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Abstract  

This paper examines the ability of traditional nondestructive evaluation (NDE) techniques to measure 
the degradation of braided polymer composite materials subjected to thermal-humidity cycling to simulate 
aging. A series of braided composite coupons were examined using immersion ultrasonic and pulsed 
thermography techniques in the as received condition. These same specimens were then examined 
following extended thermal-humidity cycling. Results of this examination did not show a significant 
change in the resulting (NDE) signals. 

Introduction 

Polymer composites have seen an increasing role in aerospace structures due to their light weight and 
high strength properties. Even though these materials have beneficial properties, concerns exist regarding 
long term performance in hostile environments. In particular, long term exposure to temperature and 
humidity can lead to material changes such as weight loss, and growth of microcracks and corresponding 
changes in mechanical properties such as loss in stiffness and strength (Refs. 1 to 4). 

Although much work has been done to understand and characterize degradation mechanisms in 
composite materials, little work has been published regarding methods to nondestructively measure the 
condition of a material subjected to environmental loadings. Methods employing ultrasound, 
thermography, eddy currents, and x-rays are regularly employed to locate and measure discrete damage 
such as cracks and delaminations, but not for the measurement of aging related material degradation. 
When degradation occurs in a distributed fashion throughout the entire material volume and without any 
visible changes of physical and geometrical properties or when surface changes do not correspond to the 
degree of volume degradation, a simple visual inspection of the structure will not reveal any dangerous 
conditions. Therefore, there is a compelling need for nondestructive techniques to measure the degree of 
degradation. Limited success in this area has been achieved using methods such as ultrasonic 
spectroscopy and specialized x-ray techniques for measurement of microcrack growth in composite 
materials (Refs. 5 and 6). These methods are typically limited to small area inspections, simple composite 
architectures, or require highly specialized equipment. The purpose of this research is to examine the 
ability of ultrasonics and thermography to detect and characterize the aging related degradation of a 
braided carbon/epoxy polymer composite material subjected to thermal-humidity cycling.  

Ultrasonics 

Ultrasonic techniques are widely used for the inspection of composite materials (Ref. 7). Typically 
methods employ either a handheld contact method where a part is inspected point by point or more 
elaborate scanning techniques where ultrasonic probes are coupled to the part through immersion in water 
or through the use of a squirter or bubbler system. In either case, material discontinuities are identified by 
examining the amplitude and time response of an ultrasonic pulse after interacting with the material of 
interest. This is typically accomplished in either a single sided pulse-echo mode or in a through 
transmission mode where a separate transducer is used to send and receive the ultrasonic signal. In this 
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study, both pulse-echo and through transmission immersion ultrasonic scanning techniques are used. 
Measurement of degradation mechanisms is conducted by comparing the amplitude of the received 
signals in both the baseline and aged condition. 

Thermography 

One of the more widely used methods for the thermographic inspection of materials and components 
is pulsed thermography. As the name implies, the technique imparts a pulse of thermal energy, usually 
provided by a photographic flash lamp, on the surface of a specimen. The thermal energy on the surface 
will conduct into the cooler interior of the sample. In turn, there is a reduction of the surface temperature 
over time (Ref. 8). This surface cooling will occur in a uniform manner as long as the material properties 
are consistent throughout the specimen. Subsurface defects that possess different material properties 
(thermal conductivity, density, or heat capacity) will affect the flow of heat in that particular region. This 
resistance in the conductive path causes a different cooling rate at the surface directly above the defect, 
when compared to the surrounding, defect free, material. This results in a non-uniform surface 
temperature profile. Unprocessed, as-received data is typically displayed sequentially on a computer 
monitor and contrast enhanced. Images are then visually inspected for signs of a subsurface defect by 
locating areas with anomalous surface temperatures. This method depends on the skill of the operator and 
a material with a relatively uniform surface condition. 

Another technique for the processing of the thermal image data has been developed to improve the 
detection capabilities (Refs. 9 and 10). This method involves the creation of a set of mathematical 
equations that represent the time response of each pixel in the raw data set. This “reconstruction” process 
exploits certain general features of the thermal response of materials to pulsed heating, and has been 
shown to allow significant improvement in detection of subsurface features without the use of a reference 
(Ref. 11). 

The mathematical expressions used in the thermal image reconstruction process are based on the 
response of a uniform material subjected to an instantaneous heat pulse. Through the application of these 
relationships, the time dependent logarithmic behavior of each pixel can be approximated by a 
polynomial function of order, n: 
 

           nn
2

210 tlna...tlnatlnaatTln    (1) 

 
Using the coefficients calculated in Equation (1), it is possible to create a reconstruction of the 

original thermal signal based on the relationship: 
 
           n}

n
2
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By applying this approximation to the collected data, the time dependent temperature response of 

each pixel can be represented by the coefficients of the polynomial, greatly reducing the storage 
requirements for large data sets. Depending on the order of the polynomial, high frequency noise 
components of the thermal data can be eliminated, in turn, sharpening the thermal image. 

Application of the reconstruction technique has benefits beyond those mentioned above. Since the 
image data has been reduced to coefficients of a polynomial, instantaneous derivatives of the image 
sequence can be calculated and displayed in the same manner as the original data set. Through the 
examination of the rate of change in the thermal data, more defect data can be extracted than is possible 
with time based images alone. 
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Experimental Setup 

Specimen 

The specimens used in this study consisted of a triaxially braided T700S/E862w composite in the 
form of 23 flat coupons 50.8 mm (2 in.) wide by 305 mm (12 in.) long by 3.2 mm (0.125 in.) thick. 
Specimens oriented both in the direction of and transverse to the axial tows were cut from larger panels. 
Eight of the samples were removed following 4 months of aging and the remaining samples removed after 
13 months. 

