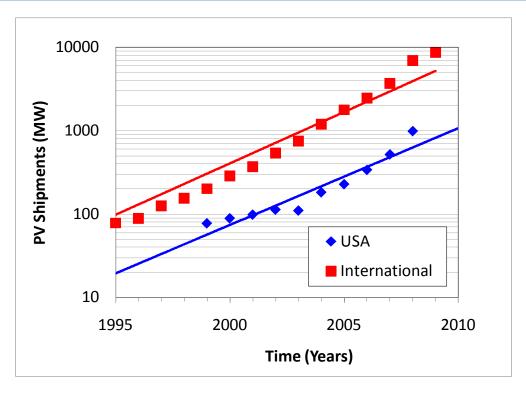


Utility/Lab Workshop on PV Technology and Systems

November 8-9, 2010
Tempe, Arizona
NREL/PR-5200-49854

Survey of PV Field Experience Dirk Jordan NREL

Outline


- **♦** Introduction
- ◆ Historical component failures
 20 years ago Modules ; Today Inverters
- ◆ Historical degradation rates (R_d)
 Most modules degrade at 0.5%/year & are improving
- ◆ Connection Degradation rate uncertainty & risk Higher uncertainty leading to higher risk

Growth of PV Industry

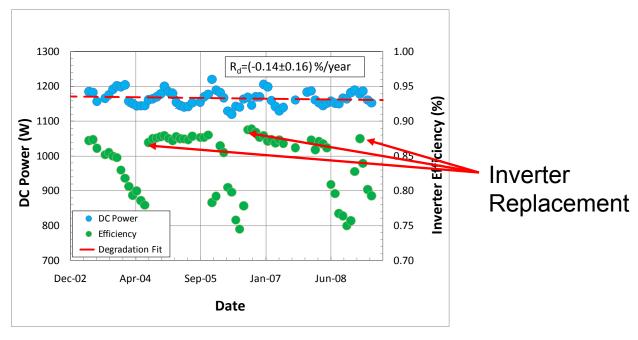
Photo credit: Steve Wilcox, NREL PIX 15548

Alamosa Plant in Colorado

Sources:

International: PV News, April 2009

USA: http://www.eia.doe.gov/emeu/international/contents.html


Reliability required to sustain exponential growth of industry

Reliability & Durability

◆ **Reliability:** Ability to perform designed task without failure → discrete, disruptive events

ightharpoonup Durability: Ability to perform task without significant deterioration ightharpoonup continuous,

gradual decline

Extreme example of inverter failure

Both important for cost of electricity

PV for Utility Scale Application (PVUSA)

The plant was originally constructed by the Atlantic Richfield oil company (ARCO) in 1983.

Provided electricity, research opportunity, data & experience through the 1980s and 1990s.

Plant was dismantled in the late 1990s.

Location: Carrisa Plains

Size: 5.2 MW Data: 1988

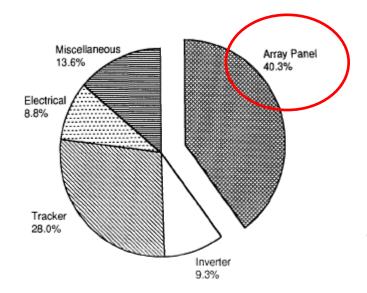
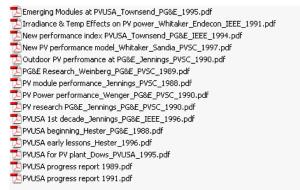
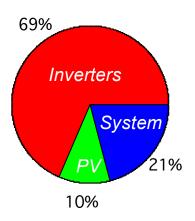



Figure 7. Maintenance labor hours, 1988. Percent of 3,100 total labor hours allocated by plant subsystem.

Plant contained engineering modules.

Some Research Publications

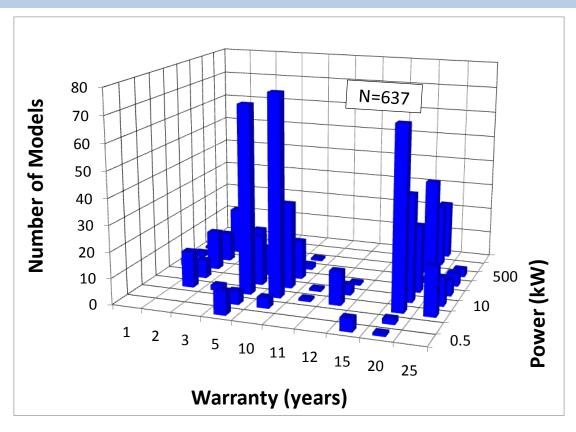


"CARRISA PLAINS PV POWER PLANT PERFORMANCE", Wenger et al., PG&E, PVSC 1990.

