NASA/TM—2017-219500

‘Ll:%.‘f‘

%

A Compilation of MATLAB Scripts and Functions
for MAC/GMC Analyses

Pappu L. N. Murthy and Brett A. Bednarcyk
Glenn Research Center, Cleveland, Ohio

Subodh K. Mital
University of Toledo, Toledo, Ohio

July 2017

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space science.
The NASA Scientific and Technical Information (STI)
Program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Officer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI Program provides access
to the NASA Technical Report Server—Registered
(NTRS Reg) and NASA Technical Report Server—
Public (NTRS) thus providing one of the largest
collections of aeronautical and space science STl in
the world. Results are published in both non-NASA
channels and by NASA in the NASA STI Report
Series, which includes the following report types:

» TECHNICAL PUBLICATION. Reports of
completed research or a major significant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of significant
scientific and technical data and information
deemed to be of continuing reference value.
NASA counter-part of peer-reviewed formal
professional papers, but has less stringent
limitations on manuscript length and extent of
graphic presentations.

TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or of
specialized interest, e.g., “quick-release” reports,
working papers, and bibliographies that contain
minimal annotation. Does not contain extensive
analysis.

 CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

 CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by NASA.

e SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

e TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s mission.

For more information about the NASA STI
program, see the following:

e Access the NASA STI program home page at
http://www.sti.nasa.gov

e E-mail your question to help@sti.nasa.gov

e Fax your question to the NASA STI
Information Desk at 757-864-6500

e Telephone the NASA STI Information Desk at
757-864-9658

e Write to:
NASA STI Program
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM—2017-219500

A Compilation of MATLAB Scripts and Functions
for MAC/GMC Analyses

Pappu L. N. Murthy and Brett A. Bednarcyk
Glenn Research Center, Cleveland, Ohio

Subodh K. Mital
University of Toledo, Toledo, Ohio

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

July 2017

This work was sponsored by the
Transformative Aeronautics Concepts Program.

Level of Review: This material has been technically reviewed by technical management.

Available from

NASA STI Program National Technical Information Service
Mail Stop 148 5285 Port Royal Road
NASA Langley Research Center Springfield, VA 22161
Hampton, VA 23681-2199 703-605-6000

This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/

Contents

1.0 INEEOAUCTION ..ttt et ettt b e b e s bt e e at e e s e et e e bt e sbeesaeesatesmbeeabeanbeenseenaees 2
2.0 Preprocessing Related TasKSccccvieiieiiieiieieiiecieet ettt ettt st eensa e saesnaesanesnseenns 3
2.1 Plotting of 2-D RUCs With Uniform SubcCellscccevvieriiiiiiiiriieieieriecieeeeeeee e 3

2.2 Plotting of 2-D RUCs With Nonuniform Subcellsccccoveeviiiiiieiieiiiiiecieereeeesee e e 6

2.3 Extracting RUC Information From a MAC/GMC Input Fileccccooiiiiiiniinininiiieeiee 8

2.4 Writing of Any *RUC Block Input That Can Be Inserted Into a MAC/GMC Input File 9

3.0 Creation of User Defined RUGCSooiiiiiiieieeeee ettt ettt ees 9
3.1 SQUATE PaACKING....cuiiiiiiiiiiiiicieceeee ettt ve v te e ta e s taeetbeesbeebeestaestaessbeeebeenseennes 9

3.2 HeXagonal PaCKINgcccooeiiiiiieiieieiiesese ettt sttt ettt st snteebeeneessaesnne e 10

3.3 Randomly Distributed Circular Fibers in Square RUC...........c.cccoevievieiiiiiieieeieereesee e 11

3.4 Randomly Distributed Square Shaped Fibers in Square Packingcccccoevveviiiviievieniieineenenn, 13

3.5 Generation of a PMC RUC With Randomly Placed Fibers..........cccccoevveviiniiniiinniienienienieee 14

3.6 Increasing Subcell Density Without Affecting the Shape of Fiber in a Self Similar Fashion.... 15

4.0 Post Processing Related TasKSccveiieiiiiiiiiieieeiesiesiecr ettt s aeeveesveesbeebe e aaesevessseesreenneas 18
4.1 Extraction of RUC Stiffness Related Properties.cccvvvvveviievieenieiiiiie e 18

4.2 Extraction of Laminate StITNESSESc.cecuieriierienieiieiieeieeiteite sttt ettt eeees 19

4.3 Extraction of Number of Cycles to Failure From MAC/GMC Fatigue Simulation Output........ 19

4.4 Extraction of First ply Matrix Cracking Strength or PLS...........ccccoeiiiiivienieiececeeeeeen, 20

4.5 Plotting of the Local Stress and Strain Fieldscoocovirvininiinininieeeeeeeeee 22
4.5.1 Local Strain RESPOMSE.cc.eeviiriiiiiriiiieienieeteiestee sttt st s 24

5.0 Miscellaneous MATLAB Recipes for MAC/GMC RUNScocvieiieiiiniieieciecre e 25
5.1 Monte Carlo SIMUIALIONSoecuiiriiiiiiiie ettt et ete et e b e s e enee e 25

5.2 Fatigue Strength vs. Life: SN CUIVEccuiiiiiiiiiiiieiieieee ettt 30

5.3 Generation of Random RUCs for Use in Monte Carlo Simulations............cceceeeerincenenenenne. 33

6.0 Concluding REMATKSc.cccuiiiiiiriiiiiiiierie ettt ettt e ttestre v e e beesbeesbeeteestaessaesssessseesseesseesssesssesssennns 34
APPENdiX—IMATLAB SCIIPES....ttitieitieiieiit ettt ettt ettt et st e e te e teesbeesseesatesaseenbeeseenseesneas 36
RETETEIICES ...ttt ettt e et et sa et e et e st et e et e en e e et eseenteaseeneeseeneeneeeaeeneanneas 80

NASA/TM—2017-219500 iii

A Compilation of MATLAB Scripts and Functions for
MAC/GMC Analyses

Pappu L. N. Murthy and Brett A. Bednarcyk
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Subodh K. Mital
University of Toledo
Toledo, Ohio 43606

Summary

The primary aim of the current effort is to provide scripts that automate many of the repetitive
pre- and post-processing tasks associated with composite materials analyses using the Micromechanics
Analysis Code with the Generalized Method of Cells (Ref. 1). This document consists of a compilation of
several scripts that were developed in MATLAB (The Mathworks, Inc., Natick, MA) programming
language and consolidated into 16 MATLAB functions (MAC/GMC). MAC/GMC is a composite
material and laminate analysis software code developed at NASA Glenn Research Center (Refs. 2 and 3).
The software package has been built around the generalized method of cells (GMC) family of
micromechanics theories (Ref. 1). The computer code is developed with a user-friendly framework, along
with a library of local inelastic, damage, and failure models. Further, application of simulated thermo-
mechanical loading, generation of output results, and selection of architectures to represent the composite
material have been automated to increase the user friendliness, as well as to make it more robust in terms
of input preparation and code execution. Finally, classical lamination theory has been implemented within
the software, wherein GMC is used to model the composite material response of each ply. Thus, the full
range of GMC composite material capabilities is available for analysis of arbitrary laminate
configurations as well.

The pre-processing tasks include generation of a multitude of different repeating unit cells (RUCs) for
CMCs and PMCs, visualization of RUCs from MAC/GMC input and output files and generation of the
RUC section of a MAC/GMC input file. The post-processing tasks include visualization of the predicted
composite response, such as local stress and strain contours, damage initiation and progression, stress-
strain behavior, and fatigue response. In addition to the above, several miscellaneous scripts have been
developed that can be used to perform repeated Monte Carlo simulations to enable probabilistic
simulations with minimal manual intervention. This document is formatted to provide MATLAB source
files and descriptions of how to utilize them. It is assumed that the user has a basic understanding of how
MATLAB scripts work and some MATLAB programming experience.

Nomenclature
L,H Dimensions length, and height of repeating unit cell (RUC)
kr Fiber volume ratio (FVR)
k; Interface volume ratio (IVR)
Nrep Number of RUCs for tiling
Nt Number of fibers
dr Diameter of the fiber
t; Interface thickness
Ni Number of subcells across the interface thickness
Ny Number of subcells along width of the RUC

NASA/TM—2017-219500 1

Nh Number of subcells along height of the RUC

Ry Radius of fiber

R; Outer radius of interface

d. Distance from center of subcell to center of RUC

X2, X3 Position of subcell

™, x3°% New position of mirrored subcell

ko Matrix volume ratio (MVR)

ny Number of fiber subcells

n; Number of interface subcells

CovF Spread between the minimum and maximum fiber diameter

Covl Spread between the minimum and maximum interface outer diameter
Npix Number of pixels along width or height of RUC

Varl Boolean to indicate whether the thickness of interface is constant
VarP Fraction of interface thickness indicating the maximum variability of interface thickness
€ Inter fiber clearance distance

Eclr Fraction of fiber diameter by with the fiber clearance is calculated

1.0 Introduction

Composite micromechanics analyses based on the generalized method of cells (GMC) theory (Ref. 1)
is utilized in developing a computer code (MAC/GMC) at NASA Glenn Research Center. This is well
documented in References 2 and 3. The code can perform a comprehensive composite material and
laminate mechanical analyses. This theory enables prediction of the local stress and strain fields in the
composite material that are crucial for assessing damage initiation and progression in composite
structures. The software package has been built around GMC to provide a user-friendly framework, along
with a library of local inelastic, damage, and failure models. Further, application of simulated thermo-
mechanical loading, generation of output results, and selection of repeating unit cell (RUC) architectures
to represent the composite material have been automated in MAC/GMC. Finally, classical lamination
theory has been implemented within MAC/GMC, wherein GMC is used to model the composite material
response of each ply. Thus, the full range of GMC composite material capabilities is available for analysis
of arbitrary laminate configurations as well. The many features that are available in the code, as well as
the procedures to actually setup and run a problem, are well described in the MAC/GMC 4.0 User’s
Manuals (Refs. 2 and 3). The descriptions of the MATLAB scripts given below refer often to the
MAC/GMC input and output file formats detailed in these documents.

The MAC/GMC software has been exercised with great detail in analyzing PMC and CMC composite
materials by using nonresident (user defined) RUCs (ArchID 99 in the MAC/GMC input) over the past
three years. The analyses included property predictions, stress-strain response compuations, fatigue and
creep simulations and Monte Carlo based probabilistic simulations of both PMC and CMC materials
using a variety of RUCs with number of fibers ranging from 1 to 100. The primary focus of these
analyses was to assess the composite material microstructure variability and determine how it affects the
properties and response of the overall composite. During the course of this work, a number of MATLAB
scripts were developed to minimize the manual intervention and automate the analysis to a great degree.
These routines can be categorized as (1) Preprocessing related tasks, (2) Automation of MAC/GMC runs,
and (3) Extraction of desired properties/response of the composite material from MAC/GMC output.
What follows is a compilation of all the MATLAB scripts in various categories with a brief description of
the routine and its source code. The intention is to help future users by providing the source codes that can
either be used as they are now or be easily modified to meet any specific requirements.

NASA/TM—2017-219500 2

2.0 Preprocessing Related Tasks

These tasks include visualization of user defined RUCs, preparation of input blocks of data to be
included in a typical MAC/GMC input file, extraction of RUC information from an existing MAC/GMC
input file, and generation of a number of different types of RUCs that belong to the user defined RUC
ArchlD category 99 (Refs. 2 and 3). It should be noted throughout the document, RUC represents a
two-dimensional matrix with elements being 1 or 2 or 3 where 1 represents fiber, 2 represents matrix and
3 represents an interface. These definitions are quite arbitrary and user can chose different numbers if
desired but should maintain a consistency.

2.1 Plotting of 2-D RUCs With Uniform Subcells

The MATLAB routine is “PlotRUC(RUC)” which takes the definition of RUC in the form of a
two-dimensional array matrix (wherein the elements are usually numbered 1 for fiber, 2 for matrix and 3
for interface for a Ceramic Matrix Composite (CMC) and 1 and 2 for a Polymer Matrix Composite
(PMCO) (as an interface is usually absent)) and creates a graphical representation of the RUC. The matrix
RUC must be created either from an existing MAC/GMC input file or by using another MATLAB script.
It should be noted here that the script uses one of the MATLAB internal functions “Imagesc” which
comes with MATLAB image processing toolbox. To call the function use the syntax:

plotRUC (RUC) ;
where RUC is the matrix containing constituent information (1s, 2s, and 3s usually). This function is for a

special case of an RUC where all subcells are square with same size. This enables us to use one of the
MATLAB internal functions “Imagesc”, which treats the RUC as an image and plots it as pixels.

NASA/TM—2017-219500 3

As an illustration, the “*RUC” block from a MAC/GMC input file, shown in Figure 1, is used to
create Figure 2. In this example we only have two constituents: 1 for the fiber and 2 for the matrix. This is

a user defined RUC (ArchID

99) for analyzing a PMC material. The RUC size is 24x24.

*RUC
MOD

=99

=22 ARCHID
NB=24 NG=24

11222222222222222222222222
1./1/222222222222222222222222
S SN AN ANANANANANANNANNANNANANAN A A A A NNANN

T N H AN N NN NN NN A AN q
A A A AN NNN NN NN AN §
A A AN NNNNNNN AN q
SoNHAd AN NN NN A A A TN

l121.1111122222222211112222
TlaAd TN NNNNNNNNNN NN NN NN
Tl NN NNNNNNNNNNNNN NN NN
Tl AN NNNNNNNNNNN NN NN
Tl AN NNNNNNNNN NN NN NN

- v L N . L N N L e N e N L N
1./1/222222222222222222222222

1./1/222222222222222222222222
S SN AN AN A A A1 ANNANNANNANNNNNANNANNANN

- v ~

1./1/221111112222222222222222
1./1/221111112222222222222222
S~ "N AN A A A A ANANNANNNA A A A ANNNNANN

N A NN NN A AN NN N §
L NN A A NN NN N A A AN NN
T N NN NN NNNNNNN A AN NN N q
SoNNNNNNNNdNNd NS A A A N

1,1,222222222222221111222222
P A A A A A A A A A A A A A AT A A A A A
2 2222222222222 222222 2222
DTHONNNNNNNNNNNNANNNNNNANDNNNNN

Figure 1.—A typical ““RUC” block of a MAC/GMC input file where user choses an ARCHID 99, for

a PMC material. The 1s and 2s form the numerical matrix, RUC, which is passed as an argument

to the MATLAB script.

NASA/TM—2017-219500

Figure 2.—A 24x24 RUC representing four randomly placed fibers with
uniform subcells. No fiber/matrix interface material is present here.

The graphical output from the plotRUC function is shown in Figure 2. As seen, the RUC has
four fibers which are placed randomly within the domain and is divided into 24x24 uniform square
subcells. The fiber volume ratio is 0.22.

It should be noted that the current version of this function only supports up to three different
constituents numbered 1, 2 or 3 only. Should the RUC contain more than three constituents, the function
needs to be modified appropriately.

2.2 Plotting of 2-D RUCs With Nonuniform Subcells

The MATLAB routine “ShowRuc”, which creates graphical plots of 2-D RUCs with nonuniformly
shaped subcells, requires the input argument, RUC, as well as the vectors, H and L, which contain
information regarding the height and length of each subcell as defined in the MAC/GMC manual (Refs. 2
and 3). To call the function, use the syntax:

showRuc (RUC,H, L) ;

where RUC is the matrix containing subcell location and type information (1s, 2s, 3s, and 4s usually). The
‘*RUC’ section of a typical MAC/GMC input file is shown in Figure 3. For more details regarding the
MAC/GMC input file and the keywords, the user may refer to (Refs. 2 and 3). The RUC here is of size
17x17 (NB = 17 and NG = 17). The subcells are all nonuniform in size, and the RUC has three
constituents; one for the fiber, two for the matrix, and three for the interface. A visualization of the RUC
created using this input and the “showRuc” function is shown in Figure 4. Both fiber dimensions and
interface thickness have simulated variability in this case.

NASA/TM—2017-219500 5

*RUC

MOD=2 ARCHID=99

NB=17 NG=17
H=2.101124e-03,6.665675e-01,1.140424e-01,3.623440e-
01,9.356495e-02,9.698099%9e-02,5.042515e-02,8.019884e-
01,4.949958e-02,4.818913e-01,5.042515e-02,3.496777e-
01,4.949958e-02,2.431809e-01,9.356495e-02,4.613857e-
02,1.119413e-01
L=7.732065e-01,9.356495e-02,2.874894e-01,5.042515e-
02,7.934584e-01,4.949958e-02,1.222625e-01,9.356495e-
02,3.805714e-01,1.140424e-01,1.715528e-01,4.949958e-
02,4.455151e-01,9.637298e-03,5.042515e-02,5.398000e-
02,1.251384e-01

sM=2,3,1,1,1,1,1,3,2,3,3,3,3,3,3,3,2
sM=2,3,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2
sM=2,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2
SM=2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
sM=2,2,2,2,2,3,3,3,3,3,3,3,2,2,2,2,2
sM=2,2,2,2,2,3,1,1,1,1,1,3,2,2,2,2,2
sM=3,3,3,3,2,3,1,1,1,1,1,3,2,2,3,3,3
sM=1,1,1,3,2,3,1,1,1,1,1,3,2,2,3,1,1
sM=1,1,1,3,2,3,3,3,3,3,3,3,2,2,3,1,1
sM=1,1,1,3,2,2,2,2,2,2,2,2,2,2,3,1,1
sM=3,3,3,3,2,2,2,2,2,2,2,2,2,2,3,3,3
SM=2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
sM=2,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2
sM=2,3,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2
sM=2,3,1,1,1,1,1,3,2,3,3,3,3,3,3,3,2
sM=2,3,1,1,1,1,1,3,2,3,1,1,1,3,3,3,2
sM=2,3,1,1,1,1,1,3,2,3,3,3,3,3,3,3,2

~
~
~
~
~
~
~
~
~
~
~
~
~

Figure 3.—A typical ““RUC” block of a MAC input file. The “showRuc” function requires not only the
material layout as given by the RUC argument, but also the subcell dimension vectors as given by the
H and L arguments.

