=3 N R E L Sﬁ"dlﬂ U.S. DEPARTMENT OF Energy Efﬁciency &
isg @ National ENERGY Renewable Energy

-
NATIONAL RENEWABLE ENERGY LABORATORY I'Hhumtunes

 NREL/P R-5200-4985:.(:ia

Survey of PV Field Experience

Dirk Jordan
NREL

Se 083 T
Reses ™ ) Y EPE' ELECTRIC POWER

RESEARCH INSTITUTE

Delivering more than power.™
solar electric power association

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.



Outline

¢ Introduction

¢ Historical component failures
20 years ago — Modules ; Today - Inverters

¢ Historical degradation rates (R;)
Most modules degrade at 0.5%/year & are improving

¢ Connection Degradation rate uncertainty & risk
Higher uncertainty leading to higher risk
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Growth of PV Industry

10000
S
g 1000
2
c
)
€
2
5 100
z & USA
M International
10
1995 2000 2005 2010
, Time (Years
Alamosa Plant in Colorado ( )
Sources:

International: PV News, April 2009
USA: http://www.eia.doe.gov/emeu/international/contents.html

Reliability required to sustain exponential growth of industry
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Reliability & Durability
¢ Reliability: Ability to perform designed task without failure = discrete, disruptive events

¢ Durability: Ability to perform task without significant deterioration = continuous,
gradual decline

1300 | : : 1 1.00
| | R=(-0.14%0.16) %/year |
- JM el <
i 1 S
= 0.90
= 1100 | o ?:,.
= —_ o -~ @
¥ 1000
: —o—
& . ; w Inverter
o 900 * &‘ o & 080 3
= % o o | g Replacement
gop | © DCPower * ® o 2
® Efficiency 1 -
—— Degradation Fit ]
700 —1 0.70
Dec-02 Apr-04 Sep-05 Jan-07 Jun-08

Date

Extreme example of inverter failure

Both important for cost of electricity
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PV for Utility Scale Application (PVUSA)

The plant was originally constructed by the Atlantic Richfield oil company (ARCO) in 1983.
Provided electricity, research opportunity, data & experience through the 1980s and 1990s.

Plant was dismantled in the late 1990s.
Some Research Publications

. Emerging Modules at PYUSA_Townsend_PGEE_1995. pdf
2 rradiance & Temp Effects on PY power_whitaker_Endecon_IEEE_1991,pdf
| New performance index PYUSA_Townsend_PGSE_IEEE_1994, pdf
| Mew Py performance model_whitaker_Sandia_PvaC_1997,pdf
- Outdoor PY perfromance b PGRE_Jennings_PYSC_1990.pdf
T PGRE Research_Weinberg_PGRE_PYSC_1999,pdf
TP module perfarmance_Jennings_PYSC_1988.pdf
0PV Power performance_Wenger_PGRE_PYSC_1990, pdf
| P research PGRE_Jennings_PG&E_PYSC_1990,pdf
- PYUSA 1st decade_Jennings_PGRE_IEEE_1996.pdf
-/ PYUSS beqginning_Hester PGRE_1938, pdf
2 PYIUSA early lessons_Hester 1996, pdf
T PyUSA For PY plant_Dows_PYUSA_1995, pdf
T PYUSA progress report 1989, pdf
T PYUSA progress report 1991, pdf

Array Panel

Miscellaneous
= 40.3%

Electrical
B.8%

Location: Carrisa Plains
Size: 5.2 MW
Data: 1988

“CARRISA PLAINS PV POWER PLANT
Inverter PERFORMANCE”, Wenger et al., PG&E,
95% PVSC 1990.

Maintenance labor hours, 1888, Percent of
3,100 total labor hours allocated by plant

subsysteam.

Figure 7.

Plant contained engineering modules.

Panels showed the highest maintenance
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Tucson Electric Power - Springerville

“Five Years of Operating Experience at a Large, Utility-scale Photovoltaic Generating
Plant”, L. M. Moore et al., Prog. Photovolt: Res. Appl. 2008; 16:249-259

Inverters

System

10%

Unscheduled maintenance costs for PV system operation

12, Cost
Category | Events (%) Notes
(%) °
0,
Inverter 37 59 . 25 /° from 1
lightning storm
0,
DAS 7 14 | S0%fromf
lightning storm
AC 50% due to dirt
: 21 12 :
Disconnect accumulation
Module/ 12 3 60% due to failed
JBox blocking diode
45 % from 1
PV Armay 15 6 lightning storm
System 8 6 All utility meter

Module stability has improved over the last 20 years - the next component

requiring improvement is the inverter.

Inverters seem to dominate O&M cost now
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Maximum Warranties - Inverters
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Inverters suffer from early failures in the field due temperature-related issues, mismatch between PV
voltage and inverter window.

