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EVOLUTION OF SEDIMENTARY BASINS—SAN JUAN BASIN

Clastic Pipes of Probable Solution-Collapse Origin in
Jurassic Rocks of the Southern San Juan Basin,

New Mexico

By Ralph E. Hunter, Guy Gelfenbaum, and David M. Rubin

Abstract

Pipes that contain downdropped strata are locally
common in Jurassic rocks above the Todilto Limestone
Member of the Wanakah Formation in the southwestern part of
the San Juan Basin, New Mexico. The pipes are elongate,
vertical, roughly cylindrical structures 0.1-40 m in diameter.
They are similar in form and stratigraphic position to pipes
previously studied in the southeastern part of the San Juan
Basin but differ in that they commonly contain intact strata
identical to the host strata, whereas pipes in the southeastern
part of the basin typically consist of breccia and homogenized
material. Where the sense of movement of material within the
pipes relative to the host strata can be determined by
correlation of beds or by drag along the ring faults bounding
the pipes, material within the pipes has consistently been
downdropped.

Downdropped but otherwise little disturbed strata are so
common within pipes in the southwestern part of the basin that
the fluid-escape or spring-vent origin advocated previously for
pipes in the southeastern part of the basin seems implausible.
Gradual collapse following the localized dissolution of evapo-
rites probably is the primary cause of the pipes rather than a
subsidiary cause as previously suggested. Neither the
cylindrical form nor the large height-to-width ratios of the
pipes is evidence against a solution-collapse origin, because
such features are common in collapse structures of diverse
origin, including those formed experimentally. The evaporite
unit at the top of the Todilto in the southeastern part of the
basin most likely extended farther west originally, and its early
dissolution at discrete points probably caused localized
collapse of the overlying sediment. Evaporite dissolution may
also be the primary cause of pipe formation in the southeastern
part of the basin and of Jurassic folding and faulting throughout
the southern part of the basin.

Manuscript approved for publication April 19, 1991.

INTRODUCTION

Clastic pipes are elongate, roughly cylindrical
structures composed of clastic sedimentary material. Most if
not all were oriented roughly vertically at the time of their
formation. Although they are rare or absent in most
sedimentary rocks, they are locally common, as'in several
Jurassic formations of the southern San Juan Basin, New
Mexico (fig. 1). Pipes in the southeastern part of the San
Juan Basin have been studied in considerable detail because
some of them are sites of uranium mineralization (Hilpert
and Moench, 1960; Clark and Havenstrite, 1963; Granger
and Santos, 1963; Schlee, 1963; Wylie, 1963; Megrue and
Kerr, 1965; Moench and Schlee, 1967; Hilpert, 1969). In
this paper we describe relatively little studied pipes in
Jurassic rocks of the southwestern and south-central parts of
the San Juan Basin.

Clastic pipes can form by the diapiric rise of plastic
sediment, by fluid (water or gas) escape and associated
slurry intrusion or foundering, by collapse accompanying or
following the removal of underlying material, and by the
filling of pipe-shaped cavities. Water-escape pipes (Allen,
1961; Lowe, 1975; Bailey and Newman, 1978) include
spring-vent pipes (Hawley and Hart, 1934; Gabelman,
1955; Dionne, 1973) and pipes that may underlie
earthquake-induced sandblows (Sieh, 1978; Obermeier and
others, 1985). Gas-escape pipes include cryptovolcanic
pipes (Gabelman, 1957; Wylie, 1963) and pipes that may
underlie sea-floor pockmarks formed by the escape of
hydrocarbon gases (Hovland and Judd, 1988). Collapse-
induced pipes include those formed by the dissolution of
buried evaporites (Landes, 1945; Christiansen, 1971;
Anderson and others, 1978; Anderson and Kirkland, 1980)
and carbonate rocks (Dietrich, 1953; Keys and White, 1956;
Barrington and Kerr, 1963; Hawley and others, 1965;
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Figure 1. Study locations (solid squares) and outcrops of the San Rafael Group and approximate equivalents (screened pattern)

in the southern San Juan Basin, New Mexico and Arizona.