As one might have realized, the more elaborate function “showRuc” may be used to plot any RUC
and is not necessarily limited to those RUCs with nonuniform subcell sizes only as well those RUCs
where H and L are of equal size. Furthermore, up to four different constituents can be specified in the
RUC. However, the routine is much slower in rendering the graphics as each subcell needs to be drawn
individually, unlike the “Imagesc” command that the “plotRUC” routine uses.

NASA/TM—2017-219500 6

Figure 4.—A 17x17 RUC with fibers approximated as squares. The
fiber size and the interface thickness are randomly varied.

23 Extracting RUC Information From a MAC/GMC Input File

In the above examples, we examined how to visualize a typical user defined RUC with both uniform
and nonuniform subcell sizes. However, in order to utilize these routines, we need a definition for the
RUC (usually a two-dimensional array matrix), as well as the H and L information, which are input
arguments to the functions. The current function is developed to extract the required input information
from an existing MAC/GMC input file as opposed to needing to manually entering the data. The function
takes a typical ‘*RUC input block’ from an existing MAC/GMC input file, such as those shown in
Figures 1 and 3, to extract the RUC, H, and L arguments. Note that one can use ‘*LAMINATE input block’
as well from a MAC/GMC input file to obtain the required information for the function. This routine is
very useful when one needs to visualize an RUC based on an existing MAC/GMC input file. It should be
noted here that one of the requirements for the function is that each H and L must be defined in one row.
The RUC definition follows then where each row of subcells are described in one line starting with
“sM=" followed by 1s, or 2s or 3s denoting various constituents. If continuations are used, for example in
the case of very large RUCs to define any of the H, or L or “SM=" entries then the routine cannot be used
as it assumes one line for each. In order to extract the RUC information, use the syntax:

[RUC,H,L] = ExtractSqRuc(f,Ln);

where £ is the input file name. for example £ = ‘Sample.txt’, where Sample. txt is an ASCII
file containing a *RUC block such as the ones shown in Figures 1 and 3. Ln is line number where the first
‘SM=" input line starts. Note that this is usually 6 for **RUC’ and 7 for ‘*LAMINATE' . Rest of the
input block is same in both cases. The function will extract and store the matrix RUC and the vectors H
and L from the file so that they may be used as arguments in the functions plotRUC and showRUC
described in Sections 2.1 and 2.2.

NASA/TM—2017-219500 7

24 Writing of Any *RUC Block Input That Can Be Inserted Into a MAC/GMC Input File

Often user defined RUC information is generated using a separate MATLAB script, but once the
arguments RUC, and H and L are generated, they need to be output as a suitable “*RUC block” so that
they may be inserted into a MAC/GMC input file. Such tasks often need to be performed when executing
100s of Monte Carlo simulations, wherein each instance has a randomly defined RUC microstructure
generated on the fly. In such cases, the following routine may be utilized to translate and write the
information contained in RUC, H, and L into a *RUC block. The following syntax should be used for
writing the input block:

WriteRuc (RUC,FileIn,H,L);

Where FileIn is user-supplied ASCII text file name. It should be noted that the filenames have to be
defined using quotes as shown below:

FileIn = ‘Ruc.txt’;

For very large RUCs, with sizes in excess of 200x200 subcells, it is recommended to use a slightly
modified version of the above:

WriteBigRuc (RUC,FileIn, H,L);

This routine automatically limits each input line to have 200 entries and terminates with a MAC/GMC
line continuation mark, “&”. The remaining entries are deferred to the next line and so on. For example if
we have a RUC with size 300300 then H and L will have two lines of 200 followed by 100 entries each.

3.0 Creation of User Defined RUCs

This section focuses on how to create MAC/GMC RUCs using MATLAB scripts. These RUCs are
based on (1) Square packing, (2) Hexagonal packing, (3) RUCs with random positioning of fibers, (4)
RUCs with variable subcells sizes, and (5) RUCs to mimic a typical composite micrograph. A GUI based
interface is recently developed for the generation of various RUCs and is documented in Reference 4.

3.1 Square Packing

RUC:s that have circular fibers arranged in a square pack are probably most used of all the RUCs in
MAC/GMC. The current routine creates an RUC with subcells that are perfect squares and a circular
cross section fiber with a given fiber volume ratio and interface volume ratio (if an interface is present).
Since discretization procedures with uniform subcell size involve round off errors, it is not possible to
exactly satisfy the required fiber and interface volume ratios. In order to generate a square packed RUC
with circular fiber use the syntax:

[fvr,mvr,ivr,RUC]=SquarePack (Fvr,Ivr,1,Ni,Nw) ;

where the user provided inputs are Fiber volume ratio (Fvr), Interface volume ratio (Ivr), number of
subcells across the thickness of the interface (Ni) and the number of subcells in the width or height
directions for a PMC material if the interface volume ratio is specified as ‘0’(Nw). In this case the value of
Ni is automatically ignored. For PMCs the code determines the size of an RUC based on the value of Nw.
A higher value of Nw is recommended to minimize the discretization error in the achieved Fiber Volume
Ratio. Note that in case of a CMC RUC, the value provided for Nw is ignored automatically by the code.

NASA/TM—2017-219500 8

Figure 5.—A 24x24 CMC RUC with fvr = 0.4028, ivr = 0.1181 and mvr = 0.4792.

The size of the RUC depends on the value of Ni, the number of subcells in interface. After finalizing the
RUC, the function will calculate the actual fiber volume ratio (fvr), interface volume ratio (ivr) and the
matrix volume ratio (mvr). These may not agree exactly with Fvr and Ivr specified by the user due to
discretization round off errors as mentioned before. Figure 5 shows a picture of a square packed CMC
RUC. The user specified Fvr and Ivr are 0.4 and 0.1 in the example, however, the actual fvr and ivr
realized are 0.4028 and 0.1181, respectively. The specified N1i is 1.

3.2 Hexagonal Packing

Hexagonally packed fibers are usually the recommended choice for representing the randomly
distributed fibers in an actual composite system. RUCs that have circular fibers that are arranged in a
hexagonal packing with uniform subcell discretization can be generated using the following syntax:

[fvr,mvr,ivr,RUC] = HexaPack (Fvr,Ivr,1,Ni,Nw);

where the user provided inputs are Fiber volume ratio (Fvr), Interface volume ratio (Ivr), number of
subcells across the thickness of the interface (Ni) and number of subcells in width or height for a PMC
material if the interface volume ratio is specified as ‘0’ (Nw). In this case the value of Ni is automatically
ignored. For PMCs the code determines the size of an RUC based on the value of Nw. A higher value of
Nw is recommended to minimize the discretization error in the achieved Fiber Volume Ratio. Note that in
case of a CMC RUC the value provided for Nw is ignored automatically by the code. The size of the
RUC depends on the value of Ni, the number of subcells in the interface. After finalizing the RUC, the
function will calculate the actual fiber volume ratio (fvr), interface volume ratio (ivr) and the matrix
volume ratio (mvr). These may not agree exactly with Fvr and Ivr specified by the user due to
discretization round off errors as mentioned before. Figure 6 shows a picture of a hexagonally packed
CMC RUC. User required Fvr and Ivr are 0.4 and 0.1, however, the actual fvr and ivr realized are
0.3939 and 0.1061, respectively. The specified Ni is 1.

NASA/TM—2017-219500 9

Figure 6.—A 24x44 CMC RUC with fvr = 0.3939, ivr = 0.1061 and mvr = 0.5.

33 Randomly Distributed Circular Fibers in Square RUC

In order to represent randomly located fibers in an actual composite microstructure, RUCs can be
created wherein the fiber locations are randomly chosen. Furthermore, whenever a fiber crosses an RUC
boundary, the remaining portion of the fiber has to be located by mirroring it on the opposite side of RUC.
Thus, when the RUCs are tiled, we get whole fibers everywhere. It should be noted that the periodicity
conditions that are applied by the Generalized Method of Cells theory (Ref. 1) can only be properly
enforced when we impose the mirroring conditions. The method behind this script is quite complicated and
often many trials are required before a successful configuration can be found. The code automatically
performs these trials based on a preset parameter for number of trials in the code which is usually a very
high number(10000). A specialized algorithm is developed where in once a fiber with interface is placed all
the subcells and the neighboring subcells where another fiber cannot be placed because of fiber
intersections, are fenced out for the subsequent fiber placements. The subsequent fibers are chosen to be
placed randomly from the list of remaining available subcells. This process continues till all the fibers are
placed or when there are no remaining available cells. The process repeats with a fresh start till all the fibers
are successfully placed. For PMC’s with interface one can achieve as high as 70 percent fvr, allowing fibers
to touch. The user must exercise caution when generating such RUCs by providing fiber and interface
volume ratios that are reasonable such that an acceptable RUC can be generated in a reasonable number of
tries. To generate an RUC with randomly located fibers the user should use the syntax:

[FVR,IVR,MVR,RUC,BigRUC,BigL,BigH,FibCenters,Ta] =...
new_CMC_Ruc?2 (RadF,Radl, Nfibers,nrep,dpad,MaxTries,fvr,C1Cntrl,CIExpo)

The user must provide values for radius of fiber (RadF), and the outer radius of fiber with interface
(RadI) in terms of number of subcells. Additional inputs to the script are the fiber volume ration desired
(fvr), and number of fibers to be placed in RUC (Nfibers). The two additional parameters CICntrl and
ClIExpo are advanced features than enable to control fiber clustering with an RUC when the fiber volume
ratios are low and there are a large number of fibers desired to be placed. ClCntrl = 0, sets the normal
alogorithm and to invoke the cluster control one should set ClCntrl = 1 and give a value usually around 6
for CIExpo. ClExpo is the exponent value that controls the degree of attraction between the fibers to
cluster together. Higher values ensure greater the cluster attraction. For example, if the user choses

NASA/TM—2017-219500 10

RadF = 6, Radl = 7, fvr = 0.35, Nfibers = 4, the code generates an RUC as shown in Figure 7(a). The
actual realized fiber volume ratio (FVR) = 0.3457, the matrix volume ratio (MVR) = 0.5185 and the
interface volume ratio (IVR) = 0.1358. The RUC size is 36x36.

In Figure 7(a), the fiber at the top is cut off, and the remaining portions of is mirrored on to bottom
edge. Similarly, one of the fibers is cut off by the left edge and the remaining portion is shown near the
right edge. If a fiber is cut off at a corner, then all four corners will be filled appropriately in order to
preserve the periodicity of the RUC. Note in this example the cluster control parameter is set to 0. In
order to illustrate how extremely high fiber volume ratios can be realized, we show here two cases one
with no clustering and the other with a high degree of clustering, in Figure 7(b).

(b)

Figure 7.—(a) A 36x36 CMC RUC with FVR = 0.35, IVR = 0.14 and MVR = 0.51. (b) Left:
Example of a PMC RUC (84x84) of 10 fibers with FVR=0.635. Right: Example of fiber
clustering in CMC. RUC (145x145) for 20 fibers with a FVR of 0.3 and IVR of 0.126.

NASA/TM—2017-219500 11

3.4 Randomly Distributed Square Shaped Fibers in Square Packing

This is a unique case of an RUC where the generated subcell size can be nonuniform. The fibers are
approximated by a square shape instead of the customary circular shape. An example of such an RUC is
already seen in Figure 3. A major advantage of such a representation of an RUC is that the size of the
RUC is much smaller than the corresponding circular fiber case with unform subcells. For example, the
RUC size is always equal to (Nfibersx4 + 1 by Nfibersx4 + 1). So for a four fiber case, the
RUC will be of 17x17 size and so on. Furthermore, the fiber and interface volume ratios can be met
exactly as specified by the user. Last, when analyzing the RUC using MAC/GMC’s high-fidelity
generalized method of cells (HFGMC) (Ref. 1) option, the computational time involved for such an RUC
is sometimes even an order of magnitude lower than the corresponding circular fiber case. The advantages
and disadvantages in using such RUC representations for CMCs are well documented in recent inhouse
studies where the composite stiffnesses, first ply matrix strength, and fatigue performance are assessed
using square and circle representations of fibers in addition to using the GMC and HFGMC modeling
options (Refs. 5 to 7).

In order to generate a randomly distributed square shape fibers in square packed RUC the following
syntax is needed:

[RUC,L,H] =
RectFiberPlacementWithMirroring (Nfibers, fvr,ivr,Eclr,CovF,6CovI) ;

where fvr, ivr, and Nfibers are the fiber volume ratio, the interface volume ratio and the desired
number of fibers specified by the user. The parameter Eclr is usually taken as 0.01 and represents
percentage of fiber typical diameter and is used to maintain a minimum clearance between the fibers so
that fibers do not touch each other. The parameters CovF, and CovI are the coefficients of variation in
fiber size and interface thickness size and need to be specified as fractions. These are utilized in the
generation of variable size fibers and interface thicknesses. The outputs are the RUC matrix and the L and
H vectors. The function utilizes four other functions 1) CheckConstituent, 2) IntersectFibers,
3) Grid 4) BdCheckTest. The function CheckConstituent is called to identify constituent
material of each subcell. The function IntersectFibers is called to check whether any of the fibers
generated so far intersect each other. If the routine finds any intersection, the configuration is discarded
and a new configuration is generated. The function Grid is utilized to determine the H and L vectors
containing the subcell dimension information once all the fibers are placed within the RUC. The function
BdCheckTest is called to check whether any of the newly placed fibers intersect the boundaries of the
RUC. In the case of any intersection, the program automatically cuts off the fiber outside of the RUC
boundary and places it on the opposite side using mirroring.

As an example the following command will generate 5 fibers in an RUC with a fvr of 35 percent,
ivr of 10 percent and CovF and CovI = 0.20;

[RUC,L,H] = RectFiberPlacementWithMirroring(5, 0.4, 0.1, 0.01, 0.2,
0.2);

Figure 8 shows the generated RUC. The fibers show a 20 percent variability in size, while the interface

thickness varies with a 20 percent coefficient of variation as well. The RUC has a size (21x21). To show
the RUC we used the command:

showRuc (RUC,0,0,H,L) ;

As described in Section 2.2.

NASA/TM—2017-219500 12

Figure 8.—A 21x21 CMC RUC with fvr = 0.35, ivr = 0.1, and mvr = 0.55.
Fibers are approximated as squares of variable sizes.

3.5 Generation of a PMC RUC With Randomly Placed Fibers

When analyzing composite micrographs for PMC materials, sometimes it is required to model with a
reasonable RUC size a typical PMC micrograph with tens to hundreds of fibers. Here, in order to keep the
size practical, one may have to approximate each fiber as a single subcell of square dimensions and with a
given fiber volume ratio but with random distribution of the fibers throughout the RUC. To generate such
an RUC the function ‘RandRuc’ may be utilized with the following syntax:

[RUC,H,L,fvr, mvr] = RandRuc (FVR,nH,nL) ;

Where FVR is the desired fiber volume ratio, nH and nL are the number of subcells in the height and
length directions of the RUC, respectively. The function outputs RUC matrix, the H and L vectors, and the
realized fiber and matrix volume ratios are £vr and mvr. To generate the RUC shown in Figure 9, the
following command is used:

[RUC,H,L, fvr,mvr] = RandRuc(0.6,20,15) ;
The realized fiber volume ratio (£vr) is 0.616 and the realized matrix volume ratio is 0.384. It should be

noted that such RUCs are usually analyzed to obtain the gross stiffness related properties in general. The
localized stress and strain fields obtained using such models are likely not accurate.

NASA/TM—2017-219500 13

Figure 9.—A 20x15 PMC RUC with fvr = 0.616, mvr =
0.384. Red subcells are fibers, and yellow subcells
are matrix.

3.6 Increasing Subcell Density Without Affecting the Shape of Fiber in a
Self Similar Fashion

Sometimes it becomes necessary to increase the RUC size by doubling or tripling the number of
subcells in the H and L directions in order to study factors such as mesh density sensitivity. Once a basic
RUC with uniform sub cells is generated, a higher density RUC can be generated using the function
HDRuc. This can be done with the following command line script;

[RUC2] = HDRuc (RUC,density)

in which the above RUC is the parent RUC whose subcell to be increased. The variable density can take
integer values only such as 1, 2 or 3. Each subcell of the parent RUC is divided into 1x1, or 2x2 or 3x3
subcells and the high density version of the RUC is output as RUC2.

An example of a 40x40 subcell RUC which is increased to a 80x80 subcell model is shown
pictorially in Figure 10. The steps to achieve this are given below:

NASA/TM—2017-219500 14

=

Size = 40x40 Size = 80x80
Figure 10.—In the above the original RUC with 40x40 subcells is modified to RUC2 with 80x80 subcells by
choosing a density = 2.

