
Infrared Luminescence of Minerals

GEOLOGICAL SURVEY BULLETIN 1052-C

Infrared Luminescence of Minerals

By DAVID F. BARNES

EXPERIMENTAL AND THEORETICAL GEOPHYSICS

GEOLOGICAL SURVEY BULLETIN 1052-C

A study of the abundance and causes of infrared luminescence of minerals

UNITED STATES DEPARTMENT OF THE INTERIOR

FRED A. SEATON, Secretary

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

CONTENTS

	Page
Abstract	71
Introduction	
Purpose and scope of investigation	
Acknowledgments	72
Equipment and methods of observation	
The snooperscope	73
Infrared luminescence scanner	
Viewing box	75
Infrared luminescence of minerals	
Characteristics of infrared luminescence	79
Occurrence of infrared-luminescent minerals	85
Abundance of infrared luminescence	. 88
Factors influencing the detection of weak luminescence	. 88
Comparison of infrared and visible luminescence	. 89
Important activators for infrared luminescence	. 91
Emission	. 94
Excitation	. 96
Possibilities for practical use	. 99
Literature cited	. 156

ILLUSTRATIONS

.

			:	Page
Plate	4.	Infrared luminescence scanner	Facing	74
	5.	Infrared luminescence scanner opened	Facing	75
FIGURE	25.	Schematic diagram of infrared viewing box		76
	26.	Spectral sensitivity of filters used in the viewing box		78

TABLES

		A	
			Page
TABLE	1.	Characteristics of filters used in excitation measurements	79
	2.	Sources of minerals showing infrared luminescence	100
	3.	Abundance of infrared and visible luminescence in minerals	114
	4.	Characteristics of infrared luminescence in selected mineral	
		specimens	122

•

.

INFRARED LUMINESCENCE OF MINERALS

By DAVID F. BARNES

ABSTRACT

Infrared luminescence is a phenomenon similar to fluorescence under ultraviolet light except that the emission occurs in the infrared rather than the visible part of the spectrum. This infrared luminescence is generally most efficiently excited by visible light from high-energy incandescent lamps, but violet and ultraviolet excitation are effective for a few minerals.

Infrared luminescence can be viewed through an infrared image tube of the type used in the "snooperscope." The entire study collection of the U. S. National Museum has been examined with an image tube and optical system of a snooperscope to detect the infrared luminescence of minerals. Infrared luminescence was found in about 1,500 specimens representing some 75 distinct mineral species. Filters were used to determine the approximate wavelengths of emission and excitation.

Chromium-activated minerals like corundum, beryl, spinel, jadeite, and kyanite show very strong infrared luminescence. Cadmium causes the universal luminescence of its sulfide, greenockite. The rare earths are responsible for the long-wavelength emissions of many minerals including scheelite, fluorite, apatite, feldspar, and amphibole.

INTRODUCTION

When some mineral specimens are illuminated by an ultraviolet lamp in an otherwise dark room, they glow with colors that are often far more brilliant than those of the same specimens in bright sunlight. This well-known mineral fluorescence involves the absorption of invisible light at the short-wavelength or ultraviolet end of the spectrum and the simultaneous emission of this energy as visible light of longer wavelength. Infrared luminescence is a similar phenomenon in which a mineral absorbs visible light and emits the energy as invisible light at the long-wavelength or infrared end of the spectrum. Stokes formulated the fundamental law of luminescence which states that the wavelength of the fluorescent light is longer than the wavelength of the exciting radiation. Infrared luminescence might thus result from either visible or ultraviolet excitation, but experiments show that in most cases the strongest emissions result from visible light.

The term "luminescence" includes the emission of light resulting from all processes except incandescence. "Fluorescence" is the emission of light at the same time as excitation, and "phosphorescence" is the emission of light following excitation. The term "fluorescence" is, however, frequently associated with emissions excited only by ultraviolet light; therefore the use of the general term "luminescence" seems preferable for infrared emission that is most effectively excited by visible light.

Infrared luminescence has already been observed photographically by Pauli (1911), Servigne (1938 and 1939), Weyl (1942), Lashkarev and Kossonogova (1946), Dhéré and Biermacher (1936), and others, but the lack of a simple method of observation made a survey of many minerals impractical. However, the invention of the infrared image tube (Holst and others, 1934) and its further development during the last war made possible the rapid observation of infrared phenomena with wavelength shorter than 12,000 angstroms. Bailly and Holke (1944) following an idea of Malmquist (1945) used infrared radiation in studying the optical properties of minerals opaque to visible light, and adapted the infrared image tube to serve as an ocular for the petrographic microscope in the manner suggested by Zworykin and Morton (1936).

PURPOSE AND SCOPE OF INVESTIGATION

This report describes the use of the infrared image tube in an examination of the long-wavelength luminescence of minerals. Nearly 200,000 specimens comprising the study collection of the U. S. National Museum have been observed, and infrared luminescence was found in approximately 1,500 specimens representing some 75 distinct mineral species. The investigation determined which minerals show infrared luminescence, where these, luminescent specimens are found, and the approximate wavelengths of emission and excitation. The work was divided into two main parts: first, a thorough, piece-by-piece examination of minerals for which luminescence had been previously reported—the group in which almost all infrared luminescence was found; and second, a scanning of all other specimens in the collection with subsequent piece-by-piece examination of those specimens that showed infrared luminescence.

ACKNOWLEDGMENTS

The author is indebted to many who have helped in the work. The project resulted from an idea of H. C. Spicer, of the U. S. Geological Survey, who supervised the work. Members of the staff of the National Museum, W. F. Foshag, George Switzer, E. P. Henderson, and J. H. Benn, kindly made the Museum facilities available and gave frequent assistance in the identification of minerals. D. J. Looft and Jerome Laufler, of the Engineer Laboratory at Fort Belvoir, Va., assisted with the instruments. K. J. Murata and Michael Fleischer of the Geological Survey gave frequent and valuable advice and Elizabeth King helped in the preparation of the tables.

EQUIPMENT AND METHODS OF OBSERVATION

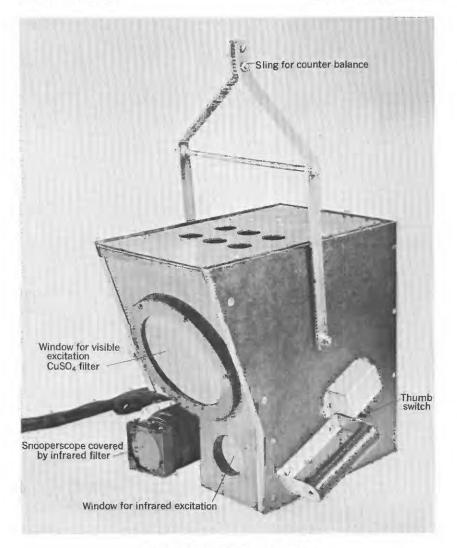
THE SNOOPERSCOPE

The telescope of a U. S. Army Modol M-1 snooperscope was used for all infrared observations. Similar equipment is now manufactured for scientific research or is available on the surplus market. The snooperscope has an objective lens that focuses the primary image on the cathode of a 1P25 tube (Morton and Flory, 1946). The cathode is a silver-cesium oxide-cesium film, which, under infrared excitation, emits electrons which are then focused by a series of high-voltage electric fields on a zinc silicate phosphor screen showing a green luminescence under electron bombardment. The resulting green image is viewed through an eyepiece.

The lenses in the snooperscope telescope are designed to focus on an object between 4 feet and infinity, but for mineral observations this range was reduced to approximately 9 inches with a 3 diopter portrait attachment. The objective lens was also covered with a filter to limit the sensitivity to the infrared band, because the spectral range of the 1P25 tube extends into the visible part of the spectrum.

For nighttime military operations the snooperscope has an infrared spotlight that illuminates the object, but for studying mineral luminescence a broad range of exciting light from ultraviolet to infrared is required. Accordingly the infrared spotlight was discarded, and the specimens were either scanned with a unit having one high-intensity, broad-spectral-range exciting lamp, or they were examined in a viewing box in which a variety of wideand narrow-band excitation lamps were used.

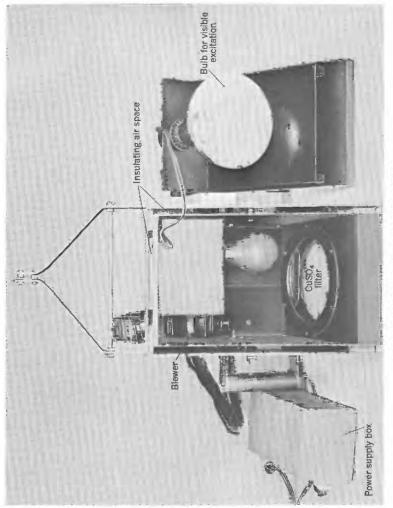
The viewing box was built first and was used for the examination of all mineral varieties that were mentioned in the literature as luminescent. The viewing box enabled the observer to estimate the approximate wavelength of infrared emission and to evaluate the relative effectiveness of various types of excitation. This detailed examination of each specimen was, however, very slowseveral months were required for the examination of the luminescent minerals alone, a mere quarter of the entire collection. To complete the project in a reasonable time a scanning instrument had to be built for the observation of the remaining three-fourths of the collection. As this scanning instrument was both simpler and more efficient it will be discussed first.


INFRARED LUMINESCENCE SCANNER

The preliminary examination of luminescent minerals showed that visible light would excite all types of infrared luminescence, and that a broad range of visible light was by far the most effective exciting source. Thus an instrument could be built capable of detecting any type of infrared luminescence in a single observation, provided a sufficiently powerful incandescent lamp was used.

The instrument built by the Geological Survey is shown on plates 4 and 5. A 500-watt photospot was used as the exciting source, but like all incandescent lamps this bulb actually emitted more energy in the infrared than in the visible region. The reflection of this infrared light by the mineral specimen would be strong enough to mask even the strongest infrared luminescence. Accordingly it was necessary to cover the photospot with a filter that would pass only visible light. This enabled the observer to examine infrared luminescence under conditions essentially similar to those used for the study of ordinary mineral fluorescence, when visible light is eliminated by keeping the room dark and by filtering out all but ultraviolet exciting radiation. The filter found most effective for the study of infrared luminescence was a 5-percent CuSO₄ solution in a glass or lucite chamber three-quarters of an inch-thick; such a filter transmits visible light very well and has a sharp cutoff between 5,500 and 6,500 angstroms. In the infrared scanner this filtering solution was contained in a 6-inch diameter chamber built into the front wall of the instrument.

However, no filter is perfect; the copper sulfate solution passed a little infrared light, and the infrared-transmitting filter in front of the snooperscope telescope did not eliminate all the visible light from the exciting source. Accordingly, nonluminescent minerals that were good reflectors appeared brighter than those which were poor reflectors, and it was difficult to distinguish strong reflection from weak luminescence. Therefore the scanner was provided with a much weaker second lamp covered with an infrared transmitting filter similar to that in front of the snooperscope telescope. A pushbutton switch turned on this infrared GEOLOGICAL SURVEY


BULLETIN 1052 PLATE 4

INFRARED LUMINESCENCE SCANNER

BULLETIN 1052 PLATE 5

INFRARED LUMINESCENCE SCANNER OPENED

light source and at the same time, turned off the photospot. It was thus possible for the observer to quickly estimate the longwavelength-reflecting properties of the mineral specimen and to judge whether the brightness seen under the visible excitation resulted from reflection of the small amount of light "leaked" by the filters or from actual luminescence.

The two lamps generated considerable heat, so that the inside of the instrument had to be cooled by a small blower. Even with this blower operating, the case of the instrument became so hot that the observer's face and hands had to be protected by a second, outside wall of laminated plastic separated from the inner, aluminum walls by a ¼-inch air space. The instrument was designed primarily for easy construction, and little emphasis was placed on lightness of weight. When completed it weighed about 15 pounds, light enough to be held in the hands for a short period but too heavy to be carried for a whole day. When used to examine the specimens in the high stacks of drawers that hold the study collection of the National Museum, the instrument was supported by a rope running through a pulley system to a counterweight. The observer could thus aim and focus the instrument with very little effort.

VIEWING BOX

With the scanner the observer could detect infrared luminescence and estimate its intensity, but with the viewing box he could learn many additional characteristics of this luminescence. Filters could be used to eliminate all but a narrow spectral band of excitation energy or to restrict the detection range to narrow bands. Thus the relative importance of various wavelengths of excitation and emission could be estimated.

The arrangement of apparatus in the viewing box is shown in figure 25. The box was constructed so that the specimen could be held in the observer's left hand, while his right hand was used to change filters and to turn on and off the excitation lamps, which were operated by pushbutton switches on the outside of the box.

The first excitation lamp was a 25-watt bulb with an infraredtransmitting filter that showed the degree of infrared reflection exhibited by the mineral. Like the similar bulb in the scanner this was used primarily to distinguish infrared luminescence from reflected light "leaked" by the filters.

The second excitation lamp was a 300-watt bulb in a 35-mm slide projector ventilated by a small fan. As the condensing-lens system alone provided adequate focusing of the light beam, the projection lenses were not used. A $\frac{3}{4}$ -inch-thick lucite cell con-

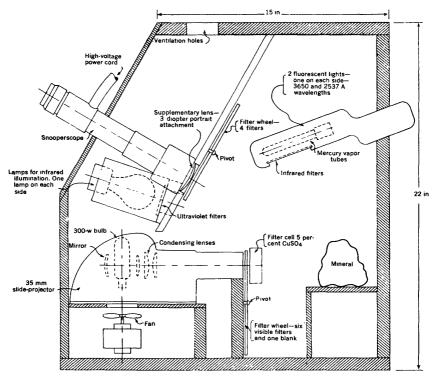


FIGURE 25.—Schematic diagram of infrared viewing box.

taining a 5-percent solution of $CuSO_4$ was placed in front of the projector to eliminate the infrared radiation generated by the bulb. This projector and its filter thus provided the same type of broad range visible excitation that was furnished by the photospot bulb in the infrared scanner. In the viewing box, however, this visible excitation could be separated into five narrower spectral bands by gelatine filters placed in front of the projector. Each filter passed a spectral band about 800 angstroms wide, and was mounted on a wheel, so that it could be rapidly shifted into position in front of the projector. Table 1 shows the color of light transmitted by each filter.

The third and fourth excitation lamps were two ultraviolet lamps with wavelengths of 3,650 A and 2,537 A. Unfortunately, both these lamps produced a moderate amount of infrared radiation, the reflection of which by the specimen tended to mask any actual infrared luminescence. Accordingly a lucite cell $\frac{1}{2}$ -inch thick and containing a 5-percent CuSO₄ solution was interposed during most of the experiments to absorb the infrared radiation

76

transmitted by the filter of the SL 3650 lamp. However, such solutions of copper sulfate, even in a quartz cell, absorb about 25 percent of the ultraviolet at 3,600 A and nearly 100 percent at 2,500 A. Consequently a liquid filter could not be used to eliminate the large amount of infrared emitted by the 2,537 A source.

The observer estimated the intensity of the infrared luminescence excited through each of the six filters in front of the projector and by the two ultraviolet lamps. To use these observations to evaluate the relative effectiveness of various wavelengths of excitation it was essential to know at least approximately the amount of energy provided by each source. Unfortunately none of the available methods of illumination measurement is reliable over such a broad spectral range, and the excitation energies had to be calculated from the data available from manufacturers of the components of the illumination system. The methods used for these calculations are given in Moon (1936) and Skogland (1929). The results are given in figure 26B, which shows the spectral distribution of energy transmitted by each filter. The total energy transmitted, or the integral beneath each of the curves in figure 26B is shown in table 1. The energy produced by the two ultraviolet lamps is so small that it would not show on the graph, but it is given in the table. One can perhaps question the accuracy of some of the assumptions made in computing the energies recorded in table 1, but the relative values are probably at least as accurate as the visually judged measurements the table is intended to explain. Furthermore, the questionable assumptions affect only the relationship between the incandescent and the ultraviolet lamps; the relationships between the energies passed by each filter in front of the projector depend only on the color temperature of that bulb and on the individual filter characteristics. both of which are well known. The decrease in energy transmitted by the filters at the violet or short-wavelength end of the spectrum and the weakness of the ultraviolet lamps compared to even filtered parts of the projector's energy are clearly shown.

To obtain the approximate wavelength of the infrared emission, the spectral range of the viewing system could be varied by rotating a filter wheel mounted in front of the objective lens. This wheel held four filters, whose low wavelength cutoffs ranged from 7,000 to 9,300 A. The spectral transmission curves of these filters were obtained from the manufacturers and were then applied to the spectral sensitivity curve for the 1P25 tube. The resulting sensitivity curves for the receiving unit are shown in figure 26A. These curves show that any luminescence with wavelength longer than approximately 9,500 A will give a very weak image regardless of its actual intensity.

Actually some evidence suggests that curve 1 in figure 26A should extend further into the visible part of the spectrum. First, many minerals give very different brightness values with filters 1 and 4, which contradicts the apparent closeness of their curves.

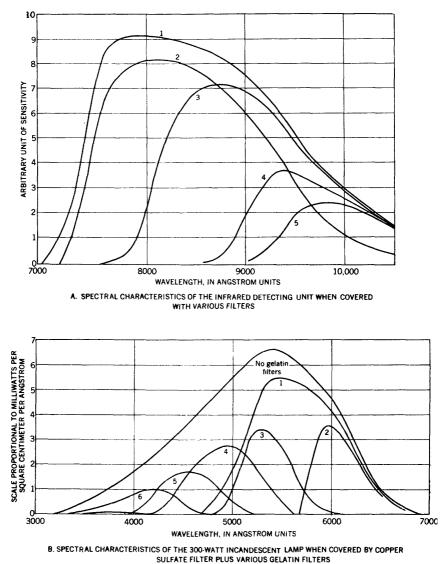


FIGURE 26.---Spectral sensitivity of filters used in the viewing box.

Data obtained from manufacturers.

Filter no.	Excitation bulb	Color	Wavelength range (angstroms)	Integrated energy milliwatts (per cm ²)	Energy X wavelength
None	300-watt incandescent	Visible	3,500-6,600	117	62
1	do	Red-green	4,800-6,600	63	35
2	do	Red	5,700-6,600	20	12
3	do	Green	5,000-5,800	20	11
4	do	Blue	4,400-5,500	22	11
5	do	Blue-violet	4,200-5,000	12	6 3
6	do	Violet	3,800-4,500	7	3
8	Fluorescent tube	Ultraviolet	3,600	.2	.1
9	Hg-vapor tube	do	2,500	.3	.1

 TABLE 1.—Characteristics of filters used in excitation measurements
 [Curves showing characteristics of filters 1-6 are shown on figure 26B]

Second, many minerals known to give a strong emission just below 7,000 A show brilliant images through filter 1, figure 26A. Third, the detection unit picks up a considerable amount of infrared radiation transmitted from the projection bulb even with the CuSO₄ filter in place, but according to figure 26A these curves do not overlap. Part of this infrared transmission is probably explained by the 0.5 percent transmission of the $CuSO_4$ filter at approximately 10,000 A, but the fact that filters 2, 3, 4 greatly reduce the observed "leakage" suggests that most of it occurs at shorter wavelengths. Thus, although the exact position of curve 1 is unknown, it probably extends into the visible region, the border of which is generally placed between 7,000 and 7,500 A. The actual limit of perception varies with the individual; many people have an extremely slight perception up to 10,000 A or nearly to the point where the heat absorption of the skin becomes important (Griffin, Hubbard, and Wald, 1947).

