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SUMMARY

An experimental program has been implemented to determine small offset yield loci under axial-torsional
loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to
its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned
IN718 at 23, 371, and 454 °C and for aged (precipitation hardened) IN718 at 23 and 649 °C. The shape of the
initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in gen-

eral, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that
increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation
and distortion of the locus.

This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to
at least 649 °C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a
superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material

response, eventually leading to improved design tools for engine designers.

INTRODUCTION

Aeropropulsion components, such as disks, blades, and shafts are commonly subjected to multiaxial stress

states at elevated temperatures. Nickel-base alloys are often used for these applications because of their excel-
lent elevated temperature mechanical properties. Experimental results from loadings as complex as those felt
in-service are needed to help guide the development of accurate viscoplastic multiaxial deformation models
that can be used to improve the design of aeropropulsion components.

Inconel 718 (IN718) is a popular nickel-base alloy which has been extensively researched in terms of
strengthening mechanisms and fatigue behavior (e.g., Oblak, et al., 1974; Fournier and Pineau, 1977; Sun-

dararaman et al., 1988; Worthem et al., 1989; Kalluri et al., 1997). In addition, the viscoplastic behavior of
IN718 at 649 °C has been characterized for the Chaboche and Bodner-Partom viscoplasticity models using
tensile loading at several strain rates (Abdel-Kader et al., 1986; Li, 1995). In this investigation, tubular IN718
specimens were subjected to isothermal combined loads over a wide range of temperatures (23 to 649 °C) to
map out yield loci in the axial-shear stress plane. The results over this broad temperature range are unique and
will lead to a better understanding of time-dependent multiaxial behavior of IN718 in service at elevated tem-

peratures.
Multiaxial experimental investigations often use a yield surface to delimit the elastic region, describe

hardening, and determine if an associated flow rule applies by checking for normality (Michno and Findley,
1974; Phillips and Moon, 1977; Khan and Wang, 1993). These experiments involve determining enough yield
points in one or more stress planes to construct the yield surface. This can be accomplished using several
specimens, where each specimen is used to find a single yield point, or by using a single specimen to deter-

mine multiple yield points. The latter technique is more common since using several specimens is not cost
efficient and the results may be affected by specimen-to-specimen scatter. For an in-depth (albiet dated) lit-
erature review of multiaxial experimental investigations, see Hecker (1976) and Michno and Findley (1976).
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Thesuccessof usingasinglespecimentocompletelymapoutayieldsurfacedependsstronglyonpre-
servingthematerialstateduringprobing.Sinceyieldingdefinestheonsetof plasticdeformation,anychange
in materialstateassociatedwithdetectingayieldpointmustbeinsignificant.Otherwise,thematerialstate
(andalongwithit thesizeandshapeoftheyieldsurface)ischangedbyeachprobe.

Historically,threetypesof yielddefinitionshavebeenusedfor yieldsurfaceexperiments:(1)deviation
fromlinearity,(2)offsetstrain,and(3)back-extrapolation.Thesmall offset strain definition is frequently used

to give an indication of the proportional limit. As the name implies, yielding is defined to occur when an
equivalent offset strain on the order of a few microstrain (He) has developed.

There is some flexibility in using the small offset definition of yielding since there are a wide range of
offset magnitudes that can be considered small. Helling et al. (1986) detected offset strains of-5 He to deter-
mine yield surfaces for aluminum and brass, whereas at the other extreme Nouailhas and Cailletaud (1996)
used a target value of 100 He when conducting similar tests on a single-crystal superalloy. For elevated tem-

perature experiments, where 'heater noise' (thermal fluctuations and electronic noise) can decrease the strain
signal-to-noise ratio, a large enough offset strain must be used to determine yield points consistently. Thus, in
the present work we investigated the effect of using target values between 10 and 30 He for determining the
yield points.

The accuracy of the experimental results is strongly dependent on the strain measurement device. High
precision strain gages work well for detecting small increments of strain at room temperature (Helling et al.,

1986; Wu and Yeh, 1991). However, for high test temperatures, where strain gages cannot be readily used, a
different method must be applied to detect yielding, such as an acoustic emission system (Winstone, 1983) or
a high temperature biaxial extensometer (Battiste and Ball, 1986; Lissenden et al., 1997).

In the present study, a biaxial extensometer was used to determine yield loci in the axial-shear stress
plane for tubular IN718 specimens over a wide range of temperatures (23 to 649 °C). The specimens were
tested in two distinct material states: solutioned and aged. The aged material contains precipitates that are

expected to hinder dislocation movement and may lead to large back stresses (Stouffer and Dame, 1996),
while the solutioned material is generally a single-phase composition. Clearly, the two materials will exhibit
different yielding and hardening behavior.