The above is achieved by using the commands

[RUC,H,L] = ExtractSqRuc(‘'UserRUC40.txt’)

Which extracts the base RUC of size 40x40 from the file “UserRUC40.txt”.shown in Figure 11.

% Increase Density

density =2;

[RUC2] = HDRuc (RUC,density)

H2 repmat (H,1,density); % Increase the Height dimension
L2 repmat (L,1,density); % Increase the Length dimension

Where the high density repeating unit cell RUC2 has a size of 80x80. H2 and L2, respectively the Height
and Length of RUC in terms of subcells. The higher density repeating cell can be shown using the
following command:

showRuc (RUC2,H2,L2,[0 1 1;1 0 0;1 1 0])

NASA/TM—2017-219500 15

*RUC
MOD
NB

2 ARCHID=99
40 NG

=40

—

223

~

3111111111133222222222222222333333222

~

~ 12223111111111132222222222222233311113332

—

~

~

~

~

~

~

~

~ 12223311111111332222222222222331111111133

—

~

~

~

~ 12222333111133322222222222222311111111113

—

~

~

~ 13222223333332222222222222223311111111113

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 13222222222222222222222222223111111111111

—

~

~

~ 13222222222222222222222222223111111111111

—

~

~

~ 13222222222222222222222222223111111111111

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 13222222222222222222222222223111111111111

—

~

~

~ 13222222222222222222222222223311111111113

—

~

~

~ 12222222222222222222222222222311111111113

—

~

~

~

~

~

~

~

~

~

~

~ 12222222222222222222222222222331111111133

—

~

~

~ 12222222222222222222222222222233311113332

—

~

~ 12222222222222222222222222222222333333222

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 122

—

~

~

~ 12223333332222222222222222222222222222222

—

~

~

~ 12333111133322222222222222222222222222222

—

~

~

~

~

~

~

~

~

~

~

~

~

~ 13311111111332222222222222222222222222222

—

~

~

~ 13111111111132222222222222222222222222222

—

~

~

~ 13111111111133222222222222222222222222223

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 11111111111113222222223333332222222222223

—

~

~

~ 11111111111113222222333111133322222222223

—

~

~

~ 11111111111113222223311111111332222222223

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 11111111111113222223111111111132222222223

—

~

~

~ 13111111111133222233111111111133222222223

—

~

~

~ 13111111111132222231111111111113222222222

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 13311111111332222231111111111113222222222

—

~

~

~ 12333111133322222231111111111113222222222

—

~

~

~ 12223333332222222231111111111113222222222

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 12222222222222222233111111111133222222222

—

~

~

~ 12222222222222222223111111111132222222222

—

~

~

~ 12222223333332222223311111111332222222222

—

~

~

~

~

~

~ 12222333111133322222333111133322222222222

—

~

~

~ 12223311111111332222223333332222222222222

—

~

~

~ 12223111111111132222222222222222222222222

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 12233111111111133222222222222222222222222

—

~

~

~ 12231111111111113222222222222222222222222

—

~

~

~ 12231111111111113222222222222222222222222

—

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~

~ 12231111111111113222222222222222222222222

—

~

~

~ 12231

—
I
T A

== ==

9}

0

0

0

~

~

1111

Il
=
%)

= = =

0

0

0

~

~

11111113222222222222222222222222

Il
=
%)

PRI I D I D DR P R I T Y D)

0

0

0

0

0

0

0

n

0

0

0

0

n

0

0

n

n

0 n

0

0

0 n

0

0

9}

9}

0

0

9}

9}

Figure 11.—**RUC” block of a MAC/GMC input file where user choses an ARCHID 99, for a CMC

material. The size of RUC is 40x40.

16

NASA/TM—2017-219500

4.0 Post Processing Related Tasks

MATLAB functions have also been generated to accomplish MAC/GMC post-processing tasks
including extraction of response quantities from a MAC/GMC analysis output file such as material
stiffness related properties, laminate properties, local stress and strain response contours, fatigue response,
damage initiation and progression during fatigue response, damage initiation and progression due to
monotonic loading, and first matrix cracking and ultimate strength from a laminate stress-strain response.
To perform these tasks the user must provide the appropriate output files from a MAC/GMC analysis.
The MATLAB scripts described herein perform the various post processing tasks by parsing the output
files from MAC/GMC analyses. Reference 8 describes a specific post processing task related to
visualization of local stress and strain response within an RUC and may be consulted in conjunction with
the material described.

4.1 Extraction of RUC Stiffness Related Properties.

The effective properties of a typical composite material can be extracted from the generic MAC/GMC
output file (which has the extension “.out”) by using the script “ExtractRucStiffnesses”. There
are nine effective elastic properties that are extracted from the output file by executing the command:

[A] = ExtractRucStiffnesses (Title,Fileld);

Where ‘Title’ should be defined by the user depending on the analysis model. If the analysis is
conducted by using the ‘GMC’ model then use:

Title='Effective Engineering Moduli';

If the analysis model is ‘HFGMC’ then use:
Title='EFFECTIVE MODULI';

‘FileId’ is the identification number of the output file, which is obtained by using:
FileId = fopen('filename.out',6'r');

where filename.out is the MAC/GMC output file. The material properties are stored in the variable A
which contains a total of nine properties as defined below:

A(l) = E11S = 0.8895E+05
A(2) = N12Ss = 0.3639
A(3) = N13S = 0.3639
A(4) = E22S = 0.4470E+04
A(5) = N23S = 0.5093
A(6) = E33S = 0.4470E+04
A(7) = G23S = 0.1442E+04
A(8) = G13S = 0.1716E+04
A(9) = G12S = 0.1716E+04

Here, E denotes Young’s modulus, N denotes Poisson’s ratio and G denotes shear modulus in the various
directions associated with an orthotropic material. It should be noted that although the effective properties
are defined exactly the same way for both GMC and HFGMC analysis, at the time of this writing the title
under which these are written to the MAC/GMC output file is different for GMC and HFGMC models. In
future versions of MAC/GMC this will be corrected when the title would be the same for both types of
analysis.

NASA/TM—2017-219500 17

4.2 Extraction of Laminate Stiffnesses
The effective properties of a typical composite laminate can be extracted from the MAC/GMC output file
by using the script “ExtractLaminateStiffnesses”. There are four stiffness related properties
that are extracted out of output by executing the command:

[Alam] = ExtractLaminateStiffnesses (Title,FileId);
where ‘Title’ should be defined by the user by using the following command:

Title='Laminate Engineering Constants';
‘FileId’ is the identification number of the output file which is obtained by using:

FileId = fopen('filename.out',6 'r');

where filename.out is the MAC/GMC output file. The laminate properties are stored in the variable Alam
which contains a total of four effective in-plane laminate properties as defined below:

Alam(l) = Exx = 2.992E+05
Alam(2) = Nxy = 2.101E-01
Alam(3) = Eyy = 1.644E+05
Alam(4) = Gxy = 6.824E+04

Here, E denotes Young’s modulus, N denotes Poisson’s ratio and G denotes the shear modulus in the
various directions associated with an orthotropic material.

4.3 Extraction of Number of Cycles to Failure From MAC/GMC Fatigue Simulation
Output

A typical MAC/GMC fatigue analysis produces “. out” and ”_dam. out” files, among other files,
depending on the user-specified output requests. Both of the files mentioned above contain information
pertaining to fatigue simulations, including damage level, number of cycles to failure, and the execution
time. The function “Ncycle” takes the “. out” file as input and searches for a title “TOTAL NUMBER
OF CYCLES” (not case sensitive) to extract the predicted number of cycles to failure. Additionally, upon
user request, the function searches and extracts the execution time. In order to extract the information, the
user should define:

Title='Total Number of Cycles';
And create a file id for output using:
outId=fopen (‘'filename.out','r');

where £ilename . out is the MAC/GMC output file. The number of cycles to failure, N, and the
execution time in seconds, CPU, are extracted from the output file by executing the command

[N,CPU] = Ncycle(Title,outid)

NASA/TM—2017-219500 18

where N is the number of cycles to failure and CPU is the execution time in seconds. The title string
above is not case sensitive. It should be noted that the function calls another function “extract numbers”
which is also listed in the Appendix along with Ncyle.m. The function “extract numbers” helps parsing a
single line from output for numbers. For e.g., if the line contains hours, minutes and secs for the execution
time, then the function outputs these into a variable “r”. The program computes the execution time using:

CPU = 1r(1)*3600 + r(2)*60 + r(3)
If CPU time is not required than user may specify
[N,~] = Ncycle(Title,outid) or simply
[N] = Ncycle(Title,outid)

Both are valid MATLAB commands when only the Number of cycles will be output.

4.4 Extraction of First ply Matrix Cracking Strength or PLS

When modeling the stress-strain response of CMCs, it is of engineering interest to determine the first
ply matrix cracking strength (proportional limit stress) and the ultimate strength. In order to obtain these
quantities, the user performs a quasi-static loading analysis with incremental loading, and the output is
stored as two columns representing stress and strain. The function “P1sAndUS” computes from this data
the first matrix cracking strength and the ultimate strength. The syntax for the command is:

[Pls,Us] = PlsAndUs (Fname,E,offset,stp)

Where “P1s” is the first matrix cracking strength and “Us” is the ultimate strength for the composite.
“Fname” is the name of output file containing the stress strain response information, E is initial Young’s
modulus of composite, “of£set” is the strain offset, which is usually taken as 0.005 percent, and “stp”
is the step size to perform the search for the intersection of the stress-strain curve with a straight line
drawn through point [0,offset] with a slope of initial tangential modulus, E. As shown in Figure 12, the
intersection of this straight line with the stress-strain curve defines the Pls. The stepsize “stp” is usually
taken as 1/10™ of the offset. However, the “offset” and “stp” can be chosen according to the user’s
specific requirements. The Us is the absolute maximum of the stress-strain curve.

The P1s and US extraction for a typical transversely loaded CMC material is depicted in Figure 12(a)
and (b). The RUC is made of four randomly distributed fibers (Fig. 12(a)). The fiber volume ratio (fvr) is
0.28, the matrix volume ratio (mvr) is 0.59 and the interface volume ratio (ivr) is 0.13. The extracted Pls
for this composite is 88.6 MPa and the ultimate strength is 106.4 MPa. The initial transverse Young’s
modulus is 153.4 GPa.

NASA/TM—2017-219500 19

120

Ult. Strength
106.4 MPa

100 L |P-S /
88.6 MPa V4

Stress (MPa)

2
1
|
1
1
1
1
1
1
1
|
1
|
1
1
1
1
1
|
1
|
1
|
1
|
.

- —— e — T, -
_—___— - — -\‘

\

C o ——
L L

0.001 0.0015 0.002
Strain

0.0025

(b)

Figure 12.—(a) Four fiber randomly arranged repeating unit cell (RUC) used in obtaining the
transverse stress-strain response of a CMC composite system with fvr = 0.28, mvr = 0.59,
ivr = 0.13. Red subcells are fibers, yellow subcells are interface and green subcells are

matrix. (b) Transverse stress-strain response of a typical CMC composite system with,
fvr = 0.28, mvr = 0.59, ivr = 0.13.

NASA/TM—2017-219500 20

4.5 Plotting of the Local Stress and Strain Fields

MAC/GMC allows users to examine the local stress and strain fields in an RUC by providing detailed
stress and strain output in each of the subcells for any load increment. The *MATLAB keyword (Refs. 2
and 3) allows users to specify for which time steps in the loading profile the local stress and strain fields
are output. MAC/GMC outputs the following files, where BaseFileName is the base MAC/GMC file
name without the extension ‘.mac’.

l. BaseFileName eps.dat: Local strains

2. BaseFileName epsp.dat: Local plastic strains and material Id information
3. BaseFileName epst.dat: Local thermal strains

4. BaseFileName sig.dat: Local stresses

5. BaseFileName x2.dat: Subcell x,-direction sizes

6. BaseFileName x3.dat: Subcell x3-direction sizes

For example, if the base file name is “Annika_2”, then the MAC input file name is “Annika_2.mac”. The
output for the local stress information is in the file “Annika_2 sig.dat”. The reader may look into
References 2 and 3 for a more detailed description of these input and output files and their contents. The
local stress response is extracted by executing the command:

[sigll,sig22,sig33,sig23,sigl3,sigl2,sigmean,sigeff ,X,Y, RUC] =...
ExtractStresses (BaseFileName)

Where the variables have the usual meaning as described below:

sigll = o, sig22 = 0,,; sig33 = 0,;; sig23 = 0,
sigl3 = 0;; sigl2 = o,;
sigmean = (0,,+0,+0y;)/3

sigeff = effective or von Mises stress;

X and Y are the coordinate vectors of the RUC subcell grid. These contain the locations of the subcell
boundaries in the two coordinate direction. RUC is the repeating unit cell matrix with material ids for each
subcell.

The Local stress contours may be shown graphically by executing the MATLAB command:
Plot_Contours (Type,X,Y,Data,Title)

Where “Data” is any of the eight stresses described above. Type takes two values: ‘2-D’ for two-
dimensional or planar contours and ‘3-D’ for three-dimensional contours. Title is the text that will be
displayed as the plot title (including MATLAB text formatting). As an illustration refer to Figure 13,
which can be produced by executing the command

Plot_Contours(‘'2-D’ ,X,Y,sig22,’\sigma_{22}’)

The stress levels are shown as 2-D contours here. A colorbar is also provided to indicate the stress levels
and the associated color code.

NASA/TM—2017-219500 21

RUC

Figure 13.—Transverse stress 0 ,, contours fora PMC composite system with,
fvr =0.28, mvr = 0.59. Load is in 11 direction.

NASA/TM—2017-219500

22

185

180

175

170

165

160

155

150

145

140

4.5.1 Local Strain Response

The local strain response can be obtained similarly by executing the command:

[Epsll,Eps22,Eps33,Eps23,Epsl3,Epsl2,X,Y] =...
ExtractStrains (BaseFileName)

Where the variables have the usual meaning as described below:

Epsll = ¢g,; Eps22 = ¢,,; Eps33 = ¢&,;; Eps23 = y,,;

Epsl3 = y;; Epsl2 = y,,;
It should be noted that the shear strains output are the engineering shear strains.
As an example, 3-D ¢&,, strain contours are shown in Figure 14. This figure is produced by executing the
command:

Plot Contours(‘'3-D’ ,X,Y,Eps22,’\epsilon {22}’)
The strain levels are shown as a surface over the plane x2-x3 in Figure 12.

€22

J(2 0 0 X

Figure 14.—Transverse strain &,, contours for a PMC composite system with, fvr = 0.28, mvr = 0.59.
Load is in 11 direction.

NASA/TM—2017-219500 23

5.0 Miscellaneous MATLAB Recipes for MAC/GMC Runs

This section describes the use of scripts to perform MAC/GMC analyses that involve a combination
of tools mentioned in this document. One example is a case where 100s of Monte Carlo simulations need
to be run where each simulation may have a randomly chosen RUC and the task is to compute the number
of cycles of load in fatigue to failure. Another example is to automatically run MAC/GMC several times
to estimate a load versus number of cycles (SN) curve. Such analysis tasks typically involve manipulation
of a MAC/GMC input file by changing the ‘*RUC’ block of MAC/GMC input or the ‘“*MECH’ load
block defining a single loading cycle, etc. The examples provided here are aimed at familiarizing the user
with how to write the MATLAB scripts in general so that the user may be able to develop his or her own
scripts for other purposes utilizing the ideas provided herein. These are not exhaustive as there can be any
number of permutations and combinations of analyses and it is not possible to address them all here.

5.1 Monte Carlo Simulations

Assessing microstructure variability and how it affects typical composite properties and response is of
considerable interest. In order to perform these tasks it is necessary to run a typical MAC/GMC problem
repeatedly 100s of times while varying the definition of the RUC randomly on the fly. For example, if we
want to assess the impact of property variability on the material response, the following flow chart of
operations are needed as shown in Figure 15.

A typical MAC/GMC input file that is altered during each Monte Carlo simulation is shown in
Figure 16. Note that for each run the *RUC block of the input (highlighted yellow in Fig. 16) is replaced
by a randomly generated RUC representation and stored. One such *RUC block of data is shown in
Figure 17.

Both the reference file “RefFile-RUC.MAC” and The *RUC block file “RUCS.txt” are provided as
inputs to the function “ModifyRefFile,” which creates a suitable input file to be run by MAC/GMC. The
following lines of the script do this job:

Fname='RefFile-RUC.MAC' ; % Reference input file that gets modified
% for each Monte Carlo simulation

where Fname is the file name variable that contains the reference file data.

CL1=[18:57]; % lines in Ref file to be replaced on the fly for RUC
NSimuls = 100; % Number of Monte - Carlo Simulations

where the CL1 variable contains the line numbers for which the data is to be replaced by the *RUC block
data for each simulation.

for i = 1: NSimuls
RUCFilName=['RUC' ,num2str(i),'.txt']; % File containing *RUC block
% details
[A,Pls,Us]= ModifyRefFile (Fname,RUCFilName,CLl1,i) ;

function ModifyRefFile to compute the stiffness, first matrix cracking strength and the ultimate strength
of the composite material. This is performed “NSimuls” times, which for this case is 100.

NASA/TM—2017-219500 24

Monte — Carlo Script for
Property Variability

l

I=1, Nsimuls

y

———p| MAC Input File

Generate
RANDOM RUC

Run MAC |p—b

Parse output to
collect properties

N

Write properties to a

text file

STOP

Figure 15.—Flow chart showing the MATLAB script for assessing microstructural variability of a typical composite

system on properties.

