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PHYSIOGRAPHIC AND HYDRAULIC STUDIES OF RIVERS

THE DISTRIBUTION OF BRANCHES IN RIVER NETWORKS

By ENNIO V. GIUSTI and WILLIAM J. SCHNEIDEB

ABSTRACT

Bifurcation ratios derived from streams ordered according to 
the Strahler system are not wholly independent of the stream 
orders from which they are computed and, within a basin, tend 
to decrease in a downstream direction. The bifurcation ratios 
computed from two successive constant orders of streams within 
equal-order basins increase with the area of the basin but tend 
to become constant where the basin reaches a certain size.

The distribution of the number of major tributaries (streams 
of one order-lag) is exponential with a maximum frequency of 
two and can be expressed as the probability function

The distribution of the number of smaller tributaries is both 
unimodal and skewed and there appears to be an orderly succes­ 
sion of distributions from exponential to normal from the major 
tributaries to the smallest fingertip branches.

INTRODUCTION

Many geomorphic studies make use of an ordering 
system of stream branches proposed by Horton (1945). 
A fundamental parameter of this ordering system is the 
bifurcation ratio, which is defined as the ratio of the 
number of stream branches of a given order to the num­ 
ber of stream branches of the next higher order. This 
ratio can be expressed by

Nu ~NU
+1

(1)

where 56 =bifurcation ratio,
Af«=number of streams of given order, 

and Nu+l =number of streams of next higher order.

According to Horton (1945, p. 290), the bifurcation 
ratio varies from a minimum of 2 in "flat or rolling 
drainage basins" to 3 or 4 in "mountainous or highly 
dissected drainage basins"; it is a parameter used in 
equations giving the number of streams in a basin. 
As expressed by Horton, the equation is

(2)

where s=order of main stream 
and /z/=given order.

Strahler (1957) expresses the equation as 

log Nu=a bu (3)

where the antilog of b is the bifurcation ratio. He 
further states that the bifurcation ratio is "highly 
stable and shows a small range of variation from region 
to region." The average (mean) is about 3.5.

This paper discusses the distribution of bifurcation 
ratios and further analyzes the distribution of the 
number of any order tributary in a basin.

SOURCES OF DATA

Several sources of data were used for this study. 
Special photogrammetrically prepared drainage maps 
of 130 square miles of the Yellow River basin in the 
Piedmont province of Georgia were analyzed to deter­ 
mine the distribution of streams in the drainage network 
of the basin. The maps, compiled at the scale of 
1:24,000 delineated all drainage courses visible on 
aerial photographs taken at a flight height of 7,200 
feet. Additional data were obtained from 108 standard 
topographic maps, ranging in scale from 1:24,000 to 
1:250,000, of the Piedmont province. Data published 
by Melton (1957), Coates (1958), and Leopold and 
Langbein (1962) were used also for analyses. Streams 
were classified according to a system of ordering pro­ 
posed by Horton (1945) and modified by Strahler (1957).

A summary of the distribution of number of streams 
of a given order within the Yellow River drainage 
system is shown in table 1. The 130-square-mile area 
of the Yellow River basin consisted of two seventh- 
order streams. The table lists separately the distribu­ 
tion of streams in each seventh-order basin.

VARIABILITY OF BIFURCATION RATIOS

The number of streams of any order in each of the 
two seventh-order basins that comprise the part of the 
Yellow River drainage system analysed here are 
plotted against their order in figure 1. The figure is 
typical in that some curvature exists in the range of 
higher order subbasins. This effect is also shown in
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FIGURE 1. Relation between number of streams and stream order for the Yellow
River.

figure 2 where the bifurcation ratios computed as 
N1/N2) N2/N3 * * * Nt/N7 from the values of table 1 are 
plotted against the basin order. The position of the point 
suggests that the bifurcation ratio is highly variable. 
In order to clarify this variability, mean bifurcation 
ratios and their standard deviation were computed 
from 26 subbasins of fifth, sixth, and seventh order

BASIN A

234 567 
BASIN ORDER (</ + !)