The objective of this study was to demonstrate that yield loci (initial and subsequent) can be determined
for metallic materials (such as IN718) at temperatures up to 649 °C by probing a single specimen multiple
times and measuring strains with a biaxial extensometer. This work opens the door for a more in-depth study of

multiaxial response at temperatures in the service range of aeropropulsion systems. The data presented here
will be further analyzed in a companion paper (Gil et al., 1998a) to obtain loci of rate-dependent flow surfaces
in the axial-shear stress plane.

EXPERIMENTAL SETUP AND PROCEDURE

Material and Specimens

The wrought Inconel 718 superalloy used in this study was obtained in the form of extruded 31.8 mm
diameter bar stock, all from the same heat. The material composition as provided by the fabricator is listed in
Table I. The bars were machined into tubular specimens having the final dimensions shown in figure 1. After

machining, the specimens were solutioned at 1038 °C in argon for 1 hr and air cooled. Select specimens were
further heat-treated as follows: aged at 720 °C in argon for 8 hr, cooled at 55 °C/hr to 620 °C and held for 8 hr,
then air cooled to room temperature. Henceforth, the material state will be referred to as either solutioned or
aged.

Metallography was performed on transverse and longitudinal sections taken from the grip ends (unde-
formed) and from the gage sections (deformed) of both solutioned and aged tubes. No difference was observed

between the grip and the gage sections. Furthermore, both the solutioned and aged microstructures appeared
similar (fig. 2). The grain structure consisted of equiaxed grains having an ASTM grain size of 4 (a nominal
diameter of 90 Hm). The solutioned material had a hardness of HRB 90, while the aged material was HRC 45.
Carbide stringers were aligned parallel to the tube axis (i.e., the extrusion axis) and were observed distributed
throughout the microstructure.

Transmission electron microscopy was performed on the solutioned and aged IN718. The aged material

was observed to have a fine dispersion of y" within each grain (fig. 3). The precipitate particles were observed
to be platelets -10 to 15 nm in length. The solutioned IN718 did not show any precipitation. Texture analysis
was also performed, which showed there to be no preferred grain orientation for either heat treatment.
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TestEquipment

Theexperimentswereperformedonacomputercontrolledbiaxialservohydraulictestmachinecapableof
applyinganaxialloadof +222,000 N and a twisting moment of +2,260 N.m. The specimen was held in place
by water-cooled, hydraulically actuated grips. The top grip remained fixed throughout a test while the bottom
grip is attached to an actuator capable of independent rotation and vertical translation. An analog controller

was used to command the motion of the actuator. Additional details regarding the biaxial test machine are
provided by Kalluri and Bonacuse (1990).

The test machine is equipped with a closed-loop induction heating system (Ellis et al., 1997) capable of
specimen temperatures in excess of 800 °C. The system consists of a 5-kW radio frequency induction heating
unit and three adjustable, water-cooled copper coils that surround the gage section of the specimen (fig. 4).
The specimen temperature is controlled by spot welding a thermocouple to the gage section of the specimen.

Three additional thermocouples were spot welded to the specimen to help achieve an acceptable thermal gra-
dient (+ 1 percent of the test temperature).

Strain Measurement

The ability to measure very small increments of strain (precise to the microstrain level) is necessary for
yield surface experiments, since the goal is to detect yielding and then unload the specimen before significant
permanent deformation occurs. Furthermore, the strain measurement device must maintain this level of per-
formance for a wide range of specimen temperatures. This is especially difficult at elevated temperatures,
where thermal fluctuations can hinder high resolution strain measurement.

In this investigation, axial and shear strains were measured using a water-cooled biaxial extensometer

(fig. 4) that is capable of operating over a large temperature range. The extensometer uses two high-purity
alumina (A1203) rods, spaced 25 mm apart, to precisely measure axial deformation and twist. Strain values are
recorded to one tenth of a microstrain (_te). Lissenden et al. (1997) have supplied more details on the biaxial
extensometer.

For transverse strain measurement, a diametral extensometer was employed. The diametral extensometer
is similar to the biaxial extensometer in appearance, although it contains longer rods that rest on either side of

the gage section of the specimen to directly measure the change in diameter. Transverse strains were meas-
ured to determine Poisson's ratio (which will be used to calculate the equivalent strain rate) and to determine
whether Poisson's ratio changes during the course of a yield locus probe.

Test Control

With one exception, all of the experiments were conducted in strain control. An equivalent strain rate of
10 _te/sec (10 s s 1) was used. For axial-torsional loading and a Poisson's ratio of 0.34,1 the equivalent strain
rate is

Eeq=_f_EijEij = _(0.906)2E121 + 4 E122 (1)

where _ij is the strain rate tensor and Ell and El2 denote the axial and shear strain rates, respectively.