INFRARED LUMINESCENCE OF MINERALS

CHARACTERISTICS OF INFRARED LUMINESCENCE

According to the quantum theory of matter, luminescence results from the transfer of electrons between the energy levels of an excited atom. The atom is excited when an electron is raised to a higher energy level by the absorption of light; one photon, or quantum light energy, can excite only one electron. The luminescent emission occurs when the excited electron returns to a lower energy level with the release of another photon of light energy. The frequency of the light absorbed or emitted is directly proportional to the energy of the photon; therefore the wavelength of the light is inversely proportional to the energy of the transfer. Thus ultraviolet light, which has a short wavelength and therefore a high energy, can, by Stokes law, excite either visible or infrared luminescence, which have lower energy because of their longer wavelength. Many factors affect the probabilities of the absorption and emission of energy and therefore affect the efficiency of the luminescence. The surroundings of the luminescent atom within the crystal structure are especially important. In many minerals the excitation energy is absorbed by one, perhaps nonluminescent, atom, and is then transferred to the luminescent atom, or in other minerals the light emitted from one atom is reabsorbed by another.

Luminescent minerals can be classified into three groups according to the relationship between the luminescent atom and the host mineral.

The first group contains minerals in which the fluorescent atom is an essential chemical component and in which the fluorescent element is included in the chemical formula. This group includes the fluorescent uranium and tungsten minerals, whose visible emission is caused by the uranyl (UO_2^{+2}) and tungstate (WO_4^{-2}) ions. Greenockite is the only infrared luminescent mineral that can definitely be assigned to this group. In the second group of minerals the luminescent atom is not an essential chemical component but does form a part of the crystal lattice. Such atoms are known as activators and are commonly present in extremely small quantities (of the order of one part in a million). Nevertheless these activators have a considerable affect on the properties of many minerals, and they often determine the characteristic colors of subvarieties. Thus, alexandrite and ruby are chrysoberyl and corundum with distinctive coloring caused by the chromium ion. Very strong and nearly universal infrared luminescence is found in some minerals of this type.

In minerals belonging to the second group, the activator is present in only a few specimens and does not affect the physical properties of the mineral. As the inclusion of the activator in many minerals is accidental, the luminescence of some of them is found only in a very small percentage of specimens. The luminescence of such minerals is subject to wide variations in emission wavelength, excitation spectrum, and place of occurrence. This type of luminescence is, however, exhibited by many varieties of minerals. Typical examples are the brilliant red luminescence of calcite from Franklin, N. J., and the important infrared luminescence caused in many minerals by rare-earth activators.

The third group includes minerals in which the fluorescent atom is not represented in the chemical formula and does not form a part of the crystal lattice. Such luminescence is totally unrelated to the nature of the mineral, although it is commonly associated with specimens found in specific localities. The cause of the luminescence is an impurity which can sometimes be distinguished by eye or microscope, or which at other times is difficult to distinguish in any way from activators forming a part of the crystal lattice. Sulfur from Italy, fluorite from Clay Center, Ohio, and halite from Stazunia, Poland, owe both their visible and infrared luminescence to included organic matter and are thus examples of this third group of luminescent minerals.

It is often difficult to assign a luminescent mineral to any one of these three groups; the groups are thus difficult to use as an actual basis of classification, but they do show the large variety of possible luminescent systems. Almost all luminescence depends on the presence of a minute quantity of elements that are not essential chemical constituents of the mineral. Even the amount of these activators is critical, and overconcentration can by reabsorption quench the luminescence, as effectively as underconcentration can make it impossible. Furthermore, additional elements can either aid or quench the luminescence. For example, Schulman, Evans, Ginther, and Murata (1947) have shown that the brilliant red fluorescence of calcite under ultraviolet light requires a sensitizing impurity such as lead, but this sensitizing impurity may not be necessary for the rarer and less intense infrared luminescence of calcite. One specimen of agate in the National Museum collection showed the importance of impurities and previous history on mineral luminescence. The original agate specimen had been cut into six pieces, each of which was treated in a different way to show the color produced; only one piece showed infrared luminescence—that quenched in sulfuric acid and honey.

The transparency of a mineral specimen has a considerable influence on its luminescence because the activating atom is seldom on the exact surface of the specimen, and both the exciting and emitted light have to pass through at least a small thickness of the crystal. Many examples of the importance of transparency were found in the study of infrared luminescence. Fluorescent cuprite has never been recorded, but Lashkarev and Kossonogova (1946) reported an infrared luminescence from cuprous oxide synthesized in a blast furnace. Almost every cuprite specimen is dull and opaque and shows no luminescence. However, a very small, deep-red, and very clear crystal from Cornwall, England, showed a distinct, long-wavelength infrared emission—a discovery that confirms Lashkarev's work and demonstrates the importance of translucence in mineral luminescence. Likewise, sphalerite and wurtzite, which are the mineral forms of the often-studied phosphor, zinc sulfide, show infrared luminescence only in specimens that are not completely opaque. In many other minerals the infrared luminescence was limited to at least slightly transparent specimens.

All luminescent mineral specimens were tested for infrared phosphorescence, and none was detected. Many minerals, however, show prolonged visible phosphorescence after ultraviolet excitation. This failure to detect infrared phosphorescence can probably be ascribed to insufficient sensitivity of the snooperscope, but the observed absence may be real and not instrumental.

The results of the investigation of the infrared luminescence of minerals are presented largely in tabular form because of the many infrared luminescent specimens discovered and because of the great variation in the properties of this luminescence. All the infrared-luminescent mineral varieties are listed below according to their chemical composition and crystal structure. Minerals without silica are arranged according to Palache, Berman, and Frondel (1944 and 1951) and the silica minerals according to Strunz (1941). This system of classifying minerals is similar in its main categories to Garlick's system (1949, p. 48) for the classification of phosphors.

In tables 2-4, the minerals are arranged in alphabetical order (p. 100-155). Table 2 lists all the localities where infraredluminescent mineral specimens were found. Table 3 indicates the prevalence of infrared luminescence for each mineral; it gives the percentages of specimens and localities in which infrared luminescence was found. Table 4 shows the characteristics of infrared luminescence found in some of the individual specimens examined. These have been selected as representative samples of the different types of luminescence shown by each mineral.

Infrared-luminescent minerals

MINERALS WITHOUT SILICA

Native elements Diamond Sulfur Selensulfur Sulfides Sphalerite Greenockite Wurtzite Oxides Cuprite Montroydite Oxides—Continued Senarmontite Corundum (ruby, sapphire) Valentinite Cervantite Stibiconite Stibianite Brucite Hydrotalcite Bauxite Diaspore

Infrared-luminescent minerals-Continued

MINERALS WITHOUT SILICA-Continued

Oxides-Continued	Bora
Spinel	
Chrysoberyl	
Alexandrite	
Halides	
Halite	
Marshite	Sulfa
Fluorite	
Terlinguaite	
Matlockite	
Cryolithionite	
Cryolite	
Gearksutite	
Chiolite	
Creedite	
Carbonates	
Calcite (reichite, oolite, pisolite)	
Manganocalcite	
Cuprocalcite	Phos
Plumbocalcite	
Magnesite (baudisserite)	
Rhodochrosite	
Smithsonite	1
Aragonite	1
Strontianite	
Cerussite	
Dolomite (gurhofite)	
Tautoklin	1
Pirssonite	
Gaylussite	1
Phosgenite	
Hydrocerussite	
Leadhillite	Tun
Borates	
Borax	
Probertite	
Ulexite	

ates—Continued Colemanite Meyerhofferite Howlite Hambergite Sussexite ates Barite Celestite Anglesite Anhydrite Gypsum Alunogen (solfaterite) Lanarkite Alunite Botryogen (idrizite) Hanksite Crocoite sphates Anapaite (messelite) Parahopeite Amblygonite Apatite (phosphorite, fluorapatite, dahllite) Rhodophosphite Manganapatite Pyromorphite Mimetite Vanadinite Hedyphane Wavellite Fischerite gstates Scheelite Stolzite (scheelitine) Wulfenite Cuprotungstite (cuproscheelite)

MINERALS WITH SILICA

Silica Quartz Agate Chalcedony Jasper Tridymite Cristobalite Melanophlogite Silica—Continued Opal (cacholong, hydrophane) Hyalite Silicified wood Geyserite Tabasheer Nesosilicates Willemite

Infrared-luminescent minerals-Continued

MINERALS WITH SILICA-Continued

Nesosilicates-Continued Calcium larsenite Norbergite Leucophoenicite Andalusite Chiastolite Kyanite (raetizite) Topaz Garnets Grossularite Andradite Demantoid Zoisite (thulite, saussurite) Epidote Tawmawite Zircon Cvrtolite Alvite Sphene Axinite Howlite Tourmaline Sorosilicates Hemimorphite Vanuxemite Clinohedrite Wollastonite Pectolite Beryl (emerald, aquamarine) Pseudosmaragd Idocrase Californite Inosilicates Sillimanite Fibrolite Spodumene Kunzite Hiddenite **Pyroxenes** Diopside Jadeite Diallage Enstatite Bronzite Amphiboles Tremolite (hexagonite, calamite, chromtremolite) Byssolite

Inosilicates-Continued Amphiboles-Continued Actinolite Arfvedsonite Szechenviite Anthophyllite Serpentine (metaxoite) Chrysotile Saponite Cerolite Deweylite (gymnite) Jurupaite Crestmoreite Sepiolite Quincite Iddingsite Phyllosilicates Euclase Leucophane Apophyllite Talc (steatite) Lucianite Micas Muscovite (agalmatolite) Fuchsite Lepidolite Taeniolite Chlorites Xanthophyllite Cookeite Colerainite Kaolinite Confolensite Montmorillonite Steargilite Stevensite Allophane Razoumovskyn Collyrite Malthacite Halloysite Gyrolite Okenite Tektosilicates Nepheline Trimerite

Infrared-luminescent minerals-Continued

MINERALS WITH SILICA-Continued

Tektosilicates—Continued	TeklosilicatesContinued
Petalite	Feldspars—Continued
Analcime	Scapolite
Pollucite	Meionite (ersbyite)
Feldspars	Stroganovite
Orthoclase (leelite, lennilite,	Datolite
delawarite)	Zeolites
A dularia	Natrolite
Microcline (amazonstone)	Hydronephelite
Hyalophane	Laubanite
Albite	Mesolite
Oligoclase	Thomsonite
Andesine	Harringtonite
Anorthite	Laumontite
	Heulandite
Danburite	Castorite
Sodalite (molybdosodalite)	(hydrocastorite)
Hackmanite	Chabazite
Hauynite	Phacolite

All observations of the intensity of infrared luminescence were originally recorded on a numerical scale of 0 to 5 including plus and minus signs and were based entirely on the observer's visual judgment. These original numerical values have all been converted to verbal scales for presentation in this report.

Many specimens in the National Museum are labeled with names now regarded as synonyms for, or subvarieties of, an accepted specie name. These minerals are placed in the tables according to the accepted species name, and cross references are given under the names shown on the specimen label. For some minerals infrared luminescence was found in both the subvariety and the main variety; for others only the subvariety produced luminescence. When the data in the tables apply only to those specimens labeled with the name of a subvariety, this name is indented and placed on a separate line. When, however, the data apply to both the main mineral and its synonyms and subvarieties, these latter names are placed in parenthesis and on the same line as that of the main mineral.

OCCURRENCE OF INFRARED-LUMINESCENT MINERALS

Because the chemical environment of a mineral specimen has a considerable influence on its composition and hence on its luminescence, the locality where the specimen was found is very important.

In many places the activators which cause the luminescence of one species of mineral also cause luminescence in other species found nearby. Table 2 lists the main regions where specimens showing infrared luminescence were found. For each mineral the localities are arranged in three groups—weak, medium, or strong—according to the intensity of infrared luminescence of the minerals found there. Table 3 gives the number of regions represented in the collection and the percentage of these that yielded infrared luminescent specimens.

To keep the locality list moderately short while maintaining a certain amount of precision, areas containing a number of places yielding infrared luminescent specimens are represented either by a regional name (as a county) that does not cover too wide an area, or by the name of a centrally located town supplying most of the minerals showing typical infrared luminescence. Thus, the report of infrared luminescence from one locality may indicate similar occurrences nearby. Indeed, localities are generally regarded as broad areas having a number of mines and sometimes including several counties. For example, each of the following are regarded as one locality: the saline-lake area of Inyo, Kern, and San Bernardino Counties in California; the northern New Jersey mineral district in Sussex and Passaic Counties, N. J., and Orange County, N. Y.; Cumberland, Durham, Westmoreland, Northumberland, and parts of York and Lancaster Counties in England: and the Ural Mountains of Russia.

In the National Museum collection many places are identified by names that could not be found in an atlas, and many others have only general labels. These specimens are usually regarded as the same as another better labeled one from the same area. Thus, if one specimen was labeled merely India, another Chandribahara, India (guaranteed not to be in any atlas), and a third Western Ghats, Bombay, India, the first two are deprived of their possible individuality, and all three are lumped as a single locality, labeled as Bombay, India. A fourth specimen labeled Calcutta would, however, be considered another locality. Accordingly the number of localities given in table 3 may be somewhat smaller than the actual number of localities covered by the survey, but the deviation is probably small. Unfortunately, the identity of the localities is only as good as the labels on the specimens, and many of the specimens were presented to the National Museum a long time ago by people who had only a vague idea where they found the mineral. This explains why many localities are identified by only such vague and inclusive names as Africa, India, and Canada. Also many specimens were found when different geographic names were in use. Japan was once divided into provinces instead of prefectures; Germany and the Balkan States were subdivided into provinces that are no longer compatible with present political boundaries. No attempt has been made to convert the locality names to their modern equivalents. Also, although I have tried to follow modern systems of spelling geographic names, many of the places could not be verified and are presented as they are recorded in the museum catalog. People working with only a few minerals or localities will probably be familiar enough with the areas mentioned to recognize even obsolete spellings.

The lack of a positive report of infrared luminescence in a region does not mean that such specimens cannot be found there. Even if the area is represented by specimens in the National Museum collection, these specimens may have been chosen for some special characteristic such as crystallization, whereas almost all other specimens found in the area have different characteristics and are infrared luminescent. An excellent example is given by the three drawers of calcite specimens from northern New Jersey, many of them from Franklin, which is famous for the brilliant red fluorescence of the calcite found there. However, none of the specimens in those three drawers showed this red fluorescence; these specimens had been chosen for their crystal perfection, and the Franklin calcite crystals were not formed from solutions containing the proper amounts of manganese and lead to show strong fluores-However, most of the Franklin willemite and zincite cence. specimens in the National Museum are in a massive calcite gangue that shows extremely brilliant red fluorescence.

Although Franklin, N. J., has long been famous for its large number of fluorescent minerals and for the brilliance of their emission, the infrared luminescence of these minerals is either nonexistent or weak. Indeed no mineral region has been found which produces many varieties of minerals showing intense infrared luminescence. However, weak or medium infrared luminescence is shown by a number of mineral varieties found in some localities. Many of the Franklin, N. J., minerals show such a weak infrared luminescence. Many minerals found near Pikes Peak, Colo., show a weak, but frequently long-wavelength, infrared emission that is believed to result from rare-earth activators. The saline-lake areas of southern California produce many borate and halide minerals that show a weak infrared luminescence, and Melhase (1935) in reporting the accompanying pale-yellow fluorescence of the minerals savs that the brine of the lakes also is fluorescent.

ABUNDANCE OF INFRARED LUMINESCENCE

Table 3 is intended to indicate the prevalence of infrared luminescence in minerals. Columns 2 and 3 give the size of the sampling—the number of specimens of the mineral and the number of localities represented. Columns 4, 5, 6, and 7 give the percentages of these specimens and localities that show infrared and visible luminescence. These percentages are given to the nearest 10 percent except that they are given to the nearest unit when less than 10 percent. Percentages are given for both specimens and localities, because either one alone may give biased results for minerals represented by only one or two localities or by a majority of specimens from one locality. Any pieces bearing the same museum number are counted as one specimen, so that the number of samples examined often considerably exceeds the recorded number of specimens. Also, as mentioned above, one locality may cover a broad area and include many mines.

The dependence of most mineral luminescence upon accidental impurities makes statements regarding its occurrence and especially the frequency of the occurrence extremely risky. For example, some 20,000 specimens of about 300 minerals were examined in a preliminary survey; and, although earlier investigators had reported finding fluorescent specimens of every one of these minerals, we did not find a single visible or infrared luminescent specimen for 25 percent of these minerals. Perhaps some of these negative reactions can be explained by a lack of thoroughness in observing visible fluorescence; only a 2,500-A ultraviolet lamp was used in much of the examination for visible fluorescence. A great many minerals, however, did not show luminescence because the National Museum collection lacks specimens containing the right kind and amount of activators. Even if the right region is represented, suitably activated specimens may be absent; all specimens from one locality seldom show the same luminescence. Only parts of some mineral specimens show luminescence. A few specimens showed a zoned infrared luminescence limited to the base, core, or tips of crystals, and in many sphalerite specimens from Colorado the infrared luminescence is limited to the extreme edges of the crystal surfaces.

FACTORS INFLUENCING THE DETECTION OF WEAK LUMINESCENCE

Perusal of tables 2 and 4 shows that a large proportion of the infrared luminescence was judged by the observer to be weak in intensity. Another large group of minerals showed even weaker infrared luminescence, but because of the uncertainty of the observation these are not reported.

When the infrared is weak and luminescence occurs in small spots, it is sometimes difficult to be certain, without careful mineralogic examination, whether the mineral being observed is the one that has been identified. Thus, it is possible that much of the infrared luminescence reported for sphalerite is actually caused by greenockite, which always shows infrared luminescence, and which is present in many sphalerite specimens either as a thin surface coating or in solid solution. Similarly much of the weak and spotty infrared luminescence of cryolite and cryolithionite might be caused by small amounts of chiolite which frequently accompanies these minerals, and which much more commonly shows infrared luminescence. Many other minerals show a weak luminescence that seems to result from coating and cavity fillings of impure clay and carbonate alteration products that are commonly slightly luminescent.

Another factor that makes the detection of weak infrared luminescence uncertain is the difficulty of distinguishing it from reflected light "leaked" by the filters (p. 78). Both the viewing box and the scanner contained a weak infrared light source so that the observer could estimate the importance of this infrared reflection; table 4 includes his evaluation of the specimens' reflectivity. The value recorded is that of diffuse reflection; specular reflection for minerals with good cleavage or with metallic luster is much higher. The reflection is recorded as either "very faint," "faint," "average," or "bright." These observations of infrared reflection seldom show any results that cannot be expected from visual examination. Good cleavage surfaces generally show a high degree of specular reflection, and bright matte surfaces a high degree of diffuse reflection. Specimens with a light-brown or reddish color as from a thin ferrous coating are also frequently bright. A few red minerals such as zincite show strong reflection. Dull-black opaque minerals and clear, almost transparent, minerals reflect very little infrared because of complete absorption and complete transmission, respectively.

COMPARISON OF INFRARED AND VISIBLE LUMINESCENCE

Most infrared luminescent minerals have also been reported as visibly fluorescent, but many infrared luminescent specimens do not show visible fluorescence; and, vice versa, many visibly fluorescent specimens do not show infrared luminescence. The preliminary examination of the National Museum mineral collection was restricted to about 20,000 specimens of 300 minerals for which luminescent phenomena had been reported in at least one of the lists of Engelhardt (1912), Kunz and Baskerville (1903), Krejci-Graf and Krejci-Graf (1934), Walther (1936), Zodac (1936), Deribere (1943, p. 31-46), Dake and DeMent 1941), Warren (1944), DeMent (1945), and in a list of fluorescent minerals in the U. S. National Museum compiled by J. H. Benn (written communication). This preliminary examination disclosed more than 90 percent of all the infrared luminescent specimens found, even though later examinations covered more than 180,000 additional specimens.