NASA/TM—2017-219500

25

RUC Basaed CMC Material Analysis- Reference File “RefFile-RUC.MAC”
*CONSTITUENTS

NMATS=3

-- Hi-Nic Type S Fiber

M=1 CMOD=6 MATID=U MATDB=1 &
EL=385.0E3,385.0E3,0.17,0.17,164.5E3,5.2E-6,5.2E-6

-- Siliconized SiC Matrix

M=2 CMOD=6 MATID=U MATDB=1 &
EL=327.0E3,327.0E3,0.22,0.22,134.0E3,5.4E-6, 5.4E-6

-- BN coating

M=3 CMOD=6 MATID=U MATDB=1 &
EL=10.0E3,10.0E3,0.23,0.23,4.07E3,5.5E-6,5.5E-6

*RUC

MOD=2 ARCHID=99
NB=40 NG=40
H=1,1,1,1,1,1,1
L=1,1,1,1,1,1,1
smM=1,1,1,1,1,1,

R~ ~
PR
PN
PN
PN
W~ -~
N o.
N o.
W~ -~
W~ -~
PN
PR
PN
PR
PR
PR
PN
PN
W~ -~
W~ -~
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
PR
W~ -~

. [repeated 40 times]
*MECH
LOP=2
NPT=2 TI=0.,100.0 MAG=0.,0.005 MODE=1
*SOLVER
METHOD=1 NPT=2 TI=0.,100.0 STP=1.0 ITMAX=250 ERR=1.E-3
NLEG=3 NINTEG=5
*FAILURE_SUBCELL
NMAT=3
MAT=1 NCRIT=1
CRIT=1 X11=1.8E3 X22=1.8E3 X33=1.8E3 X23=0.6E3 X13=0.6E3 &
X12=0.6E3 COMPR=OFF ACTION=1
MAT=2 NCRIT=1
CRIT=1 X11=600.0 X22=600.0 X33=600.0 X23=350.0 X13=350.0 &
X12=350.0 COMPR=OFF ACTION=1
#-- CMOD=4 PDMOD=99
#-- K1l1l=-1.180E5 K22=-1.18E3
MAT=3 NCRIT=1
CRIT=1 X11=70.0 X22=70.0 X33=70.0 X23=45.0 X13=45.0 &
X12=45.0 COMPR=OFF ACTION=1
*FAILURE_CELL
NCRIT=1
CRIT=2 X11=0.002 X22=0.002 X33=0.05 X23=0.05 X13=0.05 X12=0.05 &
COMPR=SAM ACTION=-1
*PRINT
NPL=6
*XYPLOT
FREQ=1
MACRO=1
NAME=Stress-Strain X=2 Y=8
MICRO=0
*END

Figure 16.—Typical *RUC block to be altered and replaced within a MAC/GMC input file during Monte Carlo
simulations.

NASA/TM—2017-219500 26

*RUC
MOD=2 ARCHID=99

NB=40 NG=40
§=1,1
,1,1
z=1,1
,1,1
smM=1,1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,3,2,2,3,1,1,
1,1,1
smM=1,1,1,1,1,1,3,3,2,2,2,2,2,2,2,2,2,2,2,2,3,3,1,1,1,1,1,1,1,1,3,3,2,2,3,3,1,
1,1,1
smM=1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,1,1,1,1,3,3,3,2,2,2,2,3,1,
1,1,1
smM=1,1,1,1,1,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,2,2,2,2,2,2,3,3,
1,1,1
smM=1,1,1,3,3,3,2,3,
3,3,1
sM=3,3,3,3,2,
2,3,3
SM=2,
2,2,2
SM=2,
2,2,2
SM=2,
2,2,2
SM=2,
2,2,2
SM=2,3,3,3,3,3,3,2,2,
2,2,2
SM=2,3,3,3,1,1,1,1,3,3,3,
2,2,2
SM=2,3,3,1,1,1,1,1,1,1,1,3,
3,2,2
SM=2,3,1,1,1,1,1,1,1,1,1,1,
3,2,2
SM=2,3,3,1,1,1,1,1,1,1,1,1,1,
3,3,2
sM=2,2,2,2,2,2,2,2,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,
1,3,2
smM=2,2,2,2,2,2,3,3,3,1,1,1,1,3,3,3,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,
1,3,2
smM=2,2,2,2,2,3,3,1,1,1,1,1,1,1,1,3,3,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,
1,3,2
smM=2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,
1,3,2
smM=2,2,2,2,3,3,1,1,1,1,1,1,1,1,1,1,3,3,2,2,2,2,2,2,2,3,3,1,1,1,1,1,1,1,1,1,1,
3,3,2
smM=2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,
3,2,2
smM=2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,3,3,1,1,1,1,1,1,1,1, 3,
3,2,2
smM=2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2,3,3,3,1,1,1,1,3,3,3,
2,2,2
smM=2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,2,2,
2,2,2
smM=2,2,2,2,3,3,1,1,1,1,1,1,1,1,1,1,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2

NASA/TM—2017-219500 27

smM=2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,3,2,
gﬁiéfz,2,2,2,3,3,1,1,1,1,1,1,1,1,3,3,2,
gﬁié?z,2,2,2,2,3,3,3,1,1,1,1,3,3,3,2,
gﬁiéfz,2,2,2,2,2,2,3,3,3,3,3,3,2,
gﬁié?z,2,
gﬁiéfz,2,3,3,3,3,3,3,2,2,2,2,2,2,2,2,
gﬁiéfz,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,1,1,1,1,3,3,3,2,2,2,2,2,2,
gﬁié?s,s,s,z,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,1,1,1,1,1,1,1,1,3,3,2,2,2,2,2,
gﬁii?l,1,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,3,2,2,2,2,3,
:ﬁiiT1,1,1,1,3,3,2,2,2,2,2,2,2,2,2,2,2,2,3,3,1,1,1,1,1,1,1,1,1,1,3,3,2,2,3,3,
;ﬁiifl,1,1,1,1,3,2,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,2,3,1,
;ﬁiifl,1,1,1,1,3,3,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,3,3,1,
;ﬁiiT1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,3,1,1,
;ﬁiifl,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2,2,2,3,1,1,1,1,1,1,1,1,1,1,1,1,3,2,3,1,1,
;ﬁiiT1,1,1,1,1,1,3,2,2,2,2,2,2,2,2,2,2,2,3,3,1,1,1,1,1,1,1,1,1,1,3,3,2,3,1,1,
1,1,1

Figure 17.—Typical *RUC block to be inserted into a MAC input file during Monte Carlo simualtions.

NASA/TM—2017-219500 28

The two main script files that perform the Monte Carlo simulation for property variability studies are
“MonteCarloScript_PropertyVariability.m” and “ModifyRefFile.m”. These are given in full in the
Appendix: MATLAB Scripts. The results for all 100 runs are stored in a text file “DBase.txt” that can be
used later for post processing either in MATLAB or EXCEL.

Other tools that are called within the program are ‘“PlsAndUs.m” and “ExtractRucStiffnesses.m.”
These extract the strengths and stiffnessess, respectively, and have been described previously in
Sections 4.4 and 4.1.

With slight modification to the above scripts, one could perform Monte Carlo simulations for a
laminate. It should be noted that “ExtractLaminateStiffnesses.m” will have to be used to extract
stiffnesses in this case. Furthermore, since there will be several layers, for each layer the “*RUC block”
needs to be modified for each simulation.

The above procedure can also be utilized for running Monte Carlo simulations to assess the fatigue
strength variability. Here one will have to provide the appropriate load block information for fatigue and
the failure criteria with in the reference file.

5.2 Fatigue Strength vs. Life: SN Curve

The entire SN Curve that is typical for visualizing the fatigue response of materials involves repeated
runs of MAC/GMC. The load block information is usually provided under the *MECH keyword block
where the fatigue loading block, which typically consists of the ... min — max — min loads, is provided.
This operation is performed by calling the function “SNFatigueCurves.m” with the syntax:

[N] = SNFatigueCurves (InF,S,Prog)

Where “InF” the name of MAC/GMC input file. The “ *MECH load block” within the MAC/GMC input
file is altered for each block of fatigue loading. The variable “S” contains the load levels. The variable
“Prog” defines the MAC/GMC executable. For example, the input file “NewFatGMC.MAC,” which
represents a [+/- 70]s laminate, is shown in Figure 18. The load levels and executable are defined by the
following script:

S = [70:-5:20];
Prog= 'mac4z—3_2';

Figure 19 shows the generated SN curve for this case. Once the MAC/GMC analysis is completed,

the output is scanned for the fatigue life information using the function “Ncycle” which was explained
previously in Postprocessing Scripts Section 4.3.

NASA/TM—2017-219500 29

Fatigue Damage Analysis Unidirectional lamina (Or. RUC)
*CONSTITUENTS

NMATS=2

-- Graphite fiber

M=1 CMOD=6 MATID=U MATDB=1 &
EL=388.2e3,7.6E3,0.41,0.45,14.9E3,-0.68E-6,9.74e-6

-- Epoxy matrix

M=2 CMOD=6 MATID=U MATDB=1 &
EL=3.45e3,3.45e3,0.35,0.35,1.278E3,45.E-6,45.E-6
*LAMINATE

NLY=4

LY=1 THK=0.25 ANG=70 MOD=2 ARCHID=1 VF=0.6 F=1 M=2

LY=2 THK=0.25 ANG=-70 MOD=2 ARCHID=1] VF=0.6 F=1 M=2

LY=3 THK=0.25 ANG=-70 MOD=2 ARCHID=1 VF=0.6 F=1 M=2

LY=4 THK=0.25 ANG=70 MOD=2 ARCHID=1 VF=0.6 F=1 M=2

*MECH

LOP=1

NPT=4 TI=0.,50.,150.,200. MAG=0,SL.,-SL.,0 MODE=2,2,2
*SOLVER

METHOD=1 NPT=4 TI=0.,50,150.,200. STP=10.,10.,10.

NLEG=1 NINTEG=1

*DAMAGE

MAXNB=100 DINC=0.2 DMAX=0.9999 BLOCK=0.,200.

NDMAT=2

MAT=1 MOD=2 SU1=3500.,350.0,350.0,130.0,250.0,250.0 &
SU2=2000.,200.0,200.0,75.0,143.0,143.0 &
N1=1000,1000,1000,1000,1000,1000 &
N2=300000000,300000000,300000000,300000000,300000000,300000000
MAT=2 MOD=1 ANG=0. BN=0. BP=0. OMU=1. OMFL=1. OMM=1. ETU=1l. &
ETFL=1. ETM=1. BE=9. A=0.05 SFL=27. XML=150. SU=80.
*FAILURE SUBCELL

NMAT=2

MAT=1 NCRIT=1

CRIT=1 X11=3500. X22=350.0 X33=350.0 X23=130.0 X13=250.0 X12=250.0 &
COMPR=SAM

MAT=2 NCRIT=1

CRIT=1 X11=80. X22=80. X33=80. X23=40. X13=40. X12=40. &
COMPR=SAM

*FAILURE CELL

NCRIT=1

CRIT=2 X11=0.05 X22=0.05 X33=0.05 X23=0.05 X13=0.05 X12=0.05 &
COMPR=SAM

*PRINT

NPL=3

*END

Figure 18.—A typical MAC input for fatigue strength analysis.

NASA/TM—2017-219500 30

70 Qe e e T e e e R]
<
\~
\.\
65 |- 0. -
\0
\0
60 L \"Q -
\0
\0
N,
RN
55 O. -
\0
\~\
50 | » 4
O\
3
S a5 L Q. -
o .
S S
k= “
= 40 L o\ -
w s,
\~
35 s
- o\\ -
..
.\\\
30 | O-.__ -
25 te)
20 b o ppl o ppl ol s pnl el ol el nug
10" 102 103 104 105 10 © 107 108 10
of cycles

Figure 19.—A typical SN curve for a [+/- 70°]s Laminate.

NASA/TM—2017-219500 31

5.3 Generation of Random RUCSs for Use in Monte Carlo Simulations

It is often useful to generate RUCs with randomly distributed fibers and store them for subsequent
investigation of the effect of microstructure variability on strength, stiffness and other response quantities.
The following scripts provide a means to generate the *RUC block of MAC/GMC input and to store them
in an orderly manner. The scripts “CMC_RUCsForMCRuns” and “CMC_RUCs_withsqFibers MCRuns”
(Appendix) create a prescribed number of circular and square fiber CMC RUC:s by calling repeatedly the
functions described earlier under the preprocessing scripts CM_Ruc and
RechFiberPlacementWithMirroring.

For CMC RUC:s with circular fibers, we utilize the CMC_Ruc function. The inputs to this function are
described below:

Radf=6; % Fiber Radius

Radi=7.2; % Interface Radius

nx=40;ny=40; % Number of subcells in each direction
Nfibers=4; % Number of fibers

nrep=1; % Nuber of reps for tiling. Not used at all here.
NSimuls = 100; % Number of MAC runs

Fn='RUC'; % Generic prefix for file name

The call the function CM_Ruc, the following syntax is used:
[FVR,IVR,MVR,RUC,~,~,~] = CMC_Ruc (Radf,Radi,nx, ny, Nfibers, nrep)
Once the RUC is generated, it is written to a file by calling the function

WriteSmallRuc (RUC, Fname)

The files are named as “RUCnn.txt” where nn is a number between 1 thru the total number of RUCs
requested to be generated. The entire script is provided in the Appendix.

Similar to the above, in order to generate a randomly distributed square fiber RUCs we utilize the
function “RectFiberPlacementWithMirroring.” The following inputs are needed to call the function:

fvr = .28; $ Fiber Volume Ratio

ivr = 0.13; % Interface Volume Ratio

Nfibers=4; % Number of fibers

nrep=1; % Nuber of reps for tiling. Not used at all here.

o°

Nsimuls = 100;
Fn='RUCSq';
Eclr=0.01;

Number of MC runs
Generic prefix for file name
Interfiber clearance.

oe

oe

The call to the function has the syntax:
[RUC,L,H,success] = RectFiberPlacementWithMirroring (Nfibers, fvr,ivr, Eclr)

The value for the variable “success” takes either “0” or “1”. If the program is able to place all the fibers
successfully then a value of “1” is returned otherwise a warning message is displayed for the user to make
appropriate changes and try again. Once the RUC is generated it is written to a file by calling the function

WriteRandSqRuc (RUC,Fname, H, L)

The files are named as “RUCsqnn.txt” where nn is a number between 1thru the total number of RUCs
requested to be generated. The entire script is provided in the Appendix.

NASA/TM—2017-219500 32

6.0 Concluding Remarks

In this document we have compiled a number of scripts and functions written in the MATLAB
programming language that are useful in automating various MAC/GMC analyses tasks. Illustrative
examples that show the usage of the functions and scripts are provided throughout the document in order
to help new users perform MAC/GMC analyses tasks with ease as well as help them develop new
analyses scripts. As mentioned before, the tools are not meant to be exhaustive, but rather to provide a
flavor of what can be done and automated. They provide enough information for developing other similar
scripts as needed.

NASA/TM—2017-219500 33

Appendix—MATLAB Scripts

This section includes all of the source code for the MATLAB scripts that have been described herein.
These scripts can be copied and pasted into MATLAB and can be executed. It is assumed here that the
user has some basic knowledge of how to execute MATLAB scripts, their syntax, and some programming
knowledge. Modifications may be made to the existing scripts in order to tailor the scripts to meet their
individual requirements.

Preprocessing Scripts

All the MATLAB preprocessing scripts for MAC/GMC analyses described in Section 2 are provided
below:

Plot a Repeating Unit Cell

This function takes the basic RUC definition and shows it pictorially with different colors for each
constituent fiber, matrix and interface. This function only works for uniform grid with square size
subcells.

function [] = plotRUC (RUC)

% Developed by Pappu L.N. Murthy

% Plot RUC
xrange = [1.5 size(RUC,2)+0.5];
yrange = [1.5 size(RUC,1)+0.5];

imagesc (xrange,yrange,RUC) ;

% Find Unique elements in RUC

U=unique (RUC) ;nmat=length (U) ;

cmap=[1 0 0];

% setup Color scheme

if (nmat==2)

cmap=[1 0 0;1 1 0];

elseif (nmat==3)

cmap=[1 0 0; 01 0; 1 1 0],

end

set(gcf, 'colormap', cmap)

grid on;

set (gca, 'GridColor','k',6 'LineWidth', .25, 'GridAlpha’',l)

axis image;

set (gca, 'XTick',1l:size(RUC,2)+1, 'YTick',1l:size (RUC,1)+1,

'XTickLabel','','Y¥TickLabel','"');

NASA/TM—2017-219500 35

Plot a Repeating Unit Cell With Nonuniform Subcells

This function takes as input the basic RUC definition, the H and L vectors defining the subcell
discretization in the height and width directions of the RUC and shows it pictorially with different colors
for each constituent fiber, matrix and interface. This function can take both uniform and nonuniform
subcells within the RUC.

function []= showRuc (RUC,6H,L)

% This program is for square RUC's with Square Fiber shapes only
% Developed by Pappu L.N. Murthy

% MultiScale and MultiPhysics Modeling Branch

% Date: Oct, 3, 2016.