Custom written software and a personal computer, equipped with analog-to-digital (A/D) and digital-to-
analog (D/A) conversion hardware, were used to control the experiments. The D/A hardware was commanded
to send strain increment data to the electronic controller 1000 times/sec. Similarly, the A/D hardware col-
lected load, torque, and strain data from the controller at 1000 Hz. Every 100 data points were averaged to
help minimize the effect of heater noise, which resulted in a maximum of 10 data points per second being
written to a file.

Two different software programs were developed for controlling the experiments. One program was used to
determine the individual yield points that were used to map out initial and subsequent yield loci and the other
program performed the radial prestrains.

1Measured at 23 °C. Abdel Kader et al. (1986) obtained a value of 0.3356 at 649 °C.
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YieldLoci

Eachlocuswasdeterminedbystrainingthespecimenin 16uniquedirections,accordingto aspecified
angleinequivalentaxial-torsionalstrainspace(fig.5).Theorderinwhichtheprobeswereconductedwas
chosentominimizechangestothematerialstate.Forexample,figure5 showsthateacheven-numberedprobe
wasin theoppositedirectionfromtheprecedingodd-numberedprobe.Byusingthissequencewehopedto
counterbalancetheeffectsof thepreviousprobe.Furthermore,eachsurfacewasrepeatedatleastonceto
ensurethattheresultswererepeatableandto verifythatthematerialstateremainedessentiallyundisturbed.

Eachpointontheyieldlocuswasdeterminedusingthefollowingprocedure.
• Calculatethecoefficientsof theaxialandshearelasticloadinglines(E,¢Y]1,G, and ¢Y]2) over a pre-

defined strain range during the initial (assumed to be linear elastic) portion of the loading using a least

squares regression technique (fig. 6). E and G are the axial and shear moduli; ¢Y]I and (Y]2 are the axial
and shear initial stresses.

• Continually calculate the offset strain components (fig. 6)

" (Yll --(Y_I (2)
E_{)' = E11 E

qff O12 -- (Y]2 (3)
El'2 ----El2 2G

where o11, o12 are the axial and shear stresses and E11, E12 are the axial strain and tensorial shear strain

(E12 = 1/2 712).
• When the equivalent offset strain,

- 3k 12] = ) +3k 12] , (4)

reaches the target value (usually 30 _tE), write the current stress values (axial and shear) to an output
file, unload the specimen and then begin the next probe.

Equation 4 is the equivalent offset strain, simplified for axial-torsional loading of a material exhibiting
inelastic incompressibility (v = 0.5). Although the incompressibility condition may not be met for small offset

strains, where the instantaneous Poisson's ratio is transitioning from its elastic value to its fully inelastic
value, this relationship for the offset strain components has been traditionally used by researchers for determin-
ing yield surfaces (e.g., Wu and Yeh, 1991; Khan and Wang, 1993; Lissenden, et al., 1997). Additionally, the
equivalent offset strain refers to an offset during loading and does not necessarily have the same magnitude as
the permanent set (i.e., permanent strain at zero load).

Radial Prestraining

After determining the initial yield loci, hardening behavior was studied by applying radial prestrains at
elevated temperature (except in one case a cyclic radial prestrain was applied at room temperature). Two
radial prestrain paths were used. One path was combined tension-torsion, corresponding to an angle of Z45 ° in

the equivalent strain plane (fig. 7(a)). This was equivalent to a Z45 ° path in the equivalent stress plane. A
schematic of the equivalent stress-strain response is shown in figure 7(b). The maximum prestrain point was
determined by detecting a particular value of equivalent offset strain. The other prestrain path consisted of
straining the specimen in pure tension until a predefined total axial strain was achieved.

The same procedure was followed for both strain paths and is outlined in the following:

• The stress-free specimen was heated to the desired temperature (in load and torque control).
• After thermal equilibrium was reached, the specimen was strained until the target prestrain value was

achieved (point AI (or BI) in fig. 7(a)).
• The mode was switched to load/torque control and the specimen was held at a constant stress for several

minutes. During this time creep strains were monitored on X-Y plotters and recorded by the data acquisi-
tion software.
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• Afterseveralminutes,thecontrolmodewasswitchedbackto straincontrol.Thereverseyieldpointwas
found(pointA2(orB2)in fig. 7(a))byunloadingthespecimenuntiltheequivalentoffsetstrainex-
ceededthetargetvalue.

• Thespecimenwasreloadedtoapoint(pointA3(orB3)in fig. 7(a))midwaybetweentheprestrainpoint
andthereversepoint.Thesubsequentyieldlocuswasthendeterminedusingthispointastheprobe
origin.

