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Note:

SYMBOLS

All quantities are dimensionless unless designated with a superscript asterisk, in which case
they are dimensional.

area normal to flow

speed of sound

specific heat capacity at constant pressure
specific heat capacity at constant volume
displacement of gas at end of tube
general diffusion term

frequency

Fourier number for the tube wall, Fo = a,, / (a)'l'z)

enthalpy

specific enthalpy

imaginary number, i = v/~1

imaginary component of a complex number
nth order Bessel function

mass flux vector

thermal conductivity of material

length of tube

thickness of tube wall

Mach number, M = Uj/a’

dimensionless radial function defined in table 5, equations (h), (i), and (j)
unit normal vector

anelastic pressure

Prandtl number, Pr= v'/a’

pressure

heat

conduction heat flux, q=—-kVT



vi

ideal gas constant

Reynolds number, Re =Upr,, /v =€Va L' [r,

real component of a complex quantity
radial coordinate

inner radius of tube

entropy

surface area enclosing domain
specific entropy

gas temperature

temperature at interface between the gas and tube wall

time

velocity ratio, Uy = U} /Uy

Velocity components

Uu higher-order Eulerian velocity vector

u Eulerian velocity vector

u axial Eulerian velocity

u axial Eulerian velocity phasor

v radial Eulerian velocity

) radial Eulerian velocity phasor

u axial higher order Eulerian velocity
u, Lagrangian particle velocity vector

P axial Lagrangian particle velocity
v, radial Lagrangian particle velocity
v radial higher order Eulerian velocity
Valensi number, Va =r.2w" /v’

domain volume

work

axial coordinate



o thermal diffusivity
B thermal expansion coefficient, = —(1/p)(dp/ 8T)p
r gas domain length ratio T = (ry, /€L’)
I,  tube wall length ratio T, =(I'/2%L)
Y heat capacity ratio, y=C »/Co
> inverse Strouhal number (expansion parameter), € =Up/(w'L' ) =dy/L
Cn- Bessel function ratio {, = J,/Jy,n=0, 1
6 temperature of tube wall
K bulk modulus, k= p(dp/dp),
A elasticity parameter, A = yM?/e = Y(Us/ap)(@'L/ap)
U dynamic viscosity
J7%) second viscosity
1% kinematic viscosity
O entropy of the tube wall
p density |
T stress tensor
¢ dissipation function
¢ phase angle
oT phase angle between Uy (velocity at z = 0) and temperature
ou phase angle between Uy (velocity at z = 0) and U, (velocity atz = 1)
X arbitrary thermodynamic variable

stream function

angular frequency
Superscripts

mean-steady, time average over a period

vil



cc

complex quantity containing amplitude and phase angle
dimensional quantity (no asterisk represents dimensionless quantity)
amplitude of a real quantity

exact derivative

definite integral

complex conjugate

Subscripts

0 zeroth-order, quantity at z = 0, reference quantity
1 first-order

2 second-order

3 third-order

a aftercooler

c cold end of pulse tube
g gas

h hot end of pulse tube
L quantity at z =1

osc  oscillating quantity

w tube wall

Dimensionless Numbers

£

A

Fo

Pr
Re

Va

viil

inverse Strouhal number (expansion parameter), € =Up/(w"L’)=dp/L
elasticity parameter, A = yM?/e = Y(Up/ap) (@ L /ap)

Fourier number, Fo = a,, / (a)'l '2)

Mach number, M = Up/a’

Prandt] number, Pr=v'/o’

Reynolds number, Re =Upr,, /v =€eVa L [r,

velocity ratio, U; =Up /Uy

Valensi number, Va = r;?w' / 2



STEADY SECONDARY FLOWS GENERATED BY
PERIODIC COMPRESSION AND EXPANSION
OF AN IDEAL GAS IN A PULSE TUBE

Jeffrey M. Lee

Ames Research Center

SUMMARY

This study establishes a consistent set of differential equations for use in describing the
steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse
tubes. A small-amplitude series expansion solution in the inverse Strouhal number at the anelastic
limit is proposed for the two-dimensional axisymmetric mass, momentum, and energy equations.
The anelastic approach applies when shock and acoustic energies are small compared with the
energy needed to compress and expand the gas, such as for pulse tubes.

Seven independent dimensionless numbers are used to scale the system. The reciprocal
Strouhal number and Valensi number are used to linearize the mass and momentum equations. The
Fourier number is used to characterize heat transfer within the tube wall. The Mach number, the
Prandtl number, the velocity amplitude, and the velocity phase angle at the tube ends complete the
dimensionless scales.

The ordered equations show that the zeroth-, first-, and second-order equations, are coupled
through the zeroth-order temperature. An analytic solution is obtained in the strong temperature
limit where the zeroth-order temperature is constant. The solution shows that periodic heat transfer
between the gas and tube, characterized by the complex Nusselt number, is independent of axial
velocity boundary conditions and Fourier number. Steady velocities increase linearly for small
Valensi number and can be of order 1 for large Valensi number. Decreasing heat transfer between
the gas and the tube decreases steady velocities for orifice pulse tubes. The opposite is true for basic
pulse tubes. A conversion of steady work flow to heat flow occurs whenever temperature, velocity,
or phase-angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled
by the Prandtl times Valensi numbers.

Particle velocities from a smoke-wire experiment were compared with predictions for basic
and orifice pulse tube configurations. The theory predicted the observed mass streaming and flow
reversals between the centerline and diffusion layers. The results indicate that the theory is valid for
pulse tubes and that it can be used to solve for the zeroth-order temperature, to compute enthalpy
flows, and to determine losses associated with steady secondary streaming.






1. INTRODUCTION

A gas subject to periodic compression and expansion generates higher-order steady
secondary flows. The steady flows can manifest themselves as mass, momentum, and energy
streaming. The pulse tube refrigerator, in which the generated steady flow of enthalpy can lead to
temperature differences of over 200 K, is a practical use of this type of transport.

The behavior results from nonlinear steady secondary transport. What appears to be strictly a
linear periodic system— oscillating temperatures and oscillating mass flows— in fact, gives rise to
mean-steady enthalpy flows. These enthalpy flows produce the observed refrigeration effect. The
term “mean-steady flow” refers to the time-averaged secondary flow.! Other types of mean-steady
flows, or streaming, include momentum streaming (such as acoustic streaming) and mass-species
streaming. Although the magnitude of mean-steady flows may be small, the fact that they are steady
and unidirectional can lead to sizable gradients over extended times.

This work examines mean-steady secondary transport for the pulse tube refrigerator. The
phenomenon is examined in the limit of a linear anelastic approximation. Oscillating anelastic?
flows are characterized by low Mach numbers and oscillating frequencies that are much lower than
the resonance frequency defined by the system geometry. The anelastic approximation filters shocks
from the fluid equations while retaining the effects of density variations resulting from “slow”
compression and expansion of the gas. This applies when the energies of acoustic waves and shock
waves are negligible relative to the energy needed to compress and expand the bulk gas.? This work
investigates steady secondary momentum and energy flows of an ideal compressible gas in the limit
of linear anelasticity.

Mechanics of Mean-Steady Secondary Transport in Oscillating Systems

Mean-steady secondary flows have been investigated for a number of systems. For such
flows, the nonlinear advection terms of the appropriate transport equation produce the “driving
force” for the mean-steady flow. Mean-steady flows can produce energy streaming, mass streaming
(refs. 3-5), and even a mechanism for separating different mass species in multicomponent mixtures
(refs. 6, 7). An example of mass streaming for a single component fluid is shown in figure 1.

Figure 1(a) shows the observed mean-steady pathlines external to an extended cylinder oscillating
along its diameter in water, and figure 1(b) shows the corresponding calculated pathlines.

In this section, a simple linear mathematical model for describing mean-steady secondary
flows is developed. Consider the unsteady advection-diffusion equation where u is the velocity, y is

IThis is different from ‘quasi-steady’ flow which refers to periodic oscillations, or ‘steady-state’ flow which is
absolutely constant in time.
ZAnelastic flows are described in more detail by Sherman (ref. 1) and Paolucci (ref. 2).

3The arguments are similar to Boussinesq flow, except that the flow is driven by applied pressure forces instead of
buoyancy forces.



(a) (b)

Figure 1. Example of mean-stéady flows in oscillating systems: from Schlichting’s oscillating
cylinder (ref. 8).

a thermodynamic quantity (such as temperature or pressure), and d is the term containing diffusion
of 1,

Iy e ()= 1
at+.€az(xu)—d (1)

Now consider a time- periodic series expansion solution of # and  that is expanded in the small
parameter &, valid for £<<1:

u=igp(z)coswt + guy(z,t) + 0(82) (2)
x = ¥o(2)cos(wt + ¢)+ gx(z.t) + 0(82) (3)
d =d0(z,t)+£d1(z,t)+0(£2) (4)

where ¢ is the phase angle between u and . Substituting the series solution into the differential
equation and equating terms of like order in £ results in

o(): dy= g;)zo cos(wt + ) (5)
9 2. : ]
O(e): d;= 57(1(“)*’ -8_[u0 cos w1 - ¥o cos(wt + ¢)] (6)

where O means “of order.” Equation (5) is the linear oscillating equation of O(1). Its solution
allows evaluation of equation (6) which describes a secondary flow of O(¢). By time-averaging
equation (6) over a period the relation for the mean-steady flow is obtained:



_=i

d - -~ 1
4, azwl/i)dIdt=—8; (#0Z0) cos¢+51/§wcos2wta’t
(7)
_ 9ligZo)

= oz cos ¢ — 11020 sin ¢ %g

Equation (7) shows that the secondary flow depends on the gradients of amplitude and phase angle.

Two limiting flows are characterized by being either of the standing wave type, in which
phase is independent of position d¢/dz =0, or the progressive wave type, in which amplitude is

independent of position 8(&0)20) / dz = 0. An acoustic oscillator is an example of the standing wave

type. An example of the progressive wave type is water of uniform depth oscillating near the shore
of a pond. The oscillating water generates mean-steady momentum forces that form periodic ridges
in the fine sediment.

The above illustrates the mathematical basis for a linearized pulse tube model. The time-
averaged product of velocity (kinematic quantity) and temperature (thermodynamic quantity) results
in a mean-steady unidirectional flow of enthalpy. The mean-steady enthalpy flow will be non-zero
when there are gradients in the phase angle and product amplitudes. This can be accomplished by
heat transfer between the gas and the tube wall such that the thermal and viscous penetration depths
are not equal, or by independently controlling the amplitude and phase angle of velocity at the tube
ends. The first case is the enthalpy flow mechanism in the basic pulse tube, and the second is the
mechanism in the orifice pulse tube.

Background

The following is a chronological summary of pulse tube development. A historical brief on
pulse tube development is given by Longsworth (ref. 9), Kittel (ref. 10), and Radebaugh (ref. 11).
Ames Research Center’s pulse tube home page? provides a comprehensive list of published pulse
tube research papers through 1994. A variation of the pulse tube is the acoustic refrigerator, a
detailed account of which was prepared by Swift (ref. 12).

Gifford and Longsworth

In 1963 Gifford and Longsworth reported on a new type of regenerative refrigerator (ref. 13). Their
“pulse tube refrigerator,” aptly named because of the use of pressure pulses to alternately compress
and expand the gas, was innovative and very promising because there were no cold moving parts
which could limit reliability. Comparable systems at that time were based on Stirling systems which
required both a compressor and a cold expander for operation. Figure 2 shows a schematic of this
early basic pulse tube (BPT). The BPT consists of a hot heat exchanger, an open tube, a cold heat
exchanger, a regenerator, an aftercooler, and a reciprocating compressor. Work is supplied by the
compressor, heat is rejected at T, and T,, and cooling is produced at Te.

4http://irtek.arc.nasa.gov/CryoGroup/PTDatabase/database.htm
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Figure 2. Basic pulse tube.

‘ Longsworth’s experiments demonstrated the performance of a BPT, obtaining temperatures
of 169 K with a single stage and of 123 K with two stages using helium (ref. 14).

Gifford and Longsworth formulated a “step-wise” heat-transfer theory to describe their
results (ref. 15), and recently, de Boer extended the analysis (ref. 16). The basis of his model
consists of four steps: adiabatic compression of the gas and displacement toward the hot end of the
pulse tube; isobaric heat transfer from the hot gas to the cooler tube wall; adiabatic expansion of the
gas and displacement back toward the cold end of the pulse tube; and isobaric heat transfer from the
wall of the pulse tube to the cooler gas. This description enables one to visualize how an “energy
packet” can migrate between the gas and the tube wall in such a fashion as to result in a net transport
of energy from one end of the tube to the other. Heat transfer between the tube wall—which acts as
a second thermodynamic medium—and the gas is required to produce the phase shift necessary for
the flow of enthalpy, as explained above. After a decade of research, however, interest waned
because the BPT was unable to obtain temperatures and efficiencies comparable to those of Stirling
cryocoolers.

Wheatley, Swift, Hoffler

Following the BPT, Wheatley et al. at the Los Alamos National Laboratory began
investigating “naturally irreversible engines,” that is, those processes in which a downhill flow of
entropy, say for example, heat conduction, can be used for conversion into mechanical energy, such
as a thermally driven engine or prime mover (ref. 17). This work is still in progress by Swift at
Los Alamos. A complete account of the theory of acoustic engines given by Swift (ref. 12) and a
similitude analysis has been done by Olsen and Swift (ref. 18).

The work on heat engines was applied to refrigeration by reversing the thermodynamic
process. Hoffler examined an acoustic refrigerator in which a pressure driver was placed at one end
of the system shown in figure 3 (ref. 19). Temperatures of 193 K were demonstrated using helium,
with the stack acting as the second thermodynamic medium serving the same purpose as with the
tube of the BPT.
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Figure 3. Acoustic refrigerator.

Rott

Previous to Wheatley’s work, Rott formulated a set of linear acoustic equations which
included transverse diffusion (refs. 20, 21). Miiller, studying under Rott, detailed much of the
analyses in reference 22. The equations were examined for a number of conditions, including
stability limits for thermally driven oscillations (ref. 23), tubes with variable cross section (ref. 24),
gas-liquid oscillations (ref. 25), and efficiency analysis of thermoacoustic oscillations operating as
heat engines (ref. 26). Of primary interest are Rott’s papers on second-order mean-steady heat flux
(refs. 27-29), which focus on enthalpy and mass streaming in the limit of constant axial temperature.
Rott has termed this limit the “‘strong” temperature case (Rott, N. 1993: personal communication).