FIGURE 2. Relation between bifurcation ratios and order for two seventh-order
basins.

within the Yellow River drainage system. These data 
are shown in table 2. Both figure 2 and table 2 suggest 
(1) that bifurcation ratios expressed as the number of 
next lower order tributaries or Ns_\ are smaller than 
bifurcation ratios computed from lower order tribu­ 
taries and (2) that bifurcation ratios tend to become 
constant and less variable (smaller standard deviation) 
when expressed as ratios between the numbers of lower 
order branches.

Figure 3 suggests a relation between the bifurcation 
ratio and the drainage area. This relation, however, 
depends entirely upon the relation between order and 
area and can be expressed as follows: Basins of equal 
order but variable areas tend to have the smallest 
bifurcation ratios in the smallest areas; the ratios 
increase with increasing areas up to a certain size, 
beyond which the bifurcation ratios tend to become 
constant.

TABLE 1. Distribution of streams, by order, within the Yellow 
River drainage system

Subbasin

A          
B.  ... ... .... -   ---

Number of streams (Nn) of order 

1

4,026 
4,823

2

812 
1,060

3

200 
233

4

33
42

5

8 
11

6

2 
4

7

1 
1

TABLE 2. Means and standard deviations of bifurcation ratios for 
Yellow River drainage

Mean («») -.._ ..     -

JV.-1 
N.

3.2
1.3

N,-t 
JV_,

4.5
1.5

N,-s 
JV_i

4.7
.75

Nr* 
JV.-I

4.8
.64

N^
JV_«

14.6

JV.-. 
JV_i

*4.75

Computed from 6 basins of 6th order and 2 basins of 7th order. 
1 Computed from 2 basins of 7th order.
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The fact that bifurcation ratios become smaller as 
they are computed from higher order subbasins is 
basically due to the branching process. Consider 
figure 4 where a fourth-order basin derived by a random- 
walk process is shown. For clarity, the same basin is 
shown successively in figure 4 with the number of 
streams of increasing order. It is apparent that as the 
stream order increases the percentage of streams that 
coalesce into a higher order tributary also increases 
and that this increase is due to the diminishing amount 
of area available. In figure 5, all the percentages of 
coalescing streams for the Yellow River and for the 
random-walk model developed by Leopold and Lang- 
bein (1962, p. A 18) have been plotted against their 
order. The increase in a downstream (with higher 
order) direction, particularly for the Yellow River, is 
evident.

Thus, bifurcation ratios -^p- tend to become constant
/V $

for values of u > s 2, where s is the order of the main 
stem.

DISTRIBUTION OF BIFURCATION RATIOS

Frequency distributions of bifurcation ratios are 
shown in figures 6 and 7. The distributions are de­ 
rived from data on all fourth- and higher order sub- 
basins and random sampling of first-, second-, and 
third-order subbasins within the Yellow River drainage 
system. Data obtained by Melton (1957) fron arid- 
to-humid mountainous basins in Arizona, New Mexico, 
Colorado, and Utah, and data obtained by Coates

(1958) for small basins in the humid Interior Low 
Plateaus province are included also.

According to Horton (1945, p. 296), equation 2 
becomes

£6 =AU (4)

if u=s  1. This relation indicates that the bifurcation 
ratio, Rh , is equal to the number of streams of the next to 
the highest order for a given drainage basin. Thus, the 
bifurcation ratio as defined by equation 4 can be equated 
to the number of maj or tributaries to a given stream. The 
major tributaries can also be defined as streams of one 
order-lag. Thus, it follows that a drainage system 
will have streams of one order-lag (major tributaries), 
two order-lags (smaller tributaries), and so on, and 
the number of tributaries may be defined as N,-i, 
Ns_2, * * * Ns_ n, the subscripts indicating the relative 
position within the drainage system.

Figures 4 and 5 show distributions of bifurcation 
ratios which are grouped according to their order-lag.