EXPERIMENTALRESULTS

SolutionedIN718

Whenusingtheoffsetstraindefinitionofyieldingit is importanttorelatetheoffsetstrainduringloading
tothepermanentsetthatis measuredafterunloadingiscomplete.In anattempttocomparethesetwoquanti-
ties,theoffsetstrainforasmalloffsettensiontestwasplottedversusthetotalaxialstrain(fig.8).Theoffset
strainaccumulatesto-30_tEduringloading,howevertheoffsetstraincontinuestoincreaseduringunloading
toatotaloffsetof -44_tE.

Thediscrepancybetweentheoffsetstrainduringloadingandthepermanentsetisbelievedtobedueto
inaccuracyof theextensometeraftera loadreversal,ratherthantruematerialbehavior.Datafromprevious
testsontype316stainlesssteel(Lissendenetal.,1997)wereanalyzed,whereanextensometerandstrain
gageswerebothusedtomeasurestrain.A comparisonof straindataobtainedfromtheextensometerandfrom
thestraingagesshowedthattherewasgoodagreementbetweenthetwomeasurementdevicesduringloading.
However,aftertheloadreversaltheextensometeroffsetstrainsoftencontinuedtoincreasewhilethestrain
gagesindicatedlinearelasticunloading(constantoffsetstrain).Thissuggeststhatstrainsmeasuredby the
extensometerduringloadingareaccurate,butthatacorrelationbetweentheoffsetstrainandpermanentset
cannotbemade.

Nowthatwewereconfidentthattheextensometerwasaccuratelymeasuringtheoffsetstrain,specimen
IN-15wasusedtodeterminewhichcontrolmode,stressorstrain,gavemoreconsistentresultsat23°C.
Phillipsetal. (1984)investigatedtheyieldbehaviorof aluminumusingstressandstraincontrolledloading,
howeveradirectcomparisonoftheresultswasnotshown.In thispreliminaryworkwewereinterestedin com-
paringthesizeandshapeof theyieldlocususingstressandstraincontrolandwewantedto determineif there
wasmoreor lessscatterin theresultsforstraincontrolcomparedto stresscontrol.

InitialyieldlociforspecimenIN-15weredeterminedunderstressandstraincontrolledloadingatroom
temperature.In theseteststhetargetvaluewasanequivalentoffsetstrainof 20_tE.Theresultinglociareplot-
tedin themodifiednormal-shearstressplane(_/3.cy12-cyH)in figure9.Theeccentricityof thelocusin the
compressiondirectionmayormaynotbesignificant,sincespecimenIN-15wasnotin thepristinestateprior
tothesetests.Clearly,thecontrolmodehadlittleeffectonthedata.Repetitivetestsweremadetoverifythis
result.Straincontrolwasusedfor theremainingexperimentstobeconsistentwithprestraining.

Next,theelasticPoisson'sratio(whichwasneededforeq.(1))wasdeterminedduringatensileprobeby
measuringthediametralstrain.SpecimenIN-9(apristinespecimen)wastestedin tensionuntila 10_tEoffset
wasreached.Figure10showsthediametralstrain(E22)plottedversustheaxialstrain(E11).Theslopeof fig-
ure10,whichisPoisson'sratio,is0.34andremainsconstantuptotheloadreversal.Thissuggeststhatthe
elasticPoissonratio(0.34)is amoreappropriatechoiceforuseinequation(4)whenperformingsmalloffset
yieldexperimentssincenosignificantchangein thePoissonratiooccurs.However,resultsnotshownhere
indicatethatyieldlociarerelativelyinsensitivetothePoissonratiofor valuesrangingbetween0.25and0.5
(Gil, 1998).

Theeffectofusingtargetvaluesbetween10and30_tEto determineyieldlociwasexaminednext.Three
lociweredeterminedfor eachtargetvaluetojudgerepeatability.Ateachtargetvalue,theresultsof thethree
lociwerenearlyidentical(Gil, 1998);indicatingthattargetvaluesin thisrangedonotsignificantlychange
thematerialstate.Additionally,nosignificanthardeningoccurredin theoffsetstrainrangeof 10to30_tE.We
chosetouseatargetvalueof 30_tEfor theremainingexperimentstoobtainamaximumamountof offset
straindatatoanalyzein termsof rate-dependentflowdefinitions;whichforviscoplasticmaterialsaremore
importantthantheyielddefinition(Giletal.,1998a).Here,arate-dependentflowdefinitionreferstoonethat
dependsontheinelasticstrainrate,ratherthanthetotalinelasticstrain.Additionally,atelevatedtemperatures
thermalfluctuationsdecreasetheresolutionof themeasuredstrain,makingalargertargetvaluemore
practical.
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Afterthesepreliminaryissueswereresolved,theinitialyieldbehaviorof solutionedIN718wasinvesti-
gatedat23°Cusingtwopristinespecimens(IN-6andIN-25).Therewasremarkablyverylittlespecimen-to-
specimenscatterbetweentheinitialloci(fig. 11).Furthermore,eachtestwasrepeatedonceto confirmthatno
significantchangeinmaterialstatetookplaceduringprobing.