There is, thus, an obvious relationship between the two types of luminescence, but the relationship does not imply that the causes of both infrared and visible luminescence are the same. There is ample evidence that some of the activators which cause the strongest and most prevalent visible fluorescence under ultraviolet do not cause any infrared emission. The uranyl-activated silica and uranium minerals, which give a brilliant yellow or green fluorescence under ultraviolet light, show no infrared luminescence. The manganese-activated calcites and willemites from Franklin, N. J., which show spectacular red and yellow-green fluorescence, give little or no infrared emission. Many scheelite and powellite specimens, which always show visible luminescence, do not show infrared emission. However, there are also a number of minerals in which infrared emission is much more common than visible emission. Thus, all specimens of greenockite show a strong infrared emission, but only about half of them give a visible emission with ultraviolet light. Infrared luminescence is also far more common than visible fluorescence in such abundant minerals as feldspars, amphiboles, and pyroxenes. In many other minerals, such as chromium-activated corundum, bervl, jadeite, and kyanite, the infrared luminescence appears much stronger than the visible emission.

We can conclude that, although the activators that cause visible and infrared luminescence are often, if not usually different, the suitability of the host mineral for one activator also often applies to other activators. Thus, scheelite, which owes most of its visible luminescence to the tungstate ion, also can contain rare-earth activators that cause strong infrared luminescence. The suitability of a host mineral for luminescence activators probably involves both the ability of the crystal lattice to hold foreign ions and the transparency of the mineral to both exciting and emitted radiation.

IMPORTANT ACTIVATORS FOR INFRARED LUMINESCENCE

Determination of the cause of luminescence is impossible unless a considerable amount of expensive laboratory equipment is available; precise spectrographic analysis of mineral composition and luminescent emission is essential for the correct identification of activators. Previous investigators have, however, identified the activators responsible for the visible fluorescence of many minerals, and some of these activators are known also to cause infrared luminescence. With such information the cause of the infrared luminescence of some minerals may be assumed, but the assumption is not really justified, because other activators may in some specimens cause at least part of the luminescence. Nevertheless a summary of the activators reported to cause infrared luminescence and of the minerals in which these activators have been found probably provides the best explanation of infrared luminescence that can be made without performing much additional laboratory work. Undoubtedly the list of these activators is not complete, but it includes enough to explain the more brilliant and common infrared emission. The list is primarily based on Kröger's (1948) classification of luminescent minerals according to type of activators.

Cadmium is responsible for the infrared emission of the cadmium sulfide greenockite, apparently the only mineral observed in which luminescence was produced by a major chemical constituent. Gisolf (according to Pringsheim, 1949, p. 607) has shown that the peak of the luminescent emission band of a solid solution of zinc and cadmium sulfides shifts linearly with increasing cadmium content from 4,600 A in the blue to 7,600 A in the infrared. Most specimens also show a weak yellow fluorescence, which results from cadmium ions if they are suitably isolated in the lattice (Weyl, 1942, p. 1037, and Inman, Mroz, and Weyl, 1948). Cadmium may also cause some or all of the less common infrared luminescence of the zinc sulfides sphalerite and wurtzite.

The rare earths cause much of the infrared luminescence emitted by minerals. Generally the rare-earth ions are in a trivalent state, so that their outer electron shell is filled, thus forming a shield for the inner unfilled orbits. The electronic transitions corresponding to the lines of the fluorescence spectra take place within these inner orbits where they are protected from the effects of the surrounding atoms. The lines of the luminescence spectra are thus sharp and practically independent of the type of host mineral. The rare-earth emission spectra cover a broad range and extend beyond 8,000 A, or well into the infrared region; they probably

cause most of the longest wavelength infrared luminescence. Samarium and europium are the most important members of the group but Kröger's (1948) table also mentions infrared luminescence resulting from dysprosium, neodymium, praseodymium, terbium, thulium, and ytterbium.

These rare earths probably cause the infrared luminescence of many of the minerals whose visible fluorescence is found in a great many specimens. For example, Tanaka's spectrographic examination (1924a) of the fluorescence of calcite has shown that manganese is the main activator, although dysprosium, ytterbium, thulium, and samarium may be contributing activators. Most of the infrared emission of calcite can probably be attributed to members of this group of rare-earth elements. The luminescence of fluorite, the mineral in which fluorescence was first recognized. is still the subject of much discussion, but most of its luminescence is now attributed to rare-earth activators. Although rare-earth activators are usually in a trivalent state, the europium, samarium, and ytterbium activators in many fluorites have been reduced by radioactivity to a divalent state with resultant changes in the emission band frequencies (Przibram, 1937). The important luminescence of scheelite and powellite results from the tungstate and molybdate ions (Cannon and Murata, 1944), but Servigne (1938, 1939, and 1940) has shown that in addition to this tungstate luminescence the emission spectra of most scheelites show rare-earth lines which extend into the infrared region. More than three-quarters of the scheelite specimens examined showed this infrared luminescence caused by rare earths, but powellite specimens, for some still unexplained reason, did not show it.

Rare earths also cause the infrared luminescence of other minerals, for which visibly fluorescent specimens are no more common than infrared luminescent specimens. Köhler and Haberlandt (1934, p. 90) have found rare-earth lines in the fluorence spectrum of apatite, which may show both visible and infrared luminescence, although the two types of emission do not always occur in the same specimen. Haberlandt and Köhler (1939) also attribute the visible fluorescence of feldspars to the divalent europium ion, and the more common infrared luminescence is probably caused by rare earths in either a divalent or trivalent state. For example, amazonstone from Pikes Peak, Colo., commonly shows infrared Tanaka (1924b) has spectrographically identified emission. samarium and ytterbium in the emission spectra of kunzite: but the investigation of infrared luminescence did not find any luminescent specimens of kunzite, perhaps because localities noted for luminescence are not represented in the National Museum collection. Some borates, especially those from the saline-lake area of California, are infrared luminescent; and the possibility that this luminescence is caused by rare earths is demonstrated by experiments conducted by Nichols and Howes (1926), who found that rare earths produce luminescence in beads of borax flux. Perhaps rare earths may also be the cause of infrared luminescence in minerals commonly associated with other minerals whose luminescence is known to be caused by rare earths. Thus the infrared luminescence of minerals in the cryolite-chiolite group may be caused by rare earths, as many of the infrared luminescent specimens are from Colorado, where they are associated with luminescent fluorite.

By far the most brilliant infrared luminescence results from the chromium ion which gives a series of strong emission bands centered near the border between the visible and infrared. In synthetic ruby, chromium causes a bright red fluorescence; but in kyanite, the emission is almost entirely in the infrared region. This shift in emission wavelength for different minerals can be explained by the fact that the electronic transitions responsible for the fluorescence of chromium take place in the outermost, unfilled shell of the atom and are thus relatively unprotected from the effects of surrounding atoms in the host lattice. Deutschbein (1932) made a thorough study of chromium-activated luminescence and along with Pringsheim (1949) lists the minerals in which such luminescence is found.

The luminescence activator for corundum, the most intensely infrared luminescent mineral found in this investigation, is the chromium ion, which substitutes isomorphously for aluminum in the crystal lattice. Ultraviolet light sometimes excites a red emission, especially in synthetic ruby, which has a very high chromium content, but the infrared emission excited by visible light is far more common. Most of this emission is, however, very close to the visible spectrum. Pale sapphires and light-blue corundum show a weaker infrared luminescence, but emery and dark-blue specimens are sufficiently opaque to quench all luminescence. Some specimens of two other aluminum oxides, spinel and chrysoberyl, show infrared luminescence caused by the chromium ion; and alexandrite, the deep-blue or green chrysoberyl, shows a strong infrared emission.

A number of silicate minerals also show infrared luminescence caused by the chromium ion. Many kyanite specimens show a very strong infrared luminescence, but none show much visible fluorescence under ultraviolet light. Although Pringsheim (1949) reports that its strong doublet emission line has a slightly lower

wavelength than that of ruby, the greater part of its emission seems to have a longer wavelength. Topaz, especially when slightly brownish or sherry colored, shows a strong chromium-activated infrared luminescence that is sometimes accompanied by a very slight and perhaps questionable visible emission under ultraviolet light. Beryl in cloudy or opaque specimens generally gives no · luminescence, but relatively clear pieces of most emerald and some aquamarine show a strong infrared luminescence. Except possibly for one specimen of synthetic emerald, the emeralds examined did not show any visible luminescence, but luminescence has been previously detected and definitely attributed to chromium by Deutschbein (1932) and Venkateswaran (1935). Jadeite owes its green color to chromium and also gives a very intense infrared luminescence. However, one difference between jadeite and other chromium-activated minerals should be noted - in jadeite the infrared emission occurs at considerably longer wavelengths. All oriental and some Mexican jades show this infrared luminescence: but nephrite, which is colored by iron, does not show any luminescence. Deutschbein (1932, p. 740) reports that uvarovite is another mineral showing chromium-activated luminescence, but none of the specimens examined produced any infrared luminescence. However, some grossularite and demantoid specimens showed an infrared luminescence that resembles that of the chromiumactivated minerals. The infrared luminescence of hiddenite also resembles that of the chromium ion in emerald, and Claffy (1953) has shown that the green color of some hiddenites which do not show visible luminescence is caused by the chromium ion. The green color of other luminescent hiddenites can, however, be caused by the radium irradiation of kunzite specimens (Pringsheim, 1949, p. 659); therefore some of its luminescence has a different cause.

EMISSION

The last column of table 4 indicates the wavelength of the infrared emission, as determined by changing the cutoff filter in front of the snooperscope. "Very short" is used for emission which can be seen only through filter 1 and possibly filter 2, the latter passing less than one-third as much energy as 1. Most of the emission described as very short probably has a wavelength of 7,000 to 7,500 A. "Short" emission is visible through filters 1 and 2 and usually through filter 3 which passes less than one-quarter of the emission passed by 1. This type of emission probably has a wavelength between 7,500 and 8,000 A. "Medium" is applied to all emission that is passed by filters 1, 2, and 3 and in

some cases by 4 which cuts the strength to less than one-fifth of that passed by 1. Medium emission probably has a wavelength between 8,000 and 9,300 A. "Long" emission is passed by all filters, and filter 4 passes more than three-fifths as much energy as filter 1. Most of the emission described as long probably has a wavelength between 9,300 and 9,700 A. "Very long" is applied to the emission of a few minerals which produce nearly as bright an image through filter 5 as through filter 1. Very long emission has an average wavelength greater than 9,700 A. (See fig. 26A.)

Any one of these categories can, however, apply to a number of different types of emission spectra. Thus an emission classed as short might consist of a broad band or series of bands extending from 7,000 to 8,300 A; a single sharp peak at approximately 7,800 A; or a group of bright bands between 7,000 and 7,500 A combined with some low intensity bands between 8,500 and 9,000 A. Furthermore, when the infrared luminescence is weak or very weak it is often difficult for the observer to detect any differences when varying the excitation and emission filters. Indeed, for a few minerals the spectral characteristics of very weak emission have to be recorded as "indeterminable." In general, however, weak luminescence would tend to be recorded as having too short an emission wavelength.

The table shows that infrared luminescence with a short wavelength is more common than luminescence with a longer wavelength. The greater sensitivity of the infrared image tube to short wavelengths might be an explanation of this conclusion, but this sensitivity difference was considered in describing the emission wavelength. A better explanation is provided by the greater efficiency of luminescence processes in which the excitation and emission wavelengths are close together. In the limiting case of resonance luminescence the absorbed radiation has the same frequency as the emitted light, and the efficiency of the process is a maximum. Thus the most efficient infrared luminescence would occur at short wavelengths near to those of the visible excitation.

The wavelength of the luminescence of minerals varies considerably and is seldom the same for all specimens of one mineral or even for all specimens of one mineral activated by the same element. As mentioned on page 91, the wavelength of the luminescent emission caused by the trivalent rare earths is nearly independent of the type of host lattice, but variations in the relative concentrations of the activator elements can change the emission wavelength. Luminescence resulting from the divalent rare earths and most other activators is, however, considerably affected by the nature of the host lattice.

The brilliant infrared luminescence of chromium-activated minerals provides an excellent example of the importance of the host lattice in influencing emission wavelength. Thus, the luminescence wavelength of ruby is classed as "very short" for most specimens, but the wavelength for the much denser minerals kyanite and jadeite is "medium". Deutschbein (1932) has found that the position of one of the brightest lines of the chromium spectrum (6,927 A in ruby) varies as much as 250 A among 8 different minerals, and other lines may show an even greater variation. The electronic transitions responsible for the fluorescence of chromium take place in the outermost, unfilled shell of the ion and are thus relatively unprotected from the effects of surrounding atoms in the host lattice. As the transitions are normally forbidden and can occur only because of the electric fields of the surrounding atoms, the probability of any transition and thus the relative strength of the resulting spectral lines depends on the host crystal. Additional subordinate lines can result in the spectra from the vibrational levels of the host lattice and from intermolecular Stark effects. Furthermore, even if the emission spectrum of an ion is independent of the effect of the host lattice, changes in emission spectra may be caused by self-reversal due to changes in concentration of the activator (Pringsheim, 1949, p. 664).

EXCITATION

Columns 6 and 7 of table 4 give the range and most effective color of exciting radiation for various mineral specimens. The tabulations are based on the observations of relative brightnesses of luminescence produced by excitation through the five filters that could be placed in front of the projector in the viewing box. For the convenience of the reader, the filters are described by the color of the light transmitted. These colors and the approximate wavelengths covered by each are listed in table 1 on page 79. In table 4 the "Range of excitation" column lists all filters whose transmitted light produced a detectable luminescence but the "Maximum of excitation" column gives only those filters that were most effective in producing this luminescence. The recording of more than one filter in the "Maximum of excitation" column means that the same brightness was recorded when the specimen was excited through more than one filter.

All the data suggest that the intensity of the infrared luminescence of most minerals decreases rapidly with a decrease in the wavelength of excitation. However, most of this decrease results from relative weakness of the ultraviolet excitation compared to the red and green excitation (see discussion on p. 75 and data in column 5 of table 1). Even a weaker emission caused by excitation in the violet end of the spectrum can mean that the mineral is actually more sensitive to violet excitation than to red. Accordingly, if the emission caused by short wavelength excitation was equal to that excited by longer wavelengths, the violet or ultraviolet is recorded in the "Maximum of excitation" column. Also the violet or ultraviolet is placed in parentheses as an additional "Maximum of excitation" for specimens in which the emission excited by these wavelengths was large enough to be more than that excited by longer wavelengths if both emission strengths were multiplied by the reciprocal of their excitation energies. Unfortunately, the luminescence under ultraviolet, violet, and blue-violet excitation was recorded as zero intensity for most minerals that showed only weak or very weak infrared luminescence, and such a value cannot be corrected.

Although the data generally show a preponderance of excitation in the red and green end of the spectrum, violet and ultraviolet light are always the most effective form of excitation for marshite, matlockite, mimetite, and phosgenite, and possibly for some specimens of scapolite, hackmanite, sussexite, and xanthophyllite, as well as some carbonates and chromium-activated minerals. Ultraviolet is probably an effective form of excitation for many other minerals, especially for many of those which showed such weak infrared luminescence that the low-energy, short-wavelength sources employed produced no detectable luminescence. Nevertheless, the availablitity of high-energy red and green light from incandescent sources makes this region the most practical for excitation of infrared luminescence.

Before any luminescence can be emitted from a crystal an electron has to be raised to an excited state by the absorption of energy. Such absorption can take place only if there is an electron transition corresponding to the impinging energy, although, fortunately, owing to the effects of thermal vibration the correspondence does not have to be exact. In resonance luminescence, energy is absorbed by the same transition that causes the luminescence, and the exciting radiation has the same wavelength as the luminescence; the efficiency of the process, therefore, is very high. The luminescence described in this report, however, results from excitation of considerably shorter wavelengths. Accordingly, higher energy levels, either in the same ion or in another part of the crystal, lattice are involved, and the energy is transferred with consequent loss to the level from which the emission takes place. Such a transfer of energy may occur in a number of ways,

and the probabilities of the transitions may depend on many factors involving not only the activators, but all other components of the luminescent system. In many minerals additional activators are required; thus the ultraviolet excitation of calcite fluorescence generally requires the presence of a sensitizing impurity such as lead (Pringsheim, 1949, p. 647; Schulman, Evans, Ginther, and Murata, 1947). In other minerals, however, the absorption can take place directly in the activating atom. Thus, greenockite specimens from Llallagua and most other localities show a maximum excitation efficiency in the green near 5,000 A, which is, according to Gisolf (*in* Pringsheim, 1949, p. 607), near the fundamental absorption band of cadmium sulfide. The efficiency of excitation of any wavelength will depend, first, on the number of suitable absorption levels, and second, on the probability of energy transfer from these levels to the emission level.

Consideration of the quantum theory of luminescence leads to an additional reason for the decrease of infrared luminescence efficiency at short excitation wavelengths. The luminescence emitted is proportional to the number of excited luminescent centers, and one quantum of light is required to excite each center. The energy of a quantum is proportional to the frequency of the light or inversely proportional to its wavelength. Thus the number of luminescent centers that can be activated by light from each lamp is proportional to the energy times the mean wavelength, which represents the quanta or energy flux per unit area per unit of time. These values are given in column 6 of table 1, and they show an even more rapid decrease with decreasing wavelength than does the energy emitted by the light sources.

An interesting interpretation of the excitation mechanism may partly explain the lack of visible emission from some of the brilliant infrared luminescent chromium-activated minerals. The introduction of chromium adds a broad absorption band in the green at about 5,600 A (Pringsheim, 1949, p. 644). Excitation close to this band (filters 2, 3, and 4) produces a strong infrared luminescence in all chromium-activated minerals, but ultraviolet excitation causes infrared luminescence in only ruby and a few other minerals. The ultraviolet excitation of ruby also produces a strong red luminescence, and Kröger (1948, p. 84) has shown that the absorption of pure aluminum oxide is very small throughout the visible spectrum but increases rapidly for wavelengths below 3,000 A. It would thus appear that irradiation with green light results in direct excitation of the chromium ion and is effective for all chromium-activated minerals. Ultraviolet excitation, however, involves the absorption of light by the host lattice and subsequent transfer to the chromium ion; ultraviolet excitation will thus be effective in only the few chromium-activated minerals that can absorb and then transfer this energy efficiently. As the luminescence of chromium minerals seems to involve the emission of both visible and infrared light, the advantage of the snooperscope for detecting chromium luminescence may result not from its ability to detect infrared radiation, but rather from its use of visible excitation.

POSSIBILITIES FOR PRACTICAL USE

One of the reasons for undertaking this program of investigations was the possibility that the infrared luminescence of minerals might prove a useful prospecting tool. If it is to serve such a purpose a mineral has to be found that will meet the following requisites: The mineral must be of economic importance-either an ore or an associate of ore. It must always show luminescence, which probably means that one of its chemical constituents will be an activator. Thus under ultraviolet light scheelite shows a blue luminescence caused by the tungstate ion, and some uranium minerals show a green luminescence caused by the uranyl ion. In some instances a mineral that always shows infrared luminescence in one locality might be worth considering. Thus ultraviolet light is very useful for detecting manganese-activated zinc minerals at Franklin, N. J. The mineral must be difficult to identify by simpler methods; no one would consider prowling around in the dark with a snooperscope looking for a copper carbonate. The infrared luminescence should be easily distinguished from that produced by less valuable materials. Considering the frequency of weak reactions from clay minerals and the lack of methods for distinguishing wavelength, this might be a serious limitation.

The only mineral that is always luminescent in the infrared region, and thus able to satisfy the second requirement, is greenockite, which is also the only important cadmium mineral. Greenockite occurs as a very thin coating on sphalerite and similar minerals, and is usually extracted as a byproduct of zinc mining.

The brighter infrared luminescence of many chromium-activated gems might be useful. For example, infrared luminescence provides a simple tool for distinguishing most pyroxene jades from their amphibole relatives.

The greatest opportunities for the infrared detection of minerals may result from the possibility of detecting small quantities of rare earths in relatively common minerals like feldspars. As the wavelength of rare-earth luminescence lies in the relatively long infrared, filters could perhaps be used to eliminate the effects of

other activators. The usefulness would depend on the intensity of of the infrared luminescence from the common gangue minerals as a guide to concentrations of the rare-earth ore minerals monazite, xenotime, and bastnaesite, which are too opaque to be luminescent. Tests of this relationship would have to be made in individual field localities.