Thus ratios -^ in basins of order 4 can be written as
N3

ratios ^^ and can be compared to ratios -^ from

third-order basins which are also expressed as

The distributions of number of major tributaries 
(streams of one order-lag) are shown in figure 8. 
These distributions differ considerably from those 
of figures 6 and 7. Statistical parameters of the 
distributions of figures 6, 7, and 8 are tabulated in 
table 3.
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BASIN SHOWING
FIRST ORDER 

BRANCHES ONLY

P = 18 
S =20

THIRD ORDER 
BRANCHES ONLY

SECOND ORDER 
BRANCHES ONLY

BASIN SHOWING 
ENTIRE NETWORK

NOTE:

P = Primary or coalescing branches 
S =Secondary 

Shading denotes drainage areas

FIGURE 4. Random-walk model of a fourth order basin (from Leopold and Langbein, 1962, fig. 8, p. A18).
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TABLE 3 Selected statistical data for distributions shown in figures 6, 7, and 8

G5

Statistic

Sample size ___ -    --   -   -    

Standard deviation of bifurcation ratios,

Skewness 1 of bifurcation ratios, &<»j>-

Source of data

Yellow River

270 
2-7

AT.-, 

3.48

1.79 
.83

84 
3

AVl

AVi 
4.36

1.97 
.18

84

3.88

1.09 
-.11

84

AT.-3

4.72

1.05 
,21

Melton (1958)

132

3.04

1.43 
.73

45

4.04

1.17 
.034

45

AT.-J 
AVJ 

6.02

3.24 
.31

Coates (1959)

60 
3

AT.-i 

3.40

1.62 
.86

60 
3

AV2 
AT,-, 

4.38

1.17 
.32

Leopold 
and 

Lang- 
bein 
(1962)

92

Nr-i 

3.23

1.83 
.67

Topo­ 
graphic 
maps 
(blue 
lines)

269 
2-6

3.27

1.66
.77

1 Skewness calculated by the approximate formula, skewness= "f d d vl tl 

0.7

< 0.6

DQ
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ORDER (S)

FIGTJBE 5. Relation between percentage of coalescing tributaries and order.

DISTRIBUTION OF NUMBER OF MAJOR TRIBUTARIES

Because the distributions for the various data shown 
in figure 8 did not differ significantly from each other, 
the variations among the moments of these distributions 
were assumed to be due to sampling errors, and all data 
of figure 8 were combined. The resulting distribution 
is shown in figure 9 as a semilogarithmic function of 
the form

j=ke-k'N(*-D (5)

where /=the frequency of occurrence, in percent, 
N(S-n =number of streams of one order-lag, 
and e=base of Naperian logarithms.

The computed regression equation is

(6)

which can be simplified to

(6a)

Because equation 6a represents a distribution, it may 
become a probability function as

n==e-^ff , (7) jf & .1 1 \' i

from which the probability, p, can be computed for any 
given number of major tributaries.

Probabilities of occurrences for values of Ns-i up to 
10 are shown in table 4. This table shows that more 
than one out of three streams similar to those studied 
here will have two major tributaries, and about one 
out of five three major tributaries. A second-order 
stream will most frequently have two first-order streams 
as branches; a third-order stream two second-order 
branches, and so on.

TABLE 4 Probability of occurrence of number of major tributaries
to a stream

Number Prob- 
of major ability of 

tributaries occur- 
(N,,-i) rence (p)

2.___.__.__-_------------------------- 0.368
3._____-_-----.-_--------------------- .233
4_ _____ ___-______      --        .135
5. __.____.___ _.___  _         -   - .082
6___.___                      -050
7_ ________       __              -030
8___                           -018
9_._                          -Oil
10...___--_--------------------------- -007

Melton (1958) defines a "conservative drainage 
system" as "one having the minimum number of 
channel segments necessary for the highest order of the 
system." His measure of conservancy for any order 
u is

Rl>tt:ti+l -iSu=-

and maximum conservancy corresponds to $w=0.

(8)
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FIGURE 6. Distributions of bifurcation ratios defined as N,-z+Ne-i. 
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FIGURE 7. Distribution of bifurcation ratios N,-3+N,-z.

DATA FROM 
MELTON (1957)

This concept applied to the major tributaries only 
gives

Su=^-l (8a)
Zi

where maximum conservancy refers to streams having 
only two major tributaries; this relation, according to 
the probabilities computed, has a one-in-three occur­ 
rence. The manner and the number of joining tribu-

taries no doubt greatly affects the hydrology of the 
drainage system, and the number of major tributaries 
probably bears some relation to the shape of the basin.