ThevonMisesandTrescayieldcriteria(see,forexample,KhanandHuang,1995)arethetwomostpopu-
larcriteriaforpredictingyieldingin isotropicmetals.ThevonMisescriterionplotsasacirclein themodified
axial-shearstressplane0/3"%2- %_),whiletheTrescacriterionplotsasanellipse.Thesecriteriaarecom-
paredwiththeexperimentaldatain figure11.ThevonMisescircle,centeredatthestressplaneoriginwitha
radiusof 248MPa,appearstofit thedatawell.TheTrescaellipseprovidesamoreconservativepredictionof
yieldingwhentorsionalloadsarepresent.

Beforeinvestigatingtheinitialyieldbehavioratelevatedtemperaturetheheaternoisein thestrainsignals
atelevatedtemperaturewasevaluatedthroughcomparisonwithroomtemperaturemeasurements(fig. 12).The
peak-to-peakamplitudeof theelectronicnoisewaswellbelow1_teforbothaxialandshearstrainatroom
temperature.At elevatedtemperature(454°C),theamplitudeis larger(especiallyin theaxialstrain)dueto
smallthermalfluctuationsandelectronicnoiseassociatedwiththeinductionheatingsystem.Clearly,heater
noiseis importantwhenattemptingtomeasurestrainsprecisetoafewmicrostrain.Afteragreatdealofeffort
tofurtherreducetheheaternoisewithoutsuccess,it wasviewedasacceptable.

InitialyieldlociforspecimensIN-6andIN-25determinedat371and454°Careshownin figures13and
14,respectively.SolutionedIN718wasnottestedat649°Cbecausethatis felttobetooclosetotheaging
temperature.Asthetemperatureincreases,theyieldlocidecreasein size,butretainthesameshape.In addi-
tion,thecenterofthelocusisnotlocatedattheoriginof thestressplaneasit wasat23°C.AvonMisescir-
clewitharadiusof 207MPacenteredat(-13.8,0.0)MPain themodifiedaxial-shearstressplaneappearsto
fit thedataat371°Cverywell(fig. 13).At454°C(fig.14),avonMisescirclewitharadiusof 193MPaand
centeredat(-27.5,0.0)wasfit tothedatabyeye.Theseresultsindicatethatasthetemperatureincreases,the
yieldlocusdecreasesinsizeandbecomesmoreeccentricto theorigin.Theeccentricityin thecompression
directionwill bediscussedlaterinconjunctionwiththeagedIN718.

Next,specimenIN-6wassubjectedtocombinedaxial-torsionalprestraining,asshownin figure15.Point
A correspondsto thelocationwheretheinitiallociweredetermined(zerostress).Subsequentyieldlociwere
determinedatlocationsC,O,Q,andS.

Thefirstprestrainconsistedof combinedtension-torqueloadingat454°C.SpecimenIN-6wasstrained
alongaZ45° radialpathinequivalentstrainspace(pathOA_A2A3in fig.7(a))untilanequivalentoffsetstrain
of500_tEwasattained(whichcorrespondedtoastressstateof cy_ = 173.5 MPa, %2 = 92.0 MPa; point B in
fig. 15). The center of the elastic region (point C) was then found, as described in the previous section, and
two subsequent loci were determined.

The first subsequent yield locus (Locus C) is shown in figure 16, along with the prestrain point B. A spline
fit of the yield locus is included to aid in interpreting the data. There is clearly some translation of the yield

locus toward the prestrain point. Furthermore, the back of the locus has become flattened indicating some dis-
tortional hardening. Various researchers have observed similar results for monolithic metals such as aluminum
(Phillips et al., 1972), brass (Helling et al., 1986), and stainless steel (Wu and Yeh, 1991). Figure 16 also
indicates that neither isotropic hardening (a pure expansion of the yield surface), nor kinematic hardening (a
pure translation of the yield surface), nor a simple combination thereof accurately describe the hardening
behavior of solutioned IN718 at 454 °C. Furthermore, the locus shows a small amount of cross effect, that is,

an expansion of the locus in the directions perpendicular to the prestrain direction.
Solutioned IN718 exhibited very little hardening behavior during the first prestrain cycle at 454 °C. Upon

reaching prestrain point B, the axial and shear responses were nearly perfectly plastic. In an attempt to deter-
mine the effect of fully reversed cyclic loading on material hardening, specimen IN-6 was subjected to five
strain-controlled cycles of combined axial-torsional loading at 23 °C, beginning and ending at zero stress
(figs. 15 and 17). The radial strain path was oriented at an angle of Z45 ° for positive strains and Z225 ° for

negative strains (as measured counterclockwise from the positive axial strain axis) and had limits of
E11 = +2500 _tE and E12 = +1875 _tE.

