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MISSOULA GROUP

Red and green argillite and siltite and pink to gray
quartzite of the Missoula Group are present across much of
western Montana (Ross, 1963); maximum thickness of these
rocks exceeds 5,000 m (Wallace and others, 1984). The Mis-
soula Group is well exposed 20 km directly west of the High-
land Mountains in the Pioneer Mountains (Zen, 1988;
Ruppel and others, 1993) where it is mostly allochthonous
and is represented by more than 1,000 m of argillite, quartz-
ite, and minor conglomerate. In sharp contrast, Missoula
Group rocks in the Highland Mountains are in depositional
contact with underlying Belt strata but are very thin, a max-
imum of 168 m thick in the Table Mountain block and only
16 m thick to the west in the Moose Creek block (fig. 14).
Strata assigned to the Missoula Group in the Highland
Mountains are composed mainly of quartzite and interlay-
ered argillite and siltite. Isolated conglomerate is also
present.

LITHOLOGIC DESCRIPTION AND FACIES

The Missoula Group is represented by a 16-m-thick
sequence of interlayered quartzite and argillite in the Moose
Creek block. The lower 6.2 m of the sequence is marked by
beds of upward-coarsening, medium-gray, medium-grained
quartzite. Beds are poorly layered in the lower part of the 6.2
m but grade upward into light-gray, coarse-grained, well-
layered quartzite; the upper part is poorly sorted, consisting
mainly of coarse- to granule-size grains. The lower 6.2 m of
quartzite grades upward into 1.5 m of ripple-crosslaminated
argillaceous siltite that, in turn, grades into a 1-m-thick fine-
to medium-grained quartzite. A dark-gray argillite about 1 m
thick separates the underlying quartzite and minor siltite
from the remaining 6.3 m of the Missoula Group along sharp
upper and lower contacts. The uppermost 4 m of Missoula is
composed of at least six distinct, generally upward fining,
coarse- to medium-grained beds that locally show cut-and-
fill and climbing-ripple structures.

To the east, in the Soap Gulch block, rocks assigned to
the Missoula Group aggregate 62 m in thickness. The base of
the Missoula Group is placed at the top of a 1.5-m-thick
dark-gray argillite of the Empire Formation (?) that encloses
thin, wispy, white quartzite lenses. The lower 2 m of the Mis-
soula Group strata consists of dark-gray, laminated, very fine
grained, argillaceous quartzite and is overlain by a 1-m-
thick, pinkish-white, poorly sorted, fine- to coarse-grained
quartzite somewhat similar to the upward-coarsening quartz-
ite near the base of the group at the Moose Creek locality.
The overlying 30 m consists of interlayered dark-gray, thin-
bedded (10-20 cm) argillaceous quartzite and argillite. The
argillite commonly contains thin, white to pinkish-white,
quartz-rich cut-and-fill and lenticular laminae less than 1 cm
thick. The remainder of the group consists of argillaceous

siltite and very fine grained quartzite containing lenses of
clean, white to pink quartz grains.

At the Camp Creek locality, the Missoula Group is 148
m thick. The lower unit of quartzite is a coarsening-upward
sequence at least 46 m thick that is intruded by biotite gran-
ite. This lower unit is unique to the Camp Creek block and
consists of laminated, poorly sorted, very fine grained
quartzite containing floating, coarse quartz grains. Laminae
are defined by parallel, alternating layers 1-3-mm thick of
light-colored clean quartzite and dark-gray argillaceous
quartzite. Overlying this lower unit of quartzite is a 16-m-
thick section of thin-bedded, white, commonly poorly
sorted, very fine grained to coarse-grained quartzite that is
present as channel fill and as individual beds as thick as 10
cm. This 16-m-thick unit is capped by a 1-2-m-thick, light-
to dark-banded, locally vuggy, calcareous argillite. The
remainder of the succession is similar to the interlayered
quartzite-argillite sequence in the Soap Gulch and Moose
Creek blocks. The quartzite is typically cream to white and
locally shows well-developed centimeter-scale crossbeds,
upward-fining sequences, and ripple marks.

The thickest section of the Missoula Group in the High-
land Mountains is in the Table Mountain block and consists
of at least 168 m of interbedded conglomerate, quartzite, and
argillite. The rocks of the group are coarsest along the west-
ern margin of the block, directly adjacent to the Twin
Bridges fault, consist of mainly pink to greenish-gray quartz-
ite and minor argillite, and are capped by a pebble to cobble
conglomerate; however, these rocks are present mostly as
float and could not be adequately measured and described. A
section was measured along the west side of Spring Creek,
about 2,000 m east of the Twin Bridges fault (O’Neill and
others, 1995), and the following description is taken from
that section.