Panels showed the highest maintenance

Tucson Electric Power - Springerville

"Five Years of Operating Experience at a Large, Utility-scale Photovoltaic Generating Plant", L. M. Moore et al., Prog. Photovolt: Res. Appl. 2008; 16:249–259

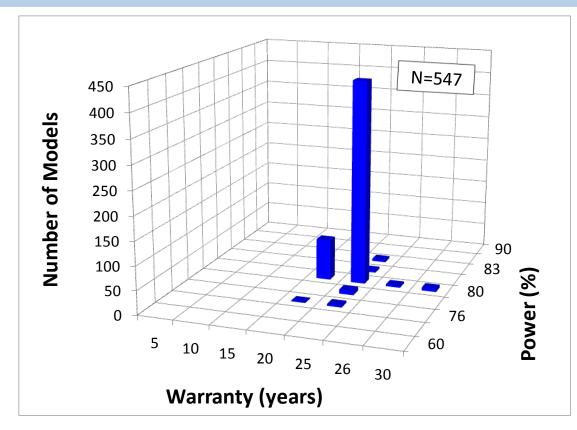

Unscheduled maintenance costs for PV system operation

Category	No. Events (%)	Cost (%)	Notes	
Inverter	37	59	25% from 1 lightning storm	
DAS	7	14	90% from 1 lightning storm	
AC Disconnect	21	12	50% due to dirt accumulation	
Module/ J Box	12	3	60% due to failed blocking diode	
PV Array	15	6	45 % from 1 lightning storm	
System	8	6	All utility meter	

Module stability has improved over the last 20 years → the next component requiring improvement is the inverter.

Inverters seem to dominate O&M cost now

Maximum Warranties - Inverters


Source: Photon International, April 2010

Inverters suffer from early failures in the field due temperature-related issues, mismatch between PV voltage and inverter window.

Qualification and performance standards for inverters and BOS are not well-defined

Inverters are improving but still have wide distribution

Maximum Warranties - Modules

Solarex/BP module Warranty Period

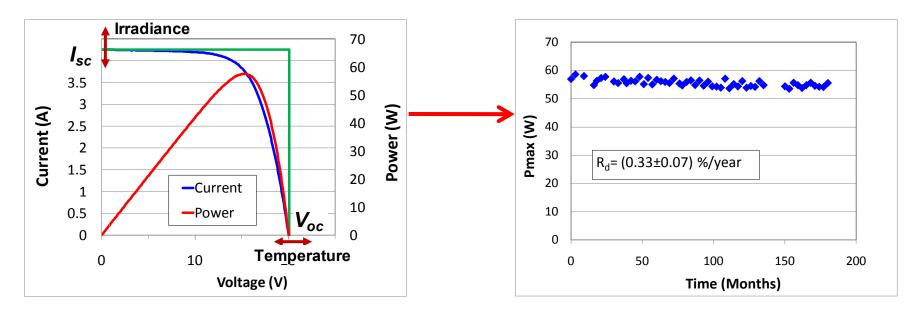
Date	Length of Warranty
Before 1987	5 Years
1987 – 1993	10 Years
1993 – 1999	20 Years
Since 1999	25 Years

"Long Term Photovoltaic Module Reliability", J.Wolgemuth, NCPV and Solar Program Review Meeting 2003

Module maximum warranties typically greater than inverters

PV modules show smaller distribution

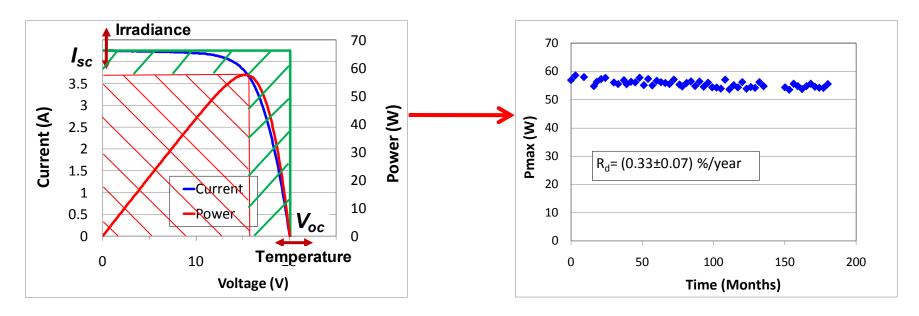
Source:


