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Abstract—Wind integration studies are conducted routinely to 

examine the operational impacts of wind on the power system. 
Wind plant power outputs and forecasts are needed as inputs to 
these studies and this data is often synthesized by a variety of 
methods. This paper examines the methodologies used to create 
these datasets, the pitfalls that may be encountered, and the 
tradeoffs between different methodological approaches. 

 

 
Index Terms—Wind power modeling, wind speed, mesoscale 

modeling, forecast error, wind forecasting, and wind integration. 

I.  INTRODUCTION 
tilities in the United States have seen high interest in 
wind development, as evidenced by the fact that wind 
leads all other fuels and technologies in interconnection 

requests [1] and that wind competes with solar as the nation’s 
fastest growing energy source [2]. As a result of this interest, 
utilities, Regional Transmission Organizations (RTOs), and 
Independent System Operators (ISOs) are increasingly 
undertaking integration studies to examine the operational 
impacts of growing penetrations of wind power on their grids.  

Many wind integration studies have been conducted to date 
[3]-[7], including two new regional studies looking across 
much of the eastern and western interconnections [8],[9]. 
These studies typically include hourly production cost 
modeling of at least one year of the power system with various 
levels of wind power. Each wind plant is modeled, at least on 
an hourly basis, and provided as inputs to the production cost 
model, along with hourly load data. In addition to wind output 
data, wind forecast data is also typically used to more 
accurately model how a utility or RTO/ISO might commit or 
dispatch units based on a forecast. 

While existing wind plants can be represented with 
historical output data, hypothetical future plants cannot. Onsite 
measurements for wind speed can be converted to power and 
used as data inputs. However, some of these studies, for 
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example, the Eastern Wind Integration and Transmission 
Study (EWITS) and the Western Wind and Solar Integration 
Study (WWSIS), examine up to 30% wind penetration, which 
requires modeling of 330 GW and 75 GW of wind plants, 
respectively. Even those studies with modest penetration 
levels typically don’t have onsite measurement data to 
represent the hypothetical plants. 

Many studies turn to modeled wind data to represent 
hypothetical future plants. One methodology seeks to scale 
and/or time-shift actual measurements to represent nearby 
hypothetical plants [10]. These may provide realistic outputs 
in regions where there is a predominant wind direction and 
where wind plants do not cover a large region. However, for 
wide geographical regions with more complex terrain, and in 
order to capture a variety of weather patterns, more 
sophisticated methodologies may be needed to capture 
correlations in both space and time across that region. A more 
commonly used methodology involves physics-based 
modeling of the atmosphere and the weather patterns over 
time and on a three-dimensional spatial grid. This Numerical 
Weather Prediction (NWP) model can then be sampled in time 
and space to yield hypothetical wind speed measurements that 
can then be converted to wind plant output. These mesoscale 
models are typically run at a high horizontal spatial resolution 
(less than 10 km). 

In this paper, historical observations of actual plant output 
are called observations, modeled plant output is called 
modeled or actuals (to distinguish them from forecasts), and 
modeled forecasts of plant output are called forecasts. The 
difference between the forecasts and the actuals are the 
forecast errors. A good wind dataset for use in integration 
studies will have the following attributes: 

• Appropriate characterization of variability on the 1-
minute, 10-minute, hourly, daily, and seasonal time scales. 
Accurate characterization of variability and forecast error is 
the most important criterion for a dataset. Integration studies 
are conducted to determine the impact of wind variability and 
uncertainty on various reserve requirements. 

• Appropriate characterization of forecast errors. 
Forecast errors tend to be higher during wind ramp events. 
Capturing the appropriate magnitude of forecast error over a 
single plant, state, or region is important. Forecast error 
distributions tend to be wider than Gaussian distributions. 

• Both modeled and forecasted data should display 
reasonable spatial correlation, both within a single plant and 
between plants in a region. 

• Both modeled and forecasted data should display 
reasonable temporal correlation over short, medium, and 
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longer term timescales. Forecast errors should exhibit 
appropriate autocorrelation characteristics. 

• Accuracy in resource quality as defined by the capacity 
factor of the site is deemed a less important criterion for 
datasets. If the capacity factor is low, then additional sites will 
be needed to reach a target penetration level. This may impact 
the overall variability since more sites will be aggregated. 