[m,n]=size (RUC); Nmat = length (unique (RUC)) ;
px=0;py=0;
switch Nmat
case 1
cmap=[0 1 1];
case 2
cmap=[0 1 1;0 1 0];
case 3
cmap= [0 1 1;0 1 0;1 1 0];
case 4
cmap= [0 1 1
cmap= [1 0 0;0 1

I4

I4

0;
1

oe

010;11 100];
0;110;1 1]1;
end
for i = 1:m
for j=1:n
rectangle('Position', [px py L(j) H(i)], 'FaceColor',...
cmap(RUC(i ,3j),:)):
px=px+L (J);
end
px=0;
pPy=py+H (i);
end
x1im ([0 sum(L)]);ylim ([0 sum(H)]);
daspect([1,1,1]);
axis off;

NASA/TM—2017-219500 36

Extraction of RUC and H and L Information From a “*RUC” Block of a Typical MAC/GMC Input File

This function takes as input a typical input section of MAC input block represented by ‘*RUC’ key
word. It outputs the definitions for RUC, and the height and width direction subcell size information in H
and L vectors.

function[RUC,H,L] = ExtractSqRuc(f,Ln)

This function Extracts the info regarding RUC and the subcell
dimenstions in H and L from *RUC block of MAC input data. Note that
there should not be any blanks in the input and the routine is for
square RUC (NB = NG) or rectangular where (NB # NG);

Developed by Pappu L.N. Murthy, Date: June 2, 2016,

Multiphysics and Multiscale Modeling Branch

NASA Glenn Research Center

o° o0 d° d° P o

o

if (nargin==1)
Ln=6; % Note for *RUC block this number is 6 However, for
% *LAMINATE Block this is line #7

o

end

fidl=fopen(f,'r');

Cl = textscan(fidl, '%s', 'Delimiter','\n');

Cl = C1{1};

fclose (£fidl) ;

format dims=('NB=%d NG=%d') ;

format strH='H=%f';

format strL='L=%f';

StartLine=Ln-3;

n=cell2mat(textscan(Cl{StartLine}, format dims));
format_strH = [format_strH, repmat(',%f',1,n(1)-1)];
format_strL = [format_strL, repmat(',%f',1,n(2)-1)];
C=Cl(Ln:end) ;

H=cell2mat (textscan(Cl{StartLine+l}, format_strH));
L=cell2mat (textscan(Cl{StartLine+2},format_strL));

$ RUC=][];

RUC=zeros (n) ;

for i=1:1length (C)

s=textscan(C{i}, '%s', 'Delimiter', '=");
a=s(1);
b= a{l};
f=textscan(b{2},'%s', 'Delimiter',',");

g=cell2mat (£{1});

RUC (i, :)=str2num(g) '’
end

RUC=£f1lipud (RUC) ;

NASA/TM—2017-219500 37

Write *RUC block for a Typical MAC/GMC Input File

This function based on a given RUC, H and L definitions, generates the input section of ‘*RUC’
block for a typical MAC input data set. The output is a text file and can be readily inserted into a MAC
input dataset.

function [] = WriteRuc (RUC,FilelIn,H,L)
% This function enables writing of a typical *RUC block % of MAC input
data.

Developed by Pappu L.N. Murthy, Date: June 2, 2016,

Multiphysics and Multiscale Modeling Branch

NASA Glenn Research Center

[nx,ny]=size (RUC) ;

fidN=fopen (FileIn, 'wt'); % MAC compatible input file is % written here

o° de

o

% Create the RUC Part of the Mac Input for any user % % defined
archID, 99
fprintf (£idN, '$s\n', '*RUC', 'MOD=2 ARCHID=99') ;

fprintf (£idN, 'NB=%2i NG=%2i\n', nx,ny);
% H to Mac input file.
format str = 'H=%d';n=length(H) ;

ifn >1

format str = [format str, repmat(',%d', 1, n-1)];
end
format str = [format str, '\n'];

fprintf (£idN, format str, H);
% Write L to Mac Input file
if (nx~=ny)
format_str = 'L=%d';n=length(L);
ifn >1
format_str = [format_str, repmat(',%d', 1, n-1)];
end
format str = [format str, '\n'];
else
format_str(1)='L";
end
fprintf (£idN, format_str, L);
% Write each row of the cell
format_str='SM=%d';n=size (RUC,2);

if n>1

format str = [format str, repmat(',%d',1,n-1)];
end
format str = [format str, '\n'];

RUC=£f1lipud (RUC) ;
fprintf (£idN, format str,RUC') ;
fclose (£idN) ;

NASA/TM—2017-219500 38

Writing Very Large RUC Input Blocks Where MAC/GMC Continuations are Used

This function is useful for writing input blocks of “*RUC’ where the RUC size is extremely large and
the input requires continuation lines in the text file. MAC program considers ‘&’ at the end of any input
data line as a continuation.

function [] = WriteBigRuc (RUC,FileIn, H,L)
[nx,ny]=size (RUC); Nentry=200;
% Create the RUC bloc of Mac Input for any archID, 99
fidN=fopen (FileIn, 'wt'); % MAC compatible input file is written here
fprintf (£idN, '$s\n', '*RUC', 'MOD=2 ARCHID=99');
fprintf (£idN, 'NB=%2i NG=%2i\n',6 nx,ny);
% H to Mac input file.
format str = 'H=%d';n=length(H) ;
if n > Nentry
nlines=fix (n/Nentry) ;Rem=mod (n,200) ;

format strl = [format str,repmat(',%d',1l,Nentry-1),', &\n'];
format str2 = ['%d',repmat(',%d’',1,Nentry-1),',&\n"'];
for lines = l:nlines

if (lines == 1)

fprintf (£idN, format stril,
H((lines-1)*Nentry+l: Nentry*lines))
else
fprintf (£idN, format str2,
H((lines-1)*Nentry+l: Nentry*lines));

end
end
format_str3 = '$d' ,repmat(',%d',1,Rem-2),"',%d\n'];
fprintf (£idN, format_str3, H(Nentry*lines+l:end));
end
% Write L to Mac Input file
format str = 'L=%d';n=length(L);

if n > Nentry
nlines=fix (n/Nentry) ;Rem=mod (n,200) ;

format strl = [format str,repmat(',%d',1,Nentry-1),', &\n'];
format str2 = ['%d',repmat(',%d’',1,Nentry-1),', &\n'];
for lines = l:nlines

if (lines == 1)

fprintf (fidN, format strl,
L((lines-1)*Nentry+l: Nentry*lines))
else
fprintf (£idN, format str2,
L((lines-1)*Nentry+l: Nentry*lines))
end
end
format str3 = ['%d',repmat(',%d',1,Rem-2),"',%d\n'];
fprintf (fidN, format str3, L(Nentry*lines+l:end));
end
% Write each row of the cell
RUC=£f1ipud (RUC) ;
for Rows = 1l:length (H)
xx=RUC (Rows, :) ;

NASA/TM—2017-219500 39

format str='SM=%d';n=length (xx) ;
if n > Nentry
nlines=fix (n/Nentry) ;Rem=mod(n,200) ;

format strl = [format str,repmat(',%d’',1,Nentry-1),', &\n'];
format str2 = ['%d',repmat(',%d',1,Nentry-1),', &\n'];
for lines = l:nlines

if (lines == 1)

fprintf (£idN, format_stril, ...
xx((lines-1)*Nentry+1l: Nentry*lines));
else
fprintf (£idN, format str2, ...
XX ((lines-1) *Nentry+l: Nentry*lines))

end
end
format str3 = ['%d',repmat(',%d',1,Rem-2),"',%d\n'];
fprintf (fidN, format str3, xx(Nentry*lines+l:end));
end
end
fclose (£idN) ;

NASA/TM—2017-219500 40

Square Packed Circular Fibers RUC Generation

This function generates an RUC for a CMC material given the fiber volume and the interface volume
ratios as well as the number of subcells within the interface. The RUC is for a square packed
configuration. If the interface volume ratio is given as ‘0’, the program generates a PMC RUC in which
case the user needs to specify the parameter Nw which is basically the number of subcells in width or
height directions.

function[fvr ,mvr,ivr , RUC]=SquarePack (Fvr,Ivr,nrep,Ni,K Nw)

oe
o

o
o

Program that generates a Square packing CMC Ruc with
interface.

Fiber radius and Interface thickness are user
definable.

Developed by Pappu L.N. Murthy, Date June, 30, 2015;

o° o° o°
o° o° o°

oe
oe

oP
oe

M=2;F=1,;I=3;

W=1;H=1;

TA = W*H;

FA = Fvr*TA;

Radf = sqrt(FA/pi);

IA = Ivr*TA;

Radi = sqrt((FA+IA)/pi);

flag=0;

if (abs(Radf-Radi)>=eps)
flag=1;

end

if (flaqg)
ti=Radi-Radf;
Radi=round (Ni*Radi/ti) ;
Radf=round (Ni*Radf/ti) ;
ny=round (Ni*W/ti) ;

else
ny=Nw;
Radf= round(sqrt (((ny*ny)*Fvr)/pi));
Radi=Radf;

end

if (mod(ny,2))
ny=ny-1;

end

nx=ny;

Lbase=ones (1,ny) ;Hbase=ones (1,nx) ;

base = M*ones(nx ,ny); % Square RUC
% Fiber volume ratio Optimization
Fact=(.95:0.001:1.2);

fv=zeros(1,length(Fact)) ;

iv=fv;

Raf=fv;Rai=fv;

NASA/TM—2017-219500 41

Q

% define center of RUC
cx=nx/2;cy=ny/2;
for ii = 1l:1length(Fact)
Rf=Fact (ii) *Radf;Ri=Fact(ii) *Radi;
for i=l:nx
for j=l:ny
radx = (j-0.5) ;rady=(i-0.5);
dist = sqgrt ((cx-radx)”*2+ (cy-rady)”*2);
if (dist<=Rf)
base (i, j)=F;
elseif (dist>Rf && dist<=Ri)
base(i,]j)=I;
end
end
end

Ma= base ==M;Marea=sum(Ma(:)) ;
Fa= base ==F;Farea=sum(Fa(:));
Ia= base ==I;Iarea=sum(Ia(:));
Ta=Marea+Farea+Iarea;
fvr= Farea/Ta; ivr=Iarea/Ta;
fv(ii)=£fvr;
iv(ii)=ivr;
Raf (ii)=Rf;Rai (ii)=Ri;
if (£fv(ii)>=Fvr)
break
end
end

Rf=Raf (ii) ;
if (ii>1)
if (abs(Fvr-fv(ii)) > abs (Fvr-fv(ii-1)))
Rf=Raf (ii-1);
end

if (flag)
% Interphase Optimzation
base (base(:)==I)=M;
Fact=(Rf/Radi:0.001:1.2);
fv=zeros(1,length(Fact)) ;
iv=fv;
Rai=fv;
for ii = 1:1length(Fact)
Ri=Fact (ii) *Radi;
for i=l:nx
for j=1l:ny
radx = (j-0.5) ;rady=(i-0.5);
dist = sgrt ((cx-radx)”*2+ (cy-rady)”*2);
if (dist<=Rf)
base (i, j)=F;
elseif (dist>Rf && dist<=Ri)

NASA/TM—2017-219500 42

base (i,]j)=I;
end
end
end

Ma= base ==M;Marea=sum(Ma(:));
Fa= base ==F;Farea=sum(Fa(:));
Ia= base ==I;Iarea=sum(Ia(:));
Ta=Marea+Farea+Iarea;
fvr= Farea/Ta;ivr=Iarea/Ta;
fv(ii)=£fvr;
iv(ii)=ivr;
Rai (ii)=Ri;
if (iv(ii)>=Ivr)
break
end
end
Ri=Rai (ii) ;
if (ii>1)
if (abs(Fvr-fv(ii)) > abs(Fvr-fv(ii-1)))
Ri=Rai (ii-1);

% Generate current Ruc;

base = M*ones(nx ,ny); % Square RUC
for i=l:nx
for j=l:ny

radx = (j-0.5) ;rady=(i-0.5);
dist = sqgrt ((cx-radx)”*2+ (cy-rady)”*2);
if (dist<=Rf)
base (i,]j)=F;
elseif (dist>Rf && dist<=Ri)
base (i,]j)=I;
end
end
end
Ma= base ==M;Marea=sum(Ma(:));
Fa= base ==F;Farea=sum(Fa(:));
Ia= base ==I;Iarea=sum(Ia(:));
Ta=Marea+Farea+Iarea;
fvr= Farea/Ta; mvr=Marea/Ta; ivr=Iarea/Ta;
RUC=base;

o

PMC. No interface.

base = M*ones(nx ,ny); % Square RUC
for i=l:nx
for j=1l:ny

radx = (j-0.5) ;rady=(i-0.5);

NASA/TM—2017-219500 43

dist = sqgrt ((cx-radx)”*2+ (cy-rady)”*2);
if (dist<=Rf)
base (i,]j)=F;
end
end
end
Ma= base ==M;Marea=sum(Ma(:));
Fa= base ==F;Farea=sum(Fa(:));
Ta=Marea+Farea;
fvr= Farea/Ta; mvr=Marea/Ta; ivr=Iarea/Ta;
RUC=base;
end

NASA/TM—2017-219500 44

Hexagonally Packed Circular Fibers RUC Generation

This function generates an RUC for a hexagonal packing arrangement for the fibers for both CMC
and PMC materials. Typical RUC in this case would include one fiber in the center and four quadrants of
the fiber in each of the four corners of a rectangle.

function[fvr ,mvr,ivr ,RUC]= HexaPack (Fvr,Ivr,nrep,Ni,Nw)
% Program that generates a Hexagonal packing CMC Ruc with
interface.
Fiber radius and Interface thickness are user difinable.
Developed by Pappu L.N. Murthy,
format long;clear all;
if (nargin==3)
Ni=1;
end
M=2;F=1,;I=3;

oe

o° de

o

W=1,;H=W/sqrt(3) ;

TA = W*H;

FA = Fvr*TA;

Radf = sqrt(FA/(2*pi));

IA = Ivr*TA;

Radi = sqrt((FA+IA)/(2*pi));
flag=0;

% Determine if fiber radius and interface radius are same
if (abs(Radf-Radi)>=eps)
flag=1;
end
if (flaqg)
ti=Radi-Radf;
Radi=round (Ni*Radi/ti) ;
Radf=round (Ni*Radf/ti) ;
ny=round (Ni*W/ti) ;

else
ny=Nw;
Radf= round(sqrt (((ny*ny/sqrt(3))*Fvr)/(2*pi)));
Radi=Radf;

end

if (mod(ny,2))
ny=ny-1;
end

nx=fix (1.732\ny) ;
if (mod(nx,2))
nx=nx-1;
end
Lbase=ones (1,ny) ;Hbase=ones (1,nx) ;
base = M*ones (nx/2,ny/2);
% Rectangular RUC with two of the opposite corners made of % fibers
with interface.

NASA/TM—2017-219500 45

% Fiber volume ratio Optimization
Fact=(.95:0.001:1.2);
fv=zeros(1l,length (Fact)) ;
iv=fv;Raf=fv;Rai=fv;
for ii = 1:length(Fact)
Rf=Fact (ii) *Radf ;Ri=Fact (ii) *Radi;
for i=1:nx/2
for j=l:ny/2
dist=sqrt (i*2+3j*2);
dist2=sqrt((nx/2-i+l1)*2 + (ny/2-j+1)*2);
if (dist<=Rf || dist2<=Rf)
base (i,]j)=F;
elseif (dist>Rf & dist<=Ri || dist2>Rf & dist2<=Ri)
base (i,])=I;
end
end
end

Ma= base==M;Marea=sum(Ma(:));
Fa= base==F;Farea=sum(Fa(:));
Ia= base==I;Iarea=sum(Ia(:));
Ta=Marea+Farea+Iarea;
fvr= Farea/Ta;ivr=Iarea/Ta;
fv(ii)=£fvr;
iv(ii)=ivr;
Raf (ii)=Rf;Rai (ii)=Ri;
if (£fv(ii)>=Fvr)
break
end
end
Rf=Raf (ii) ;
if (ii>1)
if (abs(Fvr-fv(ii)) > abs(Fvr-fv(ii-1)))
Rf=Raf (ii-1) ;
end
end
if (flag)
% Interphase Optimzation
base (base(:)==I)=M;
Fact=(Rf/Radi:0.001:1.2);
for ii = 1l:1length(Fact)
Ri=Fact (ii) *Radi;
for i=1:nx/2
for j=l:ny/2
dist=sqrt (i*2+3j*2);
dist2=sqrt((nx/2-i+1)*2 + (ny/2-j+1)*2);

if (dist<=Rf || dist2<=Rf)
base (i, j)=F;

elseif (dist>Rf & dist<=Ri || dist2>Rf & dist2<=Ri)
base(i,j)=I;

end

NASA/TM—2017-219500 46

end
end

base2=flipud (base) ;basel2=[base;base?];
basel3=fliplr (basel2) ;
baseld4d = [basel2,basel3];