The last cycle ended when the axial and torsional loads reached zero, thus the final loading was in the
Z225 ° direction. Terminating the final cycle at zero stress (point O in fig. 17) led to an equivalent offset strain
of 1625 _tE between points O and D. Specimen IN-6 was then reheated to 454 °C and a subsequent yield locus
was determined. Figure 18 shows the subsequent locus (Locus O) as well as the cyclic prestrain path. As

expected, the locus has been translated and distorted in the Z225 ° direction compared to locus C and its cen-
ter is located at approximately the same position as the initial Mises circle. It also appears that the cyclic
loading may have slightly increased the yield strength in the directions perpendicular to the loading path (i.e.,
cross effect).
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SpecimenIN-6wasagainprestrainedin theZ45° directionat454°Cuntilanequivalentoffsetstrainof
1000HE was achieved (which corresponded to a stress state of %1 = 162.0 MPa, %2 = 86.0 MPa; point P,
fig. 15). Locus Q was then determined, as shown in figure 19, and was again translated in the direction of pre-
strain and distorted. From this point, specimen IN-6 was then further prestrained until an additional offset strain
of 500 HE was reached (corresponding to a stress state of cy_ = 177.0 MPa, %2 = 100.0 MPa; point R, fig. 15),
and locus S was determined (fig. 19). For each locus shown in figure 19, the corresponding prestrain point is

shown to provide a reference. Loci Q and S are very similar in shape and size, however locus S is shifted
slightly more in the prestrain direction with respect to locus Q due to the additional prestrain. Additionally, the
loci exhibit a cross effect, that is they have expanded slightly in the direction perpendicular to the prestrain
direction.

Aged 1N718

Experiments to determine yield loci for aged IN718 were hindered by an anomalous material response,
termed stiffening (Gil et al., 1998b), that occured during compressive loading. Stiffening is a nonlinear mate-
rial response that is characterized by a slight increase in the stiffness. This behavior is shown in figure 20,
where the offset strain initially has a positive sign for compressive loading. At some point, as indicated in

figure 20, the direction of the offset strain reverses. Again during unloading, the offset strain continues to
increase. As mentioned, the permanent set shown in figure 20 may not be representative of the true material
behavior since the extensometer appears to exhibit hysteresis upon reversing the load. If the true material
response were elastoplastic, then the permanent set should be 30 HE, which would make the error in the exten-
someter results after complete unloading -17 HE (the maximum compressive strain was 3720 HE).

Stiffening could be associated with nonlinear interactions between dislocations and precipitate particles.

Hirth and Cohen (1970) proposed a theory to account for the strength-differential (S-D) effect in steels, in
which dislocations interact with solute atoms causing local distortion of the lattice and leading to local elastic
strains that are nonlinear. According to the model, the compressive nonlinear elastic region has an increasing
instantaneous stiffness. Thus, the yield stress is higher than that of a material having a linear elastic region
(given the same amount of elastic strain). Additionally, the tensile nonlinear elastic region has a decreasing
instantaneous stiffness and therefore the yield stress is lower than that of a material having a linear elastic

region. Kalish and Cohen (1969) suggest that this theory can also apply to the coherency strains around pre-
cipitated particles.

Stiffening presented a real challenge to our procedure for detecting yielding because our existing proce-
dure explicitly assumes an initial linear elastic response. If stiffening is an elastic response (which appears to
be the case), then inelastic strain begins to occur when the stiffening offset has reached a maximum (fig. 20).
Therefore, in the presence of stiffening, we took the inelastic strain to be the offset strain plus the maximum

stiffening strain. Doing so essentially shifts the elastic loading line in the direction of the stiffening.
Two pristine aged IN718 specimens (IN-8 and IN-10) were tested at 23 °C and the initial yield loci are

shown in figure 21. The tests were repeated once for each specimen with nearly identical results. Avon Mises
circle of radius 655 MPa appears to fit the data well, that is 2.64 times larger than the initial von Mises circle
for solutioned IN718 at 23 °C. Clearly, the aging process (precipitation) effectively strengthens the material.
However, unlike the solutioned specimens (fig. 11) the locus is extremely eccentric to the stress origin and

centered at (-138, 0) MPa. The eccentricity of the locus in the compression direction is representative of the
S-D effect that has been observed in select materials (martensitic steels and other alloys as well as plastics).
Hirth and Cohen (1970) and Drucker (1973) provide possible explanations for the S-D effect. The Hirth and
Cohen explanation involves nonlinear elasticity and was mentioned previously. Drucker's explanation is based
on the experimental observation that materials that exhibit a S-D effect also have a permanent volume

change, which implies that yielding is dependent upon the mean stress (cym = [CYll+ cY22+ cy33]/3). Permanent

volume change is generally related to an increased dislocation density required for inelasticity in dispersion
hardened materials. If yielding is a linear function of mean stress, then there is a S-D effect. See also Rad-
cliffe and Leslie (1969), Drucker (1973), Ranch et al. (1975), and Spitzig et al. (1975) for more on the
strength-differential effect.