II.  RESULTS 
This paper reviews methodologies used to create regional 

wind datasets for integration studies, with a focus on the 
EWITS and WWSIS datasets. A recent Hawaii wind dataset, 
which built upon the lessons learned in the EWITS and 
WWSIS datasets and which required higher temporal and 
spatial resolution and a higher degree of accuracy, is also 
discussed. The paper investigates the tradeoffs between 
different approaches as well as some of the pitfalls 
encountered in creation of these datasets. 

A.  Spatial Correlation and Consistency 
Various mesoscale models are employed to simulate the 

weather. For example, the WWSIS used the Weather Research 
and Forecasting (WRF) model and EWITS used the 
Mesoscale Atmospheric Simulation System (MASS). In both 
models, a key input was the National Center for 
Environmental Prediction (NCEP)/National Center for 
Atmospheric Research (NCAR) Global Reanalysis (NNGR) 
dataset, which represents the overall state of the atmosphere 
based on surface and upper air observations. 

Modeling a large region at high resolution can quickly 
exhaust computational capacity limits. EWITS and WWSIS 
required modeling half of the continental United States at a 2-
km, 10-minute resolution over three years. In WWSIS, this 
meant modeling 1.2 million grid cells. The region was divided 
into four overlapping domains (see Figure 1), partly because 
the northwest domain had already been modeled under a 
separate project and partly to satisfy computational limitations 
[11]. To eliminate spatial seams resulting from this approach, 
data from overlapping regions were blended. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Four modeling domains used in the WWSIS [11]. 
 
EWITS used a nested grid approach, using a 30-km 

resolution parent grid shown by the large box in Figure 2 and 
three smaller grids of 8 km and then finally 2-km resolution 

child grids shown by the red boxes [12]. In this way, grids of a 
manageable size could be run at a high resolution while 
maintaining the correlation of the parent grid. 

At this time, detailed analysis of the spatial correlation and 
consistency between these two approaches has not been 
undertaken. However, it is noted that the blending process 
used in modeling individual domains is an extra computational 
step and that such steps are opportunities for additional errors 
(especially on datasets of this size). 

 
Fig. 2.  Nested grids for the EWITS mesoscale model [12]. 

 
Mesoscale modeled data can display less spatial diversity 

than observations. For example, the WWSIS dataset was 
compared to six operating wind plants in Texas, totaling 
nearly 540 MW. The modeled data shows a coincident peak of 
99.8% of installed capacity for the years 2004-2006, while the 
observations show a coincident peak of 86.5%. 

B.  Temporal Correlation and Consistency 
The mesoscale models are run for specific time intervals and 

then restarted using NNGR input data. The length of this time 
interval must strike a balance between allowing the mesoscale 
model to establish and capture mesoscale flows and patterns, 
and aligning the model with the higher level NNGR analysis 
data. Typically, the mesoscale model for the next time interval 
is spun-up for about 12 hours before data from that model is 
used, to allow the model to establish the mesoscale 
circulations. Model runs in WWSIS and EWITS were 3 and 
15-16 days, respectively. 
 

Fig. 3.  Hourly changes in wind power output for wind sites in WWSIS 
scenarios across the Western Electricity Coordinating Council/WECC for 
2006. Data has been parsed into 3-day intervals. The long rectangles show the 
one sigma variability and the whiskers show the maxima and minima [8]. 
 

In WWSIS, the five hours around the model restart were 
blended to minimize the impact of the temporal seam. In 
addition, one-hour deltas (hour-to-hour ramps) were checked 
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to ensure that no hourly ramp was outside of plausible limits. 
Despite this, the hours around the model restart displayed 
statistically significantly higher variability than other hours. 
While this did not impact the hourly production simulation 
analysis, it did impact the statistical analysis of WWSIS. As a 
result, every third day was removed from the dataset in the 
statistical analysis. Figure 3 shows the average profiles of one-
hour deltas for the wind plant output data for all of the 
Western Electricity Coordinating Council (WECC) when the 
data has been parsed into three-day intervals. The restarts 
occurred at 00 GMT, or 4 pm local time on Day 1. 

Another potential entry for temporal issues is the 
assimilation of rawinsonde data. In EWITS, rawinsonde and 
surface observation data were assimilated every 12 hours (at 
00 and 12 GMT) to align the model with observations. Figure 
4, top, shows the abrupt jumps that were found on many of the 
days. Figure 4, bottom, shows the effect of replacing the 
affected hours with synthesized data. 