Photon

Feb 2010

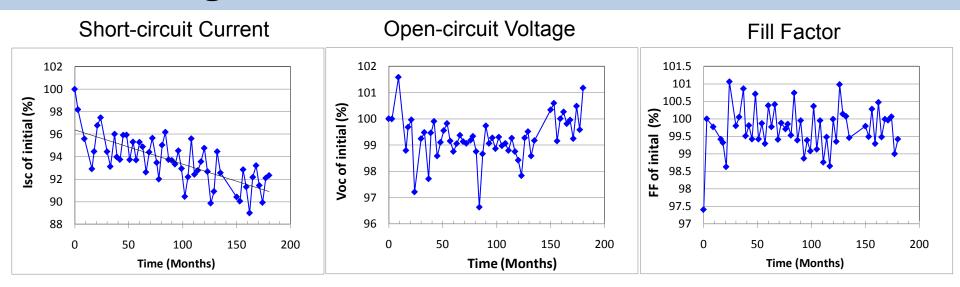
International.

Degradation Rate (R_d)- Discrete Points


- 1. Translation to reference conditions (IEC60891)
- 2. Time series to determine degradation rate

Quarterly taken I-V curves for degradation

Degradation Rate - Discrete Points


- 1. Translation to reference conditions (IEC60891)
- 2. Time series to determine degradation rate

$$FF = \frac{P_{\text{max}}}{I_{sc} \cdot V_{oc}} = \frac{I_{\text{max}} \cdot V_{\text{max}}}{I_{sc} \cdot V_{oc}}$$

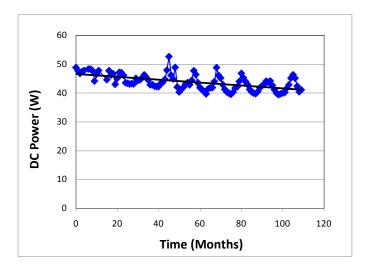
Quarterly taken I-V curves for degradation

Degradation Rate - Discrete Points

Degradation is due to decline in I_{sc} , $(V_{oc} \& FF \text{ are stable}) \rightarrow \text{ clues to failure mechanism}$

Problem: 1. Labor-intensive, has to be clear sky

2. Large arrays → portable I-V tracer may not be available


3. Typically not available

I-V curves provide clues to underlying failure mechanism

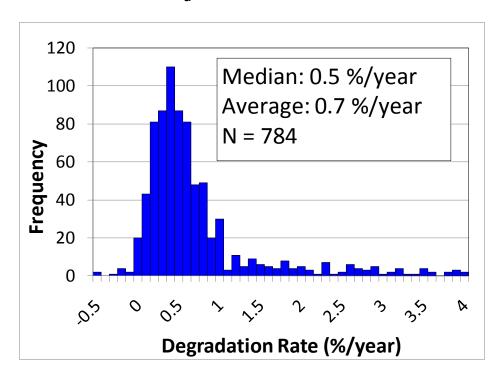
Degradation Rate - Continuous Data

- 1. Translation to reference conditions (use a multiple regression approach)
- Time series to determine degradation rate

DC, AC Power

PVUSA – multiple regression

$$P = E \cdot (a_1 + a_2 \cdot E + a_3 \cdot T_{ambient} + a_4 \cdot ws)$$


Standard Test Conditions (STC): E=1000 W/m², Tmodule=25°C PVUSA Test Conditions (PTC): E=1000 W/m², Tambient=20°C, wind speed=1 m/s

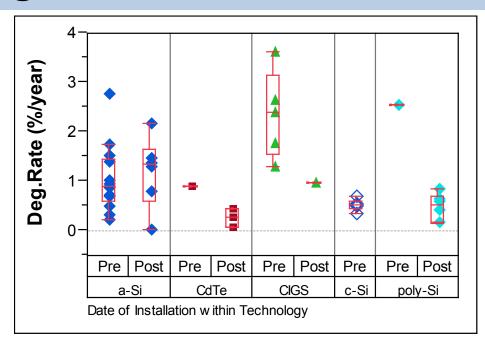
Seasonality leads to required observation times of 3-5 years → long time in today's market

Long time required for accurate R_d

Historical Degradation Rates

Published R_d in literature

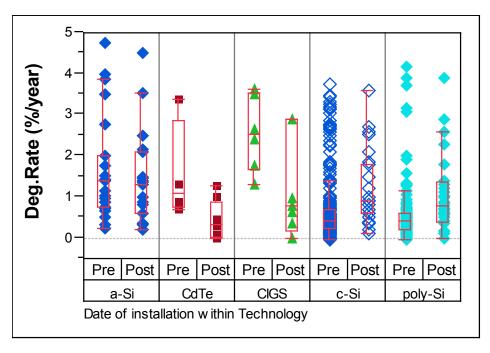
Technology, age, packaging, geographic location