Merkli

Merkli and Thomann (ref. 30) experimentally investigated an acoustic refrigerator and
examined their results using Rott’s acoustic equations. They found good correlation between
experiment and prediction, with local heating at velocity nodes and cooling at antinodes. This and
the experimental work of Wheatley laid the theoretical foundation for acoustic refrigerators and
acoustic engines as accepted today.

Mikulin

The fundamental principle behind the acoustic devices and the BPT requires heat transfer
between a solid boundary and the working gas. This necessitates a spacing between solid boundaries
of the order of the thermal and viscous diffusion lengths. However, this limits enthalpy flow,
because temperature and velocity amplitudes and phase-angle are restrained and because the
dynamics are governed by transverse diffusion. However, Mikulin et al. showed that enthalpy
transport need not require diffusion to produce the required phase shift between gas temperature
and velocity, but that the phase and amplitude relation between velocity and temperature can be
separately managed by controlling the boundary conditions at the tube ends (ref. 31). In their
experiments, Mikulin et al. demonstrated the first orifice pulse tube (OPT) refrigerator, obtaining
temperatures of 105 K with air.

A variation of the OPT device is shown in figure 4. The approach Mikulin et al. used was to
place an orifice and reservoir volume at the closed end of a basic pulse tube, thus allowing for a



finite gas flow. The result is to greatly increase enthalpy flow at the hot end® and to change the
phase angle between velocity and temperature at the cold end so that pressure and velocity are closer
to being in-phase. This eliminates the need for a second thermodynamic medium and the inherent
restrictions associated with diffusion. It was also accomplished without the need for any type of
mechanical device. The OPT results in lower temperatures, increased cooling, and higher
efficiencies. Since the tube of the ideal OPT does not require heat transfer to transport energy,

the transport process within the tube is ideally reversible.

Aftercooler HE Cold HE HotHE  Reservoir Vol
Compressor Regenerator Tube

Tw | *Jk

Qg Ta Qe Te Qn, Th

Ori{ice

Figure 4. Orifice pulse tube.

Radebaugh

After reviewing Mikulin’s work, Radebaugh and his coworkers recognized the intrinsic
value of a cooler without any cold moving mechanical parts, and so began work on the OPT as it s
known today. Their initial work demonstrated a single-stage 60 K refrigerator using helium, a
substantially lower temperature than had been achieved by any previous PT device (ref. 32). Other
investigators have since demonstrated temperatures of 4 K (ref. 33) and even lower by using
multiple-stages (ref. 34).

A description of the transport process for OPT devices was first given by Storch et al. based
on a one-dimensional thermodynamic model that assumed adiabatic processes within the tube
(ref. 35). A primary advantage of the one-dimensional (1-D) model is the convenience in using
phasor diagrams to describe the phase relation between oscillating temperature, pressure, and mass
flow. David et al. extended one-dimensional analysis for arbitrary time-dependence of pressure
(ref. 36), and Kittel reviewed and extended the theory for entropy and work flows, temperature
gradients, thermal conduction, and viscosity (ref. 37). For large systems in which transverse
diffusion is confined to thin-boundary layers, this approach works well. However, for smaller
systems in which diffusion is significant, large discrepancies arise (from 2 to 5 times, depending on
tube diameter-to-length ratio (ref. 35)).

Beyond one dimension

The one-dimensional description of the transport process within pulse tubes is unable to
describe transverse transport. To account for transverse effects, lumped-parameter corrections to the
1-D model have been used. The complex Nusselt number developed by K. Lee (ref. 38) and

5Whereas in the BPT, enthalpy flow goes to zero at the closed end of the tube because the velocity goes to zero.



extended by Kornhauser and Smith (refs. 39, 40) was used by Roach and Kashani (ref. 41). The
complex Nusselt number allows for lumped-parameter corrections to the oscillating heat transfer
between the gas and the tube wall by accounting for amplitude and phase-shift owing to diffusion.

A number of investigators have taken the 2-D dissipative acoustic equations of Rott (ref. 20)
and applied them to pulse tubes. Though the dynamics of the pulse tube are not within the con-
straints of the acoustic approximation, nevertheless, the corrections offered by considering diffusion
do increase the predictability.

Jeong calculated 2-D steady secondary flows between flat plates with velocity oscillations
for a BPT-configured system (ref. 42). His leading-order solution is in the limit of a boundary-layer
approximation (thin diffusion layer). He applies the leading-order solution to the higher-order mean-
steady problem and extends the solution over the complete transverse domain, with the solution for
the core region corresponding well to the mean -steady parabolic solution of Rott. Previous solutions
of the dissipative acoustic equations for a cylindrical geometry by J. Lee and coworkers have shown
similar results for mean-steady mass flow, and have been extended to enthalpy flow (ref. 43).

Xiao formulated the problem in the acoustic limit. His three papers present a general set of
2-D acoustic equations with transverse effects averaged out (by integrating over the area normal to
axial flow), thereby obtaining equations amenable to solution for “flow quantities” (integrated
quantities as opposed to local vector quantities) (refs. 44—46). Xiao’s subsequent solutions are
offered for isothermal zeroth-order temperature and adiabatic conditions at the tube wall. His
analysis has yielded insightful understanding of axial mean-steady work, heat, and energy flows,
and is a step above a 1-D analysis because it includes lower-order transverse diffusion; however, it
cannot be used to determine the vector fields, nor the higher-order mean-steady transverse diffusion
heat transfer.

Bauwens takes an anelastic approach of the leading-order problem for very narrow tubes and
small Mach numbers, and arrives at a solution for the axial temperature profile and mean-steady
enthalpy flow (refs. 47, 48). Velocity conditions at the tube ends are treated as independent, and the
temperature of the tube wall is fixed (high heat capacity). His analysis is applicable for very small
Peclet numbers of the gas (small tube diameters) such as for regenerators.

Only a few experimental investigations have been conducted to validate the predictions
offered by the above solutions. Linear oscillating flow for low speeds was measured by Shiraishi
et al. (ref. 49) and Nakamura et al. (ref. 50). Velocity phase shifts in the diffusion layer have been
observed, corresponding to a Stokes solution of the linearized momentum equation. Hoffman et al.
(ref. 51) compared pulse tube performance with the acoustic solutions of Xiao (refs. 44-46) and
obtained good agreement. Previous work by J. Lee and coworkers had shown the existence of mean-
steady streaming with characteristic lengths of the tube length, in agreement with higher-order
solutions obtained from linear analysis (ref. 52).

Other phase-shifting mechanisms

The OPT goes beyond the capabilities of a BPT by utilizing a valve and reservoir volume at
the hot end to increased phase shift and mass flow. The valve/reservoir combination, however, 1s
still limiting. Two other new pulse tube configurations have the potential to further increase
performance: the double-inlet pulse tube and the inertance pulse tube.



Double-Inlet Pulse Tube

The double-inlet pulse tube, illustrated in figure 5, adds a flow path from the compressor to
the tube hot end. This allows the gas to be compressed from the hot end of the tube, thereby
increasing the phase angle and reducing the mass flow through the regenerator. Reducing the mass
flow through the regenerator reduces enthalpy flow losses. Zhu et al. (ref. 53) first demonstrated the
advantages of the double-inlet pulse tube, and Lewis and Radebaugh (ref. 54) recently obtained a
temperature of 35 K for a 4 - cm3 compressor using a double-inlet. Seo et al. measured axial and
radial temperatures for the basic, orifice, and double-inlet pulse tubes and examined the phase and
amplitude differences between the three (ref. 55). Shiraishi et al. measured axial mass flow between
the three pulse tubes and showed that the double-inlet decreases flow in the middle of the tube while
maintaining generally the same flow at the ends of the tube (ref. 56). This suggests that a primary
advantage of the double-inlet is to increase phase angles.

Aftercooler HE Cold HE HotHE  Reservoir Vol
Compressor Regenerator Tube Orifice
|
P / ¥
- 7 %
" ' } '
Qg, T4 Qe T Qh, T
By-pass inlet

Figure 5. Double-inlet pulse tube.

The concept of the double-inlet can be extended to multi-inlets by providing flow
communication between the regenerator and pulse tube at locations with similar temperatures. In
theory, the effect is a multi-stage device with cooling stages at the multi-inlets, but in practice, it is
difficult to obtain the proper flow amplitudes and phase angles.

Inertance Pulse Tube

Use of an inertance tube to replace the orifice has been reported by Godshalk et al. (ref. 57),
Zhu et al. (ref. 58), Gardner and Swift (ref. 59), and Roach and Kashani (ref. 60). The inertance
pulse tube is shown in figure 6. The idea is to use the inertia of the gas in a long tube to provide
added phase shift, analogous to the inductance in an electrical circuit. Hence the term inertance, a
combination of inertia and inductance. Matching the gas inertia in the inertance tube to the gas
spring compliance of the compressor, regenerator, and tube combination can result in near resonant
operation with higher performance.
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Figure 6. Inertance pulse tube.

A qualitative comparison of different modeling approaches is shown in table 1.
Two-dimensional anelastic modeling is seen to yield a high return on modeling effort. With 2-D
modeling, transverse diffusion effects (which represent viscous effects and heat transfer between the
gas and the tube wall) can be evaluated to obtain transverse temperatures profiles and higher-order
mean-steady flows. The information obtained from a 2-D model is significantly more than from a
1-D model, and anelastic approximations are computationally less intensive than fully compressible
CFD (computational fluid dynamic) codes.

Table 1. Qualitative comparison of different modeling approaches.

Model comparison chart Integral Differential CFD
analytic Compressible Anelastic
Phasor 1-D 2D | 1D 2-D 3-D 2-D
Primary measures
Refrigeration (enthalpy flow) v V v y N v v
Temperature, axial profile ) v Nt v v v
Temperature, transverse profile v V V v
Mean-steady secondary flows v v v N
Heat transfer between tube and gas v v V v
Secondary measures
Temperature-dependent properties V J v v v N
Oscillating temperature at tube ends v V v v V y
Nonlinearities ¥ V v V
Buoyancy effects (free convection) N N N v
Flow end effects V V v
Qualitative measures
System optimization v v v v v vV
Transient simulation v v v V
Physics are easily understandable v v \f
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Conventions Used

The following conventions are used for variables in this study:
u = scalar lightface italic are scalars

U = vector boldface are vectors
T = tensor lightface non-italic Greek are tensors
u = dimensionless without asterisk denotes a nondimensional quantity

0(¢e)
Xt = oy /ot

=
=
=
u" = dimensional = with asterisk denotes a dimensional quantity
=
= of order of &

p—1

partial differential notation

Complex embedding will be used to eliminate the time variable. For periodic ¥,
=% [2e"] = % [277] ®)

where 1= @'’ % is complex, 7 is a real number, ¢ is the phase angle, and R extracts the real

component of the complex quantity.

Scope of This Study

Previous attempts to model the dynamic workings of pulse tube coolers have typically used
thermodynamic or acoustic analysis. The first, being an integral approach, fails in its attempt to
capture local transport. It is also inherently one-dimensional, and so neglects transverse thermal and
viscous diffusion. The consequence is to oversimplify phase angles and overestimate velocity,
temperature, and pressure amplitudes, resulting in overp rediction of enthalpy flows, particularly for
small pulse tubes in which fields dominated by diffusion constitute a significant amount of the
mean-steady flow. To account for transverse diffusion, lumped-parameter heat-transfer relations
have been introduced with some success.

The second approach, acoustic analysis, examines the differential acoustic equations first
formulated by Rott.. The transverse diffusion terms are retained, thus allowing for transverse 2-D
effects. Typically, however, the solution for the linear system has been simplified by approximating
the diffusion layer as being very thin, thereby obtaining the pressure function at the 1-D inviscid
limit. This is applicable to pulse tubes that have large Valensi numbers. The higher-order mean-
steady flows have been examined for flow in a BPT. However, for the OPT, the transverse effects
have been integrated-out, thereby making vector fields unobtainable. For these cases, the acoustic
ordering is not completely consistent with demonstrated pulse tubes since pulse tubes operate at
frequencies considerably below resonance. This is not a weakness, however, since the acoustic
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solutions are smooth and well-behaved, and so can be used in engineering models. None of the
previous work has compared measured mean-steady velocity fields to predictions in order to
validate the solutions.

This study goes beyond previous analyses by calculating the anelastic 2-D vector fields for
enthalpy and velocity, and transverse temperature. Included are the effects of heat transfer between
the gas and the tube wall of finite thickness. Finally, experimentally measured mean-steady particle
velocities are compared with the theory’s predictions.

Section 2 focuses on the fluid equations and the conditions in which they can be
approximated for acoustic, anelastic, and linear anelastic flows. The enthalpy flow, mean-steady
particle velocity, and entropy equations, useful in this study, are presented.

Section 3 reduces the fluid equations for linear anelastic flow of a gas in a tube. The system
taken is two-dimensional axisymmetric. Heat transfer between the gas and a thin-walled tube is
included. An expansion series solution is taken, and the leading-order problem and the mean-steady
higher-order equations are presented. The linearized equations are then simplified by using complex
embedding for time.

Section 4 presents the linearized solutions for the strong temperature case in which the
zeroth-order temperature is constant. Examined are oscillating flows for velocity and temperature,
oscillating heat transfer between the gas and the tube wall, and oscillating shear. Correlations and
use of the complex Nusselt number are given. Mean-steady flows are calculated for the Eulerian and
Lagrangian (particle) velocities, enthalpy flux fields, and temperature. The interaction between
enthalpy flow, work flow, and heat conduction is discussed.

In section 5 the predicted mean-steady particle velocities are compared with measured
velocities. The measured velocities are obtained using smoke-wire flow visualization for air
contained in a transparent tube with oscillating compressors at each end.

Study results and suggestions for future work are summarized in section 6.

13






2. GOVERNING EQUATIONS

This chapter examines and simplifies the governing fluid equations for slow oscillating
compressible flows. The equations are scaled, and dimensionless numbers are defined. Next,
secondary transport quantities are derived, and then series solutions are identified for the limiting
cases of acoustic and anelastic flow.