 

 
 
Fig. 4.  Jumps in wind power output due to abrupt assimilations of 
observations every 12 hours, showing before (top) and after (bottom) the fix 
[12]. The left Y-axis shows wind plant output in megawatts/MW, the right Y-
axis shows changes in wind output in MW, and the X-axis shows time in 
GMT. The red curve is the mean output (left axis), the purple curve is the 
absolute value of the change in output from one 10-minute record to the next 
(right axis), and the blue curve is the change in output (right axis). 

 
As a follow-up to EWITS, the same methodology was used 

to develop a higher resolution dataset for Hawaii [13]. While 
the fix shown in Figure 4 resolved the discontinuity in the 
wind power output, a discontinuity remained in the first 
derivative. The Hawaii power system is much smaller and the 
penetration levels studied much higher than in EWITS, so this 
discontinuity in the first derivative needed to be eliminated for 
the integration analysis. The high frequency signal was 
retained and 10-minute wind speed changes (eliminating the 

unrealistic jump) from that signal was randomly applied to the 
wind speeds (see Figure 5). 

In the Hawaii dataset, the largest wind event (a significant 
wind down ramp at three islands) happened to occur at a time 
both when the model was restarted and when rawinsonde data 
was assimilated. To determine whether the event was due to 
the model restart or the observational assimilations, three runs 
were compared: the original run with the restart and 
assimilation, the original run without the assimilation of data 
and a run without the restart but with assimilation of data. The 
results of these three runs are shown in Figure 6 for one site. 
They show that the model restart was the culprit for the large 
ramp event at 00 GMT on Oct. 16, and that the assimilation of 
rawinsonde data was not a factor. 

 
Fig. 5.  Ten-minute absolute changes in wind speed at wind plant in Hawaii 
before adjustment (red), after adjustment (green), and observed (blue) [13]. 

 

 
Fig. 6.  Comparison of three different model runs: original run with restart and 
data assimilation (blue), data assimilation with no restart (green), and no 
assimilation/no restart (red) [13]. Y-axis shows wind speed in m/s and x-axis 
shows time in GMT. Prior to 00 GMT on 16 Oct, the green trace overlays the 
blue trace so that it is not easily seen in this graph. 

 
The temporal seam at model restart was judged too difficult 

to fix. In integration studies, detailed examination of 
significant events is often conducted to ensure the power 
system can operate through these events or to determine what 
mitigation options must be undertaken so the system can 
operate through these events. It was recommended that the 
selection process for significant events ignore the model 
restarts (every 15-16 days). 

It is important that integration analysts have a detailed 
understanding of how their wind data was generated so that 
they can identify and resolve periods of increased variability 
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that may be artifacts of the modeling process and not truly 
representative of wind plant behavior. 

C.  Wind Speed Validation 
To check the accuracy of the wind speed modeling, detailed 

validation analyses are conducted to compare modeled data to 
anemometer observations during the same time period. It is 
important to ensure that the same data used in developing the 
modeled data is not used in validating the modeled data. 

 

 
 
Fig. 7.  Locations of publicly available tower data that were used to validate 
wind speeds in WWSIS [11]. 
 

TABLE I 
SUMMARY OF RESULTS FROM WIND SPEED VALIDATION OF WWSIS DATASET 

AGAINST 28 PUBLICLY AVAILABLE TOWER OBSERVATIONS [11] 
 

Tower State Height [m] Observed wind 
speed [m/s] 

Modeled wind 
speed [m/s] 

3001 AZ 30 5.47 5.95 
3002 AZ 30 6.40 6.23 
3003 AZ 30 5.43 5.47 
3006 AZ 30 4.80 4.47 
4402 CA 47 4.24 4.40 
4403 CA 61 5.89 4.55 
6001 CO 44 7.37 6.47 
6008 CO 20 5.29 4.84 
6009 CO 20 4.30 4.36 
6013 CO 80 4.80 6.02 
6029 CO 20 5.87 5.27 
6039 CO 50 7.71 7.56 
12111 ID 60 6.49 6.03 
12131 ID 20 5.90 5.01 
12439 ID 20 5.51 4.25 
12500 ID 20 6.29 4.39 
12505 ID 20 5.45 3.79 
26007 MT 30 7.39 6.24 
26010 MT 40 7.62 6.59 
28001 NV 50 4.62 4.82 
28002 NV 50 4.46 5.50 
28003 NV 50 5.46 4.97 
31010 NM 70 8.54 8.07 
31011 NM 39 7.02 6.96 
34018 ND 40 7.07 6.98 
44003 UT 20 3.98 3.76 
44022 UT 20 4.90 4.48 
44999 UT 50 6.42 6.31 

 
WWSIS used a MOS (model output statistics) correction to 

adjust the raw mesoscale model output. The correction was 
used with the Rapid Update Cycle (RUC) dataset produced by 

the National Oceanic and Atmospheric Administration 
(NOAA) and NCEP. The RUC dataset extensively uses 10-m 
towers which can make this correction less valid in areas of 
complex terrain, so the correction was weighted. 