There appears to be more scatter in the aged IN718 results than for the solutioned IN718 results. This is
probably due at least in part to the gradual yielding exhibited by the aged material relative to the solutioned

IN718. Figure 22 shows the normalized von Mises effective stress, cye_. = 3_f2/cYt, L for equivalent offset

strains up to 30 He for both materials under combined tension/torsion (0 = 57 °) at 23 °C. Here, J2 is the second
invariant of deviatoric stress and cypL is the proportional limit. The smaller hardening modulus of the solutioned
IN718 results in minimal scatter because of the smaller resulting stress increment relative to the aged IN718.
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SpecimensIN-8andIN-10werethentestedat649°C(fig.23).Followingthesametrendthatwas
observedforsolutionedIN718,thelociaresimilarinshapetothelociat23°C,yetsmallerinsizeandtrans-
latedfurtherin thecompressiondirection.AvonMisescirclewitharadiusof 448MPaandcenteredat
(-145.0,0.0)MPaappearstocloselyfit thedatafrombothspecimens.Morescatteris observedat649°Cdue
totheeffectof heaternoise.TheyieldlociforbothsolutionedandagedIN718appeartotranslatein thecom-
pressiondirectionwithincreasingtesttemperature,asindicatedin tableII. ThismeansthattheS-Deffect,
whichis definedmathematicallyin thediscussionsection,increaseswithtemperature,butRauchetal. (1975)
reportthattheS-Deffectdecreaseswithtemperatureforsomesteels.Additionalinitialyieldsurfacedetermi-
nationsforagedIN718at371and454°C(notreportedherein)indicatethatthetemperature-dependenceof
yieldingis differentforIN718in theagedstatethanit is in thesolutionedstate.

SpecimenIN-10wassubjectedto acombinedaxial-shearprestrain(Z45° inequivalentstrainspace)at
649°Cuntilanequivalentoffsetof 500_tewasdetected.Thesubsequentyieldlocusis shownin figure24,
wheretheinitialMisescircleisalsoshownforreference.Duringtheprestrainprocedurethecenterof thelocus
wasnotaccuratelylocated,possiblydueto theinfluenceof heaternoise,whichmayhaveledto thescatterin
thedatapointsontheyieldlocus.Nevertheless,afewimportantcharacteristicscanstill beobserved.First,the
locusis translatedfurtherin thedirectionof theprestrainthanwasobservedforsolutionedIN718(fig.16).
ThisverifiesthatprecipitationhardeningIN718notonlyincreasestheyieldstrengthof thematerialbutalso
increasesitsabilityto strainharden(Dieter,1988).Additionally,thereappearstobenocrosseffect,however
it isdifficultto makeanystrongconclusionsbasedonthelimitedamountof data.

Theotheragedspecimen(specimenIN-8)wassubjectedto apurelytensileprestrainuntila totalaxial
strainof 9000_te(0.9percent)hadbeenreached.Thefirstsubsequentyieldlocusisshownin figure25.The
locustranslatedin thedirectionof prestrainanddistorted.Thedistortionis anelongationin thedirectionof the
prestraininadditiontoaflatteningof thebackside.Nocrosseffectisobserved.

DISCUSSION

All initialyieldlociexhibitanS-Deffect(exceptfor solutionedIN718atroomtemperature)fora30_tc
offsetstrainyielddefinition.TheS-DeffectincreasesasthetesttemperatureincreasesandforagedIN718at
649°C is65percentbasedonthedefinitionof strengthdifferentialcommonlyused(Spitzig,etal.,1975),

SD=2 (5)

where % and (Yt are the yield strengths in compression and tension, respectively. Equation (5) was used to cal-
culate the strength-differential shown in table II. When interpretting this definition based on the Mises yield
locus in the modified stress plane shown in figure 23, SD is the percentage of the ratio of circle center to
diameter. Whether the S-D effect that we have observed is real or apparent is currently being investigated.
A real S-D effect remains during gross plastic deformation, while an apparent S-D effect is only present at

the initiation of plastic deformation and could be due to residual stresses or microcracks among other things
(see Hirth and Cohen, 1970 and Drucker, 1973). The real S-D effect in 4310 and 4330 steels was found to be

5.5 percent by Spitzig et al. (1975). We suspect that a large portion of the 65 percent S-D effect that we have
observed is apparent rather than real. However, in order to mathematically predict our experimentally deter-
mined yield loci the S-D effect, real or apparent, must be taken into account. One way to do that is to use a
Drucker-Prager (1952) type yield criterion, that is, one that depends on the first stress invariant, I1 = 3(Ym, and

thus depends on the mean stress. Alternatively, the third deviatoric stress invariant, J3, could be used if yield-
ing is independent of the mean stress.