Mineral	Sources of minerals showing infrared lumine scence of		of strength indicated	
	Weak	Medium	Strong	
Actinolite	Franklin, N. J			
Adularia	Grisons, Switzerland			
Agalmatolite. (See				
pyrophyllite.)				
Agate. (See				
quartz.)				
Albite	Narsarsuk, Greenland			
(peristerite.)				
Alexandrite. (See				
chrysoberyl.)				
Allophane.		Resin Hollow, Ky-		
Collyrite	Schemnitz, Hungary			
Malthacite	Steindorfel, Bohemia			
Razoumov-	Kossmutz, Siberia			
skyn.	•			
Alunite	Allumiere, France	Oruro, Bolivia		
	Wurzen, Saxony			
lunogen:				
Solfaterite	Solfaterra, Italy			
mazonstone.				
(See				
microcline.)				
Amblygonite	Pala, Calif	Harding, N. Mex		
Amphibole. (See				
actinolite, an-				
thophyllite, arf-				
vedsonite,				
tremolite.)				
Inapaite:				
Messelite	Wessel, Germany			
Inalcime	Golden, Colo Fresno City, Calif			
Andalusite	Fresno City, Calif	Lisens Alp, Tyrol		
	Swarthmore, Pa			
Chiastolite	Lancaster, Mass			
	Cumberland, England			
	Baregas, France			
Indesine				
a	France.			
Sacchurite		Glasendorf, Silesia		
Andradite:			C ¹¹ ·	
Demantoid			Siberia.	
Anglesite	Monte Poni, Sardinia.			
. 	a 11 H	England.		
hhydrite	Celle, Hanover,			
	Germany.			
	Stassfurt, Germany			
northite	Pylesville, Md	Pala, Calif		

,

TABLE 2.—Sources of minerals showing infrared luminescence

Mineral			of strength indicated
	Weak	Medium	Strong
Apatite	Renfrew County, Ontario.	Llallagua, Bolivia.	Mesa Grande, Calif.
	Bovey Tracey, England.	Haddam, Conn	Durango, Mexico
	Blagodat, India	Furuholmen, Norway	
	Toghigi Prefecture, Japan.	Amelia, Va	
	Greenwood, Maine St. Lawrence County,		
	N. Y. Odegaard, Norway Kala Depingula		
	Kola Peninsula, Russia. Gelivara, Sweden		
	Grisons, Switzerland.		
Fluorapatite _	Twin Peaks, Utah		
-	Dundarragon, West- ern Australia.		
Dahllite Rhodo-	Manhattan, Nev Horrsjoberg, Sweden		
phoshite. Manganapa tite.	Westana, Sweden		
Apophyllite	New Almaden, Calif French Creek, Pa		
Aquamarine. (See beryl.)			
Aragonite	Bahama Islands Collingwood, Australia.	Sonoma County,	
	Australia. Girgenti, Sicily Mount Vesuvius, Italy Shinano Province,	Andover, N. J Tintic, Utah	
	Japan. Eureka district, Nev		
	Badlands, Wyo		
	Organ Mountains, N. Mex.		
	Couliege, France Grape Vine Moun-		
	tains, Nev. Leadville, Colo		
Arfvedsonite: Szechenyiite			Burma.
Augite: Omphacite		Fichtelgebirge, Germany.	
Axinite	Franklin, N. J.		
Barite	Pribram, Bohemia		
	Ashe County, N. C Black Hills, S. Dak		
	Black Hills, S. Dak. Canyon County, Colo. Smoky Hill, Kans		
	Smoky Hill, Kans		
Baudisserite. (See magnesite.)	Langban, Sweden		
Bauxite Bentonite. (See montmorillon-	Floyd County, Ga		

Mineral		ng milared luminescence	of strength indicated	
	Weak	Medium	Strong	
Beryl (emerald, aquamarine).			Poona, Western Australia. Emmaville, New South Wales. Heubachthal, Austria. Salzburg, Austria Bahia, Brazil. Muzo, Colombia. Kongsberg, Norway. Peru. Mitchell County, N. C. Alexander County, N. C. Ural Mountains, Siberia.	
Pseudo-		Fahlun, Sweden	Siberia.	
smaragd. Botryogen:				
Idrizite	Idria, Austria			
Brucite Bustamite	Texas, Pa			
Byssolite. (See tremolite.) Cacholong. (See opal.) Calamite. (See	Franklin, N. J			
tremolite.)	Dishmand Australia	Podlonda S Dok		
Calcite (mangano- calcite, cupro-	Richmond, Australia Melbourne, Australia	Badlands, S. Dak Franklin, N. J		
calcite, reichite, oolite, pisolite,	Nome, Alaska	Union County, Ark.		
plumbocalcite).	Pribram, Bohemia	Warfield, Ontario		
	Telluride, Colo Cumberland, England	Key West, Fla San Luis Potosi, Mexico.		
	Cornwall, England	Pyramid Lake, Nev.		
	Andreasberg,	Sedgewickville,		
	Germany. Freiberg, Germany	Mo.		
	Silesia, Germany			
	Aikawa, Japan			
	Tuscany, Italy Girgenti, Sicily			
	Guanajuato, Mexico			
	Grand Rapids, Mich			
	Lake Superior, Mich Bergen Hill, N. J			
	Joplin Mo			
	Hancock, Md			
	Rockland, Maine Kongsberg, Norway			
	Picher, Okla			
	Crum Lynne, Pa.			
	Badlands, S. Dak Cheyenne, Wyo		1	
	1		1	

TABLE 2.—Sour	ces of mineral	s showing	infrared	<i>luminescence</i> —Continued
		<u></u>		······································

.

Mineral	Sources of minerals shown	Medium		
			Strong	
Calcite—Con	Trinity, Calif			
	Warren, Ariz			
	Suisun City, Calif Bleiberg, Carinthia			
Calcium larsenite_	Franklin, N. J.			
Californite. (See				
idocrase.)				
Cassinite. (See hyallophane.)				
Castorite. (See				
petalite.)				
Celestite	Warrior, Ala Borate, Calif			
	Girgenti, Sicily			
	Girgenti, Sicily Strontian Island, Lake			
a 11. (a	Erie.			
Cerolite. (See saponite.)				
Cerussite	Tsumeb, South-west			
	Africa.			
	Matlock, Derbyshire,			
	England. Joplin, Mo			
	Davidson's mine, N. C			
Cervantite	Silver Hill, Sevier	Humbolt County,	Charcas, San Luis	
	County, Ark.	Nev.	Potosi, Mexico.	
	Gulzora, New South	Zamora, Spain Camp Floyd, Utah	Toliman, Queretar	
	Wales.	Camp Ploya, Clam	Mexico.	
Chalcedony. (See				
quartz.) Chiestolite (See				
Chiastolite. (See andalusite.)				
Chiolite	Miask, Ural Moun-	Ivigtut, Greenland		
	tains, Russia.	0,		
Chlorite. (See cookeite, coler-				
ainite.)				
Chromtremolite.				
(See tremolite.)				
Chrysoberyl	Ceylon			
Alexandrite			Katherinenburg,	
Chrysotile. (See serpentine.)			Ural Mountains, Russia.	
Colemanite (neo-	Lang, Calif		TUSSIa.	
colemanite).				
Colerainite	Nottingham, Pa			
Collyrite. (See al- lophane.				
Confolensite. (See				
kaolinite.)	D 1011-55			
Cookeite	Buckfield, Maine			
Corundum (ruby	Pala, Calif Ceylon (sapphire)	Zoutspapherg	Ceylon (ruby).	
sapphire).	Coline (Supplied)	Transvaal.		
/	Bengal, India	Seluang, Malay	Amity, N. Y.	
	Hyderabad, India	Niagara Falls, N.Y.	Macon County,	

Mineral	Sources of minerals show	ing infrared luminescence	of strength indicated
	Weak	Medium	Strong
Corundum (ruby, sapphire) Con	Bozeman, Mont	Calif.	Powder Springs, Ga.
	Laurel Creek, Ga	Siberia.	Rabun County, Ga.
() i'u	Shimerville, Pa		Mysore, India. Piedmont, Italy. Lander, Wyo. Franklin, N. J.
Creedite	Wagon Wheel Gap, Colo.		
Crestmoreite Cristobalite	Crestmore, Calif	Saplores, Durango, Mexico. Girgenti, Sicily	
Cryolite	Ivigtut, Greenland	Pikes Peak, Colo Miask, Ural Moun- tains.	
Cryolithionite	do Wheal Phoenix, Corn		
Cuprocalcite. (See	wall, England.		
calcite.) Cuproscheelite. (See cuprotung- stite.)			
Cuprotungstite (cuproscheelite).	Huepac, Mexico La Paz, Lower Cali- fornia.	Tonechi, Mexico Fuerte, Mexico	
Danburite Datolite Delawarite. (See orthoclase.) Demantoid. (See andradite.)	Danbury, Conn	Tadjik, Russia	
Deweylite (gymnite).		Newcastle County, Del. Baltimore, Md Texas, Pa Gulsen, Styria Fleims, Tyrol	
Diallage	Orange County, N. Y. South Africa	Franklin, N. J Brazil	
Diaspore	Gumuchdagh, Asia Minor.	Schemnitz, Czechoslovakia.	
Dispeids (b)	Laurel Creek, Ga Gillis Range, Nev Horrsjoberg, Sweden		Deihal Teke
Diopside (lavro- vite, mela-	St. Lawrence County, N. Y.	Franklin, N. J	Baikal Lake, Siberia.
colite). Dolomite (gurhofite).	Sing Sing, N. Y Cold Spring, N. Y St. Louis, Mo	Searcy County, Ark.	
Tautoklin Emerald. (See	Traversella, Italy	Freiberg, Saxony	
beryl.) Enstatite Epidote:	Talcville, N. Y		
		Myitkyina, Burma	

TABLE 2.—Sources of minerals showing infrared luminescence—Continued

Mineral	Sources of minerals show	ing infrared luminescence	of strength indicated
	Weak	Medium	Strong
Ersbyite. (See meionite.) Euclase Feldspars. (See adularia, albite, a n d e s i n e, a north clase, hyallophane, microcline, olig- oclase, ortho- clase.) Fibrolite. (See sillimanite.) Fischerite. (See wavellite.)			Villa Rica, Brazil
Fluorapatite. (See apatite.) Fluorite	Monroe, Conn	Ouray County,	Corocoro, Bolivia.
	Middletown, Conn San Juan County, Colo. Salgadinho Mine, Brazil. Sweetwater Moun- tains, Calif. Swakopmund, South- west Africa. Cumberland, England Durham, England Auvergne, France Freiburg, Germany Barnthal, Italy Shawneetown, Ill Stoneham, Maine Marion County, Ky Oita, Japan Essex County, N. Y Amelia Court House, Va. Switzerland	Colo. Alma, Colo. Pikes Peak, Colo Pikes Peak, Colo Haliburton, Ontario. The Gulf, New South Wales. Cornwall, England Devon, England Keokuk, Iowa Ivigtut, Greenland Westmoreland, N. H. St. Louis, Mo Omodani, Japan Chatham, N. H Franklin, N. J Nertschinsk, Siberia. Banat, Rumania Shenandoah, Va Renfrewshire,	Clay Center, Ohio
Yttrofluorite - Fuchsite. (See muscovite.) Garnet. (See an- dradite, grossu-		Scotland. Hundholmen, Norway.	
larite.) Gaylussite Gearksutite Geyserite. (See opal.) Glagerite. (See halloysite.)	Ragtown Lake, Nev	St. Peter's Dome, Colo. Wagon Wheel Gap, Colo.	

.

.

Mineral		showing infrared luminescence of strength indicated	
	Weak	Medium	Strong
Greenockite	Llallagua, Bolivia Marion County, Ark	Modoc County, Calif.	Llallagua, Bolivia. Bishoptown, Scotland.
Grossularite	Topaz, Calif Friedensville, Pa Pribram, Bohemia Big Bar, Butte County, Calif.		South Africa.
	Hull, Quebec	Columbia.	
	Thetford, Vt Morelos, Mexico		
Gurhofite. (See dolomite.) Gymnite. (See			
deweylite.) Gypsum (selenite)_	Montmarte, France Borate, Calif	Galapagos Islands.	
	Mammoth Cave, Ky Lockport, N. Y Ihlafeld, Germany		
Gyrolite Hackmanite. (See sodalite.)	New Almaden, Calif		
Halite Halloysite (indianaite,	Borax Lake, Calif Garland County, Ark_ Baumgarten,	Stazunia, Poland Pala, Calif Bergnersreuth,	
glagerite).	Germany. Bedford, Ind Leoben, Styria		
Hambergite Hanksite Harringtonite. (See thomsonite.)	Helgaráen, Norway Searles Lake, Calif		
Hauynite	Laacher See, Germany Franklin, N. J		
Vanuzenite Hexagonite. (See tremolite.) Hiddenite. (See spodumene.)		Stirling Hill, N. J -	
Pargasite Howlite	Lang, Calif	Edenville, N. Y Wentworth, Nova Scotia.	Rossie, N. Y.
Hyalophane: Cassinite	Wanlockhead, Scotland.	Media, Pa	
Hydrocerussite	Scotland.		
(See natrolite.) Hydrophane. (See opal.) Hydrotalcite	Somerville, N. Y		
Iddingsite. (See serpentine.) Idrizite. (See botryogen.)	Somer vine, 14. I		

Mineral	Sources of minerals showi	ing infrared luminescence	of strength indicated
	Weak	Medium	Strong
Idocrase: Californite Indianaite. (See		North Thompson River, British Columbia.	Lindsay, Calif.
halloysite.) Jadeite	Tenochutlan, Mexico		Magoung, Burma. Niigata Prefecture, Japan. Yunnan, China. Buena Vista de Cueller, Guer- rero, Mexico.
Jasper. (See quartz.) Jurupaite			Crestmore, Calif.
Kaolinite: Lithomarge Confolensite Kyanite Kyanite Laubanite. (See natrolite.) Laumontite: Leonhardite	Schomberg, Moravia Hillswick, Scotland Lancaster County, S. C.		 Zillerthal, Tyrol. Litchfield County, Conn. Thomaston, Ga. Windham, Maine. Yancey and Mitchel Counties, N. C. Roraas, Norway. Delaware County, Pa. Troitzu, Siberia. Guadalajara, Spain Charlotte Court House, Va.
Retzite	Zillerthal, Tyrol	Vivero, Lugo, Spain.	
Lavrovite. (See diopside.) Lazulite Leadhillite	Leadhills, Scotland	Horrsjoberg, Sweden.	
Leelite. (See orthoclase.) Leonilite. (See orthoclase.) Leonhardite. (See laumontite.) Lepidolite Leucophanite Leucophanite Lithomarge. (See kaolinite.) Lucianite. (See talc.)		Grotto Ducci, Elba Laven, Norway	

Mineral	Sources of minerals show		1
	Weak	Medium	Strong
Magnesite (bau- disserite).	Hoboken, N. J		
	Baumgarten, Germany.	Rising Sun, Md	
Malthacite. (See	Baudissero, Italy		
allophane.)			
Manganapatite. (See apatite.)			
Manganocalcite.			
(See calcite.)	Chuquicamata, Chile_		
Marshite	Broken Hill, New		
M. 41	South Wales.	Course of Darker	
Matlockite		Cromford, Derby, England.	
Meionite:		e	
Ersbyite Stroganovite_	Pargas, Finland Baikal Lake, Siberia		
Melacolite. (See			
diopside.) Melanophlogite.			
(See cristo-			
balite.) Mellite	Antern, Germany	Tulo Bussie	
Mesolite	Golden, Colo		
Messelite. (See	Antrim, Ireland		
anapaite.)			
Metaxoite. (See			
serpentine.) Micas. (See			
muscovite, lepi-			
dolite, taeniol- ite.)			
Microcline	Pikes Peak, Colo		
(amazonstone).	Urals, Russia	Madagascar.	
Mimetite	Tsumeb, South-west		
Molybdosodalite.	Africa.		
(See sodalite.)	West Side Onen	Menterenillen	
Montmorillonite (steargilite,	West Side, Oreg	Montmorillon, France.	
bentonite).	Glen Riddle, Pa	Paris, Maine	
		Yamagata Prefec- ture, Japan.	
Stevensite		Paterson, N. J	
Montroydite Moonstone. (See		Terlingua, Tex	
orthoclase.)		OUT IN TTUE AT T	
Mooreite Muscovite:		Stirling Hill, N. J	
Fuchsite			Brevard, N. C.
Natrolite: Laudanite		Steinbruch, Silesia	
Hydronephe-	Brevig, Norway		
lite. Neocolemanite.			
(See			
colemanite.)		1	

109

Mineral	Sources of minerals showing infrared luminescence of strength in			
Wineral	Weak	Medium	Strong	
Vepheline	Val di Noto, Sicily			
•	Kirovsk, Russia			
Nitrate salts"				
kenite	Riverside, Calif			
	Godhaven, Greenland			
ligoclase	Newcastle County, Del.			
	St. Lawrence County, N. Y.			
	Delaware County, Pa. Mitchell County, N.C.			
	Mitchell County, N.C.			
	Macon County, N. C			
)mphacite. (See				
augite.)				
Dolite. (See				
calcite.)	Time 11	0		
Dpal (cacholong,	Erandique, Honduras	Queretaro, Mexico		
hydrophane).	Dubnik,			
	Czechoslovakia.		1	
	Virgin Valley, Nev			
	Steinham, Belgium			
	Bohemia, Germany			
	Faroe Islands Silesia, Germany			
	Willow Creek, Idaho			
	Vancourse Hungan			
	Veresvagas, Hungary Divide, Colo			
	Madicon Divor Mont			
	Budita Moravia			
	Ruditz, Moravia California			
Geyserite		Yellowstone, Wyo_		
Silicified	Jackson's Hole, Mont_	10000000, 0090-	Granger, Wyo.	
wood.			Citanger, 11, 10	
Tabasheer			Calcutta, India.	
Orthoclase	Globe, Ariz	Newcastle County,	· · · · · · · · · · · · · · · · · · ·	
(moonstone).	Penticton, British Columbia.	Del.		
	Mourne Mountains,	Akazu, Owari,		
	Ireland.	Japan.		
	Mino Province, Japan	Meisan, Korea		
	Fianarantsoa,	Uto, Sweden		
	Madagascar.			
	Auburn, Maine			
	Auburn, Maine			
	Little Rock Creek,			
	Mitchell County,			
	N. C.		1	
	Ceylon		1	
Leelite		. Chester County,		
		Pa.		
-		Lenni, Pa		
Lennilite		. do		
Delawarite		. do		
Parahopeite	. Salmo, British			
D	Columbia.			
Pargasite. (See	1			
hornblende.)	One Not h N T			
Pectolite	Great Notch, N. J Middletown, Calif		·	

Mineral	Sources of minerals showing infrared luminescence of strength indicate			
Mincial	Weak	Medium	Strong	
Pectolite—Con	Thetford, Quebec			
Peristerite. (See	Landalfoot, Scotland			
albite.)				
Petalite				
	Australia. Greenwood, Maine			
	South-west Africa			
Original	Uto, Sweden			
Castorite Phosgenite	Elba Island Derbyshire, England			
noogenite	Monte Poni, Sardinia			
hosphorite. (See				
apatite.) Pirssonite	Searles Lake, Calif			
Pisolite. (See	Dearles Lake, Call.			
calcite.)				
Plumbocalcite.				
(See calcite.) Pollucite		Custer, S. Dak		
Probertite	Ryan, Calif			
Pseudosmaragd.				
(See beryl.) Pyromorphite	Mies, Bohemia	Cumberland		
Jiomorphice		England.		
	Cornwall, England			
	Phoenixville, Pa Wolfsberg, Germany			
Pyrophyllite:	<i>c, c</i>			
Agalmatolite.	China			
Pyroxene. (See also diallage,	Franklin, N. J			
diopside, ensta-				
tite, jadeite,				
spodumene.)				
Quartz: Chalcedony	Pascadero Beach,	Cripple Creek,		
j	Colif	Colo		
	Death Valley, Calif Auvergne, France	Tampa Bay, Fla		
	Loch Neagh, Ireland.			
	Iceland			
	Iceland Oniski, Japan			
	Sonora, Mexico Guanajuato, Mexico Black Hills, S. Dak			
	Black Hills, S. Dak			
	Laredo, Tex			
	Antiqua, West Indies			
Agate	Opal, Wyo Brazil	San Luis Potosi,		
0 -		Mexico.		
	Chagres River, Canal Zone.			
	Laramie County, Wyo.			
_	Bohemia			
Jasper	San Francisco, Calif			
	Colorado	Wyo.		
Quincite. (See				
sepiolite.)	1	1		

Mineral	Sources of minerals showin Weak	Medium	Strong
	weak	Medium	Strong
Razoumovskyn. (See allophane.) Reichite. (See calcite.) Retzite. (See laumontite.) Rhaetizite. (See kyanite.) Rhodochrosite	Pachuca, Mexico Marquette County, Mich.		
Rhodophosphite. (See apatite.) Ruby. (See corundum.) Sacchurite. (See andesine.) Saponite:			
Cerolite	Texas, Pa Frankenstein, Germany.	Dixons quarry, Del_ Bluemont, Md Kosewitz, Germany.	
Sapphire. (See corundum.) Saussurite. (See zoisite.)			
Scapolite	Long Hill, Conn Bolton, Mass		
	Pierrepont, N. Y		
	Ottawa County, Quebec. Texas, Md		
	Tsarasaotra, Madagascar. Arendal, Norway		
	Easton, Pa		
Scheelite	Inyo, Kern, and San Bernardino Coun- ties, Calif.	Yuenna, New South Wales. Bolivia	Hyden, Alaska.
	ucs, Cam.	Bolivia Monroe, Conn	Rouis, Austria. Dragoon Mts., Ariz.
	Santiago, Chile	Ryndo, Korea	Schlaggenwald, Bohemia.
	Kai, Japan	Murray, Idaho	Mohave Desert, Calif.
	Carrock Fell, England	Riesengrund, Germany.	Leadville, Colo.
	Hill City, S. Dak White Pine County, Nev.	Pitkoranda, Finland.	Otomezaka, Japa Traversella, Italy
	Jardine, Mont Perak, Malay States	New Zealand Iron Mountain, N. Mex.	Sonora, Mexico.
		Minerva, Nev Sinaloa, Mexico	
Scheelitine. (See stolzite.) Selenite. (See gypsum.)			