Ma= baseld4==M;Marea=sum(Ma(:));
Fa= baseld4==F;Farea=sum(Fa(:));
Ia= baseld==I;Iarea=sum(Ia(:));
Ta=Marea+Farea+Iarea;
fvr= Farea/Ta; ivr=Iarea/Ta;
Rai (ii)=Ri;
fv(ii)=£fvr;
iv(ii)=ivr;
if (iv(ii)>=Ivr)
break

end

end

Ri=Rai (ii) ;

if (ii>1)
if (abs(Ivr-iv(ii)) > abs(Ivr-iv(ii-1)))
Ri=Rai (ii-1) ;
end

% Generate current Ruc;
base = M*ones(nx/2,ny/2); % Rectangular RUC with two of % the
opposite
for i=1:nx/2
for j=l:ny/2
dist=sqrt (i*2+3j*2);
dist2=sqrt((nx/2-i+1)*2 + (ny/2-j+1)*2);
if (dist<=Rf || dist2<=Rf)
base (i,]j)=F;
elseif (dist>Rf & dist<=Ri || dist2>Rf & dist2<=Ri)
base(i,]j)=I;
end
end
end
base2=flipud (base) ;basel2=[base;base2] ;
basel3=fliplr (basel2) ;
baseld4d = [basel2,basel3];

Ma= basel4==M;Marea=sum(Ma(:)) ;

Fa= baseld4==F;Farea=sum(Fa(:));

Ia= baseld==I;Iarea=sum(Ia(:));
Ta=Marea+Farea+Iarea;

fvr= Farea/Ta; mvr=Marea/Ta; ivr=Iarea/Ta;

NASA/TM—2017-219500 47

% PMC. No interface.
base = M*ones(nx/2,ny/2); % Rectangular RUC with two of the
opposite
for i=1:nx/2
for j=l:ny/2
dist=sqrt (i*2+3j*2);
dist2=sqrt((nx/2-i+1)*2 + (ny/2-j+1)*2);
if (dist<=Rf || dist2<=Rf)
base (i, j)=F;
end
end
end
base2=flipud (base) ;basel2=[base;base?];
basel3=fliplr (basel?) ;
baseld4d = [basel2,basel3];
Ma= basel4==M;Marea=sum(Ma(:));
Fa= baseld4==F;Farea=sum(Fa(:));
Ta=Marea+Farea;
fvr= Farea/Ta; mvr=Marea/Ta;
end
RUC = baseld;

NASA/TM—2017-219500 48

Randomly Packed Circular Fibers RUC Generation

This function generates random architectures for RUCs with a specified number of fibers in a square
packing. The subcells are of uniform size with an aspect ratio 1. The program ensures periodicity by
mirroring those fibers which intersect the boundaries. The program accepts nominal inputs for fiber and
interface radii, and the overall RUC size in number of subcells in width and height directions.

function [FVR, IVR,MVR,RUC,BigRUC,BigL,BigH, FibCenters,Tal] =...
new CMC Ruc2 (Radf,Radi, Nfibers,nrep,dpad,MaxTries, fvr,ClCntrl,ClExpo)

% Program to generate random placement of circular fiber RUC

in a nx x ny Region...

o

M=2;F=1;1I=3;U=5;

e=0;

[BaseRUC]=BaseCmcRuc3 (Radf,Radi,e);
[Dia, ~]=size (BaseRUC) ;

Rad=Dia/2;
FA = length (BaseRUC (BaseRUC==F)) ;
IA = length (BaseRUC (BaseRUC==I)) ;

% Find Big RUC size

Side= round(sqrt(FA*Nfibers/fvr));
MA = Side”2-Nfibers* (FA+IA);

FVR FA*Nfibers/Side/Side;

IVR IA*Nfibers/Side/Side;

MVR = MA/Side/Side;

nx=Side;

% dpad=0; % Fibers can touch
% dpad = 1, minimum of one subcell between the fibers.

IndForI=find (BaseRUC==F | BaseRUC==I);

o

Mark all the nodes that will be unavailable after placing a fiber
ElimRUC=BaseCmcRuc3 (2*Radf, 2* (Radi+dpad),0.1);
E1limRUC (E1imRUC== | El1imRUC==I)=U;
IndForU = find (E1imRUC==U) ;

% All locations in E1limRUC are unavailable once a BaseRUC is placed in
place at any location. The positions of the subcells change depending on
the fiber center.

[NsizeE, ~]=size (E1imRUC) ;
Maxgen=MaxTries;
RUC=M*ones (nx, ny) ;
RUCU=RUC;

[o)

% Initialize variables
GenV=zeros (1,Maxgen) ;
NfibV=zeros (1,Maxgen) ;

Nf =zeros (Nfibers,?2); % Fiber Centers

nfib = 0;
% Define the domain for random center

NASA/TM—2017-219500 49

% Make a list of all eligible points in the domain.
NsizeB= (xmax—-xmin+1) ;

EligRefl =cell (NsizeB"2,1);

EligIndx = (1:NsizeB"2)';

X=xmin:xmax;

Y=ymin:ymax;

1=0;

for j = 1l:NsizeB
for i=1:NsizeB
1=1+1;
EligRefl {l}= [X(i),Y(j), RUCU(i,3)];
end
end
EligiblelL=EligRefL;
Igen=1;
while (Igen <= MaxTries && nfib < Nfibers) % First While Loop checking
Number of fibers placed
% Generate random center;
GenV (Igen)=Igen;
% generate uniform random number
% pick a random location;
if (ClCntrl==0)
Rloc = randi(length(EligIndx),1);
LocR = EligibleL{Rloc};
elseif (nfib==0)
Rloc = randi(length(EligIndx),1l);
LocR = EligibleL{Rloc};

else

% find a location based on probability of proximity to a fiber
[LocR] = Closelocation(Eligiblel,EligIndx,Nf(l:nfib, :),ClExpo);
end

Cx= LocR(1l,1);Cy=LocR(1,2);
FibLoc = [Cx , Cy];

Nf (nfib+1,:) = FibLoc(l,:); % Store Fiber Centers
% show square fiber for now
px=FibLoc(1l,1)-Rad;py=FibLoc (1, 2) -Rad;
Irow = px:px+Dia-1;

Jcol = py:pytDhia-1;

% Check if TempRUC dimension will go outside of box EJP
[Irow,Jcol]=CheckBDcross (ny,nx, Irow,Jcol);
tmp3 = RUC(Irow,Jcol);
tmp3 (IndForI)=BaseRUC (IndForI) ;
RUC (Irow,Jcol)=tmp3;
figure (1), plotRUC(RUC)
% Add code for Unavailable locations here
pxU=FibLoc (1,1)-NsizeE/2;pyU=FibLoc(1,2)-NsizeE/2;

o

NASA/TM—2017-219500 50

IrowU = pxU:pxU+NsizeE-1;

JcolU = pyU:pyU+NsizeE-1;

% Check if ElimRUC dimension will go outside of box
[IrowU, JcolU]=CheckBDcross (ny,nx, IrowU, JcolU) ;

ind = find(RUCU (IrowU, JcolU)==0U) ;

tmp = RUCU (IrowU,JcolU);

tmp2 = E1imRUC;

tmp2 (ind) = tmp (ind);

RUCU (IrowU, JcolU) = tmp2;

% Increment the trial counter
nfib=nfib+1;
NfibV (Igen)=nfib;

% Update Eligible Region by removing the fiber that is already

% placed with in the domain

[EligIndx,EligiblelL] = PurgeAndUpdate (IrowU,NsizeEk, JcolU, ...
NsizeB,EligIndx,EligRefLl,E1imRUC) ;

TF=isempty (EligIndx) ;

if (TF && nfib < Nfibers)

% Start the counter again

Igen = Igentl;

nfib=0;

EligIndx = (1:NsizeB"2)';

EligiblelL=EligRefL;

RUC=M*ones (nx, ny) ;

RUCU=RUC;

Nf = zeros (Nfibers,2); % Fiber Centers
end

% Check Whether max generations reached...

if (nfib < Nfibers && Igen>MaxTries)
Msg={'Max.Gens Reached',6 'Failed to Place all Fibers',6 ...
'Decrease FVR', 'Or increase Radf and try again'};
warndlg (Msg, 'Failure', 'modal') ;

Generation=GenV(l:Igen)"';

N of fibers=NfibV(l:Igen)';

Ta= table (Generation,N of fibers);
Lbase=nx;Hbase=ny;

[BigRUC,BigL,BigH] = RepeatRUC (Lbase,Hbase,RUC,nrep);
FibCenters = [Nf(:,1)-1 Nf(:,2)1;
function[EligIndx,Eligiblel] = PurgeAndUpdate (Irow,NsizeS,Jcol, ...

NsizeB,EligIndx,EligRef, E1imRUC)
% Update Eligible Region by removing the locations occupied by the fibers
% that are already placed with in the domain

NASA/TM—2017-219500 51

1=0;
for j = 1l:NsizeS
for i= 1:NsizeS
if (E1imRUC (i, j)==5)
1=1+1;
SmallL(l)=Irow(i) + (Jcol(j)-1)*NsizeB ;
end
end
end
% Purging operation
EligIndx=setdiff (EligIndx, Smalll);
Eligiblel=EligRef (EligIndx) ;

function[base]=BaseCmcRuc3 (Radf,Radi,e)

% Program that generates a Square packing CMC Ruc with interface.
% Fiber radius and Interface thickness are user definable.

% Developed by Pappu L.N. Murthy, Date June, 30, 2015;

M=2;F=1;1I=3;
nx=round (Radf); ny=round(Radi)
if (ny>nx)

nx=ny;
end
base = M*ones (nx ,ny); % Square RUC
% define center of RUC
cx=nx;cy=0;
[X,Y]= meshgrid((l:nx)-0.5 , (
Dist = sqgrt((cx-X)."2 + (cy-Y
base (Dist<=Radf)=F;
base (Dist>Radf & Dist<=Radi) =I;
base= [flipud ([base,fliplr(base)]);[base,fliplr(base)]l];

l:ny)-0.5) ;
) .2) —e;

function[Irow,Jcol]=CheckBDcross (ny,nx, Irow,Jcol

Check if TempRUC dimension will go outside of box EJP

This function checks each fiber block to see if it crosses the boundary
and if it crosses the boundary it tries to place the remaining fiber on
the opposite side to preserve periodicity of the RUC

o° 0P oe

o

for i=l:length (Irow)
if Irow(i)>ny
Irow(i)=Irow(i)-ny;
elseif Irow(i)<1l
Irow(i)=Irow (i) +ny;
end
end
for j=l:length(Jcol)
if Jcol (j)>nx
Jcol (j)=Jcol (j) —nx;
elseif Jcol(j)<1
Jcol (j)=Jcol (j) +nx;
end
end

NASA/TM—2017-219500 52

Randomly Packed Square Fibers RUC Generation

This function generates a square packed disordered fibers in an RUC where the circular fibers are
approximated as squares and the subcell sizes are nonuniform. The fiber size and interface thickness can
be randomly distributed based on user parameters CovF, and Covl which stand for the coefficient of
variation in fiber diameter and interface thickness respectively. The main advantage of such an RUC is
that, for a much smaller size one can study the architectural effects using the higher order version of
MAG/GMC, namely HFGMC and satisfying the fiber and interface volume requirements exactly. In case
of uniform square subcells, it is not possible to satisfy exactly the fvr and ivr requirements in addition to
having to deal with a very large RUC size incurring high computational costs.

function [Ruc,L,H,success,FVR,IVR,MVR] =
RectFiberPlacementWithMirroring (Nfibers, fvr,ivr,Eclr,CovF,6CovI)

oe

Rectangular variable size fiber placement

developed by Pappu L. N. Murthy

Date May 16, 2016

format long;

Nsize= Nfibers*4+1;

% Variable Size Square fibers

BetaParl = 1; BetaPar2=1l; % for Beta distribution use parameters % >1;
% for uniform distribution use parameters = 1;
CovF=.4;CovI=.4; $ percentage variation in fiber diameter and
% interface thickness use a value between 0 and 1;
mind=1-CovF;maxd=1+CovF;

mini=1-CovI;maxi=1+CovI;

Int=maxd-mind; $ Max difference between diameters.

df = mind+betarnd (BetaParl,BetaPar2,Nfibers, 1) *Int;

FA = sum (df.”*2);

dRucW = sqrt(FA/fvr);

dRucH = dRucW;

A = dRucW*dRucH;

% Uniform thickness interface

IA =A*ivr;

y = @(xx) (sum((2*xx+df) .*2 -df.*2) - IA);

iT = fzero(y,[0,10]); % average thickness of interface based on
number of

$ fibers, fiber volume ratio and

% interface volume ratio

oe

oe

ae

% Variable interface thickness
% Create for (Nfibers-1) fibers random interface thicknesses.then
% calculate the remaining interface thickness based on the
% interface volume
% ratio requirement to be met
miniT=mini*iT;maxiT=maxi*iT;
flag = 0;
while (flag==0)
iTr = miniT+betarnd (BetaParl,BetaPar2 , Nfibers-1,1)* (maxiT-miniT) ;
tempA = (df (1:Nfibers-1) + 2*iTr (1:Nfibers-1))."2
- df (1:Nfibers-1) .”*2;
LastIntA= (IA - sum(tempAd))

NASA/TM—2017-219500 53

if (LastIntA >0)
y=0 (xx) (2*xx+df (Nfibers)) *2 -df (Nfibers) 72 - LastIntA;

flag = 1;
else
flag = 0;
end
end
iTr (Nfibers) = fzero(y,[0,10])

idF=df+2*iTr;

% Check

Eps=Eclr*mean (df) ;

% Define RUC boundary

RucX=[0,dRucW,dRucW,0,0] ;

RucY=[0,0,dRucH,dRucH, 0] ;

xL = [0,dRucW]; yL= [0,dRucH];

G e e e e e e e e e e e e e e e e e e e ————————————

% define upper and lower bounds for the fiber to be placed
depending on

% its own dimensions:

px=0;py=0;

lb=[xL(1), yL(1)]; ub = [xL(2), yL(2)];

[¢}

% Generate Randomly placed fibers in RUC.
Ngen=10; % Number of generations
success=0; % Flag that checks whether we are successful in
% placing fibers.
Ntry=1000; % Number of tries for each generation
tI=iTr;
for igen=1:Ngen
Ctmp=zeros (Nfibers, 2) ;Rtmp=zeros (Nfibers, 4) ;
itry=0;
nfib=0;
for i = 1:Nfibers

if (itry >= Ntry)

break
end
if (i == 1)
nfib=0;
% Generate Fiber centers

Ctmp(i,1)= random('unif',1lb(1l) ,ub(1));
Ctmp(i,2)= random('unif',1b(2) ,ub(2));
% Construct rectangle
Rtmp (i, :)=[Ctmp (i,1)-idF(i)/2,Ctmp (i,2)-
idF (i) /2,idF (i) ,idF(i)];
itry=itry+l;
nfib=nfib+1;
% Check whether the fiber cuts any boundaries
iT=(Rtmp (i,3)-df(i))/2;
[CB, tB,RtmpB] = BdCheckTest (Ctmp,i,lb,ub,Rtmp (i, :)
,dRucW,dRucH,iT) ;

NASA/TM—2017-219500 54

o

% Show the position of fibers
Ctot=[Ctmp(1:i,:),CB];
iTtot=[tI(1:i,1);tB];

Rtot= [Rtmp(1l:i, :) ;RtmpB];

else
Ctmp(i,1)= random('unif',1lb(1l) ,ub(1));
Ctmp(i,2)= random('unif',1b(2) ,ub(2));
% Construct rectangle

Rtmp (i, :)=[Ctmp(i,1)-idF(i)/2,Ctmp(i,2)-
idF(i)/2,idF (i) ,idF(i)];

itry=itry+1;

% Check whether the fiber cuts any boundaries

iT=(Rtmp(i,3)-df(i))/2;

[CB, tB,RtmpB] = BdCheckTest (Ctmp,i,1lb,ub,Rtmp (i, :)

,dRucW,dRucH,iT) ;

% first mix regular and boundary fibers into one group
Ctemp= [Ctmp(1l:i,:);Ctot(i:end,:);CB];
iTtemp=[tI(1:i,1) ;iTtot(i:end) ;tB];

Rtemp= [Rtmp(1l:i,:) ;Rtot(i:end, :) ;RtmpB];

% Check for feasibility;
[flag] = IntersectFibers (Rtemp,Eps) ;

while (flag==1 && itry < Ntry)
itry=itry+l;
Ctmp(i,1)= random('unif',1lb(1l) ,ub(1l));
Ctmp(i,2)= random('unif',f1b(2) ,ub(2));
Rtmp (i, :)=[Ctmp (i,1)-idF (i) /2,Ctmp (i,2)-
idrF (i) /2,idF (i) ,idF(i)];
% Check whether the fiber cuts any boundaries
iT=(Rtmp (i,3)-df (i))/2;
[CB, tB,RtmpB] = BdCheckTest (Ctmp,i,lb,ub,Rtmp (i, :)
,dRucW,dRucH,iT) ;
% first mix regular and boundary fibers into one group
Ctemp= [Ctmp(1l:i,:) ;Ctot(i:end,:) ;CB];
iTtemp=[tI(1:i,1),;iTtot(i:end) ;tB];
Rtemp= [Rtmp(1l:i,:) ;Rtot(i:end, :) ;RtmpB];
% Check for feasibility;
[flag] = IntersectFibers (Rtemp, Eps) ;
end
if (itry <= Ntry)
nfib=nfib+1;
Ctot=Ctemp;
iTtot=iTtemp;
Rtot=Rtemp;
end
end
end
if (nfib<Nfibers)