Equations of Change for an Oscillating Fluid

The three governing equations for a compressible viscous fluid are defined by the laws of
mass, momentum, and energy conservation. Supplementing the fluid equations are four auxiliary
relations for density, enthalpy (energy), thermal conductivity, and viscosity in terms of pressure and
temperature. Linear diffusion transport is assumed: Newtonian flow relating shear and velocity
gradient through viscosity, and Fourier heat transfer relating heat conduction and temperature
gradient through thermal conductivity. Stokes’s hypothesis for the bulk viscosity is assumed, and
body forces are neglected. A detailed formulation of the governing fluid equations can be found in
Batchelor (ref. 61).!

The system and the boundary conditions dictate how the equations are scaled. Details of
scaling are given in appendix A and a dimensional analysis is provided by J. Lee et al. (ref. 62).
Consider an ideal gas contained in a system with characteristic length L'. At each end of the tube the
gas is displaced a distance dj), with frequency f and characteristic velocity amplitude Up. The
imposed oscillating displacements also produce oscillations in the velocity vector u', pressure p’,
density p°, and temperature 7 . Pressure, density, and temperature oscillate about mean reference
bulk values py, pp, and T, respectively, which are taken as the scaling constants. The scaling for
u'is Uy and the scaling for time is the inverse angular frequency, " =2xf". Using the above
scaling constants, the conservation equations for mass, momentum and energy are, respectively,

0=p,+€V-(pu) 9)
pu_,+epu-Vu=—%Vp—71a—V-1: (10)

2

y-1 1 M
T VT=+—(p,+eu-Vp)-——V .q+(y+1)—1:V 11
pi,+€Epu » (P,z €u P) Pr Va q+(y )Va u (11)

where

T=p,(V-u)l+2u defu; 3u,+2u=0; defu=%[Vu+(Vu)tr] (12)

IFor additional references, see Sherman (ref. 1), White (ref. 63), or Bird et al. (ref. 64).
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and 4 is the second viscosity, q = —kVT is the conduction heat flux vector, and T is the viscous
stress tensor. The dimensionless parameters are the inverse Strouhal number, €; the Mach number,

M:; the Prandtl number, Pr; the Valensi number, Va; and the elasticity parameter, A, which is a
measure of the resilience of the gas (ref. 2). The parameters are defined as

* t2 * ‘2 * 2
P/ S SO/ S YU NPV i I R 4. (13)
oL YRT) o v £

where V' is the kinematic viscosity, o is the thermal diffusivity, yis the heat capacity ratio
C,/C :, @ =~/YR'T| is the speed of sound for an ideal gas, and R’ is the ideal gas constant with
the ideal gas law reducing to

p=pT (14)

Note that only two of the three parameters & M, and 4 are mutually independent. For sinusoidal
motion of velocity at the tube ends, & = dy/L . Rewriting A = yYMa@'L/a’ shows that it is

composed of the Mach number and the ratio of the oscillation frequency to the system acoustic
resonance frequency. For the problems we will address, M <<1, o'L’ /a’ <<1,and y =0(1).

Relevant Transport Quantities

Mean -Steady Enthalpy Flow

The local mean-steady enthalpy flow is evaluated by integrating the enthalpy flux over the
cross - sectional area normal to the flow and time-averaging over a period,

H:j §pn-qutdA _ (15)
A
where the overbar represents mean-steady values, and n is the unit vector pointing in the positive
direction and normal to the cross-sectional area A. Enthalpy flux is scaled as by = ppUpToC,, and
enthalpy flow as Hy = hpA’.

Mean-Steady Particle Velocity

For absolute steady-state conditions, the stream function represents lines of constant mass
flow (ref. 63) and is identical to the path along which particles travel (particle path). However, for
oscillating flow in which quadratic products of the linear solutions produce higher-order mean-
steady flows, the mean-steady stream function does not represent the mean-steady particle path. To
find the mean-steady particle path, the mean-steady particle velocity must be determined.

The instantaneous particle velocity, u p(x,t), is the Lagrangian velocity, as opposed to
u(x,t), which is the Eulerian velocity. For small displacement, u p(X.t) canbe obtained by a

Taylor expansion of u(x,z) about the initial position x; at = 0. Details are given by Batchelor in
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reference 61 and they are reviewed in appendix B. The mean-steady particle velocity for an
oscillating flow is given as

! ‘
U,(x)=(x;)+ ju(x,r) dt-Vu (16)
0

X;

where the first term on the right-hand side is the mean-steady field velocity at the initial position x;

at 1= 0, and the second term is the velocity component due to time-averaged particle oscillations
that transverse u(x).

The mean-steady Lagrangian transport of other quantities has a similar form. Let y be such a
quantity (for example, enthalpy h; entropy s; or the acceleration u , +u- Vu). Then the mean-steady

value of y associated with the particle velocity is

t

Xp(x) = X(x;)+ ju(x,r)dr-Vx (17)
0 X,
Entropy
The entropy equation is given by
M? 1
+epu-Vs=(y-1)—® - V. 18
psy+epu-Vs=(y-1)T-@-——-Vq (18)

where @ = 1:Vu is the dissipation function. The entropy equation is an alternative form of the
energy equation and is useful for optimization studies.

Conditions for Acoustic and Anelastic Flows

For the limiting condition of very small €, equations (9)—(11) can be reduced to a set of linear
equations that are amenable to an expansion series solution. The parameter A serves by helping to
identify the distinguished limit between € and M.

Acoustic Flow

The equations can be reduced to an acoustic form for A = O(1) and € << 1. Here the first-
order pressure p;(x,?), is coupled between the mass conservation and momentum equations. The

acoustic equations are linear (ref. 65) and allow a series solution in € where M = €97 is the

distinguished limit. The expansion for p(x,t) is

p(%,1) = pp(X)+ € pj(x,1) + £2py(%,1) + O(€>) (19)
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Equation (19) shows that the first correction to the pressure, py, is spatially dependent, and that
pressure gradients are of the order of the bulk temporal pressure oscillations. The rest of the
variables are also expanded in &,

p(x,t)=po(x)+sp,(x,t)+£2p2(x,t)+0(83) (20)
T(x,1) = Tp(x) + € Ty(x,1) + £2T5(x,£) + O(>) 21
u(x,1) = up(x,1) + £uy(x,1) + O(€?) 22)
v(x,1) = vo(x,1)+ £ v (x,1)+O(e?) (23)

Anelastic Flow

An anelastic approximation of the fluid equations neglects density changes due to pressure
gradients. Its effect is to “remove acoustic phenomena from theoretical considerations” (ref. 1) and it
can be used to “filter sound” from the fluid equations with the advantage that the equations do not
propagate numerical shocks (ref. 2). The anelastic approximation applies when shock and acoustic
energies are small relative to the energy needed to compress and expand the gas.

The condition A < € << 1, defines the anelastic approximation. The corresponding
distinguished limit is M < €. The pressure is expanded as

p(x,t) =P (t)+ A py(x,t)+ higher order terms (24)

The anelastic equations are similar to the acoustic equations except that now there is no coupling
(through the pressure gradient) between the mass conservation equation and the momentum equation
at leading-order, that is, at leading-order P (1) is not present in the momentum equation, but remains
in the mass and energy conservation equations, and in the equation of state. The next pressure term
is O(A); it is the kinematic pressure that drives the flow in the momentum equation. A consequence

of this ordering is that there is an inaccuracy in the mass conservation equation of O(4). Appendix C
details the anelastic scaling.

The added unknown P (¢) requires an additional relation. The relation comes from the

integral form of the energy equation. For a calorically perfect gas (ideal gas with constant heat
capacity), the integral equation is

iy X1 . _r .
P)=~; PrVain VTdS-5; i P()n-u dS (25)

where n is the outward pointing unit normal vector, S is the surface area enclosing the domain, and
V is the domain volume. Equation (25) defines P (t) in terms of boundary conditions only, hence,
P (t) is the thermodynamic equilibrium pressure and is the integral equivalent of the first law used
in macroscopic thermodynamics.

Now consider a subset of the above case in which A << £ << 1. An appropriate expansion of
pressure is

p(x,t)= po+€pi(t)+ A pp(x.1)+ €4 p3(x.1) + O(e* 1) (26)
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The expansion given by equation (26) is applicable for pulse tubes where P(r) of equation (24) has
been split into two terms, py + £p;(¢). The first term represents O(1) time-dependence of pressure,
such as when the pulse tube is cooling or warming; for quasi-steady conditions it is constant. The
second term represents O(€) time-dependence given by the oscillating pressure in the pulse tube. As
before, the thermodynamic pressure p; is determined from the energy integral, equation (25). The
expansion in € of the other variables is given by equations (20)+23).

Linear Anelastic Flow

The added condition €Va << 1 allows linearization of momentum, that is, a linear anelastic
approximation. The product £Va is the Reynolds number. In this study, the linear anelastic problem
is investigated. Though the acoustic problem is not addressed here, it has been addressed elsewhere
(ref. 20); it is, however, summarized, along with the anelastic equations, in table 3 of section 3.
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3. TWO-DIMENSIONAL AXISYMMETRIC FORMULATION

In this section, the two-dimensional axisymmetric linear anelastic problem is derived for
oscillating flow in a tube. Heat transfer between the gas and a tube wall of thin but finite thickness is
considered. Mean-steady relations are derived and summarized for both the anelastic and acoustic
limits. Finally, the equations are simplified for sinusoidal time using complex embedding.

System

Consider an ideal gas contained in a long cylindrical tube of finite wall thickness. The
thickness of the tube wall is very thin relative to the tube radius. The system is thermally insulated,
and the gas velocities at the tube ends are of small amplitude and sinusoidal. Figure 7 is a sketch of
the system. A summary of the assumptions and approximations made in the analysis is as follows:

1. Two-dimensional, axisymmetric cylindrical geometry
2. Inert single component ideal gas

3. Constant properties—thermal conductivity, heat capacity, dynamic viscosity

4. Enthalpy a function of temperature only

5. Stokes hypothesis for second viscosity, 3u, +2u =0

6. r,/L <<1 implying that the radial momentum equation is negligible, p , =0, and that
p=p(z.1)

7. No body forces

8. [ <<r,, so that the tube wall domain can be approximated with rectangular Cartesian

coordinates

9. Sinusoidal time-periodic velocity boundary conditions

ADIABATIC AT WALL
OUTER SURFACE
y=1 / TUBE WALL
0 _—~" DOMAIN
y = T T IS T SIS TLTISS LIS T TSI LTISTIIIT IS STIS
> / GAS
r=1 DOMAIN
-—p =0 -
at r=0, z=0 z=1 atr=0,
(joeit ULel(t+¢()

Figure 7. Two-dimensional axisymmetric system for oscillating flow.
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The problem is divided into two domains. In the gas domain, only the gas inside the tube is
considered; it extends fromr =0tor=1,and fromz=0toz=1.In the tube-wall domain, only the
tube wall thickness is considered; it extends from y = 0 to y = 1, and from z = 0 to z = 1. The two
problems are coupled through the boundary conditions between the gas and the tube wall which
require that the temperature and heat flux be continuous across the interface. In the gas domain, the

thermodynamic variables of temperature T and density p are functions of spatial coordinates r and z,

and of time ¢. For the tube-wall domain, the tube-wall temperature 8 is a function of y, z, and 2.
The normalized velocity field for the gas domain is composed of the axial velocity » and the radial

velocity v. The periodic boundary condition at 7 = 0 andz =0 is u=0, ¢’ andatr=0and z=1it

isu=Up ¢ (+90) \here i = —1. The velocity is scaled by Up so that Uy =1 and Uy =01 /Tj.
Finally, at the outer surface of the tube (y = 1) the radial heat flux is zero (adiabatic).

Equations

The dimensionless fluid equations for mass and energy conservation, the equation of motion,
and energy conservation for the tube wall are

(pur)
Py +£[ - L +(pu) , |=0 (27)
(pou), 1 1 (ru’,) r (28)
(pu) , + s( - +(p““),z =Pty T
p, (p‘l)r). y-1 1 (rT,,), 2.2 M? 2
_Y—t+€[ - r+(pu)’zi|= ” eup; + ol = L+eTT,, +(7—1)—\Eu” (29)
6, =Fo (O,yy +e%TZ, G’ZZ) (31)

» » 2 . -
where I'? = (r;‘,/sL')2 and Fa, = (l /szL ) . The last two relations, I and T, are of O(1). Thus
ordering for equations (29) and (31) applies when the axial conduction of energy due to the tube
wall is two orders higher than the corresponding conduction of the gas. The equations do not allow
for azimuthal flow; however, it is noted that one should not necessarily rule out the possibility of
azimuthal flow in pulse tubes.

In addition to the dimensionless numbers previously introduced (&, M, Pr, Va, and A) there
are several other dimensionless quantities that result from the boundary conditions and the system
geometry. These are the velocity amplitude ratio, U/ ; the normalized velocity phase angle, ¢v,
which is the phase angle between the velocities Up and Uy, where Up leads Uy and 0< ¢y <1; the
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Fourier number for the tube wall, Fo= «,, / (l '20)'); and dimensionless length ratios, r,, /L and

I / L' . Table 2 lists the complete set of dimensionless parameters.

Table 2. Dimensionless numbers.