Gornitz and Kerr, 1970; Wenrich, 1985; Krewedl and
Carisey, 1986; Wenrich and others, 1988), those formed by
the melting of subsurface ice (McDonald and Shilts, 1975),
and those formed by other volume-reduction processes
(Wisser, 1927). Cavities of pipelike form, which may be
filled later to form pipes, can form by the localized
dissolution of an evaporite or carbonate body at the ground
surface or sea floor, by the erosion of potholes by flowing
water, and by the decay of tree trunks that were buried while
standing. Pipe-shaped biogenic structures, which include
vertical burrows and root structures, should probably not be
called pipes.

In their studies of the southeastern San Juan Basin,
Schlee (1963) and Moench and Schlee (1967) interpreted
the pipes as spring-vent structures, although they
recognized that collapse due to gypsum dissolution may
have played a subordinate role in forming the pipes. In this
paper we present evidence that the pipes in the southwestern
and south-central parts of the basin formed by solution
collapse. Although we have not extensively studied the
pipes in the southeastern part of the basin, we consider a
solution-collapse origin to be the most reasonable
explanation for all the pipes in the southern San Juan Basin.
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GEOLOGIC SETTING

The stratigraphy of Jurassic rocks in the southern San
Juan Basin has been discussed in detail by Condon and
Peterson (1986), and recent changes in stratigraphic
nomenclature have been discussed by Condon and Huffman
(1988) and Condon (1989). Stratigraphic units pertinent to
this study are in the interval from the Wanakah Formation to
the Morrison Formation (fig. 2). The Wanakah Formation,
which overlies the Entrada Sandstone and underlies the
Morrison, consists of the Todilto Limestone Member,
formerly accorded formational status, the overlying Beclab-
ito Member, formerly called the Summerville Formation,
and the Horse Mesa Member at the top. The Horse Mesa
Member, formerly called the lower part of the Bluff
Sandstone (Moench and Schlee, 1967) or informally called
the lower part of the sandstone at Mesita (Condon and
Peterson, 1986), has not been recognized in the
southwestern San Juan Basin, where the Cow Springs
Sandstone occupies the same stratigraphic position. The
Todilto pinches out a short distance west of Red Rock State
Park, and the Beclabito apparently grades into the Cow
Springs in the subsurface between Gallup and Lupton. At



Lupton, the Cow Springs occupies the entire interval from
the top of the Entrada to the base of the Morrison.

The Todilto Limestone Member of the Wanakah
Formation consists of a thin (09 m), widespread limestone
unit and an overlying thicker (0—37 m), geographically
more restricted gypsum-anhydrite unit. The gypsum-
anhydrite unit, which consists entirely of gypsum at the
surface and predominantly of anhydrite in the subsurface,
crops out in the southeastern part of the basin but is absent
in outcrops farther west. The Todilto has been interpreted as
probably lacustrine by some workers (Anderson and Kirk-
land, 1960; Tanner, 1970; Rawson, 1980) and as probably
marine by others (Harshbarger and others, 1957; Ridgley
and Goldhaber, 1983; Ridgley, 1984, 1986). In either case,
the water body was hypersaline by the time the gypsum-
anhydrite unit was deposited.

The Beclabito Member of the Wanakah Formation is
9-49 m thick and consists mainly of silty sandstone and
siltstone with mudstone and claystone partings. Most of the
beds are reddish in color, although some sandstone beds are
very light colored or white. The bedding is predominantly
flat. Lamination and other small-scale sedimentary
structures are generally absent or indistinct. The Beclabito
Member was deposited close to the margins of a shallow
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Figure 2. Stratigraphy of Jurassic rock units in the southern
San Juan Basin. The stratigraphy of the interval between the
Entrada Sandstone and the Morrison Formation differs
geographically; in the extreme southwestern part of the basin
(around Lupton, fig. 1) the Cow Springs Sandstone occupies
the entire interval, whereas at Haystack Mountain and farther
east the Wanakah Formation occupies the entire interval. In
the area between Lupton and Haystack Mountain the Cow
Springs Sandstone overlies the Beclabito Member of the Wana-
kah.

water body that, like the water body in which the Todilto
was deposited, was either shallow marine or lacustrine.
Some of the Beclabito was probably deposited within the
water body, but much of the unit was probably deposited on
a sabkha that bordered the water body (Condon and Peter-
son, 1986). Swirled vestiges of lamination, which are
visible on well-exposed outcrops, indicate intense small-
scale deformation. The small-scale deformation was
probably caused by a variety of penecontemporaneous
processes including bioturbation, physical processes such as
loading and liquefaction, and chemical processes such as
intrastratal evaporite precipitation and dissolution. A few
sandstone beds that have preserved cross lamination can be
identified as eolian on the basis of structures formed by
climbing wind ripples (Hunter, 1981).