The subsequent yield loci indicate that IN718 exhibits kinematic hardening, which results in a
Bauschinger effect, as well as distortional hardening, which is commonly observed in yield surface
experiments when a proportional limit or small offset strain definition is used. It is commonly observed that
small offset strain definitions result in hardening that is primarily kinematic and distortional while large offset

strain definitions (e.g., 2000 _te) result in isotropic hardening (Williams and Svensson, 1971 and Khan and
Wang, 1993). However, solutioned IN718 exhibited only a small amount of hardening relative to aged IN718.

Experimentally determined subsequent yield loci have two primary purposes. In one case, they can provide
guidance for the development of evolution equations that are necessary for materials that exhibit hardening. In
another case, they can be used to validate material models that have been developed and characterized from
other, perhaps uniaxial, data. We view the limited subsequent yield loci presented herein as insufficient for

NASA/TM--1998-208658 8



eitherof thesepurposes,butpresentit asademonstrationthatthistypeof datacannowbeobtainedandwill
undertakeadetailedstudyof hardeningbehaviorin thefuture.

SUMMARYANDCONCLUSIONS

Theeftorttodetermineinitialandsubsequentyieldlocifor IN718attemperaturesupto649°Chasbeen
successful.YieldlociweredeterminedforsolutionedIN718attemperaturesof 23,371,and454°Candfor
aged(precipitationhardened)IN718attemperaturesof23and649°C.Thisworkopensthedoorformore
detailedstudiesonhardeningbehaviorathightemperatures.Thefollowinggeneralconclusionscanbemade
basedontheexperimentalresultsofthiswork.

• ThevonMisesyieldcriterionfit theinitialyieldlociin theaxial-shearstressplaneverywellif anini-
tialeccentricityisconsidered(seetableII), suggestingtheuseof aDrucker-Pragertypeyieldcriterion.

• Eccentricityof theinitialyieldlociforagedIN718definesthestrength-differentialeffectthatmaybe
dueto nonlinearelasticity(dislocation-precipitateinteractions)and/ortheeffectof meanstress
(increaseddislocationdensity).

• AgedIN718displayssignificantlymorehardeningbehaviorthansolutionedIN718.
• Subsequentyieldlociindicateanisotropichardeningthatis predominantlykinematicandsecondarily

distortional.In addition,theremaybeaslightcrosseffectforsolutionedIN718.
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TABLE I. MATERIAL COMPOSITION

OF INCONEL 718

Element Content,
wt.%

Ni

Cr

Mo

(Nb+Ta)
Ti

A1

Co

C

S

Mn

Si

B

Cu

P

Fe

53.58

17.52

2.87
5.19

0.95

0.57

0.39

0.034

0.002

0.120

0.070

0.004

0.050

0.006

Bal.

TABLE II __ RADIUS AND CENTER OF EACH INITIAL YIELD LOCUS FOR SOLUTIONED

AND AGED IN718 AS A FUNCTION OF TEMPERATURE

Tenlperature,
°C

23

371

454

649

Solutioned Aged

Radius of Center of Strength
Mises circle, Mises cu'cle, differential

MPa MPa percent

248 (0.0, 0.0) 0

207 (13.8,0.0) 13

193 (_7.5, 0.0) 28

Radius of Center of

Mises circle, Mises circle,
MPa MPa

655 ( 138.0, 0.0)

448 ( 145.0, 0.0)

Strength
differential

percent
42

65

"91 228.6 I1_

I_1 635 I_1 j-- 82.6 R 82.6 R --,
! " ! / \

V//////////////'_/_ ........ _ ........ /-757//////////////

[////////////;/2.dJ ........ i..._ ..... _£////////-//////

I- 165.1 "_1

J_ _ 21.0
25.4

V
I _-- 15.9

Figure 1.--Typical specimen geometry (all dimensions are in millimeters).
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0.10 mm

Figure 2.--Microstructure of solutioned Inconel 718

(optical microscopy). The microstructure for aged
Inconel 718 was similar.

Figure 3.--Transmission electron microscopy of aged

Inconel 718 showing _/" precipitation.

Figure 4.--Close-up of specimen, extensometer, and

heating coils.
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Number Angle

1 12 °

2 192 °

3 102 °

4 282 °

5 57 °
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Probe Probe

Number Angle

9 79 °

10 259 °

11 170 °
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13 125 °
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15 35 °

16 215 °

Figure 5.--Probe directions used in determining a yield locus.
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