal coordinate 
system with axes t, q, r. 

P End point of a vector from 0 to 
<to,qo,ro). 

Ss A plane with t-intercept ts, q-
intercept qs, and r-intercept rs. 

S' A plane through P, parallel to Ss, 
and called the significance 
plane. 

t' ,q' ,r' t-, q-, and r-intercept, 
respectively, of S'. 

version of triplets into quadruplets is also roughly linear. 
Similar roughly linear relationships link triplets with quin­
tuplets, and quadruplets with quintuplets. These con­
siderations suggest that several simulations that plot in 
figure 8 with the same value of r (or oft, or of q) might 
lie approximately along a straight line that is perpen­
dicular to the r axis (or the taxis, or the q axis) especial­
ly if most or all anomalies are involved in triplets, 
quadruplets, or quintuplets. The degree to which these 
lines perpendicular to the axes are straight is the degree 
to which the cloud of points approximates the plane S 1 

• 

Use of t
5

, q
5

, and r
5 

to calculate the orientation of 
S 1 also requires justification. The expected value of the 
number of triplets in a typical simulated pattern is E(ti), 
which is estimated by t/n, and similarly for the 
numbers of quadruplets and quintuplets. Because 
multiplying the t-, q-, and r-intercepts of a plane by a 
constant, say 1/n, changes the position but not the orien­
tation of the plane, a plane with intercepts E(t), E(qi), 
and E(r) is parallel to Ss and therefore to S 1 

• Therefore, 
determining the orientation of S 1 from the sums t

5
, q

5
, 

and rs is equivalent to determining the orientation from 



the estimated expected values. This orientation will be 
slightly susceptible to the distorting effects of a few 
unusual simulated patterns, such as one with no coinci­
dent anomalies or one with a large number of quintuplets. 
However, if the number of simulations is large this distor­
tion will be small and negligible. 

The next step is to derive an equation for S 1 
• S 1 

must be expressed in terms of the known values that are 
listed in the caption of figure 8. The intercept forms of 
the equations for Ss and S 1 are, respectively, 

(tit)+ (q/q
5

) + (r/r
5

) = 1 
(tlt 1 )+(qlq 1 )+(rlr 1 )= 1 

(1) 

Because Ss and S I are parallel, the coefficients of these 
two equations are proportional. If A is a constant, 

(2) 

Now P lies in S 1 , so by substituting the coordinates of 
P and equation (2) into equation (1), A is found to be 

(3) 

Then, substituting equation (2) into equation (1) and 
multiplying through to clear fractions gives 

(4) 

Simulations will tend to have few quintuplets, so 
each simulation will plot in figure 8 as a point with an 
integral, usually small, value of ri. (For example, each 
simulation for the data along the Wasatch fault zone has 
ri = 0, 1, or 2.) Then all points that constitute the 
population of the randomization test can be plotted in 
a few serial sections through figure 8 perpendicular to 
the r axis, each serial section lying at a different integral 
value of r (fig. 9). If the trace of S 1 can be graphed in 
each serial section then the number of simulations that 
plot on or outside S I can be counted easily by examining 
the serial sections. Setting r =kin equation (4) gives the 
equation of the linear trace of S 1 in the plane r = k, k = 0, 
1, ... , as 

(5) 

The equations for the intercepts and slope of the trace 
are given in figure 10. 

In terms of serial sections like those of figures 9-10, 
the P-value is N(e)/N(p). N(e) and N(p) are determined 
by counting the numbers of simulations that plot in 
various parts of the serial sections, analogously to the 
manner in which N(e) and N(p) were determined for the 
two-dimensional case by counting points in various parts 
of figure 7. N(e) is the number of simulations that plot 

+r 

r' 

+t 

Figure 9. Part of figure 8, showing a serial section. Heavy lines 
and associated labels are from figure 8. Dotted lines outline 
a serial section that intercepts r axis perpendicularly at r= k, 
where k= 0, 1, 2, .... Only serial section through point P is 
shown. Other parallel sections lie at larger and smaller values 
of r. Serial section intersects planeS' along short-dashed line 
which, in this section, passes through P analogously to dashed 
line of figure 7. Each simulated pattern that has k quintuplets 
plots in this serial section, either insideS' (for example, point 
B), outside S' (point C), or on dashed line (point D). 

+t 

At
5
q

5
r

5
- kt 5q 5 At 5 r5-kt5 

t\ qsrs rs 

(Q; :?,j. k) +q 

Figure 10. Intercepts (t' k and q' k) and slope of trace 
(dashed line) of S' in serial section r= k. Table 4 defines 
symbols; geometry is shown in figures 8-9. Value of A 
is given by equation (3). Origin of this serial section is 
not 0 of figure 8, but instead is point (0, 01 k) on r axis 
of figure 9. 
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on or outside the dashed lines, summed over all serial sec­
tions. In the example of figure 9, points C and D con­
tribute to N(e). N(p) is the number of simulated patterns. 
In the example of figure 9, all of points B-D contribute 
to N(p). 

SUMMARY 

Associated variables can be identified by plotting 
J for the various observed pairs of variables (fig. 5). For 
the example of figure 4, only variables 1 and 2 are likely 
to be strongly associated along the traverse. 

A pattern of coincident anomalies that is unlikely 
to have arisen by chance can be identified and evaluated 
visually by plotting counts of pairs and m-tuplets of coin­
cident anomalies for observed and simulated anomaly 
patterns (figs. 6, 7). Numbers of triplets and quadruplets 
in the observed and simulated anomaly patterns are com­
pared using a randomization test. If variables and 
simulated m-tuplets are too numerous to represent in two 
dimensions (fig. 7), a three-dimensional representation 
(figs. 8-10) should suffice. For the example studied here 
(fig. 4), results of the randomization test confirm suspi­
cions derived from inspection of figure 7 and perhaps 
even from initial inspection of figure 4. The randomiza­
tion test and inferences based on its result indicate that 
the observed pattern of anomalies contains more triplets 
and quadruplets than are likely to occur by chance. In 
practice, many more than 20 simulations would be needed 
to support statistical conclusions. 

These conclusions are guides to aspects of figure 
4 that are worth trying to interpret geologically. What 
interpretations are made depends on the natures of the 
variables and their anomalies. Further consideration of 
variables 1 and 2 together, and use of other geological 
or geophysical information, might suggest or confirm the 
existence of subtly expressed features at some or all of 
the places where variables 1 and 2 are anomalous 
together. The association of variables 1 and 2 along the 
length of the traverse indicates that these two variables 
together might be a more powerful investigative tool than 
is any of the four variables alone. 
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