The Cow Springs Sandstone and the Horse Mesa
Member of the Wanakah Formation are similar in character,
thickness, and stratigraphic position. Both are light-colored
to reddish, fine- to medium-grained sandstones that are
40-100 m thick along the southern side of the San Juan
Basin. Cosets of cross-strata are interbedded with sets of
thin, flat beds. Most of the sets of cross-strata are less than
1 m thick. The Cow Springs has been interpreted as eolian
dune and interdune deposits (Condon and Peterson, 1986).
The Horse Mesa has been interpreted as probably fluvial
(Moench and Schlee, 1967; Maxwell, 1982) or as eolian
(Condon, 1989). We concur with an eolian interpretation for
both the Cow Springs and the Horse Mesa, mainly on the
basis of structures formed by climbing wind ripples (Hunter,
1981).

The Morrison Formation is a complex sequence of
nonmarine sandstone, siltstone, mudstone, and claystone
that is divided into several members (fig. 2). It is 70~190 m
thick along the southern margin of the San Juan Basin.
Depositional environments represented in the formation
include fluvial, lacustrine, and eolian. Eolian sandstones are
restricted to the Recapture Member, the lowest member of
the Morrison (Condon and Peterson, 1986; Condon, 1989).
The eolian sandstone now assigned to the lower part of the
Recapture in the southeastern part of the basin (Condon,
1989) was formerly assigned to the upper part of the Bluff
Sandstone (Moench and Schlee, 1967).

DESCRIPTION OF PIPES

Pipes are present in outcropping Jurassic rocks along
the southern margin of the San Juan Basin from near Gallup
eastward to the Laguna district (fig. 1). Pipes are most
common in the Beclabito and Horse Mesa Members of the
Wanakah Formation and in the Cow Springs Sandstone. A
few pipes are in the Morrison Formation (Hilpert and
Moench, 1960; Clark and Havenstrite, 1963; Granger and
Santos, 1963; Schlee, 1963; Wylie, 1963; Megrue and Kerr,
1965; Moench and Schlee, 1967; Hilpert, 1969); we have
seen pipes in the Recapture Member of the Morrison as far
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west as the Coolidge area. No pipes have been observed
above the Morrison Formation, in the Todilto Limestone
Member of the Wanakah Formation, or below the Todilto.

The pipes tend to be clustered geographically. Small
pipes are abundant in the lower part of the Beclabito in the
southwestern part of the basin (fig. 3). Fifteen pipes
averaging 1 m in diameter were observed in an area of 255
m? in the lower Beclabito at Red Rock State Park, and such
concentrations are probably typical of that part of the
section in an area of at least several square kilometers. Pipes
are fairly common throughout the Beclabito and Cow
Springs in the southwestern part of the basin and throughout
the Beclabito and Horse Mesa in the southeastern part of the
basin. A cluster of 60 pipes in an area of 0.5 km” has been
mapped in the southeastern part of the basin (Schlee and
Moench, 1963), and we observed a cluster of 34 pipes
averaging 9 m in diameter in an area of 0.3 km? north of
Prewitt in the south-central part of the basin. The clusters of
pipes in the southeastern part of the basin are associated
with belts of folds and faults that formed during the Jurassic
or Early Cretaceous (Moench and Schlee, 1967).

In exposures parallel with bedding, the pipes appear
roughly circular (fig. 44). In exposures normal to bedding,
the pipes appear elongate, roughly parallel walled, and
oriented roughly normal to bedding (fig. 4B). Oblique
sections across the pipes appear elliptical (fig. 5). Clastic
pipes in the southwestern and south-central parts of the San
Juan Basin are 0.1-40 m in diameter (fig. 3). The range in
diameters is even greater, 0.025-60 m, in the southeastern
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Figure 3. Histogram showing distribution of pipe widths in

Jurassic rocks of the southwestern and south-central parts of

the San Juan Basin. Diagonal pattern, pipes in the Beclabito
member; solid, pipes in other units.
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EXPLANATION
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Figure 4. Sketches of a large (diameter 42 m) pipe in the
Horse Mesa Member of the Wanakah Formation. South side of
Mesa Montanosa (fig. 1), SEVa SW/s sec. 24, T. 13 N, R. 10
W., McKinley County, New Mexico. A, Map view. B, Cross
section; note that red mudstone bed within pipe has dropped
as much as 17 m relative to its position outside pipe.

part of the basin (Moench and Schlee, 1967). Many more
large pipes are present in the southeastern part of the basin
than in the southwestern part.