In WWSIS, wind speed validation was undertaken with 34 
publicly available towers and also some proprietary tower 
data. The locations of 28 of the public towers (Pacific 
Northwest towers are not shown here) are shown in Figure 7. 
Note that there is limited publicly available observational data, 
especially in Wyoming where some of the best resources are 
located. Proprietary data can help to some degree. Even where 
there are publicly available observations, many of these are far 
below hub height (20-50 meters). Periods of record are often a 
small subset of the three years (2004-2006) modeled. This 
underscores the need for publicly available wind data. 

Summary results from the validation against the 28 publicly 
available towers shown in Figure 7 are shown in Table I. 
Accuracy and bias varies, even within a single state. For 
example, northeast Colorado winds are underestimated while 
winds just north of Denver are overestimated. This makes it 
difficult to apply a simple adjustment to further increase the 
accuracy of the dataset. It is important to note that these are 
wind speeds, and that wind power is proportional to the cube 
of the wind speed. 

D.  Wind Power Conversion 
Ultimately for wind integration studies, wind power output 

is needed. Conversion of a single wind speed measurement to 
wind plant power output is a non-trivial exercise. Wind speeds 
vary across the 2 km resolution of the grids in 
EWITS/WWSIS and across wind plant layouts, which 
themselves vary from plant to plant. Output of a single wind 
turbine is stochastic, as is the output of a wind plant. 

In WWSIS, a modified version of 3TIER’s SCORE 
(Statistical Correction to Output from a Record Extension) 
process was used [14]. SCORE creates probability density 
functions (PDF) from actual wind turbine output and samples 
from those PDFs to generate hypothetical wind turbine output. 
SCORE-lite simplified the process for the large number of 
sites in WWSIS; instead of applying the PDFs to each wind 
turbine, the PDFs were applied to each grid cell which 
contained 10 wind turbines. The Vestas V90 3-MW turbine 
was modeled with a hub height of 100 m, based on observed 
PDFs from wind plants with these turbines. 

Mesoscale models tend to produce wind speeds that are 
excessively smooth. The SCORE process adds back in some 
variability so that the wind plant output is more realistic. 

In EWITS, AWS Truepower used their SynOutput 
procedure. AWS Truepower’s 20-km historical dataset for 
1997-2007 and 200-m wind maps were used to scale the mean 
wind speeds for each site. Ten validation towers were used to 
adjust the raw data, depending on which tower was most 
representative of each particular site. An annual adjustment 
was made. Three synthetic power curves were used for each 
IEC class with the IEC 1 and 2 turbines having a hub height of 
80 m, and the IEC 3 turbine at 100 m. 
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Corrections are then made to the wind speed output to 
ensure that the wind plant power output is realistic. This 
includes adding in the turbulent kinetic energy (TKE) and 
applying a time filter to mimic spatial averaging across the 
grid cell. Wake losses, electrical losses, and plant availability 
were all applied to produce final wind plant outputs. 

It should be noted that neither of these methods is 
attempting to exactly recreate specific plant output over a 
specific time window. Instead, they attempt to capture the 
statistical characteristics of the variability of wind plant output 
over different timescales. Aggregated over a region, wind 
ramps tend to occur over the tens of minutes and hours 
timeframe, so these methods may provide suitable accuracy 
for system studies. However, for small systems with a small 
number of wind plants, this data may need further evaluation 
to determine applicability in system studies. 

E.  Wind Ramp Validation 
The most important validation of a wind dataset for use in 

integration studies is of the variability of wind plant output. 
Integration studies examine the impacts of increased 
variability due to wind on the power system and what may be 
needed to maintain reliability of the power system. Capturing 
this variability correctly is important to ensure reliability 
without overinvestment in unnecessary mitigation options. 

Figure 8 shows the comparison of modeled and observed 
wind plant output ramps for a wind plant in Hawaii. 