Range | Name Definition Comments ‘
-3 i Y . . » i i p
£ 1073 to | Expansion a; /(a) I ) —dy/L Ratio of dlsplflcerr}ent len%th dp to
10~! parameter tube length L', @ =2nf
A 10~¥ to | Elasticity M2 Upe'L Cp . o
10-5  |parameter | YT m=YrT | VS and a = yR'Tp
M 10~3 to | Mach e /a' Ratio of velocity at z = 0 to speed
1073 number 0 of sound
Va 1 to 102 | Valensi 20" /v' Squared ratio of tube inner radius
number w to viscous diffusion length
Pr 0.7 Prandtl o . Squared ratio of viscous to thermal
number v/a diffusion length of gas
Fo 0 to 102 | Fourier o /( 2 a)') Squared ratio of tube-wall thermal
number ¢ diffusion length to tube-wall
thickness
r./L | 107! Gas domain Ratio of tube radius to tube length
length ratio
I'/C {1072 Tube wall Ratio of tube-wall thickness to tube
length ratio length
Uy Otol Velocity e [ Ratio of velocity amplitude atz = 1
ratio 01105 to amplitude at z = 0
ou -0.5to | Velocity Velocity phase angle where U at
0 phase angle z=0leads Upatz=1
H Normalized T / g Ratio of mean-steady enthalpy
enthalpy ref flow to oscillating enthalpy flow
flow H,of = poToU0Chars

To illustrate the values of the dimensionless numbers, consider a small-sized pulse tube
operating at 10 Hz, with a stainless steel tube of wall thickness /"= 0.01 cm, inner radius

r,,=0.35 cm, length L'= 5 cm; thermal diffusivity of the tube wall a;, = 0.045 cm?/sec; helium gas

mean pressure at 106 Pa; kinematic viscosity v’ = 0.124 cm?/sec; Prandtl number Pr = 0.7; speed of
sound a’= 103 m/sec; and gas displacement dj = 0.04 cm. The calculated dimensionless numbers

become € =8x107>, Va=62, £Va=0.497, M=2.5x10", A =4.8x107%, Fo=7.2, and
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M? /Va = 0(10_1 1) << £% . The value of £Va shows that these conditions are at the limit of the

linear approximation, and the relation for M? / Va shows that viscous dissipation is not important.

Now consider a pulse tube operating with a more typical £= 0.1. This results in €Va= 6.2,
which is not strictly within the constraints of the linear approximation. However, if the measured
values of mean-steady flow for €Va >1 are in agreement with calculations using a linear approach,
then an argument can be made for describing mean-steady flows for pulse tubes using a linear
theory. It will be shown that this is the case.

Series Expansion
The anelastic criterion that applies to pulse tubes is
A<e<k] (32)

We are interested in the quasi-steady periodic solution for the leading-order problem.
Equations (27)~(31) are linearized using a two-parameter series expansion for pressure in € and A,

p(z,t)=1+epj(t)+ A pa(z,t)+ €A p3(z,0)+ 0(822.) (33)

and an expansion in £ for the other variables,

p(r.2,0) = pol2) + £p(r.2.1) + £2p(r,2.1) + O(€?) (34)
T(r,z,t)=To(2)+ €T )(r,z,t)+ £2T2(r,z,t) +0(e%) (35)
u(r,z.t) = ug(r.z,0) + €uy(r,2,0) + O(€%) (36)
v(r,z,t) = vo(r.z,t) + €v)(r,2,t) + 0(82) (37)

For details as to why the expansion takes the form of integer powers in € and A refer to appendix D.
Equation (33) reflects that the leading-order equation of state is

1= po = po(2)To(2) (38)
and the first-order correction for pressure is
p1=p;() (39)

Details for obtaining equation (39) are also given in appendix D.

First-Order Oscillating Equations

The resulting first-order equations for mass and energy conservation, the equation of state,
and the energy equation for the tube wall are, respectively,

Pokor
Pret (—% +(poip) , =0 (40)
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1 (7)),

Pry + (po‘l)or) r

L = 41
» (Poko) , P vVa 7 (41)
p1=poT;+piTy (42)
61, =Fo 6, (43)

The condition £Va << 1 allows linearization of momentum. Ordering the momentum equation shows
that the flow is driven by the p,(z,t) pressure gradient

1 (o) r
=Dy, + : 44
(Pouo) , = =Pz, Ve, (44)
The energy integral over the gas domain defines the relation for p,(r)
pi() =L —=—[n-T;,dS - [n- pougds 45)
V| PrVa 3 ’ S

where the prime denotes an exact derivative. Equation (45) shows that the thermodynamic
oscillating pressure p;(t), results from the forced oscillations at the tube ends and from periodic

radial heat conduction at the tube walls.! Details of the expansion are given in appendix D.

The above coupled set of linear equations still does not completely define the basic state
problem. This is because the zeroth-order temperature, Ty(z), is coupled to the mean-steady,

second-order energy equation. To completely define the basic state problem, the mean-steady
equations of next order must be determined.

Mean-Steady Equations

Mean-steady velocity component due to Reynolds stresses, U,

The mean-steady, second-order momentum equation is given by

(Povouo), ~ . ] ( El,r),,
I —— (Pououo),z =TPityy
The left-hand side of equation (46) contains the Reynolds stresses. The right-hand side is the

resulting mean-steady velocity &;, and the mean-steady pressure p3. These two are unknown. A

second relation comes from the zero-net-mass-flow constraint, which requires that the integration
of the steady axial mass flux over the area normal to the axial flow be zero,

(46)

r

0= |(pou; +ppug)rdr (47)

O t—y—

1Periodic axial heat transfer at the tube ends is not considered here.
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The above two equations are used to solve for @; and p3. The mass conservation equation 1s then
used to solve for v,

(Pov_zr +pVor )

0= — +(pous +piug) . (48)

Mean-steady temperature distribution and the equation of state

The mean-steady, second-order energy equation is used to find T,

1 (’Tz,r)
Pr Va r

; 2 —_ T
+T TO,ZZ =Va-(p0u1+p1u0) (49)

where I'Z = 0(1) and (V, -) is the axisymmetric divergence operator, that is,

\ -(poﬁ; + PI“O) = (poa + Pluo) .t l(rpou_I + rPI“O) . Here we see that Ty(z) is coupled to the
, r ’

second-order energy equation. The equation of state is used to find the density
p2=poT2+pT1+pT0 (50)

The gas-domain equation is coupled to the tube-wall domain

0="0,,, 1)

which implies 52 =0 after requiring that the temperature boundary condition at y = 1 be adiabatic.
The zeroth-order temperature of the tube wall, 6 ,,, 1s of O(&%) so it does not enter into the
problem at O(g2).

The complete leading-order problem requires T(z) to be solved simultaneously at zeroth-

order (eq. (38)), oscillating first-order (eg. (42)), and mean-steady, second-order (eq. (49)). Table 3
summarizes the leading-order and mean-steady equations and boundary conditions.
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Table 3. Summary of equations: leading order and mean-steady boundary conditions.”

Zeroth -order relations Eq.
po=1 Zeroth-order equation of state (a)
Po = Po(2)To(2) (b)
0(z) =To(2) (©)
First-order oscillating equations
1 (’“O,r) r . .
(PO“O) =-py,+— : O(A) pressure gradient drives the O(1)
! * Va r velocity (d
P1:+ V4 (Poup)=0 Mass conservation )
1 (), v
Pie=v Pva , @ (Pouo) Energy 0
Pl = e —I—Jn Ty,ds - Jn - polp dS Volume integrated energy
YOV Prval < (2)
pr=poT+piTy Equation of state (h)
8, =Fo 6,y Energy equation for tube wall (i)
Mean -steady equations
— ri :
V.- (pou?)) =-P3, + _1_( I’r)" Solve with the axial mass flow )
* va r constraint to obtain pjand i, average
1 .
0= J‘ Po u1 + PI uo ’ dr Axial mass flow constraint (k)
0
V.- (poﬁ 1+p 1“0) =0 Single quadrature to find o, 0]
1 (rTZ-f), r - —— r? Second-order mean-steady energy (m)
va = Ve (b1 Po) =5 oz cquation
pa=poT2+p T +p,Tp (n)
0= gz,yy (0

5t . . o
“The acoustic problem is obtained by replacing p, in eq. (d) with p1(,lz ), replacing p3 in eq. (j) with

%Z’t); and eliminating eq. (g).
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Table 3. Concluded.

Boundary conditions for oscillating problem

0=up, =29 atr= 0 Symmetry

0=up atr=1 No slip

0=1g at r=1 No-penetration condition ®
A i _

up=Up= R [UO e ] atz=0and r=0 Two boundary conditions in z needed for

ug=U; = R [0Le't] atz=land r=0 Ug 7,

0=T,;, atr=0 Symmetry

T] = 91 and

koT),=k,6;, at y=0and r=1 Temperature and heat flux continuity

0=6;, at y=1 Adiabatic at outer wall

Boundary conditions for mean -steady problem

0=i;, =7 at r=0 Symmetry

0=u; at r=1 No slip and isothermal

0= atr=1 No-penetration condition @

Tp= T|z=o atz=0 Two boundary conditions in z

Tp=Tl,,, at z=1 needed for T,

0= Tz‘r at r=0 Symmetry

0= 52 - TZ at y=0and r=1 Results from solution of eq. (o) and

0=6,,

at y=1

applying boundary condition where it is

adiabatic at outer wall




Comments

The complete problem involves 15 variables (g, Vg, @1, D;s Po» P1> P2 To» T1» T2, 64,
85, p;, P2, P3) in the 15 equations listed by equations (b) and (d) - (q) in table 3. There are 12

continuum equations, one integral equation (g), and two boundary constraints (p) and (q). The
boundary constraints are independent equations, since in the differential equation for mass conserva-
tion, vg has only a single derivative and need satisfy only a single boundary condition. Note that the
zeroth-, first-, and second- order equations must be solved simultaneously for the leading-order
problem because T is coupled between the zeroth- and first-order equations of state, and the mean-
steady energy equation.

Thermally strong approximation, Tg , = 0

The problem can be greatly simpliﬁed for the case of negligible zeroth-order axial
temperature gradient, Ty , = 0. This would apply for a strongly imposed heat sink/source on the

system. This leads to decoupling of the zeroth-order equation of state from the mean-steady energy

equations. The zeroth-order equation of state is exactly known (pg = pg = Tp = 1) so that the first-
order oscillating equations become self-contained and can be solved independently. The result is

seven equations (egs. (d) to (i) and boundary constraint eq. (p)) with seven unknowns (ug, Vg, P1, P2,
p1, T1 0;). This simplified case applies to the experimental investigations of section 5.

Acoustic limit

As shown in section 2, the acoustic limit requires A = £ << 1 which results in

p(z.t)=1+ep;(z,0)+ £2p2(z,t) +0(€%). The equations in table 3 can be rewritten in acoustic form
by replacing p,(z.t) in equation (d) with p;(z,t); replacing p3(z,t) in equation (j) with p; (z,1);
and eliminating equation (g).

Entropy production

The mean-steady generation of entropy can be used to optimize enthalpy flow by
minimizing entropy production. The entropy equation is expanded to second-order and integrated
over the domain. The zeroth- and first-order entropy equations do not contribute to mean-steady
entropy production since they describe only linear oscillating entropy transfer in the form of heat
transfer and entropy advection, and not generation.? Entropy generation is quadratic at second-
order.

Integrating the second-order entropy equation over the domain results in the steady
generation of entropy S5,

2Entropy generation is different than accumulation which can come in at first-order if the flow of heat at each end of
the tube is different. This would result in a bulk temperature transient. In this case, the first-order accumulation of

entropy is givenby § | = jn 222 4s which requires the system to be heating or cooling.

PrVa Ty

§
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(%]

= [(posz+ 1+ P250) 4V
Y%

2 2
T T,, T T T
S ( ’*’) +r(—”’—0*2)+r2(—0-2) dV+[n--2L 48
Pr Va vV TO To TO TO 3 To

. (52)
- Iﬂ (Povos +Pouso + Prugsy) dS
S

Viscous dissipation does not come in at second - order—irreversibilities are due only to heat transfer.

The entropy produced in the tube wall must be added. The entropy equation for the wall at
second-order is

2 2

_ 9 ) 6

3, =Fo Lr | yr2| 202 LV + [n-—2L ds (53)

2 T w T w T W
’VW 0 0 ‘Sw 0

The total entropy generated by the combined gas and tube wall system is the sum, (§2 + 52). In the

limit of an isothermal or an adiabatic wall boundary condition, the wall-domain problem need not be
considered, and the gas-domain equation, S,, by itself, is sufficient because in both idealized cases
there are no temperature gradients present in the wall.

Complex Embedding of the First-Order Equations

To obtain a periodic solution for the linear equations of table 3, complex embedding can be
used to eliminate the time-dependence. The problem is then solved in the complex plane with the
real part of the complex solution being of physical significance. The complex solution takes the
form

x=R[2(x)e" (54)

where y represents the real part of the complex function #(x)e" . In general, 7(x)is spatially
dependent and is itself complex. Appendix E details the procedure for simplifying the first-order
equations; only the important points are summarized here.

The first-order momentum equation given in table 3, equation (d), is reduced to a solution in
z. The solution for g is explicit in » with the z-dependence contained in p,(z) and py(z), both

unknown at this time:

~r

g = iﬁ%{l - Lo(rz:Va)] (55)
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where

o STV TiRo)
B A 20)

with J,, being the Bessel function of the né#-order. In a similar manner, the energy equation can be
solved explicitly in » with unknown dependence in z. The energy equation is rearranged using the
equation of state and the mass conservation equation to arrive at

n=0,1 (56)

fI = }'T_li)lTo[l - Zjo(r,z; PrVa)] + Twei‘pTCo(r,z; PrVa)

(57)
- TOTéﬁg{[l ~&o(rz PrVa)] - (%)[Co(r,z;«/i’;) = &o(r.zmPr Va)]}

where T,, is the amplitude and ¢r is the phase angle of the temperature at the interface between the

gas and the tube wall. The first term on the right-hand side of equation (57) contains the factor

I—;——l P;To- This factor represents the leading term of a series expansion of the thermodynamic

relation for isentropic compression of an ideal gas, d_;' _y-1ldp The first term also includes the
Y p

Bessel function expression [1 - Co(r,z; Prva )], which describes the transverse diffusion

temperature fall-off between the center of the gas and the tube wall.