At Spring Creek, the base of the Missoula Group is
marked by 4 m of red to gray, massive silty argillite overlain
by about 44 m of thin-bedded (10-30 c¢m), tan to gray, very
fine grained to fine-grained quartzite, siltite, and argilla-
ceous siltite and minor dark-gray argillite near the top. At
about 22 m above the base of the group is 6 m of white, fine-
to medium-grained feldspathic quartzite. The lower 48 m of
fine-grained rocks is overlain by about 16 m of even- to
uneven-parallel-laminated, very fine grained quartzite that is
similar to the laminated quartzite at the base of the Missoula
Group to the west in the Camp Creek block. The succeeding
55 m consists of alternating greenish-gray, very fine grained
to fine-grained argillaceous quartzite and light-gray and
pinkish-white to white feldspathic quartzite and orthoquartz-
ite that contain well-developed oscillation and asymmetric
ripple marks in the uppermost 5 m. The next higher 27 m is
mostly covered but shows argillite, siltite, and minor white
quartzite float. The uppermost Missoula Group consists of
10 m of massive to weakly crosslaminated, fine- to medium-
grained nonfeldspathic quartzite in beds 3060 cm thick.
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Figure 14 (above and facing page).

CONTACTS WITH ADJACENT UNITS

The lower contact of the Missoula Group is generally
sharp and is drawn at the top of the highest lithologic unit
characteristic of the underlying formation. In the Moose
Creek block the contact is drawn at the top of the highest
Spokane-like siltite. In the Soap Gulch block to the east, the
contact is placed at the top of a 1.5-m-thick dark-gray argil-
lite containing wispy white quartzite lenses of the Empire
Formation(?); farther to the east, the contact is drawn at the
top of calc-silicate rocks of the Helena Formation.

MIDDLE CAMBRIAN ROCKS

In parts of southwestern Montana it is difficult to distin-
guish between the uppermost clastic deposits of the Missoula
Group and those of the overlying Middle Cambrian Flathead
Sandstone (Don Winston, University of Montana, oral com-
mun., 1988). In the Highland Mountains the upper contact of
the Missoula Group with the Flathead Sandstone is also ten-
uous. Directly south of the exposures of the Belt Supergroup
in the range, but still within the mountains, the Flathead rests
unconformably on Early Proterozoic basement rocks (fig.
2A). The Flathead was measured at two locations in this area,
and the sections are included in the correlation diagram of
figure 14; one section is 6 km south of the Camp Creek fault,
and a second section is about 3 km south of the fault. The
Flathead Sandstone south of the Belt exposures is a tripartite
unit; the upper and lower parts consist of orange-tan to red-
dish-orange feldspathic sandstone interlayered with minor

Stratigraphic sections of the Middle Cambrian Flathead Sandstone and the underlying Belt Supergroup
in the Highland Mountains. Lithologic explanation is given in figure 7.

conglomerate, siltstone, and shale; they are separated by a
medial, weakly resistant part of mainly shale and siltstone.
The Flathead is about 20 m thick in both measured sections.

Everywhere in the Highland Mountains where Belt sed-
imentary rocks are preserved a similar but thinner tripartite
sequence of the Flathead underlies the Middle Cambrian
Wolsey Shale. Sandstone beds in the upper and lower parts
of this sequence are commonly well sorted, white, fine
grained, and nonfeldspathic and lack conglomerate. The top
of the Missoula Group is everywhere drawn at the base of the
lowermost sandstone unit interpreted as the Flathead Sand-
stone.