 

 
Fig. 8.  Comparison of modeled and observed 10-minute and 60-minute wind 
plant output ramps for a Hawaiian wind plant [13]. 

 
Figure 9 shows the comparison of 10-minute wind plant 

output ramps for a region in the western U.S. It should be 
noted that when validating ramping behavior at specific wind 
plants, significantly different results were found, depending on 
which sites were selected to model the plant even though all 
sites were very close to each other. 

F.  Issues with Wind Plant Output Observations 
Even observed wind plant output is not free from problems. 

Wind plants are curtailed; there may be higher than normal 
outages in the period of record; there may be ramp rate 
limitations, etc. While validating the wind modeling in the 

Hawaii dataset, it was found that the modeled wind speeds 
closely matched the observed wind speeds, but that the wind 
power outputs were not well-matched (see Figure 10). The 
difference between the modeled and observed wind plant 
outputs resulted from a frequent curtailment of the wind plant 
at night. 
 

 
Fig. 9.  Comparison of modeled and observed 10-minute wind plant output 
ramps for a wind plant in the western U.S. [8] 

 
Fig. 10.  Observed and modeled power output and wind speed at a Hawaiian 
wind plant [13]. 

 
The Hawaii wind dataset required wind plant output at a 2-

second interval. Modeling wind speeds at a 2-second level and 
converting to power would have introduced too many 
potential sources of error. Therefore, the entire process was 
conducted in the power domain. Ten-minute wind plant output 
data was developed using mesoscale modeling as described 
above. Two-second power output observations were collected 
from a wind plant in Hawaii. The underlying 10-minute trend 
was removed from the output so that the 2-second residuals 
remained. These 2-second residuals were applied to the 10-
minute wind plant output data. However, when the ramping 
histograms were analyzed (see Figure 11 top), it was found 
that the ramping behavior was asymmetric. This asymmetry 
was found to be due to an up-ramp rate limit of 2 MW/minute 
on the wind plant, and no down-ramp rate limit. In order to 
model a wind plant without ramp-rate limits, the up ramps 
were assumed to have the same distribution as the down 
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ramps, and the 2-second data was re-run (see Figure 11 
bottom). 

Power spectral density (PSD) was used to ensure the high 
frequency modeled data accurately modeled actual wind plant 
behavior. Using this technique, high frequency harmonics 
were identified in the spectra which were caused by limiting 
the sample size of the 2-second data inputs. When this 
limitation was removed, the improved spectra in Figure 12 
resulted. A kink in the spectra at 20 minutes remained, which 
was due to a fix of the abrupt jumps from the assimilation of 
observations in the modeling process. 

 

 
Fig. 11.  Frequency distribution of step changes in simulated 1-minute and 2-
second output before (top) and after (bottom) the workaround [13]. 

G.  Forecasts 
In addition to examining the operational impacts of 

variability (ramping behavior) of wind plants, integration 
studies also typically examine the impact of uncertainty 
(forecast error). There are many ways to develop forecast 
datasets and it is difficult to determine which is most 
appropriate because it is typically not clear how forecasts will 
be developed and utilized. For example, will there be a 
centralized forecasting provider or will individual wind plant 
owners develop their own forecasts? This would affect the 
level of forecast error correlation between sites. What 
methodology will be used in the future to develop the 

forecasts? Will they be statistical or NWP-based? All of these 
would affect forecast error characteristics such as biases, 
spatial and temporal correlation as well as the overall error. 

 

 
 

Fig. 12.  Power spectral density of observed (blue) and modeled (red) high-
frequency data for a wind plant in Hawaii [13].  
 

In addition to these considerations, it is difficult to 
synthesize both ‘actual’ wind output and ‘forecasted’ wind 
output without generating forecasts that are ‘too good’ 
because the same systematic biases were built into both 
datasets. 

Fig. 13.  Forecast error by state/region [8]. 
 
In WWSIS, the forecasts were developed by running the 

same NWP and WRF datasets, but instead of using NNGR as 
the input dataset, it used the Global Forecast System (GFS), 
which is the information used to perform state-of-the-art 
forecasting. This was run at an hourly, 6-km resolution as a 
single large domain across the western U.S. Day-ahead hourly 
forecast errors were 12-16% mean absolute error (MAE) on a 
state basis, but 8% over the study footprint and 7% across all 
of WECC, which seemed reasonable. However, there was a 
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significant positive bias in the forecasts, with approximately 
10% high forecasts in the study footprint and 20% in the rest 
of WECC (see Figure 13). The forecast bias differed from 
state to state and from month to month, and the reason for the 
bias was not identified. As a workaround, in the WWSIS 
analysis, forecasts were reduced by 10% in the study footprint 
and by 20% in the rest of WECC. 