The full vertical extent of a pipe is nowhere
indisputably exposed. The original tops of almost all pipes
have been removed by recent erosion, and almost all pipes
extend beneath the present outcrop surface. From exposures
of small pipes on almost vertical outcrops, it can be said
with certainty that the small pipes are many times higher
than broad, and we assume that the same is true of larger
pipes. We have seen no indisputable examples of the
original tops of pipes, but Hilpert and Moench (1960),
Schlee (1963), and Moench and Schlee (1967) reported a
few examples. In these examples, which are interpreted as
pipes that extended up to the ground surface, the top flares
and forms a slight depression into which the covering beds
sag (see, for example, Schlee, 1963, fig. 4D). From
inaccessible cliff exposures in which some pipes seem to
fade out upward, we suspect that some pipes never extended
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Figure 14, Stratigraphic cross section of the Todilto Limestone Member and lower part of Beclabito Member in and near Red
Rock State Park (fig. 1). The line of section is near the north edge of sections 9, 10, 11, and 12, T. 15 N., R. 17 W., McKinley
County, New Mexico. Vertical lines represent measured sections. Numbered units correspond to those in figure 8.

hypothesized by Schlee (1963), may have played a role in
the localization, although we doubt its direct role in pipe
formation. A solutional role for upward water flow was
suggested by Barrington and Kerr (1963) for other solution-
collapse pipes on the Colorado Plateau. On the other hand,
Anderson and Kirkland (1980) proposed a model for
localized evaporite dissolution by brine density flow
through permeable rock beneath an evaporite bed; this
process eliminates the need for upward water flow through
sediment overlying the evaporite bed. Whether or not
localized upward water flow was involved in the initiation
of the evaporite dissolution that led to pipe formation, the
pipes probably served as conduits for water movement after
they formed, and such water movement was undoubtedly
important in pipe mineralization both in the San Juan Basin
and elsewhere (Keys and White, 1956; Barrington and Kerr,
1963; Hawley and others, 1965; Megrue and Kerr, 1965;
Gomitz and Kerr, 1970; Bowles, 1977; Wenrich, 1985).
As the evaporite gradually dissolved locally, the
overlying unconsolidated or poorly consolidated sediment
probably subsided equally gradually because the sediment
was too weak to allow open cavities to form or to prevent
upward propagation of the subsidence. The gradual nature
of the subsidence probably inhibited fracturing of the
downdropped sediment and thus helped to preserve

stratification of the sediment. Gradual subsidence of uncon-
solidated sediment simultaneous with dissolution has been
called on to explain other solution-collapse structures that
have bedding preserved (Dietrich, 1953).

The degree to which bedding in the downdropped
sediment was disrupted must have depended in part on the
distance of downdropping. A larger amount of down-
dropping in the southeastern part of the basin, where the
thickness of dissolved evaporite was much greater than it
was farther west, is probably a major factor accounting for
the greater rarity of preserved bedding in pipes in the
southeastern part of the basin. Disturbance of the grain
framework during downdropping would have caused the
sediment within the pipe to become more loosely packed,
and this increase in bulk volume could have compensated
for the volume lost by evaporite dissolution and led to the
end of growth of some pipes before they reached the
surface, as in our experiment 1 (fig. 11D).

As the area of evaporite dissolution expanded
outward from a point directly beneath a pipe, the down-
dropped material at the base of the pipe tended to spread
laterally into the potential cavity, producing an amount of
downdrop greater than the original thickness of the evapo-
rite bed. In the southeastern part of the basin, where the
evaporite unit was thick, dissolution and pipe formation

Clastic Pipes in Jurassic Rocks, New Mexico  L15



generally ceased before the evaporite unit was completely
removed, but not before a few pipes extended into beds as
high as the upper part of the Morrison Formation. In the
southwestern part of the basin, where the evaporite unit is
interpreted to have been thin and is now absent, the
processes at work during the final stages of evaporite
dissolution are not clear. Lateral spreading at the bases of
pipes probably played some part in preserving the down-
drop within the pipes relative to the surrounding beds. In
addition, the final stages of evaporite dissolution probably
occurred when the overlying beds were sufficiently lithified
and rigid for their collapse to take the form of faults that
were less tightly curved and of much greater lateral extent
than the faults that bound the pipes.