Mineral	Sources of minerals showi	ng infrared luminescence	of strength indicated
Mineral	Weak	Medium	Strong
Selensulfur. (See sulfur.) Senarmontite		El Antimonio,	
Sepiolite Quincite Serpentine	North Clay City, Nev Cher, France	Sonora, Mexico. Bare Hills, Md	
(metaxite). (See also deweylite, saponite.)	Montville, N. J Modum, Norway	Crestmore, Calif Lupipko, Finland -	
Chrysotile	New Haven, Conn	Larchowfu Moun- tains, Shantung, China.	
Iddingsite	Easton, Pa Conejos, Colo	Ryan, Inyo County, Calif.	
Silicified wood (See opal.) Sillimanite:		.,	
Fibrolite Smithsonite	Marion County, Ark	Paris, Maine Auvergne, France_	Brandywine Springs, Del.
	Cumberland, England Laurium, Greece Masua, Sardinia Franklin, N. J		
Sodalite (molyb- dosodalite): Hackmanite	Vesuvius, Italy		
		Kola Peninsula, Russia. Bancroft, Ontario- Magnet Cove, Ark- Kangerdluarsk, Greenland.	
Solfaterite. (See alunogen.) Sphalerite	Clear Creek County, Colo.	Kremmling, Colo Southampton, Mass.	Santander, Spain Pulaski, Va.
	Oruro, Bolivia		Banner district, Idaho.
	Roxbury, Conn Perkiomen, Pa Kapnik, Rumania		
	Tsumeb, South-west Africa. Rodna, Rumania		
Sphene	Zlatoust, Siberia St. Gotthard, Switzerland.		
Spinel	Taos County, N. Mex	Ceylon	Sparta, N. J.
Spodumene Hiddenite Steargilite. (See montmorillon-			Hiddenite, N. C.
ite.) Steatite. (See talc.)			

Mineral	Weak	Medium	of strength indicated		
		Medium	Strong		
Stevensite. (See					
montmorillon- ite.)					
tibianite. (See					
stibiconite.)					
stibiconite	Oruro, Bolivia Sarawak, Borneo Empire district, Nev				
!	Empire district Nev				
Stibianite		Potosi, Bolivia			
tolzite:					
Scheelitine	Altenberg, Saxony				
troganovite. (See meionite.)					
trontianite	Strontian, Scotland				
ulfur:					
Selensulfur	Cianciana, Sicily				
ussexite zenchenyiite	Franklin, N. J				
(See arfvedson-					
ite.)					
abasheer. (See					
opal.) Faeniolite	Magnet Cove, Ark				
alc (steatite)	Magnet Cove, Ark Franklin, N. J St. Lawrence County,	Manhattan, Nev			
	St. Lawrence County,				
	N. Y. Alma, Colo				
	Rockland, Maine				
	Sonora, Mexico				
.	Luca Almenia, Spain _	Trillen de Due			
Lucianite		Spain.			
autoklin. (See		opam.			
dolomite.)					
awmawite. (See					
epidote.) Serlinguaite	Terlingua, Tex		1		
homsonite	Golden, Colo				
Harringtonite		Belfast, Ireland			
hulite. (See zoisite.)					
opaz	Grosmont, Western	New England,	Minas Geraes,		
· F · · · · · · · · · · · · · · · · · ·	Australia.	New South	Brazil.		
		Wales.	Sehesberstein		
		Minas Geraes, Brazil.	Scheckenstein, Germany.		
			Sanarka River,		
			Russia.		
ourmaline	King's Bridge, N. Y	Franklin, N. J			
remolite	Canaan, Conn	Etchison, Md Kragero, Norway	Stirling Hill, N. J		
(calamite, hexa-	St. Marcel, Italy	Outokumpo,	Stang 11m, 100		
gonite, chrom- tremolite).		Finland.			
tremolite).	Rock Raven, Md				
	Lee, Mass Fowler, N. Y				
Byssolite	rowie, it. i	Johns Mansville			
		Mines, Quebec.			
ridymite	Durango, Mexico Langban, Sweden	•••••			
rimerite					

Mineral	Sources of minerals show	ing infrared luminescence	of strength indicated
141116121	Weak	Medium	Strong
Ulexite	Mount Blanco, Inyo County, Calif.		
Valentinite Valleite. (See anthophyllite.)	Constantine, Algiers		
Vanadinite	Yuma County, Ariz Tucson, Ariz		
Vanuxemite. (See hemimorphite.)	Silver district, Ariz		
Wavellite	Llallagua, Bolivia Barnstable, England		
Fischerite	Hungary		
Willemite	Hungary Sussex County, N. J.		
Wollastonite	Uoruova, Argenuna	Lugo, opan	
	Chelsea, Ontario		
	Easton, Pa		
Wulfenite	Yuma County, Ariz		
	Tiger, Ariz		
	Pribram, Bohemia Organ Mountains,		
	N. Mex.		
Wurtzite	Butte, Mont		
Xanthophyllite	Slatoust, Siberia		
Yttrofluorite.			
(See fluorite.) Zeolites. (See			
laumontite,			
mesolite. natro-			
lite, thomson-			
ite.)			
Zoisite (thulite, saussurite).		Mount Rosa, Switzerland.	

TABLE 3.—Abundance of infrared and visible luminescence in minerals

	Infrared luminescence Visible fluoresc		Infrared luminescence		orescence	
Mineral	Numbe	r of —	Percent of		Percent of -	
•	Specimens	Localities	Specimens	Localities	Specimens	Localities
Actinolite Adularia Agalmatolite. (See pyro- phyllite.) Agate. (See quartz.)	63 45	31 10	1 2	3 10	00	0
Albite (peristerite) Alexandrite. (See chryso- bervl.)	70	25	3	4	1	4
Allophane Malthacite Collyrite	16 1 8 2	1 2 1 1	6 100 60	8 100 100	30 100 60	30 100 100
Razoumovskyn Alunite Alunogen:	2 25	$1 \\ 12$	100 8	100 20	100 8	100 20
Solfaterite	1	1	100	100	100	100

	1 -		Infrared luminescence		Visible fluorescence	
Mineral	Numbe	er of —	Percent of -		Percent of	
	Specimens	Localities	Specimens	Localities	Specimens	Localities
Amazonstone. (See micro- cline.) Amblygonite Amphibole. (See actino-	23	10	10	10	10	20
lite, anthophyllite, arf- vedsonite, tremolite.) Anapaite:						
Messelite	4	1	20	100	20	100
ApalcimeAndalusite	84 31	19 15	2 30	5 20	$\frac{2}{30}$	5
Chiastolite	18	10	20	30	20	30 40
Andesine	24	11	-8	9	8	9
Sacchurite	2	1	100	100	100	10 0
Demantoid	15	5	10	20	0	0
Anglesite	60	16	7	20	30	60
AnhydriteAnorthite ¹	44 19	17 10	7 5	10 10	5 5	6
Anthophyllite	24	13	8	10	0	10 0
Apatite (phosphorite)	174	30	50	60	50	50
Fluorapatite	1	1	100	100	Ő	0
Dahllite	11	5	10	20	20	40
Rhodophosphite	1	1	100	100	100	100
Manganapatite	3	1	30	100	30	100
pophyllite	112	23	7	10	20	30
quamarine. (See beryl.)	115	00	00	40	10	
AragoniteAragonite	115	36	20	40	40	70
Szechenyiite	1	1	100	100	100	100
Augite:	-	1	100	100	100	100
Omphacite	3	1	70	100	0	0
xinite	51	12	2	10	10	20
Barite	185	45	7	10	10	10
Baudisserite. (See mag- nesite.)	10	_	_		_	
BauxiteBentonite. (See mont morillonite.)	13	7	7	10	7	10
Beryl (emerald,						
aquamarine)	215	32	20	30	3	10
Pseudosmaragd	1	1	100	100	ŏ	10
otryogen:	.		100		100	
Idrizite	$\frac{1}{28}$		100	100	100	100
Sucite	12	3	10 30	30	30 30	40
yssolite. (See tremolite.)	12	U	00	30	30	30
acholong. (See opal.)						
alamite. (See tremolite.)						
alcite (manganocalcite,						
cuprocalcite, reichite,						
oolite, pisolite, plumbo-	470	70				-
calcite)	470	73	20	40	30	50
alcium larsenite	1	1	90	100	30	100
assinite. (See						
hyalophane.)		1				
astorite. (See petalite.)	92	23	15		1	

TABLE 3.—Abundance of infrared and visible luminescence in minerals—Continued

¹ Coating?

	in mine	7418				
			Infraredlu	minescence	Visible flu	orescence
Mineral	Numbe	er of —	Percent of		Percent of —	
	Specimens	Localities	Specimens	Localities	Specimens	Localities
Cerolite. (See saponite.) Cerussite	150	31	4	10	10	
Cervantite Chalcedony. (See quartz.) Chiastolite. (See andalusite.)	12	9	70	80	0	0
Chiolite Chlorite. (See cookeite, colerainite.) Chromtremolite. (See tremolite.)	7	2	60	100	0	0
Chrysoberyl Alexandrite Chrysotile. (See	33 6	8 1	3 100	10 100	10 10	10 100
serpentine.) Colemanite (neocole- manite) Colerainite Collyrite. (See allophane.)	33 3	2 1	60 100	100 100	100 100	100 100
Confolensite. (See kaolinite.) Cookeite Corundum (ruby,	13	3	40	70	0	0
sapphire) Creedite Crestmoreite	170 8 7	$\begin{array}{c} 26\\ 2\\ 1\end{array}$	60 10 100	50 50 100	10 100 100	20 100 100
Cristobalite Melanophlogite Cryolite Cupoithionite Cuprite Cuprocalcite. (See calcite.)	30 7 27 3 73	14 1 3 1 26	$ \begin{array}{c c} 3 \\ 10 \\ 40 \\ 100 \\ 1 \end{array} $	7 100 100 100 4	30 10 0 0 0	30 100 0 0
Cuproscheelite. (See cuprotungstite.) Cuproscheelite) Danburite Datolite Delawarite. (See orthoclase.) Demantoid. (See	14 34 109	8 10 16	40 9 1	50 10 6	90 20 5	80 30 20
andradite.) Deweylite (gymnite) Diallage Diamond Diaspore		8 11 6 11	80 10 10 20	60 10 30 50	80 0 0 15	60 0 0 20
Diopside (lavrovite, melacolite) Dolomite (gurhofite) Tautoklin	55 60 1	17 25 1	5 5 100	20 10 100	0 20 100	0 30 100
Emerald. (See beryl.) Enstatite	23	9	4	10	0	0
Epidote: Tawmawite	2	2	50	50	0	0
Ersbyite. (See meionite.) Euclase	7	4	30	20	30	20
	1	1	1	1	1	I

			Infrared lu	minescence	Visible fluorescence	
Mineral	Numbe	er of —	Percent of —		Percent of	
	Specimens Localities S		Specimens	Localities	Specimens	Localities
Feldspars. (See adularia, albite, andesine, anorth- ite, hyalophane, micro- cline, oligoclase, ortho- clase.)						
Fibrolite. (See sillimanite.) Fischerite. (See wavellite.) Fluorapatite. (See apatite.)						
Fluorite Yttrofluorite Fuchsite. (See muscovite.) Garnet. (See andradite, grossularite.)	274 5	46 1	40 100	60 100	50 100	60 100
Gaylussite Gearksutite Geyserite. (See opal.)	10 9	6 3	30 20	10 30	30 20	20 30
Glagerite. (See halloysite.) Greenockite Grossularite Gurhofite. (See dolomite.) Gymnite. (See deweylite.)	30 43	10 26	60 30	80 20	10 0	40 0
Gypsum (selenite) Gyrolite Hackmanite. (See	123 4	38 4	15 20	20 20	40 70	50 70
socialite.) Halite	57	19	7	10	20	50
Halloysite (indianaite, glagerite) Hambergite Harringtonite. (See	21 3 16	18 2 1	30 30 6	30 50 100	20 30 40	30 50 100
thomsonite.) Hauynite Hedyphane Hemimorphite:	20 10	4 3	5 30	20 30	5 10	20 30
Vanuxemite Hexagonite. (See tremolite.) Hiddenite. (See	6	1	100	100	100	100
spodumene.) Hornblende: Pargasite Howlite	4 16	3 2	70 40	70 100	0 30	0 100
Hyalophane: Cassinite Hydrocerussite Hydronephelite. (See natrolite.)	6 12	1 5	20 20	100 60	0 10	0 20
Hydrophane. (See opal.) Hydrotaleite Iddingsite. (See serpentine.)	8	3	20	30	0	0
Idocrase: Californite Idrizite. (See botryogen.) Indianaite. (See holloysite.)	10	2	50	100	0	0
.						

		1000	munucu			
			Infrared lu	minescence	Visible flu	orescence
Mineral	Number of —		Percent of		Percent of —	
	Specimens	Localities	Specimens	Localities	Specimens	Localities
Jadeite	18	5	50	100	0	0
Jasper. (See quartz.) Jurupaite	3	1	100	100	100	100
Kaolinite:	-					
Lithomarge		3		30 100		30 100
Confolensite Kyanite (rhaetizite)	1 59	1 25	100 80	80		4
Lanarkite	5	1	20	100	40	100
Laubanite. (See natrolite.)					1	
Laumontite: Leonhardite	3	2	30	50	30	50
Retzite	1	ĩ	100	100	0 O	0
Lavrovite. (See diopsode.)						
Lazulite	28	9		10 20	0 10	
Leadhillite Leelite. (See orthoclase.)	21	9	0	20	10	20
Lennilite. (See orthoclase.)						
Leonhardite. (See						
laumontite.)	50	17	4	6	0	0
Lepidolite			70	100	70	100
Leucophoenicite	9	6	50	10	0	0
Lithomarge. (See					1	
kaolinite.) Lucianite. (See talc.)		1				
Magnesite (baudisserite)	40	25	20	20	20	20
Malthacite. (See						-
allophane.)						
Manganapatite. (See apatite.)						
Manganocalcite. (See				1		
calcite.)		1		100		100
Marshite Matlockite	5		80 70	100 50	80 70	100 50
Meionite:	–	–				
Ersbyite	2	2	50	50	50	50
Stroganovite	2	1	50	100	50	100
Melacolite. (See diopside.) Melanophlogite. (See						
cristobalite.)						
Mellite	8	2	30	100	90	100
Mesolite Messelite. (See anapaite.)	. 23	9	10	20	10	30
Metaxoite. (See					1	
serpentine.)						
Micas. (See lepidolite,						
muscovite, taeniolite.) Microcline (amazonstone).	95	22	20	10	0?	0?
Minetite	50	14	2	7	Ö	0
Molybdosodalite. (See			1			
sodalite.) Montmorillonite						
(steargilite, bentonite)	19	12	70	60	70	60
Stevensite	. 9	1	90	100	90	100
Montroydite	. 3	1	70	100	0	0
Moonstone. (See orthoclase.)					1	
VI ULIVUIASC./	.	1			1	1
		-	-			