The second term of equation (57) is the effect due to the heat transfer between the gas and
the tube wall. For an isothermal tube wall, T,, = 0. For a non-isothermal wall of finite thickness, f‘l
is coupled to the temperature 6 ; of the tube wall. The governing equation for the tube wall is given
in table 3 by equation (i). The solution is

0 =T, 07 [eixy _ eix(’zlo_ns?_)] (58)

where x:,/;—l.
0

The third term is due to advection of gas along the axial temperature gradient. The
dependence on T suggests that the oscillating temperature T; should increase with local mean
temperature. Experimental measurements of the oscillating temperature in a pulse tube suggest this
is the case (ref. 35, p. 54). For Pr — 1, L’ Hospital’s rule shows that the term remains finite. More-
over, for a BPT with Pr — 1 and T, = 0, the phase shift between temperature and velocity—
provided by the difference between thermal and viscous diffusion lengths—is everywhere
orthogonal, which results in zero enthalpy flux. However, for an OPT, a phase shift is imposed by
the velocity conditions at the tube ends, hence, enthalpy flux remains finite for Pr = 1.
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Equation (57) shows that the unknown temperature, f"I, is now described as a function of the
axial temperature T)(z), the kinematic pressure p,(z), the bulk oscillating pressure p;, and the
temperature amplitude TW and phase angle ¢7 between the gas and tube wall. Equation (57) 1s
combined with the zeroth- and first-order equations of state and with the first-order mass conserva-

tion equation to obtain a second-order ordinary differential equation for vy which is explicit in  and
unknown in z:

vy = i{m1(r,z;«/V_a)T0f)’2’

+(m,(r,z;J\Ta)— Va)-ms(r.z; PrVa)])Téﬁg (59)
+my(r,z;v/PrVa) +m3(r,z;«/m)§—”0vei¢r}
where
my(r.zVa)= —[——m_g(rz\/—)] (60)
my(r.z; PrVa):—[-zLy+yT—lm3(r,z; PrVa)] (61)
m3(r,z;0')=o_—-:i)0—(z—)§](r,z;0’) (62)

Details about the derivation of equation (59) are given in appendix E. Equation (62) shows that
when Ty, =0, po is constant and that vg becomes independent of z.The boundary condition vg = 0

at r = 1 is used with equation (69) to obtain a quasi-linear, second-order ordinary differential
equation for p,(z) with unknown constant p;.

N mJ(l,z;VPrVa)_ Pr m3(1,z;«/V_a)_m3(Lz;wW5) lnT()]’A
Pz ml(l,z;\/_\_/’_a) Pr-1 m,(l,z;«/\’_a) mI(l,z;«/’V‘E) 0\ P2

mz(l Z VPrVa) P m3(1 Z «/PrVa) T, el¢T
m1(1 Z‘\/_—g) To mj(l,c,\/v;) TO

This is the pressure equation for p,(z). The volume-integrated energy equation is required for the
unknown py,

(63)

+

TR A T dS— o i d
zp,_v[Prvain 1,,ds £n uodS] (64)
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Table 4 summarizes the reduced set of oscillating first-order equations. These equations, along with
the mean-steady equations and boundary conditions of table 3, complete the formulation of the
linear anelastic problem.

Table 4. Reduced set of oscillating first-order equations.

P pz()[1 o(rzvVa)] @

o(z

Nan

= YT_li)ITO[I - §0(r,z; PrVa)]+ Twei'pré'o(r;z; PrVa)
(b)

—TOTOpz{[l Eo(r.zPrVa)] - (

é] = elly-—elx i_s_m_xy_ T ei¢T (C)
cosy v

130 = i{m,(r,z; Va)Toﬁg

)[(;0 r,.z;vVa) - {p(r.zvPrVa )]}

+(m1(r,z;«/V_a)— Va)—m3(r,z; PrVa)DTéﬁé @
+m2(r,z;VPrVa)f?1 +m3(r,z; PrVa)%—ei‘bT}
0
s m1(1,z;«/PrVa)_ Pr m3(1,z;«/ﬂ)_m3(l,z;«/PrVa) (7 (z)], X
"2 T (LaVVa)  Pr-1|m(LsvVa)  my(Lavva) |[U° ©
mz(l zZ; «,/PrVa) b, m3(1 zZ «/PrVa)
m(Lavva) Tp | my(LzAVa) T3
iﬁ]—-{Prl\/ajn'f‘erS—Js‘n'ﬁodS} % ®
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Considerations for the Leading-Order Temperature, Ty(z)

Solving the most general case requires simultaneous solution of the zeroth-, first-, and
mean-steady, second-order equations because of the temperature coupling of Ty(z). However, there

are three limiting cases that specify Ty(z), a priori, thus allowing decoupling of the first-order and

mean-steady equations. Following is a summary of the general case along with the three limiting
cases:

1. Tp(z) is unknown

This is the most general case in which Ty(z) is part of the solution to the set of coupled zeroth-,
first-, and second-order equations.

2. (In TO)I = constant = Ty(z) = TO(O)\:;:LE(I)_))]Z
0

Here Ty(z) is exponential. This requires solving a coupled set of quasi-linear differential
equations.

4

3. T, =constant = (InTy) = m

mz+a

Here Ty(z) is linear in z with slope m. This case also requires solving a coupled set of quasi-
linear differential equations.

4. Tp= (lnTo), =0

Here T is a constant. This is the thermally strong case, implying that py = pp =Ty =1, where
thermal sources and sinks are imposed on the system to maintain a constant temperature Ty.

Case 4 describes the thermally strong condition and is the simplest since the pressure
equation is reduced to a second-order ordinary differential equation with constant coefficients,
which allows an analytic solution. In addition, p; is now one of two unknown constants in the
pressure equation and is found by using the second boundary condition on ug; hence, the volume
integral of the energy equation is not required (eq. (f) in table 4). The remaining part of this study
will focus on the thermally strong condition of Case 4.
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4. SOLUTION FOR THE THERMALLY STRONG CASE, 7, ,=0

The equation sets in tables 3 and 4 can be analytically solved for the case of VT, =0. The
condition VT =0 implies py = py = Ty =1 and thus allows the quasi- linear differential equation

for pressure (eq. (e) in table 4) to be reduced to one with constant coefficients. This is Case 4
described in the previous section— a hypothetical condition in which heat sources and sinks
maintain T constant. Rott (1993: personal communication) termed this case thermally dominant or
“strong.” The solution is tabulated in table 5, and solution details are given in appendix F.

Leading-Order Results

In this section, flow fields are calculated for BPT (U, = 0) and OPT (U 1. =1) configurations
as a function of Va, ¢y, and Fo for fixed values of e = 0.002, y= 5/3, (l/ L')2 ~ 0(84),

(r;,/L')2 ~ 0(82), A~ 0(10—9), and M2 ~ 0(10'“). For these conditions, M?/Va < 0(10_12)
so viscous dissipation is not important.

Table 5 shows that the pressure, equation (a), and the temperature, equation (c), are constant
in z and depend only on the velocity boundary conditions and the tube-wall temperature. There is no
dependence on pressure gradient; this is a result of the anelastic approach, and reflects thermo-
dynamic equilibrium. The axial velocity, equation (b), also reflects thermodynamic equilibrium in its
linear z-dependence, while the radial velocity, equation (d), is constant in z. The temperature of the
tube-wall domain is given by equation (f), and the effect of heat transfer between the gas and the

tube wall is contained in the terms represented by Tweid’T . Appendix G lists the code used for
computing the solutions.

Comparison of p; and P,

The equation for integrated bulk oscillating pressure is given by equation (f) in table 4. After
integration, it is

A T nd l¢
’P1=—2i${ 1 [rTL,]r=l—m1(l;W—a)1_—lg‘o%-\l;_a_)] )

This is more general than the solution pressure given by equation (a) in table 5. For the present
solution, equation (65) is not required for determining the bulk oscillating pressure p;, because the

bulk oscillating pressure is an unknown constant in the leading-order momentum equation and is
determined by the velocity boundary conditions at the tube ends (details in appendix F). The
pressure p; that results is the thermodynamic pressure calculated along the centerline of the tube. In

contrast, the integrated pressure 731 of equation (65) is determined by integrating over the volume
domain of the gas. This results in a discrepancy between ’.731 and p;. The difference should be of

)
PrVa /)

order of the thermal diffusion layer thickness, 0(
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Table 5. Summary of leading-order solutions for strong-temperature case, Ty, =0.

Eq.
. 1-U e m,(l;w/—%) _ m3(l;w/PrVa)T itr @)
bi I—CO(O;\/V_a) mz(l;\/PrVa) mz(l;x/PrVa) v
. - l—Co(r;\/V—a) (b)
= ¢y —_
uo—[l—(l—ULe )Z]{I—CO(O;«/W)}
j:, =_i’}/—1 mI(l,M) I—Co(f';‘\/PrVa) 1—(7 ei¢U)
! Y mz(l;\/PrVa) 1—{0(0;\[\1—3) L
(©)
—1m3|;vPrV .
'*'[CO(’NPTVEI)— Y}/ ! ngl.\/%v_:;[l—{o(r;x/PrVa)]) T, e'fr
5 = ml(l;«/Vz;) mz(r;«/PrVa)_mI(r;«/VE) (1_0 ei‘PU)
0" l—CO(O;w/V—a) mz(l;VPrVa) mI(l;«/ﬂ) L ©
_ . mz(r;x/PrVa) m3(r;«/PrVa) - g
_zm3(l,«/PrVa){m2(1;m)- m_;(lh/ﬁ) T,e"T
pr=p-T ()
$(r.z;0) = J,,(ro —.ipo(z)) n=0,1 Jo(0)=1 (g
Jo(o=ipo(2)) J1(0)=0
m,(r,z;\/v_a)=—[%—m3(r,z;x/'\’_a)] m(0,2:4Va)=0 M)
mz(r,z; PrVa):-[?r.}.,.+_}f_;_lm3(r,z; PrVa)] m2(0,z;VPrVa)=O : 0
1
milr 0= S ) m3(0.2:0) =0 0




The bulk pressures p; and P; for a BPT (U = 0) with £ =2x 107> and A = 6.46 x 10~°

are given in figure 8. The difference between p; and 731 for small PrVa is significant, being about
40% for PrVa=0.7. As PrVa increases (7< PrVa < 21), the difference is less than 5%, and for
PrVa = 70 the difference is less than 1%. The difference between p, and ’f’l is consistent with a

PrVa scaling.
Prva =07
-~
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Figure 8. Pressure vs. time for p; (—) and ’131 (- =) with A = 6.46 x 10'9, f‘w =0 U . =0.

Leading-Order Temperature and Pressure Phasors

Figure 9 shows how heat transfer between the gas and the tube wall affects the temperature,
pressure, and velocity phasors1 for a BPT and an OPT. Phasors for p;, Uy, U, , and T, for the
conditions Fo — 0 and Fo = 100, and Va =1, 30, and 100 are shown where Tb is the bulk
oscillating temperature (temperature averaged over the tube cross-sectional area),

1

Ty =2[rTdr (66)

0

'Phasors are complex vector quantities whose magnitude and angular position, when plotted in the complex plane,
represent, respectively, the amplitude and phase angle of a sinusoid.
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The BPT is a standing wave device and so the velocity phasor i has a constant phase angle
along the tube length; hence #) lies along the real axis. Because iy lies only along the real axis, the
temperature phasor f‘b is out of phase with the velocity. This is seen in figures 9(a)-9(c) for a BPT.

The result is very small enthalpy fluxes since enthalpy flux depends on the cosine of the phase angle
between temperature and velocity according to the general relation given by equation (7) where X

is the temperature phasor and u is the velocity phasor.

Three more observations are illustrated by figure 9. The first is that for the BPT phasor
diagrams, figures 9(a)-9(c), which show that f"b and #, are closer to being in-phase for Fo — 0
than for Fo = 100. This is due to the large heat transfer between the gas and the tube wall for
Fo — 0. The condition Fo — 0 represents isothermal wall conditions. The condition Fo = 100
represents near adiabatic conditions on the gas. That is, the condition Fo = 100 represents a very
thin-walled tube relative to the thermal penetration in the tube wall. This illustrates how heat

transfer is required for the BPT in order to obtain a favorable phase shift between temperature and
velocity.

The second interesting observation is shown for the OPT in figures 9(c)}-9(e). The results are
for U; =1 and ¢y ==0.1. The velocity phasor at z = 0 is Uy, which lies along the real axis with
amplitude 1, and the velocity phasor atz = 1 is U . The shaded area between U, and U} represents

all velocity phasors between z = 0 and z = 1, hence the OPT is more of a progressive wave device
because of the presence of phase-angle gradients.

The OPT shows that f"b can be adjusted through the velocity boundary conditions so that it
is more nearly in-phase with . This is most easily seen in figures 9(d) and 9(e) for Va =30 and
Va=100. Here f"b is more in-phase with i, when compared with the BPT. Also, it is apparent that
for the OPT the adiabatic conditions imposed on the gas by the tube wall result in the temperature
and velocity phasors becoming more in phase. This is most easily seen for Va = 100 and Fo = 100
where fb is now in the shaded area representing the velocity phasors within the tube. For the

isothermal wall condition of Fo — 0, f’b is pushed out of phase (out of the shaded region) with
velocity. This results in less enthalpy flow. Heat transfer, then, is not advantageous for an OPT.

Third, when there is significant heat transfer between the gas and tube wall, the pressure and
temperature phasors move out of phase relative to each other for both BPT and OPT. This is seen
by comparing p; and T, for Fo — 0, with p; and T, for Fo = 100. For Fo =100, p; and T), are
nearly in phase (Va = 30 and Va = 100), whereas for Fo — 0, they are not in phase. Calculations
show that the phase shift can be about 20%. This is important because in simple 1-D models it is
often assumed that there are adiabatic conditions on the gas and so there is a presumption that
temperature is always in phase with pressure. A discrepancy between experimental measurements
and model predictions may then arise. Most pulse tubes operate at Fo = O(1), which is closer to-
isothermal wall conditions.
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Transverse Diffusion of Oscillating Velocity and Temperature
Velocity

Figure 10 shows ugp(r) at z =0 for Va=1and U, =0att=0,0.1,0.2,0.3, and 0.4. For
small Va, the profile is parabolic as in steady-state flow. Increasing Va to Va = 10 shows that the
velocity near the wall begins to lead the velocity at the centerline. Further increasing Va to 30 and to
100 shows that the velocity very near the wall substantially leads that of the centerline, and that the
velocity in the vicinity of the centerline begins to flatten and take on an inviscid profile, with the
velocity amplitude near the wall leading and overshooting the velocity at the centerline. Figure 11
shows vg(r). For small Va, vg is in phase (with itself) at all 7-locations. Increasing Va, however,

results in Vg near the wall leading vp at the centerline region.

4o

Figure 10. Oscillating axial velocity, ug (r).
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Figure 11. Oscillating radial velocity, vy (r).