BROADER IMPLICATIONS

We suspect that some other large pipes previously
interpreted as water-escape or slurry-injection structures
may be of solution-collapse origin. In particular, a solution-
collapse origin should be considered for pipes in southern
Utah studied by Hannum (1980). These pipes have a
stratigraphic range from the Carmel Formation into the
overlying Entrada Sandstone and possibly higher. Two
kinds of evidence that suggest a solution-collapse origin for
these pipes are (1) the probable occurrence of downdropped
material within the pipes, as noted by Hannum (1980), and
(2) the occurrence of gypsum within the Carmel Formation
in the area of pipe occurrence.

Jurassic rocks of the San Juan Basin contain defor-
mational features other than pipes that may be the result of
subsidence due to dissolution of the gypsum-anhydrite unit
that forms the upper part of the Todilto Limestone Member.
Among such features are (1) broad sags between remnants
of gypsum in the eastern part of the San Juan Basin
described by Stapor (1972) and Tanner (1972) and (2) folds
and associated faults of Jurassic age in the southeastern part
of the basin described by Moench and Schlee (1967) and
Hilpert (1969). The folds are in rocks as young as the
Morrison Formation and are truncated by the unconformity
at the top of the Morrison. The folds are mapped as
extending only short distances into the Entrada Sandstone
and have not been recognized in older formations; they
probably do not extend down to basement. Many of the
folds are closely associated with belts of pipes and with
variations in thickness of the gypsum-anhydrite unit.

The Jurassic folding and faulting affected
sedimentation in parts of the stratigraphic section from the
limestone unit of the Todilto Limestone Member to the
Morrison Formation (Moench and Schlee, 1967). We
suspect that much of the folding and associated phenomena
was caused by evaporite dissolution. Such dissolution
cannot account, however, for folds at the Todilto-Entrada
contact or for variations in thickness of the Todilto
limestone unit associated with the folds, because these

L16  Evolution of Sedimentary Basins—San Juan Basin

features are beneath the evaporite unit. Rather than being
due to folding, these features may be expressions or effects
of depositional topography at the top of the Entrada
Sandstone, similar to the preserved dune topography
mapped at the top of the Entrada in the subsurface by
Vincelette and Chittum (1981). Other intraformational
folding in the limestone unit of the Todilto may be the result
of differential loading by overlying sediments (Green,
1982).

CONCLUSIONS

New observations on clastic pipes in Jurassic rocks of
the southern San Juan Basin indicate that the pipes are
present as far west as the pinchout of the Todilto Limestone
Member of the Wanakah Formation in the vicinity of
Gallup, New Mexico. The pipes in the southwestern part of
the basin commonly contain downdropped, almost
unbroken strata identical to strata surrounding the pipes,
whereas previously studied pipes in the southeastern part of
the basin typically contain brecciated or homogeneous rock.
This difference in character probably reflects a difference in
the amount of downdrop of the pipe-filling material—less in
the southwestern part of the basin and more in the
southeastern part—rather than a difference in pipe origin.
The less advanced state of pipe development in the
southwestern part of the basin more readily permits
interpretation of pipe origin than does the relatively
advanced stage of pipe development in the southeastern
part.

The presence of downdropped but otherwise little
disturbed strata within many pipes in the southwestern part
of the basin is not easily explained by a spring-vent
interpretation, the explanation proposed in the most detailed
study of pipes in the southeastern part of the basin (Schlee,
1963). We interpret the clastic pipes in the southwestern
part of the basin to be solution-collapse structures resulting
from the dissolution of evaporites originally present at the
top of the Todilto Limestone Member. Some aspects of the
pipes—amounts of downdrop greater than the probable
original thickness of dissolved evaporites and the restriction
of easily recognizable downdropping to discrete pipes in
areas where any original evaporite bed has been entirely
dissolved—remain difficult to explain by a solution-
collapse mechanism. Nevertheless, we regard the overall
body of evidence as favoring a solution-collapse origin for
the pipes in the southwestern part of the basin. Moreover,
we favor the solution-collapse interpretation for the pipes in
the southeastern part of the basin, and we regard subsidence
that accompanied dissolution of evaporites as a probable
cause of folding and faulting of Jurassic rocks in the
southern San Juan Basin.
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