Qualification and performance standards for inverters and BOS are not well-defined

Inverters are improving but still have wide distribution
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Maximum Warranties - Modules
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] 350 P _ ! Date Length of
§ 300 - i . il Warranty
“ 250 1 BEgp=e | |' Before 1987 | 5 Years
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Source: — _/ S—L ] ; Lopg Term Photovoltaic Module
: 5 T/ 7 60 o Reliability”, J.Wolgemuth, NCPV
Photon . 10 15 20 T o and Solar Program Review Meeting
International, 25 76 30 2003
Feb 2010
Warranty (years)

Module maximum warranties typically greater than inverters

PV modules show smaller distribution
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Degradation Rate (R,)- Discrete Points

1. Translation to reference conditions (IEC60891)
2. Time series to determine degradation rate
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Quarterly taken I-V curves for degradation
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Degradation Rate - Discrete Points

1. Translation to reference conditions (IEC60891)
2. Time series to determine degradation rate
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Quarterly taken I-V curves for degradation
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Degradation Rate - Discrete Points

Short-circuit Current Open-circuit Voltage Fill Factor
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Degradation is due to decline in I, (V.. & FF are stable) = clues to failure mechanism

Problem: 1. Labor-intensive, has to be clear sky

2. Large arrays - portable |-V tracer may not be available
3. Typically not available

I-V curves provide clues to underlying failure mechanism
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Degradation Rate - Continuous Data

1. Translation to reference conditions (use a multiple regression approach)
2. Time series to determine degradation rate
60
? : .
* PVUSA — multiple regression
DC, AC Power g _
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3
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Standard Test Conditions (STC): E=1000 W/m?2, Tmodule=25°C
PVUSA Test Conditions (PTC): E=1000 W/m?, Tambient=20°C, wind speed=1 m/s

Seasonality leads to required observation times of 3-5 years - long time in today’s market

Long time required for accurate R
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Historical Degradation Rates

Published R in literature
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Median: 0.5 %/year
Average: 0.7 %/year
N=784
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Most modules degrade by ca. 0.5 %/year
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PERT — Degradation Rates

Performance Energy Rating Testbed = 4
PERT

‘%“ ’

Deg.Rate (%l/year)
T

1 = -k § é
Pre | Post | Pre |Post Pre |Post Pre | Pre |Post

a-Si CdTe CIGS c-Si poly-Si
Date of Installation w ithin Technology

Pre: Installed before year 2000
More than 40 MOdUIeS, Post: Installed after year 2000
> 10 manufacturers,
Monitoring time: 2 yrs-16 yrs

L

Appears that CdTe, CIGS & poly-Si improved
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Historical Degradation Rates
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Historical degradation rates are analyzed in a similar way
Similar tendency found as with the PERT modules
While the Si technologies remain stable, thin-films seem to have improved.

c-Si and Poly-Si show an uptick in Ry = could be from new manufactures pushing into market*
*G. TamizhMani et al., “Failure Analysis of

Module Design Qualification Testing”, Proc.
35th PVSC, Honolulu, HI, June 20-25 2010.

Appears that CdTe, CIGS & poly-Si improved
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Degradation Rate Uncertainty

PERT Data Original Trend
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Traditionally: need 3-5 years to determine R,*.
Modeling: (i) Classical Decomposition
(i) ARIMA**

Accurate Determination of R, takes time

Modeling can shorten required time

*Osterwald CR, Adelstein J, del Cueto JA, Kroposki B, Trudell D, Moriarty T. Proc. of the 4th IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 2006.
** D.C.Jordan et al., "Analytical Improvements in PV Degradation Rate Determination®, Proc. 35th PVSC, Honolulu, HI, June 20-25 2010.
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Consequences of R, Uncertainty
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2 examples from NREL.:
Different observation lengths, seasonality etc. - Leads to different uncertainties

R4 (Module 1) = (0.8 £0.2) %/year
R4 (Module 2) = (0.8 £1.0) %/year

Same R, but very different uncertainty
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Rp Uncertainty Impact on Warranty

Manufacturer Warranty often twofold: 90% after 10 years, 80% after 25 years

0.25 I 0.12 I
- B Rd=(0.8+0.2) %/year | | 010 || MRA(0.8£0.2) %/year | |
B Rd=(0.8+1.0) %/year 00s || MRd=(0.8+1.0) %/year
0.15
= £ 006
B B
2 0.10 -
o °
& 005 & 02
0.00 - 0.00 -
S & O L & & & H S PR PEERA PP PP
%
Power Production after 10 Years (%) Power Production after 25 Years (%)
N . _ n T .
Probability to invoke warranty:  |[Energy(Yeary)= ZE”ergy (Year)-(1-Rp) Probability to invoke warranty:

(1 + r)n

n=l1

1.0 %/year uncertainty = 57%

1.0 %/year uncertainty = 46% )
0.2 %/year uncertainty = 24%

0.2 %/year uncertainty = 4%

Higher R, uncertainty significantly increases warranty risk
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Thank You!
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