TECTONICS AND SEDIMENTATION

Sedimentary rocks of Belt age (Middle Proterozoic) in
the Highland Mountains are exposed in an elongate east-
trending zone that extends almost completely across the
range. Rocks of the Belt Supergroup are separated from the
underlying basement on the south by the Camp Creek fault;
they are overlain by or structurally juxtaposed against Paleo-
zoic sedimentary rocks on the north; they are intruded by the
Boulder batholith on the east; and they are truncated by Neo-
gene basin and range faults on the west. This Belt Super-
group sedimentary succession is composed mainly of lower
Belt and Ravalli Group rocks overlain by different forma-
tions in different structural blocks. Striking lateral facies
changes are present in all of these sedimentary rocks (fig. 2),
and these changes are accompanied by dn overall thickening
of the succession toward the central part of the range. The
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formations are thinnest and best exposed in the west where
the entire succession is about 1,000 m thick; the thickness
increases to more than 3,000 m in the central part of the
range. Major facies changes are present across northwest- to
north-trending faults that are the northward continuation of
conspicuous northwest-trending faults that cut basement
rocks to the south. These faults extended into the Belt Basin
in Middle Proterozoic time and acted as growth faults during
deposition of the Belt sediments. Belt-age rocks were depos-
ited in northwest-trending half grabens or structural blocks
outlined by these growth faults. These structural blocks are
designated, from west to east, the Moose Creek, Soap Gulch,
Camp Creek, and Table Mountain blocks (fig. 2B). Strati-
graphic relations preserved across these structural blocks
outline a large northwest-trending graben, herein called the
Highland graben, that is manifested as a Middle Proterozoic
paleovalley along this part of the southern margin of the Belt
Basin. Facies relationships among rocks within the graben
show that lower Belt and Ravalli Group rocks are laterally
gradational and were deposited simultaneously. The lower
Belt deposits represent subaerial to near-shore deposits that
interfinger with subaqueous calcareous muds that, in turn,
grade laterally into Ravalli Group laminated silty muds
deposited farther from shore. Variations in stratigraphic
thickness and hanging-wall onlap of these lower Belt strata
suggest syndepositional fault activity, widening of the gra-
ben during Belt deposition, and a gradual transition from
subaerial to subaqueous deposition through time.

Faults that outline the Highland graben were over-
lapped by subaerial deposits of the LaHood Formation that
graded downslope into subaqueous deposits. These basal
deposits can be divided into two sedimentary sequences: (1)
interlayered coarse conglomeratic alluvial gravel, fluvial
deposits, and minor distal, subaqueous quartzite west of the
Table Mountain block and (2) well-bedded quartz-pebble
conglomerate and coarse lithic quartzite of probable sub-
aqueous debris flow origin and minor fluvial stream deposits
within the Table Mountain block in the central part of the
graben.

As the central part of the paleovalley eventually became
completely submerged, deltaic sands were deposited above
the fluvial and shallow-water debris-flow sandstone and
conglomerate. These sands, the Table Mountain Quartzite,
pinch out to the east and west. The quartzite can be divided
into two informal members: the lower 230 m consists mainly
of massive, thick-bedded, cliff-forming white quartzite, and
the upper 260 m consists of thin-bedded, upward-fining
quartzite interlayered with minor siltite and argillite. The
upper member includes numerous upward-fining cyclical
deposits that are 1-2 m thick and best developed in the lower
100 m of the section.

Alluvium of the LaHood Formation continued to be
shed during and after the deposition of the Table Mountain
Quartzite to the west from the higher, uplifted margins of the
graben. The alluvium interfingers downslope with

submarine, locally turbiditic deposits that, in turn, grade lat-
erally into mud and silt of the Moose Formation. Similarly,
the Moose Formation grades laterally into the Newland For-
mation. Farther basinward, the calcareous Newland gives
way to thick accumulations of finely laminated mud, silt, and
sand of the Greyson Shale. As subsidence within the graben
progressed, the strandline of the Belt sea migrated landward,
and the various lithofacies being deposited in the graben also
shifted landward, overlapping all previously deposited sedi-
ments. As a result, and in spite, of lateral facies changes
within the graben, the well-established and known normal
stratigraphic succession of the Belt Supergroup of the Hel-
ena embayment was maintained.

Although the Newland Formation is only 150 m thick in
the western part of the Highland Mountains, it thickens east-
ward to more than 350 m at Camp Creek. The entire New-
land Formation exposed in the Moose Creek block is
temporally equivalent to only the upper part of the Newland
in the Soap Gulch block. The upper part of the Newland at
Soap Gulch pinches out eastward, interfingering with and
grading into the Greyson Shale. The lower part of the New-
land at Soap Gulch is temporally equivalent to the upper part
of the Newland in the Camp Creek block. The upper part of
the Newland at Camp Creek interfingers with and pinches
out into the Greyson Shale in the Table Mountain block, and
the lower part of the Newland at Camp Creek interfingers
with the Table Mountain Quartzite.

The Greyson Shale exposed in the Highland Mountains
is the thickest Belt formation in the range. The unit is almost
220 m thick on the west at Moose Creek and thickens dra-
matically eastward to about 1,260 m in the Table Mountain
block. The mainly interlayered silty argillite and siltite to the
west becomes more lithologically diverse to the east. At
Camp Creek, the formation includes several calcareous lay-
ers as well as distinctive, coarse, calcareous quartzite beds.
In the Table Mountain block, the middle part of the forma-
tion contains a thick sequence of numerous upward-fining
sedimentary cycles, each capped by limestone.