	L.		Infrared luminescence		Visible fluorescence	
Mineral	Numbe	r of —	Percent of —		Percent of -	
	Specimens	Localities	Specimens	Localities	Specimens	Localities
Mooreite Muscovite:	2	1	50	100	50	100
Fuchsite	14	10	7	10	0	0
Laubanite	2	1	50	100	50	100
Hydronephelite Neocolemanite. (See colemanite.)	5	5	40	40	40	40
	34	12	6	15	3	8
Nepheline	9	4	20	20	20	20
Okenite	10 35	4 12	30 20	50 50	50	50 20
Oligoclase Omphacite. (See augite.)	30	12	20	30	U	20
Oolite. (See calcite.)						
Opal (cacholong,						
hydrophane)		68	15	10	20	30
Geyserite Silicified wood	78	$\begin{vmatrix} 2\\5 \end{vmatrix}$	40 40	50 60	20 60	50 50
Tabasheer			70	100	70	100
Orthoclase (moonstone)	-	42	9	20	6	10
Leelite	3	2	70	100	70	100
Lennilite	4	1	50	100	50	100
Delawarite		$\begin{vmatrix} 1\\2 \end{vmatrix}$	100 50		100 50	
Parahopeite Pargasite. (See	5		50	00	50	
hornblende.)						
Pectolite	55	11	15	40	30	50
Peristerite. (See albite.)						
Petalite:		11	3	5	3	
Castorite			50	50		
Phosgenite Phosphorite. (See apatite.)	22	8	15	20	40	40
Pirssonite	23	1	20	100	0	
Pisolite. (See calcite.)						
Plumbocalcite. (See						
calcite.)	10			00	6	20
Pollucite Probertite	18			20 100	6	
Pseudosmaragd. (See		1	00	100	0	`
beryl.)				1		
Pyromorphite	. 94	26	10	20	7	20
Pyrophyllite:	_		10		00	
Agalmatolite	5 48	3	40 2	30	60 2	
Pyroxene (See also diallage,	. 40	10	2	10	4	
diopside, enstatite,						
jadeite, spodumene.)						
Quartz:			-			
Chalcedony		40	15	30	30	6
Agate	95	25 42	5	20	15	4
Jasper Quincite. (See sepiolite.)	- 04	42	0	1 1	1 1	
Razoumovskyn. (See allophane.)						
Reichite. (See calcite.)	1				1	
Retzite. (See laumontite.)						
Rhaetizite. (See kyanite.)		10		10		0
Rhodochrosite	73	18	3	10	4	2

		erais				
			Infrared lu	minescence	Visible flu	orescence
Mineral	Numbe	er of —	Percen	t of	Percen	t of —
	Specimens		Specimens		Specimens	Localities
Rhodophosphite. (See apatite.)						
Ruby. (See corundum.)						
Sacchurite. (See andesine.)						
Saponite:	7	4	90	100	90	100
Cerolite Sapphire. (See corundum.)	· · ·	4	90	100		100
Saussurite. (See zoisite.)						
Scapolite	75	13 30	20 60	70 90	20 100	80 100
Scheelitine. (See stolzite.)	93	30	00	90	100	100
Selenite. (See gypsum.)						
Selensulfur. (See sulfur.)						0
Senarmontite	6 18	3 14	20 10	3 0 15	0 20	0 30
Sepiolite Quincite	8	14	60	100	60	100
Serpentine (metaxite)	65	$2\overline{4}$	5	10	5	10
(See also deweylite, sa-						
ponite.) Chrysotile	20	12	20	30	20	20
Iddingsite	20	2	3 0	100	$\overline{50}$	100
Silicified wood. (See opal.)						
Sillimanite:	-	4	60	70	60	70
Fibrolite Smithsonite	5 88	$\frac{4}{27}$	9	70 20	30	40
Sodalite (molybdo-			_			
sodalite)	39	12	5	8	10	15
Hackmanite Solfaterite. (See alunogen.)	5	5	60	60	100	100
Sphalerite	210	51	9	20	3	8
Sphene	105	21	8	10	1	5
Spinel	70 30	14 13	9 7	15 8	6 7	15 8
Spodumene Hiddenite	30 12	10	90	100	Ó	õ
Steargilite. (See montmor-		-			_	
illonite.)						
Steatite. (See talc.) Stevensite. (See montmor-						
illonite.)						
Stibianite. (See						
stibiconite.) Stibiconite	3	3	100	100	0	0
Stibianite	1	1 1	100	100	ŏ	ŏ
Stolzite:						0
Scheelitine	1	1	100	100	0	0
Stroganovite. (See meionite.)						
Strontianite	25	10	4	10	60	60
Sulfur (selensulfur)	86	35	2	3	1	2 0
Sussexite Szechenyiite. (See	9	4	20	20	0	U
arfvedsonite.)						
Tabasheer. (See opal.)						- 0
Taeniolite	3	2	30 20	50 20	30 20	50 20
Talc (steatite)	53 1	23 1	100	100	100	100
Tautoklin. (See dolomite.)	1	-	100	200		
Tawmawite. (See epidote.)	1					

Mineral	Number of —		Infrared luminescence Percent of —		Visible fluorescence Percent of —	
274224V5 041	Specimens		Specimens		Specimens	
Terlinguaite	6	2	15	50	70	50
Thomsonite	58	19	5	10	7	15
Harringtonite	3	2	30	50	30	50
Thulite. (See zoisite.)	Ů	~				
Topaz	165	26	15	15	10	10
Tourmaline	280	39	10	15	10	10
Tremolite (calamite, hexa-	200	00	Ů	Ū	••	10
gonite, chromtremolite).	68	22	20	40	20	50
Byssolite	12	-9	8	10	8	ĬŎ
Tridymite		ğ	15	10	15	ĨŎ
Trimerite	7	1 ľ	100	100	ŏ	ŏ
Ulexite	29	8	3	10	20	30
Valentinite	17	ğ	6	ĪŎ	6	10
Valleite. (See		Ű	Ŭ		Ŭ	
anthophyllite.)			1			
Vanadinite	78	15	6	15	0	0
Vanuxemite (See	,		Ŭ		÷	-
hemimorphite.)						
Wavellite	66	12	6	20	40	70
Fischerite	3	2	30	50	70	100
Willemite ²	93	12	4	8	90	80
Wollastonite	34	12	15	40	60	70
Wulfenite	87	23	20	20	0	0
Wurtzite	23	8	4	10	Ó	Ó
Xanthophyllite	10	3	10	30	Ó	Ó
Yttrofluorite. (See						
fluorite.)						
Zeolites. (See laumontite,						
mesolite, natrolite,						
thomsonite.)						
Zoisite (thulite):						
Saussurite	31	18	3	6	0	0

TABLE 3.—A bundance of infrared and visible luminescence in minerals—Continued

² Infrared guestioned.

		Visible flu	Visible fuorescence	
Mineral	Locality		Tataaita	Infrared
		COLOF	AUBUOUT	renection
Actinolite Adularia	Franklin, N. J. St. Gotthard. Switzerland	None	Zero	Faint. Bright.
Agalmatolite. (See pyrophyllite.)			1 	
Agate. (See quartz.) Alhite		do	do	Average.
Peristerite	Hybla, Ontario	op		Do.
			;	
		Green	Medium	Bright.
	Schemnitz, Hungary	Pale Bray	weak	Average.
2		Gray.		Do.
		do		Do.
Solfaterite	Solfaterra, Italy	None	Zero	Bright.
Amazonstone. (See microcline.)		I F	-	•
Amblygonite	Pala, Calif	Buff.	Weak	Average.
	Harding, N. Mex	Pale brown	do	ро.
Amphibole. (See tremolite, actinolite, artved-				
sonite, and anthophyllite.)				
			-	ć
		rate plue green	00	Duicht
Andalusita Andalusita		None		Averene
		Brown	Weak	Do
		do	do	ic
		Pink	do	Do.
	Glasendorf, Silesia	Ochre	Medium	Do.
Andradite:		;	1	
Demantoid	Siberia	None	Zero	Faint.

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens

2 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

	1		Infrared	Infrared luminescence	
Mineral	TOCBUL	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Actinolite	Franklin, N. J	Weak Medium	Red, green	Reddo	Short. Do.
Agamatoutte. (See pyrophyllite.) Agate. (See quartz.) Albite Alexandrite. (See	Narsarsuk, Greenland Hybla, Ontario	Weak Very weak	Red	do	Do. Medium.
chrysoberyl.) Allophane Malthacite Collyrite Razoumovskyn	Resin Hollow, Ky Steindorfel,Czechoslovakia Schemnitz, Hungary Kosemutz, Siberia	Medium Weak do	Red through violet Red, green, violet Red, green, violet Green, blue	Red, green Red. (violet) Violet Green, blue	Short. Very short. Short. Do. Do.
Alunogen: Solfaterite	Solfaterra, Italy	do	Red, green, violet	Violet	Medium.
Amazonstone. (See microcline.) Amblygonite	Pala, Calif	Weak	Red, blueRed, plueRed, green, violet	Red (violet)	Very short. Medium.
Amphibole. (See trem- olite, actinolite, arf- v e d s on i t e, an d anthophyllite.) Anapaite:	Massal Germany	Weak	Red through violet	Red through blue	Do.
Analcime	Golden, Colo. Lisens Alps, Tyrol. Lancaster, Mass.	Very weak Medium Weak	Red through blue	Red do Blue Red through blue	Do. Short. Do.
AndesineSaccharite	Esterel Mountains, France Glasendorf, Silesia	Medium	Red. green.	Reddo	Medium. Short.
Andradite: Demantoid	Siberia.	Strong	Red through blue-violet	op	Do.

		Visible flu	Visible fluorescence	
Mineral	Locality		Tutonite	Infrared
		COLOF	Intensity	renection
Anglesite	Crumford, England	Yellow	Medium	Average.
	Monte Poni, Sardinia	Green	Weak	Do.
Annyarite	Celle, Germany	None	Zero	Do.
Anorthite	Pala, Calif	Pale brown	Weak	Bright.
Anthophyllite	Pylesville, Md	None	Zero	Ďo.
Apatiteareaseses	Llallagua, Bolivia	Cream white	Medium	Average.
	Mesa Grande, Calif	Ochre	Strong	Do.
	Renfrew, Ontario	None	Zero	Do.
	Guano Island, West Indies	Pale green	Weak	Do.
	Kola Peninsula, Russia	None	Zero	Do.
	Durango, Mexico	Brown	Weak	Dº.
	Ciply, Belgium	Pale green	do	Dº.
B	Dundarragon, Western Australia	None.	Zero	Dº.
	Manhattan, Nev.	Cream white	Weak	Do.
Khodophosphite	Horrsjoberg, Sweden	Ochre	do	Do.
	Westana, Sweden	do	do	Do.
Apophyllite	New Almaden, Calif.	Brown	do	Do.
•				
Aragonite	Bisbee, Ariz	Cream white	do	Bright.
	Girgenti, Sicily	White	dodo	Average.
	Tarramura, Japan	Pink	do	Do.
	4		i	
Szecnenynte	Burma	None	Zero	Very faint.
Augue. Omnhacite	Richtalrahirra Gamony	70	c T	č
Axinite	Franklin N.J	Rad	Madinm	Average
Barite	Pribram, Czechoslovakia	Grav	do	Do.
	Cheyenne River, S. Dak	Yellow	do	Do.
Bauxite	Flovd County, Ga.	Grav	Weak	Do
				5

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued

			Infrared	Infrared luminescence	
Mineral	Алпазон	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Anglesite	Crumford, England Monte Poni, Sardinia	Medium	Green through violet Green through blue-violet	Blue, blue-violet	Short. Do.
Anhydrite	Celle, Germany	do	Green, blue	Green, blue Red. green	Very short. Medium
Anthophyllite	Pylesville, Md	Weak	Red, violet		Very short.
Apaulte	Mesa Grande, Calif	Strong	do	ue	Long. Do.
	Renfrew, Ontario	Weak	Red through blue		Medium. Short.
	Kola Peninsula, Russia	do	Red, green	Red, green	Very long.
Phosphorite	Ciply, Belgium	Weak	Red	Red	Short.
Fluorapatite	Dundarragon, Western	Very weak	Indeterminable	Indeterminable	Do.
Dahllite	Manhattan, Nev	Weak	Red through blue-violet	Red	Do.
Rhodophosphite	Horrsjoberg, Sweden	op	Red through blue	Red through blue	Medium.
Apophyllite	New Almaden, Calif.	do	Red through blue	Red through blue	Do.
Aquamarine. (See					
	Bisbee, Ariz	Medium	do	do	Short.
	Girgenti, Sicily	Weak	Red through blue-violet Green. blue	Red. Green	Very short. Short.
	Burma	Strong	Red through blue-violet	Red	Medium.
Augite: Omnhacite	Fichtelgehirge Germany			do	ď
Axinite	Franklin, N. J.		it i	Green through blue-violet	Very short.
Daulue	Cheyenne River, S. Dak	Very weak	Red through blue.	Red through blue	Indeterminable.
Baudisserite. (See magnesite.)					
Bauxite	Floyd County, Ga	do		do	Do.

Männel	Loonliter	Visible fluorescence	orescence	Infrared
TRITICIAL	LOCALINY	Color	Intensity	reflection
Bentonite. (See montmorillonite.) Bervl	Muzo, Colombia	None	Zero	Average.
	Kongsberg, Norway	do	do	°.°
Synthetic emerald		Red.	Very weak	åå
Botryogen: Idrizite		Green	Medium	Do.
	Texas, Pa	Cream white	Weak	åå
te.) te.)		Pink	qu	Ğ
X	Pribram, Bohemia. Badlands, S. Dak E-a-1-1:- M. T.	Yellow green	Very weak	ååé
Reichite.		Pink	Weak	ŝéé
			Medium.	°.
Cuprocalcite			Weak	å
	Franklin, N. J.	None	Zero	Ĩ
Californite. (See idocrase.) Cassinite. (See hyalophane.) Castorite. (See petalite.)		MOTO T		ŝ

TABLE 4.--Characteristics of infrared luminescence in selected mineral specimens--Continued

126 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

Minned	Tocolière		Infrared	Infrared luminescence	
171 TIGE 27	TOCALLY	Strength	Range of excitation	Maximum of excitation	Emission wavelength
ite.) merald ragd	Muzo, Colombia	Very strong- Medium Strong Very strong- Medium Very weak Weak	Red through ultraviolet	Red (ultraviolet) Red 	Short. Do. Very short. Medium. Short. Do. Do.
Cacholong. (See opal.) Calaite. (See tremolite.) Calcite Pisolite Pisolite Cuprocalcite Plumbocalcite Plumbocalcite Californite. (See idoorase.) Casinite. (See idoorase.) Casinite. (See hyalophane.) Castorite. (See hyalophane.)	Cumberland, England Badlands, S. Dak Franklin, N. J Alston Moor, England North White River, Wyo Carlsbad, Bohemia Franklin, N. J Bleiberg, Austria Franklin, N. J.		Green, blue -violet Green through blue-violet Red through blue -violet Indeterminable Red, green, violet Red, violet Red, violet Red, blue Red, green	Green Green, blue Red through blue Green Indeterminable Red (violet)	Very short. Very long. Short. Do. Wedium. Do. Short. Long. Long. Do.

TABLE 4.—Characteristi	TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued	ed mineral specin	<i>vens</i> -Continued	
1 1 × ×		Visible fluorescence	orcscence	Tafacand
WITHOUSE IN	A DOCALLY A	Color	Intensity	reflection
Celestite	Borate, Calif	Cream white	Medium	Average.
Cerolite. (See saponite.) Cerussite	Tsumeb, South-west Africa	do	Weak	Do.
Cervantite	Davidson's mine, N. C Gulzora. New South Wales	Yellow	Wedium	Bright. Average.
	Toliman, Queretaro, Mexico	do	dodo	Bright.
Chiastolite. (See and alusite.)		-		ć
Chiolite	Ivigtut, Greenland	dodo	Zerodo	°.
Chlorite. (See cookeite, colerainite.) Chromtremolite. (See tremolite.)	``````````````````````````````````````			
Chrysoberyl		doob	ob	Average.
Alexandrite	Mountains,	Red	Very weak	Do.
:	Ural Mountains, Russia	None	Zero	Do.
Colemanite	Furnace Creek, Calif	Cream white	Weak	Ď.
Neocolemanite	Lang, Calit Partice Nottingham, Partice Partice Notingham, Partice Notes	Yellow	Very weak	Do.
Collyrite. (See allophane.) Confolensite (See kaolinite.))			
Cookeite	Buckfield, Maine	None	Zero	Do.

128

	÷		Infrared	Infrared luminescence	
MILLEFAL	LOCALITY	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Celestite	Borate, Calif	Weak	Red through blue	Red through blue	Short.
Cerussite	Tsumeb, South-west Africa Davidson's mine, N. C	Very weak Weak	Indeterminable	Indeterminable Red through blue	Medium. Do.
Cervantite	Gulzora, New South Wales Toliman, Queretaro, Mexico.	Medium	Green through blue-violet	bluedo	Long. Medium.
Chalcedony. (See quartz.) Chlastolite. (See andalusite.)					
Chiolite	Ivigtut, Greenland Miask, Ural Mountains,	Weak	Red through blue	Red, greenRed through blue	Short. Very short.
Chlorite. (See cookeite, colerainite.) Chromtremolite. (See	Pussia.				
Chrysoberyl	Ceylon Katherinenburg, Ural	Very weak Strong	Green, blue Red through violet	Green, blueRed	Medium. Short.
	Mountains, Kussia. Ural Mountains, Russia	Medium	Red through blue-violet _	Red, green	×
Chrystotile. (See serpentine.) Colemanite Neocolemanite Colerainite Collyrite. (See allophane.) Confolensite. (See	Furnace Creek, Calif Lang, Calif Nottingham, Pa	Weak	Red through violet	Red through blue-violet Green (violet) Red	Very short. Medium. Do.
kaolinite.) Cookeite	Buckfield, Maine	do	Red, green	do	Do.

Minorel	Tooslity	Visible flu	Visible fluorescence	Infrared
TO JOHN N	Contract of the second s	Color	Intensity	reflection
Corundum	Rabun County, Ga	None	Zero	Average.
	Belgrade, Mont.	do	do	Do.
	Amity, N. Y	Red	Very weak	Do.
	Buck Creek, N. C	None	Zero	Do
	Ceylon.	do	op	Do.
Sapphire	do	op	op	ດີເ
		Red.	Strong	Do.
	Wagon Wheel Gap, Colo	Fale blue	Weak	Bright.
Crestmorette.	Crestmore, Calit	Pale gray	Strong	Avera re-
	Girgenti Sigily	Pale hrown	Medium	Do.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Pikes Peak. Colo	None	Zero	Bright.
4	Ivigtut. Greenland	do	do	Average.
	do	do	do	Bright.
Cuprite.	Wheal Phoenix, Cornwall, England.	do	do	Average.
Cuprocalcite. (See calcite.))
Cuproscheelite. (See cuprotungstite.)	E	ζ		Ċ
Cuprotungstite	Tonechi, Mexico	Green	Medium	
Cuproscheelite	La Faz, Mexico	Uray		A TOTAL
Detalite	Danoury, Conn.	Pare prown	Weak	Average.
Delawarite. (See orthoclase.)	T aujus, tuussas			
Demantoid. (See andradite.)				
Deweylite	Newcastle, Del.	Pale ochre	Weak	Bright.
	Delight, Md	None	Medium	Average.
Dialland	Fleins, J yrol.	rale green	70m0	A versee
Diamond	Frankulti, N. J	None	do	Do Do
Carbonado	Brazil	do	do	Bright.
				þ

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued

W	L		Infrared	Infrared luminescence	
MILLERAL	TOGATES	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Corundum	Rabun County, Ga Belgrade, Mont. Amity, N. Y. Buck Creek, N. C.	Strong	Red through blue-violet. Green, blue. Red through blue-violet. Red through blue-violet. Red through blue-violet.	Red Green do Red (ultraviolet)	Medium. Very short. Do. Do. Modino.
Synthetic ruby Creedite	Wagon Wheel Gap, Colo	- i i	Red through ultraviolet	Red through blue (ultraviolet). Red through violet.	Short. Medium. Do.
Cristobalite Melanophlogite Cryolite	Saplores, Durango, Mexico Girgenti, Sicily Pikes Peak, Colo	Medium	Red through violet	Violet, red, blue Red (violet) Red, green Dod through blue	Long. Medium. Short.
Cryolithionite	Wheal Phoenix, Cornwall, England.	do	Red, yiolet	Violet	Very long.
Cuproschedite. (See Cuproschedite. (See cuprotungstite.) Cuprotungstite Danburte Datolite Delawarite. (See	Tonechi, Mexico La Paz, Mexico Danbuzy, Com Tadjik, Russia	Medium Weak Medium	Red through blue Red, green Red through blue Red through violet		Long. Very long. Medium. Short.
ortnoctase.) Dematoid. (See andradite.) Deweylite Diallagymnite Diallagy Carbonado	Newcastle, Del. Delight, Md. Fleims, Tyrol. Franklin, N. J. South Africa.	do do do Weak Medium	Red through blue-violet. Red through blue-violet. Red through blue-violet. Green through blue-violet. Red through blue-violet.	Red, green Red	Medium. Do. Do. Do.

131

	T constitute	Visible flu	Visible fluorescence	Infrared
INTING	LOCALLY	Color	Intensity	reflection
Diaspore	Schemnitz, Czechoslovakia	None	Zero	Average.
	Laurel Creek, Ga.	Brown	Weak	Do.
	Franklin, N. J.	None	Zero	D0.
***************************************	Sing Sing, N. Y.	do	op	Bright.
vite	Baikal Lake, Siberia	do	do	Average.
Dolomite	St. Louis, Mo	do	Woak	Do Do
	Traversella, Italy	Pink	do	Average.
Gurhofite	Cold Spring, N. Y.	op	Very weak	Do.
	Freiberg, Saxony	Pale green	Weak	Bright.
(Talcville N Y	None	do	Average.
Enidote:				
Tawmawite	Myitkyina, Burma.	Dark red	Very weak	Do.
Ersbyite. (See meionite.)	:	-	. :	
Euclase	Villa Rica, Brazil	dodo	Medium	Famt.
Feldspar. (See orthoclase, adularia, micro- cline, hyalophane, albite, oligoclase, ande- sine, anorthite.)				
Fibrolite. (See sillimanite.) Fischarite. (See wovellite.)				
Fluorapatite. (See apatite.)			,	
Fluorite	Corocoro, Bolivia	Pale blue	Weak	Average.
	St. Louis, Mo	Yellow	op	Do.
	Clay Center, Ohio	do	Strong	o G
Y ttrofluorite	Hundholmen, Norway	Yellow	Medium	
	Northern Norway		do	.D0.