DISTRIBUTION OF NUMBER OF SMALLER 
TRIBUTARIES

The subbasins of the Yellow River were further in­ 
vestigated in terms of the smaller tributaries present



DISTRIBUTION OF BRANCHES IN RIVER NETWORKS G7

Ul

<

Ul
O 
o:
Ul
Q.

z
_

!±>

0

Ul
13
0
Ul
cr u_

50

40

30

20

10

n

 

-
*

\ DATA FROM COATES (1958)
\

~ \
\
\

\.\*

\s
- ^

x«v.^

III! 1

50

40

30

20

10

\DATA FROM MELTON (1957) 

\

\

50

40

30

20

10

_ \
\

\
DATA FROM LEOPOLD (1962)

\

-T-*   ?

79 11 2468 10 2 

NUMBER OF STREAMS OF ORDER ONE LESS THAN BASIN ORDER (Ns-i)

10

40

- 20

10
13 
O

DATA FROM YELLOW RIVER

50 i-

40

30

20

10

0

_ \ DATA FROM STANDARD 
TOPOGRAPHIC MAPS 

, AT VARIOUS SCALES 
\

I I
579 11 23579 

NUMBER OF STREAMS OF ORDER ONE LESS THAN BASIN ORDER (Ns-i)

11

FIGURE 8. Distributions of number of major tributaries or bifurcation ratios defined as N,-i (data from various sources as shown).

therein by combining the number of branches of two 
order-lags (such as first-order branches in third-order 
basins, and second-order branches in fourth-order 
basins) into one distribution. Similarly, branches of 
three order-lags (such as first-order branches in fourth- 
order basin and second in fifth) and four order-lags 
(such as first in fifth and second in sixth) were combined 
into one distribution for each. Figure 10 shows the 
distributions for various order-lags; the progression 
from exponential to unimodal skewed distribution with 
increasing order-lag is apparent. As a measure of the 
symmetry of the distributions, skewness was calculated 
for each distribution in figure 10. Results are shown 
in table 5. Skewness appears to decrease with increas­ 
ing order-lag, and only the number of the smallest 
fingertip branches in higher order basins may be nor­ 
mally distributed.

TABLE 5. Skewness of distributions for given order lags

Order lag 
8-1...

s-2__

Skewness 
_ 0.83 
_ .93 
_ .88 
_ .67

NUMBER OP BRANCHES IN RIVER NETWORK

The minimum number of branchings of a stream is 
given by Melton (1957) in the equation

This equation states that a second order stream will 
have at least two first-order branches, a third-order 
stream at least two second-order branches and four 
first-order branches, and so on. A graph of this 
equation is shown in figure 11 together with a straight 
line fitted through the modal values of the distributions 
of figure 10. The stream branches of the Yellow
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FIGURE 9. Combined distribution of number of major tributaries, from figure 6.

River obviously multiply much more rapidly than the 
minimum growth. In a previous study, Giusti (1963) 
showed that the number of subbasins, Na , of any given 
area, a, within a region or basin of a given area, A, 
could be expressed by the equation

- 
CL

(10)

Similarly, from equation 2 or 3, the number of stream 
branches can be expressed in terms of the order of the 
subbasins with respect to the order of the main stem. 
The fact that the relation based on area is hyperbolic 
indicates a geometric progression. However, by defini­ 
tion, the number of branches follow a geometric pro­ 
gression and the order (or order-lags) an arithmetic 
progression. Consequently the relation between num­ 
ber of branches and their order is exponential.

A further equation of Melton (1958) gives the num­ 
ber of channel segments in a basin as

7V=0.8147
L l - n (ID

where L is the total length of channels and R is the 
relative relief. There are then several equations from 
which the number of channel segments in a basin can 
be computed, and usage of one or another will depend 
on the preference of the user. However, because of 
the variability of the bifurcation ratios, the time 
required for arranging the stream segments of a drain­ 
age system into orders, and the lack of true portrayal 
of the drainage systems on topographic maps, equations 
10 and 11 will possibly be more applicable in practice.

SUMMARY AND CONCLUSIONS

River networks have been analyzed in terms of the 
number of branches ordered according to a system 
proposed by Horton (1945) and modified by Strahler 
(1957). All networks were dendritic and in different 
climatic and geologic environments. The bifurcation 
ratios computed from two successive constant orders in 
any stream network vary according to the two stream 
orders from which they are computed, and decrease in 
a downstream direction. Bifurcation ratios for equal- 
order basins increase somewhat with the area of the 
basins but tend to become constant for basins beyond a 
certain size. These two factors the order used for 
computation and the size of the area also affect the 
parameters of the distributions of bifurcation ratios. 
Bifurcation ratios tend to become constant for ratios 
made between number of branches which are two or 
more orders removed from the order of the main stem 
(two order-lags).