Most modules degrade by ca. 0.5 %/year

PERT – Degradation Rates

Performance Energy Rating Testbed = PERT

More than 40 Modules, > 10 manufacturers, Monitoring time: 2 yrs-16 yrs



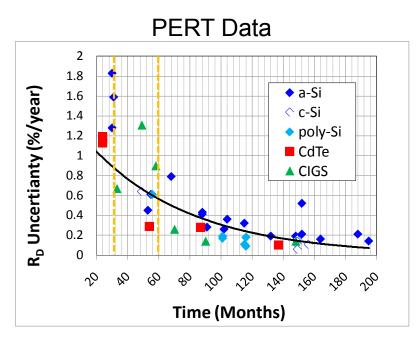
Pre: Installed before year 2000 Post: Installed after year 2000

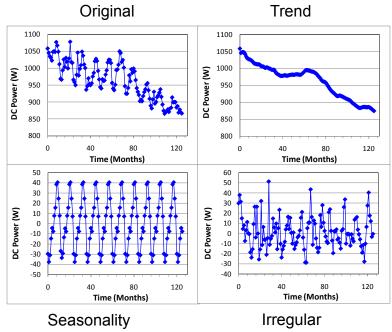
Appears that CdTe, CIGS & poly-Si improved

Historical Degradation Rates

Historical degradation rates are analyzed in a similar way

Similar tendency found as with the PERT modules


While the Si technologies remain stable, thin-films seem to have improved.


c-Si and Poly-Si show an uptick in R_d → could be from new manufactures pushing into market*

*G. TamizhMani et al., "Failure Analysis of Module Design Qualification Testing", Proc. 35th PVSC, Honolulu, HI, June 20-25 2010.

Appears that CdTe, CIGS & poly-Si improved

Degradation Rate Uncertainty

Traditionally: need 3-5 years to determine R_d*.

Modeling: (i) Classical Decomposition (ii) ARIMA**

Accurate Determination of R_d takes time

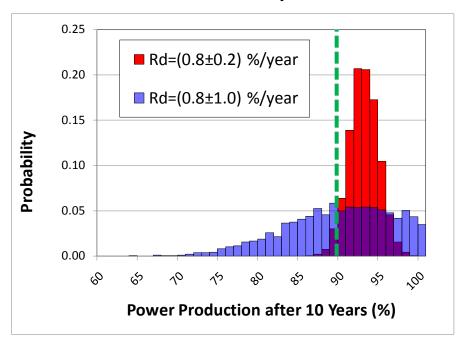
Modeling can shorten required time

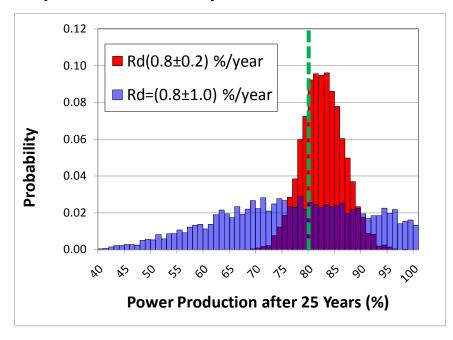
^{*}Osterwald CR, Adelstein J, del Cueto JA, Kroposki B, Trudell D, Moriarty T. Proc. of the 4th IEEE World Conference on Photovoltaic Energy Conversion, Hawaii, 2006.

** D.C.Jordan et al., "Analytical Improvements in PV Degradation Rate Determination", Proc. 35th PVSC, Honolulu, HI, June 20-25 2010.

Consequences of R_d Uncertainty

2 examples from NREL:


Different observation lengths, seasonality etc. → Leads to different uncertainties


$$R_d$$
 (Module 1) = (0.8 ±0.2) %/year R_d (Module 2) = (0.8 ±1.0) %/year

Same R_d but very different uncertainty

R_D Uncertainty Impact on Warranty

Manufacturer Warranty often twofold: 90% after 10 years, 80% after 25 years

Probability to invoke warranty:

$$Energy(Year_N) = \sum_{n=1}^{N} \frac{Energy(Year_1) \cdot (1 - R_D)^n}{(1 + r)^n}$$

1.0 %/year uncertainty = 46%

0.2 %/year uncertainty = 4%

Probability to invoke warranty:

1.0 %/year uncertainty = 57%

0.2 %/year uncertainty = 24%

Higher R_d uncertainty significantly increases warranty risk

Thank You!