% not successful

% clear all variables and start over again
clear nfib

NASA/TM—2017-219500 55

else

% Determine whether the operation has been successful
Define Grid for RUC
[1x,1ly]=Grid(iTtot,Rtot);
% Ruc creation
Lxsort=sort(1lx); Hysort=sort(ly):
Lxuni=uniquetol (Lxsort) ;Hyuni=uniquetol (Hysort) ;
Lxuni = Lxuni(Lxuni >= 0 & Lxuni <= dRucW) ;
Hyuni = Hyuni(Hyuni >= 0 & Hyuni <= dRucH);
Lxl=length (Lxuni); Hyl=length (Hyuni) ;

o

o

if (Lxl+l1==Nsize && Hyl+l==Nsize)
success=1;
break

else
clear nfib

end

end
end

if (success)

% Define Grid for RUC
[1x,1ly]=Grid(iTtot,Rtot);
% Ruc creation
Lxsort=sort(lx); Lxsort=round(Lxsort,10);
Hysort=sort(ly); Hysort=round (Hysort,10);
Lxuni=unique (Lxsort) ;
Hyuni=unique (Hysort) ;
Lxuni = Lxuni(Lxuni >= 0 & Lxuni <= dRucW) ;
Hyuni = Hyuni(Hyuni >= 0 & Hyuni <= dRucH) ;
Lxl=length (Lxuni) ;
Hyl=length (Hyuni) ;
L=zeros (1,Lxl+1l);
H=zeros (1,Hyl+1) ;
RUC=zeros (Lx1+1 ,Hyl+1,2) ;
for ii=1:Lx1
if (ii ==1)
L(ii)= Lxuni (ii);
H(ii)= Hyuni (ii);
else
L(ii)=Lxuni (ii)-Lxuni (ii-1) ;
H(ii)=Hyuni (ii) -Hyuni (ii-1);
end
end
L(ii+1l)=dRucW-Lxuni (ii) ;
H(ii+1)=dRucW-Hyuni (ii) ;

[xv,yv,~,~,axv,ayv] = FiberInterfaceRegions4 (Rtot,iTtot);
for i = 1:1length(H)
if (i == 1)

NASA/TM—2017-219500 56

istart = H(i)/2;
else
istart = istart+H(i-1)/2+H(i)/2;
end
for j=1:length(L)
if (j == 1)
jstart = L(3j)/2;
else
jstart =jstart+L(j-1)/2+L(j)/2;
end
RUC(i,Jj,:)= [Jstart,istart];

end
end
% Assign 1 for Fiber, 2 for matrix, 3 for interface.
Ruc=zeros (Lx1+1,Hyl+1) ;
[Nftot,~] = size(Rtot);
for i=1:Hyl+l
for j=1:Lxl+1

[Ruc(i,j)] = CheckConstituent (RUC(i,j,1),RUC(i,3j,2),..

xv,yv,axv,ayv,Nftot) ;
A(i,j) = L(j)*H(1);
end
end

[o)

% Compute FVR and IVR

RucI = Ruc==3; RucF=Ruc==1;RucM=Ruc==2;
RucIA = Rucl.*A;RucIF = RucF.*A;

RucIM = RucM.*A;

IVR = sum(RucIA(:))/dRucW”2;

FVR = sum(RucIF(:))/dRucW”2;

MVR = sum(RucIM(:))/dRucW”2;

% figure
% showSqRuc (Ruc,px,py,H,L)
else

msg={ 'Operation Unsuccessful after 10 generations',
'and 10000 tries. Repeat the process'};
msgbox (msg, 'No SUCCESS')
end

function [flag] = IntersectFibers (R,Eps)

Program that checks to see if any of the fibers are
intersecting each

other

R1(:,1:2)=R(:,1:2)-Eps;

R1(:,3:4)=R(:,3:4)+2*Eps;

A=R1l ;B=R1l ;

Ar = rectint(A,B);

Ad=diag(Ar) ;

area=Ar-diag (Ad) ;

o° de

o

NASA/TM—2017-219500 57

if (any(area(:)))
flag=1;

else
flag=0;

end

function[1lx,ly]=Grid(iTx,R)
% The subcell sizes H and L are computed and stored in
% 1lx and ly. These are later used to define H and L

[Rsortx,Ix]=sortrows (R) ;
[Rsorty,Iy]=sortrows(R,62) ;
[Nfibers,~]=size (R) ;
% draw grid
1=0;
for i =1:Nfibers

iT=iTx(Ix(1i));

1=1+1;
1x(1l)= Rsortx(i,1);
1=1+1;
1x(l)=Rsortx(i,1l)+iT ;
1=1+1;
1x(l)=Rsortx(i,l)+Rsortx(i,3)-iT ;
1=1+1;
1x(l)=Rsortx(i,l)+Rsortx (i, 3);
end
1=0;

for i =1:Nfibers
iT=iTx(Iy(i))

1=1+1;

ly(1)= Rsorty(i,b2);

1=1+1;

ly (1)=Rsorty (i, 2)+iT ;

1=1+1;

ly (1)=Rsorty(i,2)+Rsorty(i,4)-iT ;
1=1+1;

ly (1)=Rsorty(i,2)+Rsorty (i, 4);

end

function [CB,tB,RtmpB] = BdCheckTest(C,i,lb,ub,Rtmp, W,H, tI)
Now we have to check to see if any fiber goes outside the
boundary.

Bdry 1: Center(,2) < 1b(,2); Center(,2)>1b(,2)

iB=0;

df=Rtmp(1,3);

dly = C(i,2)-1b(2); duy = C(i,2)-ub(2);

dlx = C(i,1)-1b(1l); dux = C(i,1)-ub(1l);
BdCross=[dly,duy,dlx,dux] ;

BdCrossY=sum (abs (BdCross)-df/2<=0.) ;

o° o° o°

switch BdCrossY

NASA/TM—2017-219500 58

case 0 % Fiber does not cross any boundary
CB=[];tB=[] ;RtmpB=[];
case 1 % Fiber crosses sides...

if (abs(dly) <= df/2)
c11(1,1)=0;C11(1,2)=H;
CB(iB+1,:)=C(i,:)+C11(1,:);

elseif (abs(duy) <= df/2)
C11(1,1)=0;C11(1,2)=-H;
CB(iB+1,:)=C(i,:)+C11(1,:);

elseif (abs(dlx) <= df/2)
Cll(1,1)=w;Cl1l1(1,2)=0;
CB(iB+1,:)=C(i,:)+C1l1(1,:);

elseif (abs(dux) <= df/2)
Cl1(1,1)=-W;C1l1(1,2)=0;
CB(iB+1l,:)=C(i,:)+C1l1(1,:);

end

tB(iB+1, :)=tI;

RtmpB (iB+1, :)=[CB(iB+1,1) -Rtmp (3) /2, ...
CB(iB+1,2) -Rtmp (3) /2, Rtmp (3) ,Rtmp (3)] ;

case 2 % FIber is crossing both borders... Ie corner;

% Corner 1;

if (abs(dly)<=df/2 && abs(dlx) <=df/2)
Cl1(2,1)=W;C1l1(2,2)=0;CB(iB+1,:)=C(i,:)+C1l1l(2,:);
Cl1(3,1)=W;Cl1(3,2)=H;CB(iB+2,:)=C(i,:)+C1l1(3,:);
Cl1(4,1)=0;C1l1(4,2)=H;CB(iB+3,:)=C(i,:)+C1l1(4,:);

elseif (abs(dly)<=df/2 && abs (dux) <=df/2)
Cl1(1,1)=-W;C1l1(2,2)=0,CB(iB+1,:)=C(i,:)+C1l1(1,:);
Cl1(3,1)=0; C11(3,2)=H;CB(iB+2,:)=C(i,:)+C1l1(3,:);
Cll1(4,1)=-W; Cl1(4,2)=H;CB(iB+3,:)=C(i,:)+Cl1(4,:);

elseif (abs (duy)<=df/2 && abs(dux) <=df/2)
Cl1(1,1)=-W;Cl1(1,2)=-H;CB(iB+1,:)=C(i,:)+C1l1(1,:);
Cl1(2,1)=0,;C1l1(2,2)=-H;CB(iB+2,:)=C(i,:)+C1l1(2,:);
Cl1(4,1)=-H;C11(4,2)=0;CB(iB+3,:)=C(i,:)+C1l1(4,:);

elseif (abs (duy)<=df/2 && abs(dlx) <=df/2)
Cl1(1,1)=0;C1l1(1,2)=-H;CB(iB+1,:)=C(i,:)+C1l1(1,:);
Cll1(2,1)=W;Cl1(2,2)=-H;CB(iB+2,:)=C(i,:)+C1l1(2,:);
Cl1(3,1)=W;C11(3,2)=0;CB(iB+3,:)=C(i,:)+C1l1(3,:);

end

tB(iB+1,:)=tI;

RtmpB (iB+1, :)=[CB(iB+1,1)-Rtmp(3) /2, ...
CB(iB+1,2) -Rtmp (3) /2,Rtmp (3) ,Rtmp (3)] ;

tB(iB+2, :)=tI;

RtmpB (iB+2, :)=[CB(iB+2,1) -Rtmp (3) /2, ...

NASA/TM—2017-219500 59

CB(iB+2,2) -Rtmp (3) /2, Rtmp (3) ,Rtmp (3)] ;
tB (iB+3, :)=tI;
RtmpB (iB+3, :)=[CB(iB+3,1) -Rtmp (3) /2, ...
CB (iB+3,2) -Rtmp (3) /2, Rtmp (3) ,Rtmp (3)] ;
end

function[id] = CheckConstituent (xq,yq,xv,yv,axv,ayv,Nfibers)
% Program that determines consituents in each subcell of an RUC
M=2;F=1;I=3;
% first check whether point lies in a fiber
for i =1:Nfibers

[in] = inpolygon (xq,yq,xv(:,1i),yv(:,1));

if (in)

break

end
end
if (in)

id=F;

return
end
% check wither point lies in interface region
for i=1:Nfibers

[in] = inpolygon(xq,yq,axv(:,1),ayv(:,1));

if (in)

break

end
end
if (in)

id=I;

return
end

% if no success then it is Matrix
id=M;

NASA/TM—2017-219500 60

Generation of a PMC RUC With Randomly Placed Fibers

This function is useful for generating RUCs with a large number of fibers where each subcell of the
RUC represents a fiber. It takes fiber volume ratio, number of subcells in H and L directions as inputs and
outputs RUC, the H and L vectors, and the actual fiber and matrix volume ratios realized.

function [RUC,H,L, fvr,mvr] = RandRuc (FVR,nH,nL)
Program to generate Randomly placed fiber architecture RUC
Developed by Pappu L.N. Murthy

Multiscale and Multiphysics Modeling Branch
Date: June 17, 2016

format long; clear

H=ones (1,nH); L=ones(1l,nlL);

R = rand(nH,nL) ;

RUC= (R>=FVR) +1;

% Compute fiber and matrix volume ratios

RucF = RUC==1;FA=sum(RucF(:));

RucM = RUC==2;MA=sum(RucM(:));

TA=nH*nL;

fvr = FA/TA;

mvr = MA/TA;

PlotRUC (RUC)

o0 o P o°

o

NASA/TM—2017-219500 61

Generation of High Density RUCs

This function enables one to reproduce RUCs of higher density where each parent subcell is
subdivided into 4, 9, 16 or n? subcells. It takes RUC definition and density parameter (n) as input and
outputs the larger repeating unit cell RUC2.

function[RUC2] = HDRuc (RUC,density)

% Program to generate increased size RUC given a base RUC and %
density
% Developed by Pappu L.N. Murthy

o

Multiscale and Multiphysics Modeling Branch
Date: June 17, 2016

format long; clear

Define size

o° de

o°

[W,H]=size (RUC) ;
% Define Mesh density
n=density;% level of discretization..
n =1, same as the given RUC
n =1, each subcell divided to 2x2=4 subcells
n =3, each subcell divided to 3x3=9 subcells
etc etc...

o0 P J° o

o°

for j = 1:H

for i=1:W
mat=RUC(]j,1i);
31=(3-1) *n;
for jj=1:n
jl= jl+1;
il=(i-1) *n;
for ii=l:n
il= il1+1;
RUC2 (j1,il)= mat;
end
end
end

end

NASA/TM—2017-219500 62

Post Processing Scripts

All the MATLAB postprocessing scripts for MAC/GMC analyses described under the Section 4
(4.1 through 4.4) are provided below. Typically these are the scripts that parse the MAC outputs such as
the main output (*.out file) or the auxiliary output files such as xyplots, or local stress/strain response files
to produce a desired output.

NASA/TM—2017-219500 63

Extraction of RUC Stiffnesses From a MAC/GMC Output File

This function reads the main MAC output file (*.out file) and parses the composite stiffness
properties and returns them in the vector A. A contains basically nine stiffness related properties as
explained in the main section.

function[A]= ExtractRucStiffnesses(sTitle, outID)
Program to extract stiffness information from an RUC analyses
Developed by Pappu L.N. Murthy
Multiscale and Multiphysics Modeling Branch
June, 22, 2016.
N=9; % Number of RUC stiffness related properties
A=zeros (1,N);
while ~feof (outlID)
line = fgetl (outID) ;
if ~isempty(strfind(line,sTitle))
templine = fgetl (outID); S%$#ok empty Line
for m = 1:N
sTemp =(fgetl (outlID)) ;
d = textscan(sTemp, '%s %$£f');
A(m)=d{2};
end
break
end
end

o o° o°

o

NASA/TM—2017-219500 64

Extraction of Laminate Stiffnesses From a MAC/GMC Output File

Similar to the previous script file, here the function parses and output the four laminate level stiffness
properties.

function[A]= ExtractlLaminateStiffnesses(sTitle, outID)
% Program to extract stiffness information from a Laminate
analyses
% Developed by Pappu L.N. Murthy
% Multiscale and Multiphysics Modeling Branch
% June, 22, 2016.
N = 4; % Number of Laminate Stiffnesses to be extracted
A=zeros (1,N);
while ~feof (outlID)
line = fgetl (outID) ;
if ~isempty(strfind(line,sTitle))
templine = fgetl (outID); %#ok empty Line
for m = 1:N
sTemp =(fgetl (outlID)) ;
d = textscan(sTemp, '%s %$£f');
A(m)=d{2};
end
break
end
end

oe

NASA/TM—2017-219500 65

Extraction of Number of Cycles to Failure From MAC/GMC Output

This function takes the main output file of MAC that involves fatigue analysis and outputs the
number or cycles to failure and under a given fatigue loading condition. Additionally the output also
contains the execution time for the analysis.

function[N,CPU]=Ncycle (Title,outid)
% This function Extracts from MAC output file for a fatigue analysis
run
the number of cycles to failure and the execution time in seconds.
Developed by Pappu L.N. Murthy, Date: July 11, 2016,
Multiphysics and Multiscale Modeling Branch
NASA Glenn Research Center
frewind (outid)
Cl = textscan(outid, '%s', 'Delimiter','\n'");
Cl = C1{1};
for i=1l:length(C1)
k= regexpi (Cl{i},Title);
if(~isempty(k))
N = str2double (cell2mat(regexp(Cl{i},'\d+',6 'match')));
break;
end
end
if (i==length(Cl))
% No cycle information. Load Blocks Exceeded.
N=-1;
else
N = str2double (cell2mat(regexp(Cl{i},'\d+',6 'match')));
end;
if (isnan(N))
N=1le9;
elseif (N==inf)
N=1le9;
end

o0 o° oP

o

o°

% Read CPU times
if (N==-1)
CPU=-1;
else
r=extract numbers (Cl{end-1});
n=length(r) ;
if (n==1)
CPU=r (1) ;
elseif (n==2)
CPU=r (1) *60+xr (2) ;
elseif (n==3)
CPU=r (1) *3600+r (2) *60+r (3) ;
else
CPU=-1;
end
end

NASA/TM—2017-219500 66

fclose (outid) ;

function r = extract numbers (s)

%% Replaces commas for spaces as delimiters
n=strrep(s,',',' ')’

%% Splits the string as a cell array
n=regexp (n, '\s+', 'split');

%% Determines which cells are numbers
[n,nc,ne]l=cellfun (@ (x) sscanf(x,'%f'),n,'uni’', false);

%% Indexes the cells that are numbers
ix=cellfun (@ (x,y) x==l&&isempty(y), nc,ne);

%% Places the numbers identified in the result "r"
r=n(ix) ;

%% Transforms the cell array into a numeric array

r = cell2mat(r);
format shortG;

NASA/TM—2017-219500 67

First Matrix Cracking Strength and Ultimate Strength for a CMC Material

This script takes the xy plot information of stress versus strain to compute the firs ply matrix cracking
strength and the ultimate strength of a CMC composite system.

function [Pls,Us]= PlsAndUs (Fname,E,offset,stp)
% this function calculates the first matrix cracking or proportion
limit
% strength, and the ultimate strength.
% Developed by P. L. N. Murthy
% Multiscale and Multiphysics Branch
% NASA GRC.
% Date March, 23, 2016
xx=load (Fname) ;
flag=0.;i=0;
while (flag==0)
i=i+l;
x(i)=offset+i*stp;
y(i)=E*i*stp;
yact(i)= interpl (xx(:,1) ,xx(:,2) ,x(i));
if (y(i) > yact(i))
flag=1;
else
flag=0;
end
end
Pls = (y(i)+y(i-1))/2;
[Us]=max (xx(:,2));

NASA/TM—2017-219500 68

Local Stress Response

This function parses and outputs the local stresses in the RUC which may be used for example to
produce local stress contours.

function[sigll,sig22,sig33,sig23,sigl3,sigl2,sigmean,sigeff,X,Y,RUC]

ExtractStresses (fname)

oe

-- Set average = 1 to perform averaging of tractions across subcell
boundaries. This reproduces the average sense imposition of the
traction continuity conditions in HFGMC.