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued

			Infrared	Infrared luminescence	
Mineral	тосвлуу	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Diaspore	Schemnitz, Czechoslovakia Laurel Creek, Ga	Weak	Red through blue-violet Red through blue	Red through blue	Medium. Do.
Diopside	Franklin, N. J.	Medium	Red	Red	°Q
Melacolite	Sing Sing, N. Y	Weak	Red through violet Red through blue-wielet	Ked (violet) Rad blue	Long
Dolomite	St. Louis, Mo	Medium.	Red through blue.	Red.	Short.
	do d	Weak	Red through blue-violet	Tudotominohlo	Medium.
Gurhofite	Cold Spring, N. Y.	Very weak	Red, violet	Violet	Medium.
Tautoklin	Freiberg, Saxony	Medium	Red through blue	Red	Do.
Enstatite	Talcville, N. Y.	Weak	Red.	Red	Long.
Epidote: Tawmawite	Mvitkvina. Burma	Medium	Red through blue-violet	op	Medium.
Ersbyite. (See					
Euclase	Villa Rica, Brazil	Strong	Red, green	do	Short.
Feldspar. (See ortho- clase. adularia. mi-					
crocline, hyalophane,					
albite, oligoclase, andesine, anorthite.)					
Fibrolite. (See				-	
sillimanite.)					
wavellite.)					
Fluorapatité. (See					
Runrite.)	Corocoro. Bolivia	do	Red through blue-violet.	do	D0.
	Alston Moor, England	Weak		dodo	Medium.
	St. Louis, Mo.	Medium	Red through green Red through blue-wielet	Red through blue	Short.
	Amelia Courthouse, Va	Weak	Red through violet	Red	Very short.
Yttrofluorite	Hundholmen, Norway	Medium	Red through blue-violet.	Green, blue	Medium. Do
	IT UT WITH THAT WAY		the second from the		5

		•		
		Visible flu	Visible fluorescence	Infrared
Mineral	Locality	Color	Intensity	reflection
Fuchsite. (See muscovite.) Garnet. (See grossularite, andradite.) Gaylussite	Ragtown Lake, Nev	Cream white	Weak	Average.
Gearksutite. Geyserite. (See opal.)		Kea	uiminatw	.00
	Llallagua, Bolivia	do	Very weak	Do. Do.
	Topaz, Calif. Franklin, N. J.	do	do	°. GQC
	Disnopton, Scoutant River, British Columbia.	1.1	op	Do.
Gurhofite. (See dolomite.) Gymnite. (See deweylite.)	Wontmonto Prenos	Rrown	Weak	Do.
Gypsum.	Galapagos Islands	Cream white	Wedium	Bright. Do. Average.
Gyrolite Hackmanite. (See sodalite.) Halite	New Almaden, Cault	Cream white		Bright.
Halloysite	Stazunia, Foland Pala, Calif Bedford, Ind	Brown	n	Bright.
Indianaite	aria	Cream white None Orange pink None?		Do. Do. Do.

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued

-			Infrared	Intrared luminescence	
Mineral	Locality	Strength	Range of excitation	Ma ximum of excitation	Emiss on wavelength
Fuchsite. (See muscovite.) Garnet. (See grossular- ite, andradite.) Gaylussite Gearksutie	Ragtown Lake, Nev St. Peter's Dome, Colo	Medium	Red through blue-violet Red through violet	Red through blue Red (violet)	Short. Do,
nauloysite.) Greenockite	Llallagua, Boliviadodo dodo Topaz, Calif. Franklin, N. J.	Strong Weak Medium	dodododododo Red through blue-violet Green through blue-violet Red through blue-violet	Green, blue	Medium. Do. Do.
Grossularite. Gurhofite. (See dolomite.) Gymnite (See	North Thomson River, British Columbia.	Weak	Red, blue, blue-violet	Red	Short.
Gypsum	Montmarte, France Galapagos Islands Lockport, N. Y New Almaden, Calif	Very weak Medium Weak	Red through blue Red through blue-violet Red through violet Red through blue-violet	Red through blue Red through blue-violet Red through blue-violet Red through blue-violet	Medium. Do. Do.
sodaute.) Halite Halloysite	Borax Lake, Calif Stazunia, Poland Pala, Calif Bedford, Ind	Medium	Indeterminable Red through violet Red through blue-violet do	Indeterminable	Short. Medium. Short. Medium
Indianaite Glagerite Hambergite	do Bergnersreuth, Bavaria Helgaraen, Norway	Medium do Weak	Red, green, violet do Blue-violet through ultraviolet.	Red (violet)	Short. Do. Medium.
	Dealles Lake, Callin	A FLY WEAK-	arogunuananut	Indeterminable	D0.

TABLE 4.—Characteristi	TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued	ed mineral specim	nens-Continued	
	T	Visible flu	Visible fluorescence	L
WINCE 681	TOCALLY	Color	Intensity	reflection
Harringtonite. (See thomsonite.)		None	Zono	Arrowed
Hedyphane	N. J.		do	Do.
Hemimornhite:	do	Cream white	Weak	Do.
Vanuxemite	Stirling Hill, N. J.	Pale grav	Medium	Do.
Hexagonite. (See tremolite.) Hiddenite. (See spodumene.)))		
Hornblende:	Docto N V	Mono	7	, C
r hrgastoe			do	
Howlite	Lang, Calif	Red brown	Weak	Do.
		Cream white	op	Do.
Hyalophane: Cassinite	Media. Pa	None	Zero	Do
Hydrocerussite	d. Scotland	do	op	Do.
Hydronephelite. (See natrolite.)				
Hydrotalcite	Somerville, N. Y	do		Do.
Iddingsite. (See serpentine.)				
uoutase: Californite	Lindsay. Calif	dn	do	Do.
	North Thompson River, British			Do.
Idrizite. (See botryogen.) Indianaite. (See halloysite.)				

, in the second s			Infrared	Infrared luminescence	
TRIATIAN	LOGBULY	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Harringtonite. (See thomsonite.) Hauynite Hedyphane	Laacher See, Germany Franklin, N. J	Very weak Medium Very weak	Indeterminable Red through blue Indeterminable	Indeterminable Red	Short. Long. Indeterminable
Hemimorphite: Vanuxemite Hexagonite. (See tremolite)	Stirling Hill, N. J	Medium	Red, violet		Short.
Hiddenite. (See spodumene.) Hornblende: Pargasite	Rossie, N. Y.	Strong	Red through blue-violet	op	Medium.
Howlite	Edenville, N. Y. Lang, Calif.	Medium Weak	Red, bluedo Red through blue Green Red through blue-violet Red thro	Green	Short. Medium. Short.
Hyalophane: Cassinite Hydrocerussite Hydronephelite. (See	Media, Pa	Weak	Red, green Red through blue	Red through blue	Medium. Do.
Hydrophane. (See opt.) Hydrotaleite Hydrotaleite	Somerville, N. Y	do	do	Green	Do.
serpentine.) Idocrase: Californite	Lindsay, Calif River,	Very strong- Medium	Red through blu e- violet Red through violet	Red	Short. Medium.
Idrizite. (See botryogen.) Indianaite. (See halloysite.)	DUERI COUINDIA.				

	T	Visible fluorescence	orescence	Tufanand
MIDELBI	Contraction of the second	Color	Intensity	reflection
Jadeite	Magoung, Burma. Buena Vista de Cueller, Durango,	None	Zero	Average. Do.
{		ob	do	Do.
Jasper. (See quartz.) Jurupaite	Crestmore, Calif	Blue gray	Medium	Do.
Laboratioe. Lithomarge	Banat, Hungary. Confolens. France	Pale brown		Do.
Kyanite		None	Zerodo	Do.
	Hillswick, Scotland		do	D0.
Rhaetizite	Pfitsch, Tyrol	Cream white	Very weak	Do.
Laubanite. (See natrolite.)				5
Laumontue: Leonhardite	Zillerthal, Tyrol	Cream white	Weak	Do.
Lavrovite. (See diopside.)				.0 <u>7</u>
Leadhillite	Leadhills, Scotland	Brown	Weak	åå
Leelite. (See orthoclase.) Lennilite. (See orthoclase.) Lonnotte (See orthoclase.)			- -	
Lepidolite	Elba	None	Zero	Bright.
Leucophanite	Laven, Norway	Pale pink	Weak	Do.
	intervent			17 A CI 08 C.

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued

			Infrared	Infrared luminescence	
Mineral	Locality	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Jadeite	Magoung, Burma Buena Vista de Cueller,	Very strong- Strong	Red through violet Red through blue-violet	Red (violet)	Medium. Do.
	Durango, Mexico. Tenochutlan, Vera Cruz, Mexico.	Weak	Red, blue, blue-violet	dodo	Do.
Jurupaite	Crestmore, Calif	Strong	Red through blue, violet Green (violet)	Green (violet)	D0.
Kaolmite: Lithomarge Confolensite	Banat, Hungary Confolens, France	Medium	Red, green, violet	Violet	Short. Do.
Kyanite	Litchfield, Conn	Strong	Red through violet	keddo	Medium. Do.
	Hillswick, Scotland	Weak Medium	Red, greenRed through violet	Red, greenRed (violet)	Do. Short
Rhaetizite	Pfitsch, Tyrol.	Weak	Indeterminable	Indeterminable	Medium. Do.
Laubanite. (See natrolite.)					
Laumontite: Leonhardite Retzite	Zillerthal, Tyrol	Medium	Red through violet	GreenRed	Do. Do.
Lavrovite. (See diopside.)	Horreioharo Swaden	qu	do	do	Do.
Leadhillite	Leadhills, Scotland.		Red through violet	Red through blue (violet)-	Do.
Lennlite. (See orthoclase.) orthoclase.) Leonhoclase.)					
laumontite.) Lepidolite	ElbaLaven, Norway	Medium	Red through blue	Red, green	Very short. Very long.
Leucophoenicite	Franklin, N. J.	Very weak	Red	op	Indeterminable.

•

TABLE 4.—Characteristic	TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued	ed mineral specin	nens-Continued	
Minerel	T14+1	Visible flu	Visible fluorescence	,
AN INCLUSION	TOCHTICA .	Color	Intensity	reflection
Lithomarge. (See kaolinite.) Lucianite. (See talc.) Magnesite	Delight, Md	Pale green	Weak	Bright.
Baudisserite. Malthacite. (See allophane.)	łly	Cream white Cream gray	do	Average. Do.
Manganapatite. (See apatite.) Manganocalcite. (See calcite.) Marshite.	Chuquicamata, Chile.	Red	Medium	Do.
Matlockite	Broken Hill, New South Wales	Yellow	do	Faint. Average.
Meionite: Ersbyite	Pargas, Finland	Pale blue	Weak	ÅÅ
Melacolite. (See diopside.) Melanophogite. (See cristobalite.) Mellite	Dalkal Lake, Sideria	Cream wnite Ochre	do	á é
Mesolite.			Very weak Medium	ååå;
Messelite. (See anapaite.) Metaxoite. (See serpentine.) Mica. (See muscovite, lepidolite, taeniolite.)	Belfast, Ireland	white	Very weak	Bright.

;	T		Infrared	Infrared luminescence	
Mineral	госалту	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Lithomarge. (See kaolinite.) Lucianite. (See talc.) Magnesite Baudisserite Malthacite. (See allophane.) Manganapatite. (See anazate.) Manzanocaleite. (See	Delight, Md Hoboken, N. J Baudissero, Italy	Medium Weak	Red through blue	Red, green	Short. Very short. Medium.
calcite.) Marshite	Chuquicamata, Chile Broken Hill, New South	Weak	Blue-violet, violet Blue through ultraviolet	Blue-violet, violet	Do. Do.
Matlockite	wates. Derbyshire, England Cromford, England	Medium Weak	Green through violet Blue, blue-violet	untraviolet Blue-violet (violet) Blue, blue-violet	Do.
Meionite: Ersbyite Melacolite. (See diopside.)	Pargas, FinlandBaikal Lake, Siberia	Weak	Red, green.	Red	Medium. Do.
Melañophlógite. (See eristobalite.) Mellite Mesolite Messelite. (See	Antern, Saxony Tula, Russia Golden, Colo Belfast, Ireland		Green, blue Red through blue Red through blue-violet	Green, blue Red Red Red	Very short. Do. Medium. Short.
Metaxoite. (See serpentine.) Mica. (See muscovite, lepidolite, taeniolite.)					

Microcline Pikes Peak, Colo Microcline Pikes Peak, Colo Minetite Hianarantsoa, Madagascar Molybdosodalite. (See sodalite.) Paris, Maine Montmorillonite Paris, Maine		-		no re lint
lite. (See sodalite.)		Color	Intensity	reflection
sodalite.)		None.	Zero	Average.
sodalite.)		do	qo	
		Pink		Do
Steargillite Montmorillon, Fr		Gray Dark red	Medium	Do. Bricht.
				Do.
		None		Do.
Mucoustate. (See or introctase.) Stirling Hill, N. J.		Red	Strong	Do.
Puchsite. Brevard, N. C		None	Zero	Do.
Raubanite		White	Mediumdo	Ďo.
Nepheline	0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Peach pink	Weak Zero	Do.
Nutrate saits		ale blue	Weak	Bright. Average.
Oligoclase Godhaven, Greenland		Cream white	Zero	åå
Omphacite. (See augite.) Oolite. (See calcite.)		mng	W 684K	O

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued

12 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

			Infrared	Infrared luminescence	
Mineral	Locality	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Microcline	Pikes Peak, Colo.	Weak		Violet	Long. Do. Medium
Mimetite	Tranarantsoa, Madagascar Tsumeb, South-West Africe	Weak	through violet	Blue-violet	Do.
Molybdosodalite. (See sodalite.)	VIIIta.	į		F	
Montmorillonite	Paris, Maine.	Strong Weak	Red, green, violet	Red (violet)	Medium.
Steargillite Bentonite	Montmorillón, France Yamagata Prefecture,	Medium	do	do	Short. Do.
Stevensite Montroydite	West Paterson, N. J.	Strong Medium	Red through blue-violet Red	Red	Do. Long.
orthoclase.) Mooreite	Stirling Hill, N. J	do	Red through violet	Green (violet)	Short.
Muscovite: Fuchsite	Brevard, N. C	Strong	Green, blue	Green	Very short.
Natrolite: Laubanite Hydronephelite Neocolemanite. (See	Steinbruch, Silesia Brevig, Norway	Medium Weak	Red, green, violet Red	Red (violet)Red	Short. Medium.
colemanite.) Nepheline	Val di Noto, Sicily Kirovsk, U. S. S. R	Very weak Weak	Red through violet	Red through violet	Indeterminable. Long.
			Red, green, violet Red through blue-violet do	Red (violet) Green Red through blue-violet	Medum. Do.
Oligociase	Mitchell County, N. C	op	Red through blue-violet	Green	Do.
onlite. (See calcite.)					

		4		
Mineral	Lonality	Visible flu	Visible fluorescence	T6
	fa tranco a	Color	Intensity	reflection
Opal	Queretaro, Mexico	Pale yellow	Weak	Average.
		do	dodo	Bright.
Cacholong	Divide, Colo Ruditz, Moravia	Pale green	Weak	Do.
Hydrophane	Veresvagas, Hungary	do	op	Do. Bright.
Geyserite	Yellowstone, Wyo	Pale yellow	Medium	Average.
Tabasheer	Galcutta. India	Dark orange	Very weak	őč
Orthoclase	New Castle County, Del.	Olive green	do	ňå
Monstone	Auburn, Maine	None	Zero	Ô
Leelite	Chester County. Pa	Pale vallour	Weak	م
Lennilite		Gray green		Ďo.
Demokratie		Red	Weak	Do.
Pargasite. (See hornblende.)	Dauno, Driusn Columbia	Pale orange	do	Do.
Pectolite	Great Notch, N. J.	Cream white	do	Bright.
	Tandalfoot Scotland	do	do	Average.
Peristerite. (See albite.)	Tour an University of the second seco	0n	d0	Л 0.
Petalite	rood, Maine	Buff	do	Do.
Phosgenite		Vellow	Zero	őč
Phosnhorite (See enstite)	Monteponi, Sardinia.	do	Weak	Do.
Pirsonite	Searles Lake, Calif	None	Zero	Brieht.
Fisolite. (See calcite.) Plumbocalcite. (See calcite.)				0
Pollucite Probertite	Tim Mountain, Custer, S. Dak Ryan, Calif	Cream white	Very weak	Do.
				-00-

TABLE 4.--Characteristics of infrared luminescence in selected mineral specimens-Continued

-			Infrared	Infrared luminescence	
MINERI	TOCAL	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Opal	Queretaro, Mexico	Weak	Red through blue	Red do. Green Red through blue	Very short. Do. Medium.
Cacholong Hydrophane Geysertie Sillicified Wood	Ruditz, Mousia. Veresvagas, Hungary. Yellowstone, Wyo.	do Medium	Red through blue	Red (violet)	Do. Do. Medium.
Tabasheer	Calcutta, India New Castle County, Del Auburn, Maine	Medium	Red through violet Red through blue Red, green, violet	Reddo	Do. Short. Medium.
Moonstone Leelite Lennilite Parahopeite Pargasite. (See	Ceylon-Ce	Weak	ked, viotet Red, green, blue, violet Red, green, violet	dododododo	Short. Short. Do. Do.
Pectolite	Great Notch, N. J Thetford, Quebec Landalfoot, Scotland	do do	Red through blue Red through blue-violet Red through blue	Red through blue Red Red through blue	Very short. Do. Medium.
Peristerite. (See albite.) Petalite Castorite Phosgenite	Greenwood, Maine Elba Derbyshire, England Monteponi, Sardinia	Weak Medium Very weak	Red, green Green, blue Blue-violet, violet Blue through violet	Red, green Green, blue Violet Blue through violet	Very short. Medium. Indeterminable. Short.
Phosphorite. (See apatite.) Pirsolite Pisolite. (See calcite.) Plumbocalcite. (See	Searles Lake, Calif	Very weak	Red	Red	Medium.
calcite.) Pollucite Probertite	Tim Mountain, Custer, S. Dak. Ryan, Calif	Medium Weak	Red through violet Red, violet	Red through blue-violet Violet	Short. Medium.