Temperature

Figure 12 shows the T(r) profile for PrVa=0.7, 7, 21, and 70 with Fo — 0 and Fo = 100.
For the isothermal wall condition of Fo — 0, the temperature profiles are similar to the velocity
profiles of figure 10, just scaled by the Prandtl number. For the near-adiabatic case of Fo = 100, in
all cases of PrVa, the temperature at the wall is seen to float. This is because the wall temperature
responds to the imposed oscillating gas temperature—the wall temperature is not fixed as it is for an
isothermal wall. The ability of the wall temperature to float for the adiabatic wall allows for the
temperature at the centerline region to be larger when compared with that of the isothermal wall.
This is apparent for PrVa = 0.7 and PrVa = 7. As Va increases, the centerline temperature for
Fo — 0 begins to approach that of Fo = 100 in both amplitude and phase. This is because diffusion
is now confined near the wall in the boundary layer. Figure 12 shows that the effect of the floating
wall temperature on gas temperature is primarily confined to the diffusion layer, and that an
adiabatic wall condition will have a greater relative effect on gas temperature amplitude for small
PrVa than for large Prva.
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Figure 12. Oscillating temperature, T (r). Temperature profiles for Fo — 0 are pinned atr = 1,
and profiles for Fo = 100 (identified with **’) floatatr = 1.

Oscillating Heat Transfer and Oscillating Shear
Complex Nusselt number for oscillating heat transfer

The thermal diffusion and temperature phase shifts are now examined within the context of
the complex Nusselt number proposed by K. Lee (ref. 38). His work focused on BPT-type systems.
We now extend our analysis for OPT systems. The complex Nusselt number Nu is defined as the
heat flux at the wall divided by the difference in temperature between the tube wall and the bulk gas,

% aw€
Nu =" (67)
(T, =Ty )e"
= _fl,r r=
- : (63)

A

where g, =-T;,

Il
-:Tl)

v T, ¥ and Tb is defined by equation (66).
r= r=
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1
Figure 13 shows phasors for Nu, Tb, AT =T, - 2_[ rf', dr and g,, as functions of
0
PrvVa= 0.7, 21, and 70, and Fo — 0 and Fo = 100 for the BPT and OPT, respectively. For

PrVa= 0.7 and Fo — 0, the above phasors are of very small amplitude, and are generally in phase
(or 180° out of phase) with I?O (the phasor of 170 is along the positive real axis and is of unit
amplitude). Steady-state heat transfer coefficients can be used under these conditions. Continuing
with Fo — 0, as Va increases to PrVa = 21 and beyond, phase angles also increase with g,, lagging
00. AtVa=70, ¢ fu = —0.397, and for Va> 70, ¢ R = -0.38 (not shown), which corresponds
well with K. Lee’s value of ¢ f, =—0.375 for rectangular geometry in the limit of large Prva.

The effect of Fo shown in figure 13 is to shift the phase of g,, ahead so that now g, leads
00. A curious observation is that Nu is independent of Fo. This is proven mathematically in

appendix F. A scaling of equation (68) shows that Nu ~ +/Pr Va. The thermal penetration in the gas
is only affected by +/PrVa, whereas Fo only affects the tube-wall temperature boundary condition.

Figure 14 shows plots for the same phasors as shown in figure 13 with the same values of
PrVa and Fo for an OPT with UL =1.0 and ¢y =—0.1, where 0L = UL v Comparing figure 14
with figure 13 for corresponding PrVa and Fo shows that all phasors are shifted forward, except for
Nu, which remains with the same relative phase angle. That is, Nu is independent of U .- This is
shown mathematically in appendix F. Thus Nu is only a function of PrVa and is independent of Fo
and U - F Nu versus PrVa is plotted in figure 15; the figure can be used for either BPT or OPT
systems, independent of Fo, U 1.and ¢y .

The complex Nusselt number may be used for one-dimensional linear oscillating flow in a
tube to correct for radial heat transfer,

iT,se =i Py +Nu(Prva)T (69)

where f’ose is the local oscillating temperature and Nu = A 9.

Complex wall shear factor for oscillating shear

A similar relation can also be defined for oscillating shear and oscillating bulk velocity.
Gedeon termed this the “complex wall shear factor,” F (ref. 66). It is defined as

F=tw (70)

A

up
where
1

ty=ig,|_, and d= 2f riig,, dr (71)
0
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These relations are of the same form as the complex Nusselt number, and so figure 15 may be used
in a similar manner with the scaling length characterized by Va. The complex wall-shear factor may
be used as a lumped-parameter approximation of shear for one-dimensional linear oscillating flow,

iﬁosc = _ﬁZ,z + IA:(Va) Upsc (72)

where i, is the area-averaged oscillating velocity and F=A4¢9.

-0.38
¢

-0.4

-0.42

-0.44

-0.46

-0.48 JPFVZ o JVa
5 10 13 20 25 30 5 10 15 20 25 30

Figure 15. Amplitude and phase of the complex Nusselt number, Nu(PrVa) =Ae? or complex wall
shear factor, F(Va)=A e'?.

Mean-Steady Secondary Flow

The mean-steady flows are composed of the time-averaged product of two oscillating
quantities. The first is velocity; the second may be density for mass flux streaming, temperature for
enthalpy streaming, pressure for work streaming, entropy for heat streaming, or velocity itself for
momentum streaming. In all cases, each oscillating quantity depends on the axial velocity amplitude,
as seen in table 5. Thus, all mean-steady fluxes have a quadratic dependence on axial velocity.
Details for the mean-steady secondary flow solutions for T , =0 are found in appendix F. The

results are summarized here.

Eulerian Velocity, U;(r,z)

The Eulerian mean- steady velocity results from two nonlinear flow components. These
components are the Reynolds stresses @, and the nonlinear product of the oscillating first-order

density and leading-order velocity, pug . Although the two components are not themselves
independently measured, they do constitute separate components of the mean-steady Eulerian
velocity U, (r,z),which is measured. U(x,?) is defined as the observed velocity component of the
mass flux vector j where j(x.r)= pu; hence,
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‘U(x,t) and j are expandable in ¢,
Ux,t)= Uy + U, + 0(82) (74)
i(x.t) = poug + £(pou; +pug) + 0(32) (75)

Substituting equations (74) and (75) into equation (73) and equating like orders in € results in

Uy=uy and ’U1=u1+p;;;0 (76)

where py =1 for the strong-temperature case. ’I_J_I(r,z) is composed of the axial component U; and
the radial component v,

Uy =u;+pup (77)

and

Vi =0;+p0g (78)

Figure 16 shows calculated mean-steady Eulerian velocities for a BPT with an isothermal
wall, Fo — 0. The left column shows the velocity field U;(r,z), and the right column plots ()
and V,(r) at z = 0. The z-dependencies are such that ; is linear in z, and V; is constant in z. This
can be seen by examining equations (b) and (d) in table 5. For the viscous case in which Va = 1, the
mean-steady velocity components are of order U; = 0(10"2) and V; = 0(10_3) due to the domi-

nance of diffusion throughout the gas domain. Flow in the vicinity of the centerline (» = 0) moves
toward the closed end, and flow near the wall is toward the oscillating end. There is a radial
component of flow at z = 1, because no-slip at the tube ends is not enforced in the equations. The

r-momentum equation, which contains axial diffusion of the radial velocity, is of 0(82) and so is

not included in the O(€) mean-steady problem.

As Va increases to Va = 10, the mean-steady flux increases by the same order, and the
steady flows remain in the same directions. Upon further increasing to Va = 50, flow at the center-
line decreases and flow near the wall increases. For Va < 50, the radial flow component (dashed-
line plot) is seen to be always outward toward the walls, that is, streaming flows down the center of
the tube toward the closed end and radially outward toward the tube wall, and then back to the
oscillating end along the tube wall. At Va = 60, the flow at the centerline decreases to the point
where the flow reverses itself and begins moving toward the oscillating end. At this point, a double
boundary layer develops. This is consistent with the analysis of Stuart (ref. 67). Stuart refers to the
diffusion layer near the wall as the “inner layer,” and the transition layer between the inner layer and
the centerline as the “outer layer.” His terminology is adopted here. For Va > 60, the development
of the double boundary layer requires streaming to now flow from the outer layer to either the inner
layer or to the centerline region, as shown by the negative and positive radial velocities in the plot
for Va = 100. The Va = 100 plot distinctly shows the inner and outer layers, and the centerline
region. For Va > 100 (not shown) the centerline and outer layer flows increase in magnitude, and the
inner layer flow remains relatively constant.
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The results shown in figure 16 correspond well with the results of Grotberg (ref. 3) for
mean-steady mass flux of oscillating incompressible flow in a diverging tube. In Grotberg’s
analysis, the larger end of the tube corresponds to lower amplitude oscillations, whereas for this
analysis the closed end of the tube corresponds to lower amplitude oscillations. The present results
for comparable € and Va are consistent with those of Grotberg in both direction and magnitude of
the component velocities, including the predicted double boundary layer.

Figure 17 presents the mean-steady velocity fields U,(r,z), and velocity plots i;(r) at
z2=10,0.5, and 1, respectively, for an OPT-type system (oscillating flow at both ends). Fixed
parameters are UU; =1, ¢;; =—0.25, and Fo — 0. The range of Va examined is from Va = 10 to
Va = 100. For Va = 10, the velocity enters the tube at the centerline from both ends, reverses flow
within the tube, and then exits in the diffusion layer near the wall. The plot for Va = 10 shows that
u, = 0(10'1) which is of the same order as the previous BPT case for Va= 10. For Va< 10, U;

scales with Va as with the BPT. Increasing to Va = 30, the centerline velocity at z = 0 is seen to
decrease to zero, while the velocities at z = 0.5 and z = 1 decrease further in the negative direction.
For 30 < Va <50, the centerline velocities at all three z-locations become negative, and a double
boundary layer develops at z = 0. Continued increase in Va results in decreasing the inner layer at

z =0. At Va = 50, the remnants of the inner layer at z = 0 can be seen. Further increasing Va, the
centerline velocity for z = 0 and z = 0.5 continues to decrease and the diffusion layers near the wall
increase. At Va = 60, the centerline velocities have all converged at about U; =—0.7, and the inner
layer at z = 0 has almost disappeared. Further increasing to Va = 100 shows that the velocities for
z=0, 0.5, and 1 have inverted, with the centerline velocity at z = 0 still decreasing while at z = 1 the
centerline velocity is now increasing, and the inner layer now completely disappears. For Va =100
there is very strong streaming of the order of the oscillating velocity.

The results shown in figure 17 give a sense of how the second oscillating velocity (atz = 1)
of an OPT can lead to streaming patterns that are much more complex than those of a BPT. For
small Va < 10 streaming is small and it scales with Va. For large Va = 100, streaming is very strong
and is of the order of the oscillating velocity.

The effect of phase angle on mean-steady flow is given in figure 18. The calculations are
based on Va= 100, U; =1, and Fo — 0. The plots are for 1;(r) atz =0, 0.5, and 1. For
0> ¢y >—0.25 there is only a single boundary layer at all three z-locations.2 For ¢y <-0.30 at
z = 0 (not shown) a double boundary layer begins to develop. For ¢ <—0.40 at z = 1 a double
boundary layer develops with a direction opposite to that at z = 0. At ¢y =—0.50, the flow is
mirrored across z = 0.5, and at ¢;; = —0.55 the flow is mirrored to that of ¢;; =—0.45 (not shown).

~ 2The case ¢y = 0 and U 1 =1 is incompressible flow, hence mean-steady flow is zero since u , = 0, that is, the

Reynolds stresses are zero.

49



1 z2=05-=; z=1=---

(r) atz=0

Steady Velocity Fields T (r, z)

0.8

Va=10

.1

.05

1]
N

—::J::
...:.s::
.::J:::
st
I
i ITTT)
SAAMNIYy 44
IYYNS add 44111
LRSS ITY
RUUBORIVYY 11
P PrmsawvwvrrLe
g gl PSS Y T
(1777 SRR T
rorromabbbitd

<=~V‘vvo==

(=]
[
N

\‘\\41 1"
A
o ]
N X
"\
,/M
U~
AN
« VN
o\ .
\ N
\ \
R .
\
\
o~ o —4 0
T ] My
il pwdti ol
i i
el il ol
il Pl i
—..vc\v.s‘.*ﬁ— -v~..~— ¢ 4~.~“—
y .——.4\¢-.‘¢..~ . . ....c-..«- - . ..”—cq.‘ﬁ— .
F :rvvl\:.::F ﬂ —:vv::: m. F ] —::: _r..
Y YY) ...—--‘.-— ....-w..ﬁa
TSIl a1 !
NS S5 addITT) —-.—"Qoﬁ: .o.-r\co:
LR T T .::ﬂ-::: -.:—4-:
V2 annnvea?? Y —vvvvvw-::: -—:—'::
(Y7 oeqeeews || -——.vvw-..—hﬁ— —.””’--.ﬁ~
ﬂ :vlovnou:rv:— ﬁ ‘::“::: ﬂ Wb —-n“::
> ; > ; s ;

Va=100

25
-0.25

-t
n
N

“"....::::
QU
.".:...:::
n.”.:::::
e N
T
o:-::::: °
.:—A:::: ﬁ_.
...—..‘..**ﬁ_ﬁ
....—.....«*
.......,.*-_
.........ﬁa«
....—....———

—.:-::
-.:-.-Z“”

o
[

N

0.002, U; =1, ¢y =-0.25.

Figure 17. Effect of Va on steady velocity for OPT: €

50



51

;3 2=05--; z=1~.-

=0

(r) atz

u;

Steady Velocity Fields T,(r,z)

ﬁ./. A\\ \
/./ - /./ \
Y RN
\ / .
s 7 e
.\.\ 0\.\.
< ...
| R s
| i .
. s
! ,_ / s \.\ X
| / /
| . )
¢¢o.o N **.‘ ~.v<. 000“(- no Z’s**q—— :5. “‘A-...
e L T TN ot Bttt
‘—onqqooﬂz—ﬁ@ .o.:¢o‘:~—: :—:ooonqcanq ﬂvw‘"o.'n‘zz .o‘..:,\s.—
¢‘o—<<oﬁ."”— o*ov<<o¢~ﬁ.@~ﬁ o.—wdooo¢¢4¢¢c ¢'v:o1ns**¢’ oo(aoooa"\sb
2.:.:: ! :.:.::: WL TTYYYYS T Hrpgqrettttt UTIIAAY
:.:.2:” :..::::““ ...o:.:..:. Susppymmgqdddl WLV TPRTII T L
:.:-.:: :.::::: LU TTYTYTYN R AL T RIS AL ITTTTLS
% .:.1.:: i T .:.4:.::" T [ LS D B -7 [ IS AR
1..::: ....:..::: -::.:::: (2SN YV S XYL ] LU A LETTYYY )
.:—::: .:-—:::—: o-—:‘:::: YA LTV CRTPeN )-:.::::
.:.::: ....:.: !::..:zz P g -!:7.:::
.:.:2: .:.:-:—:: ):..:Z: ‘:z:‘::: -..v:(.:::
.:.:2: ....:.::_ :...::: : ?.2?\::: .L...:.:
o |y SR Wl g ntthnyy i S t,:::.: 2 [ty W
S It S Lt S ey, == S Ittt H S |t H
I ) 1 0:: 0 o :_ 1 | o :z ] o ::
S A > 4 S h = § S N
© - o - A=

0.002, Va = 100, Uy =1.