-- Set average = 0 for no averaging. Use average = 0 for GMC.

average = 0;

o° o

o

% -- Set nint = number of integration points in HFGMC when average =1
if average > 0
nint = 11;
end
% -- Load xl.dat and x2.dat files and determine their sizes

x2=load ([fname,' x2.dat']);
m = length (x2) ;

x3=load ([fname,' x3.dat']);
n = length(x3);

% —-- Create grid
[X,Y] = meshgrid(x3,x2);

% —-- Load sig.dat file

fidl=fopen([fname,' sig.dat'],'xr');

oP

£f $f %£

oe
o°
o

dl=textscan (fidl, '$£f %£f %£
fclose (£idl);

f %f %f','Headerlines',k1l);

DBlock = m*n;
sig=zeros (DBlock, 8) ;
for i=1:DBlock

for j=1:8
sig(i,j)= d1{j} (i)~

end
end
sigll = (reshape(sig(:,1),n,m))"';
sig22 = (reshape(sig(:,2),n,m))"';
sig33 = (reshape(sig(:,3),n,m))"';
sig23 = (reshape(sig(:,4),n,m))"';
sigl3 = (reshape(sig(:,5),n,m))"';

sigl2 = (reshape(sig(:,6),n,m))"';

NASA/TM—2017-219500 69

sigmean = (reshape(sig(:,7),n,m))"';
sigeff = (reshape (sig(:,8) ,n,m))"';
% Extract RUC
fid2=fopen ([fname,' epsp.dat'],'r');
d2=textscan (fid2, 'Sf %$f %$£f $f £ $f£f %£f $f %£f','Headerlines',kl);
Mnum=zeros (DBlock,1) ;
for i=1:DBlock;
Mnum(i,1l)=d2{8} (i) ;
end
RUC= (reshape (Mnum,n,m)) ';

oe

oe

if average > 0

Nbeta =length(x2) /nint;
for j=1:n
for i=1:Nbeta-1;
sig22 (nint*i, j) =
sig22 (nint*i+1, j)
sig23 (nint*i, j) =
sig23 (nint*i+l,Jj)
end
end

.5*% (sig22 (nint*i,j) + sig22 (nint*i+1,3j));
sig22 (nint*i, j) ;
.5*% (sig23 (nint*i,j) + sig23 (nint*i+1,Jj));
sig23 (nint*i,j);

Il ol ©

Ngama = length (x3) /nint;
for i=1:m
for j=1:Ngama-1;

sig33(i,nint*j) = 0.5*%(sig33(i,nint*j) +
sig33(i,nint*j+1));
sig33(i,nint*j+l) = sig33(i,nint*j);
sig23(i,nint*j) = 0.5*(sig23(i,nint*j) +

sig23(i,nint*j+1)) ;
sig23(i,nint*j+1) = sig23(i,nint*j);

end
end
end
$ —-- End of file

NASA/TM—2017-219500 70

function[]=Plot Contours(Type,X,Y,Data,Titl)
switch Type

case '2-D'

pcolor(X, Y,Data), shading interp;

c=colorbar;

c.FontSize=12;

c.FontWeight='bold';

title (Titl, 'FontSize',b18);

xlabel ('\bfx 3'");

ylabel ('\bfx 2',6 'rotation',0);

set (gca, 'FontSize',16, 'FontWeight', 'bold', 'LineWidth',2)

axis image;

axis off;

case '3-D'

% 3-D Contours
surf (X,Y,Data)
title (Titl, 'FontSize',b18);
xlabel ('\bfx 3");
ylabel ('\bfx 2','rotation',0);
set (gca, 'FontSize',616,'FontWeight', 'bold', 'LineWidth',2)
box on;
end

NASA/TM—2017-219500 71

Local Strain Response

This function parses and outputs the local strains in the RUC which may be used for example to
produce local strain contours.

function[Epsll,f Eps22 ,Eps33,Eps23,Epsl3,Epsl2 ,X,Y] =...
ExtractStrains (fname)

$ -- Load xl.dat and x2.dat files and determine their sizes

x2=load ([fname,' x2.dat']);
m = length (x2) ;

x3=load ([fname,' x3.dat']);
n = length(x3);

% -- Create grid
[X,¥Y] = meshgrid(x3,x2);

oe

-- Load eps.dat file
fidl=fopen([fname,' eps.dat'],'xr');

dl=textscan(fidl, '$f %$f %f $f %£f $f', 'Headerlines',k1l);
fclose (£fidl);

DBlock = m*n;
Eps=zeros (DBlock, 6) ;

for i=1:DBlock

for j=1:6
Eps (i,3)= d1{j}(i);

end
end
Epsll = (reshape(Eps(:,1),n,m))"';
Eps22 = (reshape(Eps(:,2),n,m))"';
Eps33 = (reshape(Eps(:,3),n,m))"';
Eps23 = (reshape(Eps(:,4),n,m))"';
Epsl3 = (reshape(Eps(:,5),n,m))"';
Epsl2 = (reshape(Eps(:,6),n,m))"';
end
$ —--— End of file

NASA/TM—2017-219500 72

Miscellaneous MATLAB Recipes for MAC/GMC Runs

All the MATLAB miscellaneous scripts for MAC/GMC analyses described under the Section 5
(5.1 through 5.3) are included here.

Monte Carlo Simulations

This script prepares input files and runs them multiple times each time varying the definition of RUC
randomly, in order to produce a database of composite properties for property variability study.
% Program for composite property wvariability study via Monte-Carlo
runs
format long;
clear;

Fname='RefFile-RUC.MAC' ; % Reference input file that gets
% modified for each Monte Carlo simulation
CL1=[18:57];% lines in Ref file to be replaced on the fly for RUC
NSimuls = 100; % Number of Monte - Carlo Simulations
fid = fopen('DBase.txt','wt'); % Open a text file to write all
% the results

Fmt= [repmat('%7.2f ', 1, 6),'\n'];

for i = 1: NSimuls
RUCFilName=['RUC' ,num2str(i),'.txt']; $ File containing *RUC
% block details
[A,Pls,Us]= ModifyRefFile (Fname,RUCFilName,CL1,1i) ;
fprintf (fid,Fmt,A, Pls,Us);
end
fclose (£fid) ;

function [A,Pls,Us]=ModifyRefFile (Fname, RUCName, CL1l,N)

[

% open the GMC input file and change the parameters...

fileID = fopen (Fname, 'r');

Cl = textscan(filelID, '%s','Delimiter','\n"');
Cl=C1{1};

fileID2 = fopen(RUCName, 'r');

C2 = textscan(fileID2,'%s','Delimiter','\n');
C2 = C2{1};

% Modify Records
Cl1(CL1(1l):CLl(end))= C2(6:end);

$ Cl(CL2(1l) :CL2(end))= C2(6:end) ;
$ Cl(CL3(1l):CL3(end))= C2(6:end) ;
$ Cl(CL4(1l) :CL4(end))= C2(6:end) ;

fclose(fileID) ;

runNumber= ['MCInp',num2str(N)];
fmac=[runNumber, ' .mac'];

fout= [runNumber,'.out'];

NASA/TM—2017-219500 73

newfileID = fopen (fmac, 'wt');

t0 = tic;

while (newfileID == -1) && (toc(t0) < 120)
pause (1) ;
newfileID = fopen(fmac, 'wt');

end

for j = l:length(C1l)
fprintf (newfilelID, '$s\n',C1{j});
end
fclose (newfileID); clear Cl C2;
% % Run MAC Program!
mac =['mac203Ver5 ', runNumber,' > tmp.out'];
dos (mac) ;
outId = fopen(fout,'r');
sTitle='Effective Engineering Moduli';
[A]= ExtractRucStiffnesses(sTitle, outID)
Fname='Stress-Strain macro.data';
stp=0.005/1000;
offset=0.005/100;
[P1ls,Us]= PlsAndUs (Fname,A(4) ,offset,stp);
fclose (outId) ;
delete('tmp.out', fmac, fout, 'Stress-Strain macro.data');

NASA/TM—2017-219500 74

Fatigue Response: SN Curves

This script prepares input files and runs them multiple times each time varying the fatigue loading
block in order to produce a complete SN Curve for a specific RUC or a Laminate configuration.

format long; clear;

InF ='NewFatGMC.MAC';

S = [70:-5:20];

Prog= 'mac4z—3_2';

[N] = SNFatigueCurves (InF,S,Prog) ;

% figure

hold on;

plot(N,S, '-

.or', 'MarkerFaceColor', 'w', '"MarkerEdgeColor', 'k', 'LineWidth',1.5)
xlabel ('# of cycles') ;ylabel('Fatigue Load')
set (gca, 'FontSize',16, 'FontWeight', 'bold')

function [N] = SNFatigueCurves (InF,S,Prog)

% This function generates S curves from base input file given the
loads

array S;

Developed by Pappu L.N. Murthy

MultiScale and MultiPhysics Modeling Branch

NASA Glenn Research Center, Cleveland, OH

Date: Nov, 1, 2016;

o° o0 o° d° o°

oe

InF is the reference input file. The load levels are changed in this
input file and MAC is repeated run to capture the number of cycles

oe

to
% failure under a load level specified in "slevels'
% slevels Array containing the load levels
% Ln line # where the load block is specified and needs to be changed
for
% every run
fprez ='Run';
Title ='TOTAL NUMBER OF CYCLES =';
N = zeros(length(S),1);
MetStr='MAG='; % String where load block is specified
for iii = 1l:1length(S)

Rn=[fprez,num2str (iii)];

% Load the contents of existing file into the cell array C1;
fileID = fopen(InF,'r'");
Cl = textscan(filelID, '%s','Delimiter','\n');
Cl=C1{1};
for i = 1:1ength(C1)

k= regexpi (Cl{i} MetStr);

if(~isempty (k))

Ln=i;

break;

end
end

NASA/TM—2017-219500 75

Str =textscan(Cl{Ln}, '%s');

Str=Str{1l};

nL=length (Str) ;

xx="";

for i = 1: nL
TF = strcmp(Str{i} (1:4) ,MetStr);
if (TF)
Str{i}=[MetStr, '0, "', num2str(S(iii)),"',"' ,num2str (-

S(iii)),',0" 1;

end

xx= [xx,Str{i},' ']’
end
Cl{Ln}=xx;

fclose (fileID) ;

fmac= [Rn,'.mac'];

fout= [Rn,'.out'];

newfileID = fopen (fmac, 'wt');

len = length(Cl);
for j = 1:1en
fprintf (newfilelID, '$s\n',C1{j});
end

fclose (newfileID); clear C1l;

G
% Run MAC Program!
mac=[Prog,' ',Rn, '> tmp.out'];
dos (mac) ;
% Open the Output Files
outID=fopen (fout, 'r');
[N(iii) ,~]=Ncycle(Title,outlID) ;
delete (fmac, fout, 'tmp.out' ,[Rn,' dam.data'])
end

NASA/TM—2017-219500 76

Creation of Circular Randomly Distributed Fiber RUCs for Monte Carlo Simulations

This scripts generates random microstructure RUCs of a specified number of fibers, fvr, and ivr that
may be utilized in Monte Carlo simulation studies for property or fatigue response.

Matlab Script file “CreateCMC_RUCs_ForMCRuns.m”
% Program that creates RUCs for Monte-Carlo runs

format long;

% Set up RUC's for 100 MC runs.
$ Control Params for RUC

Radf=6; % Fiber Radius

Radi=7.2; % Interface Radius

nx=40;ny=40; % Number of subdivisions

Nfibers=4; % Number of fibers

nrep=1; % Nuber of reps for tiling. Not used at all
% here.

NSimuls = 100; % Number of MC runs

Fn='RUC'; % Generic prefix for file name

for i = 1: NSimuls

Fname = [Fn,num2str(i),'.txt'];

fid=fopen (Fname, 'wt"') ;

[FVR,IVR,MVR,RUC,~,~,~] = CMC_Ruc (Radf,Radi,nx, ny, Nfibers, nrep)
WriteSmallRuc (RUC, Fname)

fclose (fid) ;

end

NASA/TM—2017-219500 77

Creation of Randomly Distributed Square Fiber RUCs for Monte Carlo Simulation

This scripts generates random microstructure RUCs that are square packed with square fibers of a
specified number of fibers, fvr, and ivr that may be utilized in Monte Carlo simulation studies for
property or fatigue response.

Matlab Script File “CreateCMC_RUCs_withsqFibers MCRuns.m”

% Program that creates RUCs for Monte-Carlo runs
% Created on May 17th, 2016

% Developed by Pappu L. N. Murthy

% Multiscale and Multiphysics Modeling Branch

% Set up RUC's for 100 MC runs.
% Control Params for RUC

fvr = .28; $ Fiber Volume Ratio

ivr = 0.13; % Interface Volume Ratio

Nfibers=4; % Number of fibers

nrep=1; % Nuber of reps for tiling. Not used at all

oo

here.
Number of MC runs
Generic prefix for file name

Nsimuls = 100 ;
Fn='RUCSq';

oo

o°

Eclr=0.01; % Interfiber clearance.

% ___
for i = 1: Nsimuls

Fname = [Fn,num2str(i),'.txt'];

fid=fopen (Fname, 'wt') ;

% [FVR,IVR,MVR,RUC,~,~,~] = CMC Ruc (Radf,Radi,nx, ny, Nfibers, nrep)
[RUC,L,H,success] = .
RectFiberPlacementWithMirroring (Nfibers, fvr,ivr , Eclr)

WriteRandSqRuc (RUC,Fname, H,L)

fclose (£fid) ;

end

NASA/TM—2017-219500 78

References

1. Aboudi, J., Arnold, S.M., and Bednarcyk, B.A. (2013) Micromechanics of Composite Materials A
Generalized Multiscale Analysis Approach. Elsevier, New York.

2. Bednarcyk, B.A. and Arnold, S.M. (2002) “MAC/GMC 4.0 User’s Manual—Keywords Manual,”
NASA/TM—2002-212077/Vol. 2.

3. Bednarcyk, B.A. and Arnold, S.M. (2002) “MAC/GMC 4.0 User’s Manual—Example Problem
Manual,” NASA/TM—2002-212077/Vol. 3.

4. Pappu, L.N. Murthy and Evan J. Pineda, “Tool for Generation of MAC/GMC Representative Unit
Cell for CMC/PMC Analysis,” NASA/TM—2016-219127, September, 2016.

5. Arnold, S.M.; Mital, S.K.; Murthy, P.L.N.; and Bednarcyk, B.A.: “Multiscale Modeling of Random
Microstructures in SiC/SiC Ceramic Matrix Composites within MAC/GMC Framework”, Proc. of
31% Annual Technical Conference, American Society of Composites, Williamsburg, Virginia, Sep.
19-21, 2016.

6. Mital, S.K.; Arnold, S.M.; Murthy, P.L.N.; and Bednarcyk, B.A.:” Micromechanics-based Modeling
of Random Microstructures in SiC/SiC Ceramic Matrix Composites using MAC/GMC Computer
Code”, 41st Annual Conference on Composites, Materials and Structures (Restricted Sessions),
Cocoa Beach, Florida, Jan. 23-26, 2017.

7. Arnold, S.M.; Murthy, P.L.N.; Bednarcyk, B.A.; Pineda, E.J.; and Mital, S.K.:” Micromechanics-
Based Fatigue Life Prediction of Composites”, Proc. of 2017 AIAA SciTech Conference, Grapevine,
Texas, Jan. 9-13, 2017.

8. Goldberg, R.K., Comiskey M.D., and Bednarcyk, B.A. (1999) “Micromechanics Analysis Code Post-
Processing (MACPOST) User Guide, Version 1.0, NASA/TM—1999-209062.

NASA/TM—2017-219500 79

	TM-2017-219500
	Contents
	Summary
	Nomenclature
	1.0 Introduction
	2.0 Preprocessing Related Tasks
	2.1 Plotting of 2-D RUCs With Uniform Subcells
	2.2 Plotting of 2-D RUCs With Nonuniform Subcells
	2.3 Extracting RUC Information From a MAC/GMC Input File
	2.4 Writing of Any *RUC Block Input That Can Be Inserted Into a MAC/GMC Input File

	3.0 Creation of User Defined RUCs
	3.1 Square Packing
	3.2 Hexagonal Packing
	3.3 Randomly Distributed Circular Fibers in Square RUC
	3.4 Randomly Distributed Square Shaped Fibers in Square Packing
	3.5 Generation of a PMC RUC With Randomly Placed Fibers
	3.6 Increasing Subcell Density Without Affecting the Shape of Fiber in aSelf Similar Fashion

	4.0 Post Processing Related Tasks
	4.1 Extraction of RUC Stiffness Related Properties.
	4.2 Extraction of Laminate Stiffnesses
	4.3 Extraction of Number of Cycles to Failure From MAC/GMC Fatigue Simulation Output
	4.4 Extraction of First ply Matrix Cracking Strength or PLS
	4.5 Plotting of the Local Stress and Strain Fields
	4.5.1 Local Strain Response

	5.0 Miscellaneous MATLAB Recipes for MAC/GMC Runs
	5.1 Monte Carlo Simulations
	5.2 Fatigue Strength vs. Life: SN Curve
	5.3 Generation of Random RUCs for Use in Monte Carlo Simulations

	6.0 Concluding Remarks
	Appendix—MATLAB Scripts
	References