As subsidence slowed in the Highland graben, cross-
bedded, argillaceous silt and sand of the Spokane Formation
were deposited uniformly above the Greyson Shale; the Spo-
kane is somewhat thicker (135 m) and coarser grained in the
Camp Creek and Table Mountain blocks along the graben
axis than farther to the west.

The Moose Creek block along the western margin of
the graben was subaerially exposed in middle Belt time. In
the Soap Gulch block, carbonate bank deposits of the Helena
Formation interfinger with calcareous argillite of the Empire
Formation; both formations pinch out to the west and were
not deposited in the Moose Creek block. The Empire and
overlying Helena Formations are in normal stratigraphic
order in the Table Mountain block in the central part of the
range, where they have a combined thickness of about 200
m. Both units thin eastward, away from the graben axis.
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Younger alluvial conglomerate and fluvial sand of the
Missoula Group covered all the older deposits. The main
depositional center for these younger rocks was also in the
Table Mountain block along the graben axis, and these rocks
include thick, medium-grained, white to pink quartzite,
minor argillite, and an uppermost angular quartz-pebble con-
glomerate that is restricted to the Table Mountain block. The
Missoula Group has a maximum thickness of 155 m but thins
to less than 30 m on the west.

Belt Supergroup rocks of the Highland Mountains are
in fault contact with Early Proterozoic crystalline rocks to
the south (fig. 24). The contact is marked by the Camp Creek
fault, a low-angle thrust fault that has been interpreted, on
the basis of inference, as having a significant component of
right-lateral slip (see, for example, Ruppel and Lopez, 1984).
Reverse-slip movement on the Camp Creek fault is indicated
by south-directed shears and folds within the fault zone. The
interpretation of right-slip is based mostly on regional tec-
tonic necessity: the need to find a link between the foreland
fold and thrust belt of extreme southwestern Montana (Rup-
pel and Lopez, 1984) and the huge, thin-skinned detach-
ments within the Helena embayment that are northeast of the
Highland Mountains (Woodward, 1981; Schmidt and
O’Neill, 1982). That the Camp Creek fault is not this major
tectonic link is indicated by the structural continuity of high-
angle faults in the basement rocks of the southern part of the
Highland Mountains that acted as growth faults during dep-
osition of the overlying Belt sediments; this structural conti-
nuity indicates that displacement on the Camp Creek fault is
minor. O’Neill and others (1990) argued that the overthrusts
of extreme southwestern Montana and adjacent Idaho and
the thin-skinned detachments of the Helena embayment are
tectonically linked by the postulated northeast-trending Dil-
lon cutoff. The cutoff is a zone of basement-involved thrust
faults that passes beneath the Jefferson Valley, directly east
of the Highland Mountains (fig. 2A), and continues south-
westward into extreme southwestern Montana. In this inter-
pretation, the Highland Mountains are allochthonous;
basement rocks within the range are a part of the foreland
fold and thrust belt and were thrust northeastward in concert
with the overlying sedimentary rocks. High-angle faults in
basement rocks of the southern part of the range curve gently
westward into the Camp Creek fault, become incorporated
within the fault zone, and then continue northward, curving
into the Belt sedimentary succession. The gentle westward
bending of these fault zones suggests a left-lateral strike-slip
component on the Camp Creek fault. The Camp Creek fault
probably is simply a displacement transfer zone, best inter-
preted as a tectonic detachment at the base of the Belt Super-
group; basement rocks in the footwall were detached from
the overlying Belt sedimentary rocks and were thrust north-
eastward beneath them during the formation of the Cordil-
leran frontal fold and thrust belt (fig. 15). There is no
evidence in the Highland Mountains for a major, east-trend-
ing, Middle Proterozoic basin-margin fault similar to that
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basement rocks

Figure 15. Structural relationship between crystalline basement
rocks of the Highland Mountains and the overlying Belt Super-
group. The two rock groups are separated by the Camp Creek fault,
a left-lateral, oblique-slip thrust fault. The allochthonous basement
rocks were detached from the overlying Belt Supergroup along an
unconformity and transported to the northeast, beneath the sedimen-
tary cover rocks. MC, Moose Creek block; SG, Soap Gulch block;
CC, Camp Creek block; TM, Table Mountain block.

postulated along the southern part of the Helena embayment
farther to the east (Robinson, 1963; Schmidt and Garihan,
1986).
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