8. Effect of ¢y on the steady velocity for OPT: €

Figure 1



The mean-steady velocity field is a complicated function of velocity phase angle. In general,
for ¢;; <—0.40 the centerline and diffusion-layer regions flow in opposite directions. For

¢y < —0.40, flow reversals between the centerline and diffusion-layer regions become more
pronounced because radial flow components become stronger. For ¢y = —0.25, streaming is

strongest, implying that at this phase angle, mean-steady flow quantities such as enthalpy flow, will
be largest. Later, the mean-steady enthalpy flow will be shown to be a maximum at ¢y =—0.25.

Particle Velocity, U,

The mean-steady particle velocity, U, is used to compute the particle path, or pathline. It is

the velocity in Lagrangian coordinates and it is different from the observed mean-steady Eulerian
velocity given by ‘U;. Appendix B provides details on the formulation of &, and appendix F

outlines its computation. For £<< 1 the components of U, are

— t t
up(r.z)=u;+ uo,,J'O VodT+ up , Jouodr (79)

and

— — ! t
vp(r,z) =V;+ ‘UO,,.IO UodT'l' UO,ZJOuOdT (80)

Equations (79) and (80) are simply the steady velocity conversions between Eulerian and
Lagrangian coordinates. Interpreted physically, the oscillating components of velocity ug push

particles across mean-steady streamlines U, , which results in an additional drift quantified by the

quadratic term U(t)‘lo dt- Vuo).

Figure 19 plots ©,(r) and TU,(r) at z = 0 for a BPT, with Va= 1, 10, and 100. The Eulerian

and Lagrangian velocities are seen to be very similar for both axial and radial velocities. The BPT is
a standing wave device, hence all local velocities generally are in-phase. The additional quadratic
terms of equations (79) and (80) each contain a time integral of velocity, which when integrated,
results in a 90° phase shift. The quadratic product thus becomes nearly zero since the product of two
phasors that are 90° out of phase is zero. (The mean- steady product of two standing wave phasors is
proportional to the cosine of their relative phase angle, according to eq. (7).)

Figure 20 shows the fields for U;(r,z) and W, (r,z) for an OPT with U =1, ¢y =-0.1,
and Va = 1, 10, and 100. Also shown are plots for ;(r) and #,(r) at z = 0, and V(r) and T,(r)
at z = 0. For Va= 1 and 10 there is a significant difference in the field plots between U, and @ -

For Va= 1, U, is seen to flow toward the middle of the tube at the centerline and then reverse flow
near the walls, with Z; = 0 near z = 0.45. The corresponding flow for U, shows a centerline flow

that is continuous from left to right, with a reverse flow near the walls. The plot shows that U,(r) is
significantly smaller than #,(r) for Va=1and 10, and the radial flows ¥;(r) and U, (r) are nearly

equal. For Va = 100, ’UI and @, are nearly the same.
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In general, for Va of about 1, the axial Eulerian and particle velocities have similar profiles;
however, the Eulerian velocities are much more restrained. As Va increases to 10, the axial velocity
profiles are no longer similar, being quite different in both direction and magnitude. For Va of 100,
the fields become nearly identical in both speed and direction. The results reflect the large influence
of the progressive wave component contained in the additional quadratic term of the particle
velocity.

Effect of Heat Transfer on Particle Velocity

Figure 21 illustrates how heat transfer between the gas and the tube wall affects the mean-
steady particle velocity for the BPT. The figure compares @ p at Fo — 0 and Fo = 100 for

Prva= 0.7, 7, and 70. For PrVa = 0.7, the axial velocity & D for isothermal wall conditions (Fo — 0)

is nearly the same as for the near adiabatic case (Fo = 100). Upon increasing to PrVa = 7, the
adiabatic condition increases the axial velocity until it is about 30% greater than for the isothermal
condition. For PrVa = 70, the adiabatic condition now reduces the axial velocity to about 50% less
than that for the isothermal condition at the centerline; they are about equal in the outer layer; and
the adiabatic case is greater by about 30% in the inner layer. For the radial velocity v, the

difference between the adiabatic and isothermal conditions increases with increasing Prva.

Figure 22 illustrates the affect of heat transfer for the OPT on particle velocity and plots the
same conditions for Fo and PrVa as for the BPT of figure 21. In general, Fo and PrVa have the same
affect on the OPT velocities as for the BPT. One exception is that for PrVa = 70 the double bound-
ary layer is not present in the OPT so that the streaming in the diffusion layer near the tube wall is in
the opposite direction compared with the inner layer of the BPT. Also for the OPT at PrVa = 70, the
streaming in the diffusion layer near the tube wall for adiabatic conditions is less than it is for
isothermal conditions, whereas for the BPT, the streaming in the inner layer is greater for the
adiabatic conditions than it is for the isothermal conditions.

The mean-steady velocity reduces pulse tube performance because it directly transports gas
from the hot end to the cold end, and vice versa, thereby destroying the temperature gradient. The
mean-steady velocity is rather a complicated function of Fo and its effect on velocities is not easily
determined by simple examination of the solutions. The benefit of figures 21 and 22 is to give a
general understanding of how PrVa and Fo influence mass streaming for the BPT and OPT.

For the BPT, the difference in viscous and thermal diffusion lengths provides the phase-
shifting mechanism between velocity and temperature to produce enthalpy flow. In this case it is
best that the PrVa be sized so that diffusion fills the entire gas domain and that the tube wall be sized
for Fo — 0 (isothermal wall condition). A good value of PrVa is about 7, as indicated in figure 21.
These conditions allow diffusion over the gas domain while at the same time reducing mean-steady
streaming (relative to the adiabatic wall condition).
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Figure 21. Heat-transfer effect on particle velocity for BPT.
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For the OPT, the velocity boundary conditions at the tube ends provide the phase-shifting
mechanism. Diffusion is not required and, in fact, diffusion will reduce enthalpy flow by reducing
the velocity and temperature amplitudes near the tube wall. Operation at large Prva and large Fo
(adiabatic wall conditions) is desirable because the diffusion layer now is confined to a thin layer
near the tube wall. From figure 22 for PrVa = 70, the mean-steady axial velocity plot shows that for
Fo = 100, the steady axial particle velocity is reduced relative to Fo — 0. The combination of large

PrVa and large Fo confines the diffusion layer to be thin while at the same time it reduces mean-
steady streaming (relative to the isothermal wall condition).

Mean-Steady Temperature, 7,

The mean-steady temperature T, is found by a double quadrature of equation (m) in table 3
with Ty, =0. In conservative form it is

R T P D —
Pr Va rr . =(u1+p1u0),z+;(v1r+PIUOr),, (81)

which shows that 7, is a result of the axial and radial work flows. That is, gradients in conductive
heat transfer are a result of gradients in work flow.

Figure 23 shows T,(r) for the BPT and OPT with Fo — 0 and Fo =100, and PrVa=0.7,7,

and 70. The mean-steady temperature is constant in z. The plots show that for PrVa = (0.7 and 7, heat
is continuously being transferred to the wall. For PrVa = 70, heat is also being transferred to the
centerline region. Physically, this would result in the centerline region heating. However, for the
present thermally strong approximation (Tg , = 0), there is an “imposed” thermal sink that

maintains T constant.

Axial Enthalpy Flow, H,

The first-order steady enthalpy flux is given by &; = Topoit; + Top g + PoT jug, Which after
rearrangement becomes

hy = To(poit; +Prug) + PoT 4o (82)
When integrated over the cross-sectional area, equation (82) is the enthalpy flow. It is important

because it quantifies cooling,

H, = [[To(pot, +ptg) +poT g |rdr (83)

O ey —

From the zero-net-mass- flow constraint (eq. (48)) and since Ty(z) is independent of 7, the first term
in equation (83) is zero. Recalling that pp =1, the enthalpy flow becomes

1
H) = [Tuordr (84)
0
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Figure 23. Comparison of T5(r) for BPT and OPT atz = 0 and z = 1 forFo — 0 and Fo = 100.

which shows that the mean-steady enthalpy flow at O(¢) is due to the time-averaged product of the
oscillating temperature and the oscillating velocity.

Using the equation of state, equation (84) can be rewritten in terms of the work flow pu,

1

H; =j(ﬁ7+ﬁ5)rdr

0

(85)
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which shows that the enthalpy has two work flow components: the product of the oscillating
pressure and oscillating velocity, and work flow due to mean-steady streaming, pgit;, where pgp= 1.

Figure 24 shows enthalpy transport for the BPT. Shown are enthalpy flux fields hy(r,z) for
Prva= 0.7, 7, and 70 and Fo — 0 and Fo = 100. Corresponding plots for hy(r) are for z = 0 and

z =0.5, with iz} =0 at z = 1. For the isothermal wall condition of Fo — 0, axial enthalpy flux
decreases fromz =0toz = 1.

For Fo = 100, there is a reversal of enthalpy flux in the vicinity of the wall. The enthalpy
reversal results from the inability of radial temperature gradients to be generated because of the
near-adiabatic wall conditions for Fo = 100, that is, sufficient heat cannot be transferred to the wall.
Operating a BPT with high Fo is undesirable because of the large enthalpy flow reversal near the
- tube wall.

Figure 25 shows the corresponding enthalpy transport for the OPT with U . =1and
¢y =—0.1. The plots of h;(r) are shown for z =0, 0.5, and 1. The OPT allows velocity oscillations
at z = 1, which enable enthalpy to flow out of the tube, whereas in the BPT enthalpy flow goes to
zero at z = 1 since the velocity goes to zero. For the case of PrVa = 0.7 and Fo — 0, enthalpy flows

in the reverse direction from z = 1 to about z = 0.6, showing that an OPT operating with isothermal
walls and small PrVa is not desirable.

In general, a BPT should be operated with the thermal diffusion length and tube radius sized
so that PrVa = 10 and the tube wall is near isothermal, Fo — 0. The Fo — 0 condition allows good
heat transfer between the gas and wall so that the phase angles between the velocity and temperature
are advantageous for enthalpy flow. The PrVa = 10 condition sizes the gas domain so that all of the
gas is efficiently transporting enthalpy. Figure 24 illustrates the enthalpy flux for these conditions.

The OPT should be operated with the thermal diffusion region confined to a thin layer near
the tube wall and the tube wall near adiabatic. These conditions correspond to large PrVa and large
Fo. For the OPT, diffusion is no longer necessary in order to supply the correct phase angle between
velocity and temperature. The phase angle is supplied by the velocity boundary conditions at the
tube ends. An example of the enthalpy flux for these conditions is shown in figure 25 for Prva=70
and Fo = 100.

In figure 26, enthalpy flow H;(z) is plotted for the BPT and OPT with U, =1 and

¢y =-0.1 for Prva=0.7,7, and 70; and for Fo — 0 and Fo = 100. For the BPT (first column),

adiabatic wall conditions (Fo = 100, dashed line) reduce enthalpy flow, particularly for large Prva.
For the OPT (second column), enthalpy flow is greater and more constant for adiabatic wall
conditions. This is very apparent for large values of PrVa.

The plots of figure 26 reiterate the previous assertion regarding heat transfer to the tube wall.
For the BPT, heat transfer between the gas and the tube wall is necessary and desirable to allow for
the proper phase angle between velocity and temperature, whereas for the OPT, heat transfer is
undesirable. For the OPT, the phase shift is supplied by the velocity boundary conditions at the tube
ends.
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Figure 24. Enthalpy transport for BPT.
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Figure 26. The effect of heat transfer on enthalpy flow, H;(z), for the BPT and OPT for Fo — 0 —;
Fo=100--

The amplitude-squared dependence of the mean-steady quantities on leading-order velocity
was previously mentioned at the beginning of this section. Although it has not been investigated
here, Storch et al. found refrigeration to depend on the square of the pressure ratio, where the pres-
sure ratio is defined as the maximum pressure divided by the minimum pressure (ref. 35). This is
consistent with the results of the present study since, for a given frequency, the oscillating pressure
depends on fluid displacement at the tube ends, which is the integrated velocity at leading order.
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In figure 27, the area-normalized enthalpy flux versus ¢, is plotted for the conditions of
e=0.1, Va=250, Pr=0.7, OL =1.0, Fo =20, and y= 5/3. The figure shows a peak in the area-
averaged enthalpy flux at ¢y = —0.25. This is reasonable considering that maximum mean-steady
velocity streaming was seen in figure 18 to be at ¢y = —0.25. Kasuya et al. (ref. 68) measured
optimum phase angles, and Radebaugh reported that for a typical OPT, ¢y = —0.1 (ref. 11). How-

ever, increasing the phase angle leads to increased velocities in the regenerator, which results in
larger regenerator losses. Thus ¢ =—0.1 would be relevant for use as a system optimum.

14
1.2
/ — i T ]
Enthalpy ! 7 .
Flux 2 / ]
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Figure 27. Area-normalized enthalpy flux versus velocity phase angle. Maximum occurs at
oy =—0.25.

Discussion

The calculated leading-order quantities for pressure, temperature, velocity, and heat transfer,
the mean-steady velocity and enthalpy flux fields, and the mean-steady temperature give an
understanding of the transport mechanisms for pulse tubes.

The BPT is essentially a standing wave device, because there are no phase-angle gradients
along the tube length. Phase shifts between velocity and temperature—required for enthalpy
flow—are obtained through differences in the viscous and thermal diffusion lengths. The ratio is
quantified in the Prandtl number. A BPT is able to operate when Pr < 1; the lower the Prandtl
number the better. A Prandtl number of Pr = 1 results in zero enthalpy flow.