Aging 

Aging was accomplished by subjecting the material to a cyclic temperature-humidity profile. A single 
cycle consists of a ramp up to 121 ºC (250 ºF) , hold for 2 hr, ramp down to 29 ºC (85 ºF) and hold for 
5 hr at 85 percent humidity and then ramp down to –54º (–65 ºF) and hold for 1hr. The profile is shown 
graphically in Figure 1. This profile was continuously repeated until specimen removal. 

Ultrasonics 

Specimens were examined using both through transmission and pulse echo ultrasonic techniques 
using a commercially available ultrasonic scan system. In the through transmission mode, a 5MHz 
focused transducer (focal length = 69.9 mm (2.75 in.), and focused on front surface) was used to send the 
ultrasonic signal which was received by a 5MHz flat focus transducer. Transducer excitation was 
provided using a UT340 square wave pulser/receiver manufactured by UTEX Scientific. The received 
signal was digitized and stored for later analysis. Scans were performed over the specimen area with data 
collected in 0.5 mm (0.020  in.) increments in both scan and step directions. For pulse echo scanning, the 
same 5MHz focused transducer was used as both the sending and receiving transducer. Scanning was 
performed using the same increments as the through transmission mode. 
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Pulsed Thermography 

Pulsed thermography data was collected using a commercial system manufactured by Thermal Wave 
Imaging Inc. A schematic representation of the setup is shown in Figure 2. The system uses a cooled 
640 by 512 InSb focal plane array camera operating in the 3 to 5 m range for imaging. A series of 
thermal images were collected at a 30 Hz frequency and for a 30 sec duration. Thermal excitation is 
provided using 2 linear xenon flash lamps with a pulse duration of approximately 5 ms. Thermal response 
at the specimen surface is stored for later analysis and processing. 

Thermography data was processed within the acquisition software by applying a polynomial fit to the 
front surface temperature time response following thermal excitation as mentioned previously. Analysis 
of the image sequence data in the baseline and aged condition as well as analysis of the rate based cooling 
response were used as measures for identifying distributed damage that may be present due to aging. 

Results 

Ultrasonics 

Figures 3 and 4 show representative ultrasonic C-scans of samples in the baseline and aged condition. 
Visual inspection of the scan results did not reveal any obvious discrete damage. Further examination was 
conducted by comparing the attenuation (received peak amplitude response) of the signal in both the 
baseline and aged conditions over the entire sample. Results indicated a large range of values resulting 
from the scatter of the ultrasonic signal by the braided architecture of the material. This scatter prevented 
the measurement of any significant change in the material response. 

 
Pulsed Thermography 

Figure 5 shows representative images for a single specimen in the baseline condition and following 
13 months of aging. Visual examination of thermography images for all of the specimens did not reveal 
any obvious discrete damage within the specimens. Further examination of the cooling curves was 
conducted in order to identify any possible distributed damage within the specimen volume. Figure 6(a) 
shows a typical log-log display of the temperature-time curve following thermal excitation. The two 
curves represent a similar point on the same specimen in the baseline and aged condition. The point of 
interest is identified in Figure 5. Figures 6(b) and (c) show the first and second derivative curves 
respectively for the same location. 

Using the information contained in the derivative images further analysis was conducted in an attempt 
to quantify any changes in the response of the material. This was achieved by calculating the time at 
which the second derivative curve reaches a peak value. This point was chosen to provide a consistent 
measurement location within the time series of data. In addition, this point in time is associated with the 
thermal front reaching the back wall of the sample, thus allowing interrogation of the entire specimen 
volume. It is expected that distributed flaws within the material will act as barriers to the flow of heat thus 
affecting the resulting time to reach a peak value. Second derivative peak times were calculated for a 
region of interest of each sample in both the baseline condition and following aging and an average was 
calculated for all samples in the baseline and aged condition. Results of this analysis are shown in 
Figure 7. Based on these values and the examination of individual samples, no significant trend was 
identified. 
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Summary 

A series of braided composite samples were nondestructively investigated to determine quantitative 
and qualitative measurements of degradation due to thermal-humidity cycling. Results from examination 
using pulsed thermography and ultrasonics did not reveal a measureable change following aging and 
showed a consistent visual appearance following aging. There are several possible reasons for this result. 
In the case of ultrasonic measurements, the size of the expected damage is most likely hidden by the 
complex composite architecture. This complexity limits the frequency that can be used for inspection and 
thus limits the sensitivity of the technique. The large amount of scatter in the measured attenuation values 
within the specimens highlights this masking effect. In the case of thermography, the situation may be 
similar in the sense that the overall scatter in the data due to composite architecture may overwhelm the 
sensitivity of the technique. 

Further research in this area may yield methods for assessing aging related degradation. For a 
technique to be successful, there must be a clear separation of the environmental degradation effects from 
the composite architecture response or by utilizing techniques that measure indirect effects such as 
strength or stiffness changes. Further data regarding the effect of aging on mechanical properties and 
microstructure will be examined and correlated with NDE data as it becomes available. 
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