TABLE 4.—Characteristic	TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued	ed mineral specin	<i>nens</i> Continued	
		Visible fl	Visible fluorescence	T-frand
MIDERAL	ATTROOT	Color	Intensity	reflection
Pseudosmaragd. (See beryl.) Pyromorphite	Cumberland, England	Brown	Very weak	Average. Do.
Pyrophyllite: Agalmatolite	China	Cream white None	Weak	Do. Faint.
Quartz: Chalcedony	Tampa, Fla	Yellow	Weak	Average. Do.
AgateJasper		Brown	Medium do Very weak	Do. Bright. Average. Do.
Quincite. (See sepiolite.) Razoumovskyn. (See allophane.) Reichite. (See calcite.) Retzite. (See laumontite.) Rhaetizite. (See kyanite.) Rhodochrosite Ruby. (See corundum.) Sacchurite. (See andesine.)	Marquette County, Mich	Pink.	Medium	n on o

			Infrared	Infrared luminescence	
Mineral	Locality	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Pseudosmaragd. (See beryl.) Pyromorphite	Cumberland, England Phoenixville, Pa	Medium Weak	Red through blue Red, green	Red	Long. Do.
Pyrophyllite: Agalmatolite Pyroxene	China. Franklin, N. J	Weak	Red through blue Red	Red, green Red	Medium. Medium.
unuage, ensurue.) Quartz: Chalcedony	Tampa, Fla	Medium	Red, green Red	dodo Bad mon	Short. Do. Medium
AgateJasper	Chagnes River, Canal Zone Chagnes River, Canal Zone San Luis Potosi, Mexico San Francisco, Calif Bridger Basin, Wyo	Medium	Red	Red. green. Red. green. Red through blue-violet.	Indeterminable. Short. Medium. Do.
Quincite. (See sepiolite.) Razoumovskyn. (See allophane.) Reichte. (See calcite. (See laumontite.) Rhodophosphite. (See kyanite.) Rhodophosphite. (See apatite.) Ruby. (See corundum.) Sacchurite. (See andesine.)	Marquette County, Mich	F	Green, blue		Very short.

Lancist.	Loooliter	Visible flu	Visible fluorescence	Tufanad
TE JOITT TAT	farmon'r	Color	Intensity	reflection
Saponite: Cerolite		Yellow	Weak	A versee.
Sapphire. (See corundum.) Saussurite. (See zoisite.) Scanolite	Bolton. Mass	Cream white		Do.
	Arendal, Norway Greenville, Quebee	Red. Yellow	Very weak	ٳۊؚڟ
Scheelite	Mohave Desert, Calif. Dragoon Mountains, Ariz	Pale yellow		Bright. Do.
	Carrock Fell, England	Gray blue	w eak	Average.
Selensulfur. (See sulfur.) Senarmontite Seniolite	Sonora, Mexico	None.	Zero	Do. Brioht
 	North Clay City, Nev.	White	Weak	Average.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Montville, N. J. Creetmore Calif	Pink Pale oreen	do	Bright. A vergee
Chrysteile Chrysteile Iddingstie	New Haven, Conn. Coneios, Colo	None.	Zero. Weak	Bright. Average.
(See also saponite, deweylite.) Silicified wood. (See opal.) Silimente:)
Fibrolite Smithsonite	Paris, Maine	RedBrownRose red	Very weak	o ô ô ô ô
	Musua, Sardinia	Brown	op	Do.

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued

-	- 11 E		Infrared	Infrared luminescence	
Mineral	госвлиу	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Saponite: Cerolite Sapphire. (See corundum.) Saussurite. (See		Weak	Red through blue-violet	Red	Medium.
zoisite.) Scapolite Scheelite	Bolton, Mass Arendal, Norway Greenville, Quebec Mohave Descrt, Calif Dragoon Mountains, Ariz	dododo Medium Strong	Red through blue Red through blue-violet Blue through ultraviolet Red through blue Red, green	do Green Violet (ultraviolet) Red	Very short. Do. Short. Very long. Do.
Scheelitine. (See stolzite.) Selenite. (See gypsum.) Selensultur. (See	Atolia, Calif Carrock Fell, England	Weak Medium	Red through violet Red, green	Red (violet)	Do. Medium.
sulfur.) Senarmontite Sepiolite Serpentine		Mediumdo dodo	Green through blue-violet Red through blue Red, violet Red, green, violet	sn, blue through blue (violet)	Medium. Short. Do. Medium. Do.
Metaxite Chrysotie Iddingsite (See also saponite, deweylite.) Silicified wood. (See opal.)	Crestmore, Calif New Haven, Conn Conejos, Colo	Medium Weak	Red, green Red through blue dodo	Red through blue Red, green	Short. Medium. Do.
Sillímanite: Fibrolite Smithsonite	Paris, Maine Marion County, Ga Alston, England Musua, Sardinia	Weak dododo	Red through blue, violet Blue, blue-violet Red through blue-violet Blue	Red (violet)	Do. Long. Medium. Short.

	T[1	Visible flu	Visible fluorescence	Inference
Mineral	TOCATLC	Color	Intensity	reflection
Sodalite Molybdosodalite Hackmanite	Vesuvius, Italy Monte Somma, Italy do. Magnet Core, Ark	Pinkdo Orange Dark red Pink	Weak do do Medium	Average. Do. Bright. Average
Solfaterite. (See alunogen.) Sphalerite		None. do Pink	Zero- do- Weak	Do. Do. Bright.
Sphene	Tounda, Itanay Ivania,	Orange Red None	Weak Weak Zero	Average. Do. Do.
	Eparts, N. J	Cream white None	very weak Weak Zero	à chác chác chác chác chác chác chác chác
Stevensite. (See montmorillonite.) Stibianite. (See stibiconite.) Stibisonite	Empire district, Nev	do	do	Do.
Stolzite: Scheelitine	Altenberg, Saxony	dodo	do	Do.
Selensulfur.	Cianciana, Italy	None	Zero	Do.

TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued

50 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

			Infrared	Infrared luminescence	
Mineral	Locality	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Sodalite Molybdosodalite Hackmanite	Vesuvius, Italy Monte Somma, Italy do Magnet Cove, Ark		Blue through violet Red. Blue through violet	Blue through violet Red. Blue through violet Violet	Short. Do. Medium.
Solfaterite. (See alunogen.) Sphalerite	Kremmling, Colo Kremmling, Colo Oruro, Bolivia Rodna, Transylvania Tsumeh, South-West Africa-	Weak do do do Verv weak	Red through blue-violet dodo Green Green through blue-violet Blue- blue-violet	Red through blue-violet Red Green through blue-violet Blue-blue-violet	Long. Long. Short. Long. Medium.
Sphene	Banner district, Idaho Tavetsch, Switzerland Ceylon Sparta, N. J		Red through violet. Red through blue-violet dodo	Red through blue Red, blue Red, green	Long. Medium. Very short. Short.
Spodumene Hiddenite Steargilte. (See montmortllonite.) Stearlite. (See talo.) Stevensite. (See	Taos County, N. M	Weak	Red through violet	Red through blue (violet) - Red	Medium. Do.
montmortlonite.) Stibisonite. (See stibisonite.) Stibisonite	Empire district, Nev Potosi, Bolivia	Medium	Green, blueRed, green, violet	Green, blue	Long. Short.
Scheelitine Stroganovite. (See	Altenberg, Saxony	Weak	Red, green	Red	Long.
Strontianite	1 1 1 1	Very weak	Green, blue	Green, blue	Very short. Modium
Selensurur	Clanciana, Ltary	00	anto ugno.uu nav	anto trano.tu navi	THINDAW

TABLE 4.—Characteristi	ue 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued	ed mineral specin	nensContinued	
Minneel	T	Visible flu	Visible fluorescence	Tafaaad
THE TONTE AT	Constant of	Color	Intensity	reflection
Sussexite	Franklin. N. J	None	Zero-	Bright.
Szechenyiite. (See arfvedsonite.) Tahasheer (See onal)				0
Taeniolite	Magnet Cove. Ark	Pink	Weak	Do.
Talc	Edwards, N. Y	Cream white	do	Average.
Q112	Manhattan, Nev	None	Zero	
Jucianite	Villar de Puerco. Snain	Blue orav	Very weak	D0. Bricht
Tautoklin. (See dolomite.)				1019117
Tarlingiate (Dec chiuute.)	Tarlingia Tav	Rad	Varu wool	A TTOTO TO
Thomsonite	Kandern Rohemia	Pala hrown		Average. Bright
Harringtonite	Belfast. Ireland		do	Do.
Thulite. (See zoisite.)				5
Topaz.	Minas Geraes, Brazil	Brown	do	Do.
r	Villa Rica, Brazil	do	Weak	Do.
;	Scheckenstein, Saxony	None	Zero	Do.
Tourmaline	Franklin, N. J	Brown	Weak	Do.
Turmelite	King's Bridge, N. J.	Green	op	Faint.
	Contraction Italy	Dele buennie	ao	bright.
	I Lee Mass	Green	Very weak	Average.
Chromtremolite.	Outokumpo. Finland	None	Zero	
Hexagonite	Edwards, N. Y	Cream white	Weak	Do.
Calamite	Canaan, Conn	Pale yellow	Medium	Do.
Byssolite	Johns Mansville Mines, Quebec	Orange	Weak	ϰ.
Luymue	Lurango, Mexico	Gray	d0	ດີ.
Illexite	Mount Blance Calif	None	West-	Do. Britht
Valentinite	Constantine, Algiers.	Green	Very weak	Average.
)

,

152EXPERIMENTAL AND THEORETICAL GEOPHYSICS

			Infrared	Infrared luminescence	
MIREFAL	LOCALITY	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Sussexite Szechenyiite. (See arfvedsonite.)	Franklin, N. J	Weak	Red through blue	Violet.	Medium.
Tapasneer. (See opa) Taeniolite Talc Steatite Tautoklin. (See dolomite.) Tawmawie. (See	Magnet Cove, Ark Edwards, N. Y Manhattan, Nev Sonora, Mexico Villar de Puerco, Spain	do do Medium	Red, green, violet Red through blue do Red, green. violet Red, green, violet	Red (violet)	Short. Medium. Do. Short.
Terlinguaite	Terlingua, Tex Kandern, Bohemia Belfast, Ireland	Very weak Medium	Green, blue	Green, blue Red, green	Medium. Short. Medium.
Topaz	Minas Geraes, Brazil Villa Rica, Brazil Scheckenstein, Saxony Franklin, N. J King's Bridge, N. J St. Marcel, Italy Strinia Fill, N. J.	Strong- Mediumdodododo	Red through violet. Red through blue-violet. do Red through violet. Red Red Anough blue-violet.	Red, green. -do Red. -do -do -do -Red. -Red.	Short. Do. Medium. Short.
Chromtremolite Hexagonite Calamite Byssolite	Lee, Mass. Outokumpo, Finland Edwards, N. Y. Canaan, Conn Johns, Mansville Mines,	Weak do do Medium	Red, green Red, blue Red through blue-violet Red through violet	Red	Medium. Short. Medium. Do. Short.
Tidymite Trimerite Ulexite Valentinite	Quebec. Durango, Mexico Langban, Sweden Mount Blanco, Calif Constantine, Algiers	Weak Strong Weak	Red through violet Green through blue-violet Red through blue-violet Red, green	Red (violet)	Very long. Long. Medium. Do.

153

TABLE 4Characteristic	TABLE 4.—Characteristics of infrared luminescence in selected mineral specimens—Continued	ed mineral specin	<i>nens</i> —Continued	
	T	Visible fluorescence	orescence	Tafanand
Mineral	LOGALLY	Color	Intensity	reflection
Valleite. (See anthophyllite.) Vanadinite.	Yums County, Ariz.	None	Zero	Average. Do
Vanuxemite. (See hemimorphite.) Wavellite	Llallagua, Bolivia	Green	Weak	Å Å
Fischerite		op	Weak	
Willemite		Brown	Weak	Bright. Do.
Wulfenite		Cream white Zero	Zero	Average. Do.
Wurtzite	Mex		do	°°°
Xanthophylite Yttrofluorite. (See fluorite.) Zeolite. (See natrolite. mesolite. thomsonite.		op	op	Do.
	Mount Ross, Switzerland Pine Nut Mountains, Nev	Pale brown	do	Do. Do. Faint.

	+		Infrared	Infrared luminescence	
Mineral	Locality	Strength	Range of excitation	Maximum of excitation	Emission wavelength
Valleite. (See anthophyllite.) Vanadinite.	Yuma County, Ariz Very weak Indeterminable	Very weak	Indeterminable Red, blue, blue-violet	Indeterminable	Medium. Long.
Vanuxemue. (bee hemimorphite.) Wavellite	Llallagua, Bolivia Barnstable. England	Weak	Red through blue-violet Red through blue-violet	Red through blue-violet Green, blue	Short. Medium.
Fischerite		do do do		Green Red through blue	éééé
Wulfenite	Yuma County, Calif do do do Organ Mountains, N. Mex. do do Butte, Mont. do Data Butte, Mont. do do do Zlatoust, Siberia. do	do do do	Reddo dodo Red through blue-violet Red, blue, violet	Reddo do Green Violet	Long. Medium. Long. Medium.
fluorite.) Zeolite. (See natrolite, nacolite, thomsonite, laumontite.) Zoisite Saussurite	Mount Rosa, Switzerland Pine Nut Mountains, Nev. Voll, Switzerland	Medium Weak Strong	Red through blue Red Red through blue	Red, green	Short. Medium. Do.

LITERATURE CITED

- Bailly, R. J., and Holke, K. A., 1944, Microscope and refractometer for infrared light [abs.]: Am. Mineralogist, v. 35, p. 277-278.
- Cannon, R. S., Jr., and Murata, K. J., 1944, Estimating molybdenum content of scheelite or calcium tungstate by visual color of its fluorescence: U. S. Patent 2,346,661, April 18.
- Claffy, E. W., 1953, Composition, tenebrescence, and luminescence of spodumene minerals: Am. Mineralogist, v. 38, p. 919-931.
- Dake, H. C., and DeMent, J. A., 1941, Fluorescent light and its applications: Brooklyn, N. Y., Chem. Publishing Co., 256 p.
- DeMent, J. A., 1945, Fluorochemistry: Brooklyn, N. Y., Chem. Publishing Co., 796 p.
- Déribéré, Maurice, 1943, Les applications practiques de la luminescence: Ann Arbor, Mich., Edwards Bros., 263 p.
- Deutschbein, Otto, 1932, Die linienhafte Emission und Absorption der Chromosphore, Part II: Annalen der Physik, ser. 5, Band 14, Heft 7, p. 729-754.
- Dhéré, Charles, and Biermacher, Oscar, 1936, La feuille de Géranium vivante émet un rayonnement de fluorescence qui s'étend dans l'infrarouge jusqu'à λ 830 mµ: Acad. Sci. Paris Comptes rendus, tome 203, no. 6, p. 412-414.

Engelhardt, Ernst, 1912, Lumineszenzerscheinungen der Mineralien im ultravioletten Licht: Weida in Thüringen, Druck von Thomas & Hubert, 39 p.

- Garlick, G. F. J., 1949, Luminescent materials: Oxford, Clarendon Press, 245 p.
- Griffin, D. R., Hubbard, Ruth, and Wald, George, 1947, The sensitivity of the human eye to infra-red radiation: Optical Soc. America Jour., v. 37, no. 7, p. 546-554.
- Haberlandt, Herbert, and Köhler, Alexander, 1939, Über die blaue Fluoreszenz von naturlichen Silikaten im ultravioletten Lichte und über synthetische Versuche an Silikatschmelzen mit eingebautem zweiwertigem Europium: Naturwissenschaften, Jahrg. 27, Heft 17, p. 275.
- Holst, G., deBoer, J. H., Teves, M. C., and Veenemans, C. F., 1934, An apparatus for the transformation of light of long wavelength into light of short wavelength: Physica, v. 1, p. 297-305.
- Inman, J. K., Mroz, A. M., and Weyl, W. A., 1948, The fluorescence of cadmium sulfide *in* Cornell University Conference on Luminescence, preparation, and characteristics of solid luminescent materials: New York, John Wiley & Sons, p. 182-189.
- Köhler, Alexander, and Haberlandt, Herbert, 1934, Lumineszenzanalyse von Apatit, Pyromorphit und einigen anderen Phosphaten: Chemie der Erde, Band 9, Heft 1, p. 88-89.
- Krejci-Graf, Hanna, and Krejci-Graf, Karl, 1934, Fluoreszenzfarben von Mineralien: Zeitschr. Kristallographie, Band 88, Heft 3, p. 260-264.
- Kröger, F. A., 1948, Some aspects of the luminescence of solids: New York and Amsterdam, Elsevier Publishing Co., 310 p.
- Kunz, G. F., and Baskerville, Charles, 1903, The action of radium, roentgen rays and ultra-violet light on minerals and gems: Science, new ser., v. 18, no. 468, p. 769-783.
- Lashkarev, V. E., and Kossonogova, K. M., 1946, Infra-red luminescence of cuprous oxide: Akad. Nauk SSSR Doklady, tom 54, no. 2, p. 125-126.
- Malmquist, David, 1935, Mikrophotographische Aufnahmen von Achsenbildein opaher Mineralien im Ultrarot; Zentralbl. Mineralogie, Geologie u. Paläontologie, Abt. A, no. 7, p. 209-13.

- Melhase, John, 1935, Fluorescent minerals from California: Mineralogist, v. 3, p. 3-4, 38.
- Moon, P. H., 1936, The scientific basis of illuminating engineering: New York, McGraw-Hill, 608 p.

Morton, G. A., and Flory, L. E., 1946a, An infrared image tube and its military applications: R.C.A. Review, v. 7, no. 3, p. 385-413.

- ------- 1946b, Infrared image tube: Electronics, v. 19, no. 9, p. 112-114.
- Nichols, E. L., and Howes, H. L., 1926, Note on the rare earths as activators of luminescence: Optical Soc. America Jour., v. 13, no. 5, p. 573-587.
- Palache, Charles, Berman, H. M., and Frondel, Clifford, 1944, Dana's system of mineralogy: New York, John Wiley & Sons, 7th ed., v. 1, 834 p.
 - ----- 1951, Dana's system of mineralogy, New York, John Wiley & Sons, 7th ed., v. 2, 1124 p.
- Pauli, W. E. 1911, Über ultraviolette and ultrarote Phosphoreszens: Annalen der Physik, ser. 4, Band 34, Heft 4, p. 739-779.
- Pringsheim, Peter, 1949, Fluorescence and phosphorescence: New York, Interscience Publishers, 794 p.
- Przibram, K., 1937, Fluorescence of the bivalent rare earths: Nature, v. 139, no. 3512, p. 329.
- Schulman, J. H., Evans, L. W., Ginther, R. J., and Murata, K. J., 1947, The sensitized luminescence of manganese-activated calcite: Jour. Applied Physics, v. 18, no. 8, p. 732-739.
- Servigne, Marcel, 1938, Sur l'émission infrarouge de luminescence de quelques elements rares: Acad. Sci. Paris Comptes rendus, tome 207, no. 20, p. 905-907.

------ 1940, Sur la photoluminescence des scheelites: Acad. Sci. Paris Comptes rendus, tome 210, no. 12, p. 440-442.

- Skogland, J. F., 1929, Tables of spectral energy distribution and luminosity for use in computing light transmissions and relative brightnesses from spectrophotometric data: U. S. Natl. Bur. Standards Misc. Pub. 86.
- Strunz, Hugo, 1941, Mineralogische Tabellen: Leipzig, Becker & Erler, 287 p.
- Tanaka, T., 1924a, On the active agents in luminescent calcites, aragonites and dolomites: Optical Soc. America Jour., v. 8, no. 3, p. 411-418.

------ 1924b, On the active agents in luminescent zinc sulfides, willemites and kunzites: Optical Soc. America Jour., v. 8, no. 5, p. 659-67.

- Venkateswaran, C. S., 1935, The fluorescence of ruby, sapphire, and emerald: Indian Acad. Sci. Proc., v. 2, sec. A, p. 459-465.
- Walther, Paul, 1936, Fluorescent minerals from many localities: Mineralogist, v. 4, p. 5-6, 10.
- Warren, T. S., 1944, List of fluorescent minerals: Mines Mag., v. 34, no. 7, p. 342-343, 363.
- Weyl, W. A., 1942, Fluorescence of glass: Indus. and Eng. Chemistry, v. 34, p. 1035-41.
- Zodac, Peter, 1936, Some observations on fluorescence and phosphorescence: Rocks and Minerals, v. 11, no. 5, p. 68-72.
- Zworykin, V. K., and Morton, G. A., 1936, Applied electron optics: Optical Soc. America Jour., v. 26, no. 4, p. 181-189.

U. S. GOVERNMENT PRINTING OFFICE . 1958 0-461452