After the bias was removed, forecast error was plotted 
against wind output. Figure 14 shows that highest over-
forecast errors occur in the mid-range of the wind output, 
when the wind output is most volatile. The under-forecast 
errors occur when the wind plants are producing their 
maximum output. 

 
Fig. 14.  Forecast error versus wind output in WWSIS [8].  

 
Fig. 15.  Distribution of day-ahead forecast errors for 10, 20, 30% wind 
scenarios in WWSIS [8]. 
 

When the bias is removed, the distribution of errors is 
reasonably symmetric (see Figure 15). While the MAE of the 
forecast errors is not very high, there are events at the tails of 
the distribution that exhibit very high error:  +11,771 MW and 
– 11,515 MW. These errors are for installed wind capacity of 
26,760 MW, or nearly half of the installed capacity. These tail 
events are the events that cause issues in the operations of the 
power system. These events drive the increased need for 
reserves or other mitigation options. 

In EWITS, the forecasts were generated by a statistical tool 
called SynForecast. Observations of forecasts and wind plant 
output from operational wind plants were used to develop a set 
of transition probabilities. Using a Markov chain approach, 

these were applied to the modeled wind actuals to develop the 
forecasts. Using this methodology, the forecasts had no bias 
and the forecast error distribution was the same as that of the 
input observational data. 

 

 
Fig. 16.  Spatial correlation between sites in ERCOT for modeled wind plant 
output (top) and modeled wind plant forecasts (bottom). Higher correlation is 
shown by warmer colors. Correlation results are shown in the upper left 
triangular halves of these plots; the bottom right does not show any data. 
 

Because there were no observations of forecasts available as 
inputs, AWS Truepower ran its eWind forecasting service on 
the observed wind plant output from four operational wind 
plants. They ran the MASS mesomodel to develop the input 
data for the forecasting service. The resulting forecasts were 
used to develop four transition probability matrices. To 
generate forecasts for each project site, one of the four 
matrices was selected at random. 

Autocorrelation, i.e., if this hour forecasts high wind, the 
next hour is likely to also forecast high wind, is captured by 
basing the probability matrix on the forecast for the current 
hour and the forecast for one hour earlier. 

Spatial correlation of forecasts may be underestimated with 
this methodology. This methodology was applied to develop 
forecasts for a modeled dataset in ERCOT (Electric Reliability 
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Council of Texas) [15]. Figure 16, top, shows the correlation 
between different sites in ERCOT for the mesomodeled wind 
plant output and the bottom graph shows the correlation for 
the same sites for the forecasts. The forecasts display 
significantly less site-to-site correlation (~45% on average) 
than the actuals. This is an artifact of the methodology used to 
generate the forecasts. Since the wind forecasts are created by 
overlaying an error (pulled from a probability distribution of 
forecast errors) onto the actuals, this tends to weaken the 
underlying spatial correlation seen in the actuals. Over a large 
area, forecast errors may then cancel, and the accuracy of the 
aggregate forecast could be overstated. This can have a 
significant impact on day-ahead commitment decisions and 
reserve requirements in shorter timeframes. 

III.  CONCLUSION 
In conclusion, it is essential that the developers of the data 

inputs for integration studies work closely with the analysts 
conducting the studies. Developers of wind data inputs need to 
understand which characteristics of the data are most 
important to replicate and select methodologies accordingly. 
Integration study analysts, on the other hand, need to 
understand how the data were developed and what aspects of 
the data may be artifacts of the modeling process and not 
necessarily representative of wind output. They also need to 
understand in which ways the data best represents reality and 
in which ways the data does not. Finally, both the wind data 
developers and the integration study analysts should run 
appropriate checks on the data to determine caveats for use of 
the data: where seams or abrupt jumps may exist, when 
variability or uncertainty may be under- or overstated, when 
correlation may be under- or overestimated, etc. 

While significant analysis has been conducted on the 
EWITS and WWSIS datasets, they have not been exhaustively 
analyzed or checked. Further work is still needed to ascertain 
the ability of various methodologies to replicate temporal and 
spatial diversity and correlation, especially for forecasted data. 
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