The distribution of the number of one order-lag 
branches (considered the major tributaries to a given 
stream) was found to be exponential, with a maximum 
frequency at two. On an average, one out of three 
rivers of any given order will have two major tributaries, 
and one out of five rivers will have three. The distribu­ 
tion of number of higher order-lag branches or number 
of smaller tributaries was found to be both unimodal 
and skewed, and only the number of smallest fingertip 
branches may approach a normal distribution.



FR
E

Q
U

E
N

C
Y

 
(f

),
 I

N
 

P
E

R
C

E
N

TA
G

E
 

FR
E

Q
U

E
N

C
Y

 
(f

),
 I

N
 

P
E

R
C

E
N

TA
G

E

c

z
 

c CD m 0
 
fi

-n -1 m
 

oo

>i
j 

O
 

S
 

-0
 

§
 

0
 

S
 

m
 

n
 

33

5=
 

r-
 

M 8
 

168

AG
 

TRIBUTAR
IES 

 Distribution
s 

of
 

nui <y
 

Z
 

is)
 

S 
<-? 

o

i-
 

N
) 

CO
 

!-
  

N
) 

CO
 

-P
> 

D
 

O
 

O
 

O
O

 
O

 
O

 
O

 
O

I 
1 

1 
1 

1 
1 

z
 

 -
_

 _
 _

 _
 

c

%
 

m

-
 

^
^
^
 

o
 

w

*-
-"

""
'" 

o

 
^
-
'"
"
 

o
x
'^

 
O

^
 

 
 

rn
 

/
 

33

 
 
/
 

>

~
 

/
 

-1

/ 
 

33
 
 

-
 

/ 
2

 
vo

 
/
m

 
GO

1 1 
2

 1
 

' 
7

-
I
 

^
 

H
-

1 
1 

1 
1 

1 
1 

1 
1

^
^
-^

 "
"

^
^

^
^

 /
x

/

1

s
 

c
CD m 33 o !_

 
O

O
 

33 CD 
a



G10 PHYSIOGRAPHIC AND HYDRAULIC STUDIES OF RIVERS

200 i-

100 -
O

cc
LU
Q 
CC 
O

LU 

O

o:

00
o:

u_
o 
cc
LU 
GO

10 -

5 -

3456 

ORDER LAG (S -u)

FIGURE 11. Growth curves of stream branching. Lower curve is minimum growth, 
upper curve from model values of distributions of figure 10.

The variability of bifurcation ratios found in this 
study indicates that bifurcation ratios must be carefully 
defined in terms of the two successive orders from 
which they are computed and the order of the main 
stem. Comparisons of undefined bifurcation ratios 
may lead to erroneous conclusions.

REFERENCES CITED

Coates, D. R., 1958, Quantitative geomorphology of small 
drainage basins of Southern Indiana: New York, Columbia 
Univ. Dept. Geology Tech. Rept. 10.

Giusti, E. V., 1963, Distribution of river basin areas in the conter­ 
minous United States: Bull. Internat. Assoc. Scientific 
Hydrology, v. 8, no. 3.

Horton, R. E., 1945, Erosional development of streams and their 
drainage basins hydrophysical approach to quantitative 
morphology: Geol. Soc. America Bull., v. 56, no. 3, p. 
275-370.

Leopold, L. B., and Langbein, W. B., 1962, The concept of 
entropy in landscape evolution: U.S. Geol. Survey Prof. 
Paper 500-A, 20 p.

Melton, M. A., 1957, An analysis of the relations among elements 
of climate, surface properties, and geomorphology: New 
York, Columbia Univ. Dept. Geology, Tech. Rept. 11.

Melton, M. A., 1958, Geometric properties of mature drainage 
systems and their representation in an E4 phase space: 
Journ. Geology v. 66, no. 1.

Strahler, A. N., 1957, Quantitative analysis of watershed geo­ 
morphology: Am. Geophys. Union Trans., v. 38, no. 6, 
p. 913-920.

O