The BPT should be operated with an isothermal tube wall to enable a large heat transfer
between the gas and tube wall. This requires the Fourier number to be near zero, Fo — 0. Operating
a BPT with a large value for Fo (adiabatic wall condition) would result in enthalpy flow reversals
(enthalpy flow from hot to cold ends) near the tube wall, a result of the inability of the work flow to
convert to heat flow. Calculations also show that an isothermal tube wall reduces mass streaming
relative to an adiabatic wall. Mass streaming has a negative affect on performance, because stream-
ing directly transports hot gas to the cold end, and vice versa. This tends to destroy the axial
temperature gradient. The tube radius of the BPT should also be sized to the thermal diffusion length
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so that all of the gas is efficiently transporting enthalpy. The calculations show that to accomplish
this, the Prandtl number times the Valensi number should be PrVa = 10 for the BPT.

The OPT is more of a progressive wave device and so it does not rely on diffusion to obtain
the appropriate phase angles between velocity and temperature. Phase angles are obtained through
the velocity boundary conditions. The OPT should be operated with the thermal diffusion region
confined to a thin layer near the tube wall. This condition requires PrVa and Fo to both be large. The
calculated plots of mean-steady velocity show that large Fo reduces mass streaming relative to
Fo — 0. However, large Va tends to increase mass streaming.

Operating at small PrVa and small Fo is detrimental to an OPT because heat transfer between
the gas and the tube wall (1) reduces the oscillating temperature amplitude near the tube wall, and
(2) creates unwanted phase angles between velocity and temperature. Both of these effects tend to
reduce enthalpy flow. There is a practical limitation to having both PrVa and Fo very large, for these
requirements lead to a system that must contain high pressures with a large diameter, thin-walled
tube. Also, the compressor must be large to drive a larger system with a large tube diameter.

An additional advantage of the OPT over the BPT is the ability to also have independent
control of the velocity amplitudes. The large velocity amplitude of the OPT at the hot end of pulse
tube (z = 1) allows much more enthalpy flow relative to the BPT whose velocity goes to zero. For
the BPT, because of the steep velocity gradients along the tube, enthalpy flow is continuously being
converted to heat flow along the tube at a high rate. The heat then flows back to the cold end as heat
conduction. As a consequence, only a small amount of enthalpy flow arrives near the hot heat
exchanger for rejection to the environment. For the OPT, because the velocity is finite at the hot end
of the tube, more enthalpy flow can arrive near the hot heat exchanger. Larger amounts of enthalpy
flow can then be rejected at the hot heat exchanger.

Heat transfer between the gas and the tube wall has an important effect on the pressure and
temperature phasors. When there is significant heat transfer between the gas and tube wall,
Fo = O(1), the pressure and temperature phasors move out of phase relative to each other for both
the BPT and OPT; calculations indicate this difference to be as much as 20°. This is important,
because 1-D models often assume adiabatic conditions on the gas and so there is a presumption that
the temperature is always in phase with pressure. Most pulse tubes operate at Fo = O(1), which is
closer to isothermal wall conditions.

At the tube ends, the complex Nusselt number is found to be independent of Fo, of the
velocity amplitude ratio U 1, and of the velocity phase angle ¢;;. When written in the form
Nu(Prva) = A ¢'?. A is about 4 for PrVa < 3 and is linear with PrVa for PrVa > 25. The phase
angle for Prva<0.5is ¢ — —0.5 and for Prva> 500, ¢ - -0.38. A similar relation for the
complex shear wall factor exists, using only Va as the independent parameter. The complex Nusselt

number and shear wall factor can be used for one-dimensional linear oscillating flow in a tube to
account for radial heat transfer or shear at the tube wall.

The axial velocity was found to be a complicated function of Va and ¢y. The mean -steady

velocity increases linearly with Va for Va < 10, and can be of O(1) for Va> 100. It is strongest
when ¢y =-0.25.
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In general, an OPT should be operated with large PrVa and ¢ = —0.25. This maximizes
mean-steady enthalpy flow. However, since mass streaming is of the same mechanism as the mean-
steady enthalpy flow, losses owing to mass streaming and the destruction of the axial temperature
gradient will also be maximum. Understanding the trade- off between mean-steady enthalpy flow,

mass streaming, and axial temperature gradient requires a solution to the coupled zeroth-, first-, and
second-order equations. That is left for future work.
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5. EXPERIMENTAL MEASUREMENTS OF THE
MEAN-STEADY PARTICLE VELOCITY

A flow-visualization system was constructed to permit observation of particle flow patterns
and measurement of particle velocities. In this section, the observed patterns are presented and
interpreted within the framework of the anelastic solution.

Experimental System

A schematic of the experimental flow-visualization system is illustrated in figure 28. A clear
polycarbonate tube (38.9 cm long, 2.22 cmi.d., and 2.54 cm o.d.) is filled with air at 1 atm mean
pressure. Diaphragm compressors are attached to each end of the tube and are sealed from the
ambient. The compressors are each driven by separate stepper motors capable of 25,000 steps per
revolution. The compressor/motor assemblies can be independently controlied in order to adjust the
relative phase angle between them. Three 0.00- cm stainless steel wires are strung across the tube
diameter at the indicated positions, and a light oil is applied to the wires before operation. The
surface tension of the oil is sufficient to hold a thin film on the wires. During operation, when the
compressors are producing an oscillating flow, a short pulse of electrical current (~0.1 sec duration)
is applied to a wire. This quickly heats and vaporizes the oil from the wire. There is no combustion
of the oil— only vaporization. The vaporized oil quickly cools and condenses into an oil fog or
“smoke” that stretches across the tube diameter. One can now observe the leading-order oscillating
flow and the secondary mean-steady flow of the smoke, which represent particle paths of the gas.!
A CCD video camera (30 frames/sec) is used to record the smoke flow patterns.

Figure 28 also shows the physical dimensions of the system. The volume displacement of
the two compressors is 13.5 cm3 each, and the total system volume is 155.2 cm3, resulting in
£=0.0435. The volumes of the connections between the compressors and tubes are converted into
equivalent lengths by dividing the volumes by the connector cross-sectional area (3.88 cm?). The
range of speed of the compressors is 5 to 20 Hz. Smoke-wires are positioned at z = 11.0 cm,

20.4 cm, and 32.1 cm. The tube was oriented with the gravity force acting in the positive
z-direction. During operation, the smoke is generally neutrally buoyant.

When operating, the speed and the relative phase angle between the two compressors are
fixed. The compressors are then started and allowed to come up to the final operating speed, at
which time the video camera begins recording. After about 10 sec have elapsed (to ensure quasi-
steady flow), the smoke-wire is pulsed with electrical current, and the smoke is seen to immediately
leave the wire. Initially, when the smoke comes off the wire, it rises against the gravitational-force
vector because of buoyancy, that is, the smoke is warmer (less dense) than the surrounding air. This
condition exists for about 2 sec until the smoke temperature and the surrounding air temperature
equilibrate. The video camera records the particle paths of the smoke at 30 frames/sec, and records a
time tag on each frame. After the smoke dissipates, which takes from 20 to 80 sec, the system is shut
down and reset for the next run.

! The “particles” tracked were more like “blobs,” diffuse yet distinguishable.
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Figure 28. Schematic of the smoke-wire flow-visualization experiment.

Coordinate positions of the smoke for each time were determined by digitizing each
individual video frame. Particle velocities were determined from the coordinates and incremental
times. The measured particle velocities were then compared with predicted values.

Comparison with Theory

Several runs were conducted to compare the experimentally measured mean-steady axial
particle velocities with those predicted by equation (79). Table 6 summarizes the dimensionless
quantities investigated. The BPT configuration was tested for varying Va, and the OPT configura-

tion was tested for varying Va and ¢y. There was no independent variation of U 1, because the
velocity boundary conditions defined by U 1, should have no unusual effects on # p(r, z) since

u p(r,z) is simply linear along z. There was also no variation in Fo since Fo << 1 for any of the runs
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(isothermal wall conditions). The following section presents and compares the experimental results
against calculations. The code for computing the solutions is given in appendix G, and the data are
tabulated in appendix H.

Table 6. Range of dimensionless numbers investigated

Run 1 2 3 4 5 6
Configuration BPT BPT OPT OPT OPT OPT

Evaluation Velocity Velocity Observation | Observation Velocity Velocity

£ 0.0434 0.0434 0.0434 0.0434 0.0434 0.0434

Va 34 103 137 137 68 68

M 1.66x 1073 | 5.06x1073 | 6.7x1073 | 6.7x10°3 | 3.14x1073 | 3.14x 1073

A 45x1075 | 413x10°4 | 73x107% | 73x107% | 1.62x1074 | 1.62x1074

0, 0 0 1 1 1 1

oU n/a n/a -05 - 0.94 -0.254 -0.125

Basic Pulse Tube Configuration

Axial particle velocities & p(r,z) were measured near the centerline of a BPT configured

system for Va = 34 and Va = 103. The measured velocities were in the vicinity of the centerline
region.

Run 1: BPT, Va = 34

Figure 29 shows the mean-steady particle path and particle velocity of a smoke particle. This
is shown by plotting the axial particle velocity u p(r,z) at the specified r and z positions and compar-

ing this with the calculated & p(r,z) given by equation (79). Figure 29(a) shows the calculated flow
field 6, (r,z), figure 29(b) plots & »(r) and T (r) at z = 0, and figure 29(c) compares the measured
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values of iip(r, z) with those predicted by theory. The ordinate of figure 29(c) gives the measured
and calculated values for Ep(r,z), and the corresponding r and z coordinates. The abscissa identifies
the corresponding time for each Ep(r, 7). Figure 29(c) shows that the calculated velocities are in

general agreement with the measured values in terms of speed and direction. Velocities are positive
for the particle coordinate range = 0.2 to 0.24 and z = 0.67 to 0.72. As time progresses, the particle
moves toward z = 1, as shown by the flow field in figure 29(a). Since the particle is at r = 0, there is

Fig. (a) Steady velocity fields ﬁp(r’ 7) Fig. (b} gp(r) —atz=0; 51:(') ——
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Figure 29. Particle velocity for BPT, € = 0.0435, Va = 34, UL = 0: (a) particle velocity field,
ﬁp(r,z); (b) calculated component velocities u,(r) and 5p(r) atz = 0; (c) plot of measured

particle coordinates, and measured and calculated axial particle velocity Ep(r, z) for corresponding
elapsed times.
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no radial flow component and so the particle remains at r = 0. It is unclear why the measured
velocities decrease to zero for elapsed times greater than 35 sec although it may be a result of
inaccurate particle tracking, since the smoke dissipates as time progresses.

Run 2: BPT, Va= 103

The particle flow field shown in figure 30(a) shows that for higher Va a double boundary
layer is formed. Figure 30(b) shows that the velocity in the inner layer (» = 0.8 to 1) is negative, then
reverses in the outer layer (r = 0.38 to 0.8) to positive, then again reverses itself in the centerline
region (7 = 0 to 0.38) back to negative. A positive and negative radial flow maintains mass
conservation.

The measured @, (r,z), the calculated p(7,2), and r and z coordinates at the given time

intervals are plotted in figure 30(c). The measured negative velocities are in the centerline region
and are comparable to those predicted. The larger negative velocities measured at the initial points
are a result of the buoyancy forces present after the initial pulse. As time progresses, the temperature
equilibrates between the smoke and the air, and so the velocity levels off.

The presence of the inner and outer layers of the double boundary layer predicted by theory
could not be confirmed experimentally. This is because the smoke did not distribute itself in either
of these two layers after pulsing. The simplicity of these experiments did not allow for observation
of velocities throughout the entire field. Future work—perhaps with laser Doppler or anemometer
velocity measuring instruments—will allow for further validation.

Orifice Pulse Tube Configuration
Orifice pulse tube observations

Mean-steady secondary flow observations for an OPT configuration are described for
Va=137, U; =1.0 with ¢y=—0.5 and ¢y = — 0.94. The observed smoke flow is in qualitative
agreement with the predicted particle velocity fields.

Run 3: smoke flow observations for ¢y =-0.5

Figure 31 shows the observed steady flow for Va = 137, U; =1,and gy=-0.25.
Figures 31(a) and 31(b) predict large negative radial velocities at r = 0.4 and large axial velocities in
both the negative and positive directions symmetric about z = 0.5. This is verified from the smoke
observation data shown in figure 31(c) where the two smoke lines are seen to “stretch” in the axial
direction and “compress” together in the negative radial direction. This is predicted by the particle
velocity field of figure 31(a), and is an indication of the presence of the outer layer and centerline
flow regions. Unfortunately, smoke did not distribute near the tube wall, so the presence of the inner
layer could not be directly confirmed.
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Figure 30. Particle velocity for BPT, € = 0.0435, Va = 103, UL = 0: (a) particle velocity field,
u,(r,2); (b) calculated component velocities ,(r) and D,(r) atz = 0; (c) plot of measured
particle coordinates, and measured and calculated axial particle velocity ﬁp(r, z) for corresponding

elapsed times.
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Figure 31. Particle velocity for OPT, € = 0.0434, Va = 137, U 1 =1, ¢y =-0.5: (a) particle velocity
field, Wy(r,z); (b) calculated component velocities up(r) atz=0andz = 1 and Up(r); (c) observed

smoke flow at indicated times. The observed flow is seen to stretch axially and compress radially as
predicted by the flow field of (a).

Though the smoke-wire is positioned at z = 0.5, the observed smoke flow shows that at

t=53:15:01, the smoke is skewed at a location z < 0.5. This is because of the buoyancy effect
immediately after the smoke is pulsed. Also, we would expect the flow to be symmetric about
z = 0.5, hence, we would not expect the smoke to cross the z = 0.5 plane. However, at 7> 53:21:01,
smoke can be seen at locations z > 0.5, possibly because the smoke was of a slightly higher density
than the air, or because of the instability of a purely zero velocity plane at z = 0.5. This second
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possibility would allow smoke to cross at z = 0.5, allowing the smoke to get caught in the positive
direction centerline flow fields for z > 0.5.

The smoke observations are seen to “curve” at the ends of the tube. This is because the
connections from the compressors to the visualization tube are at right angles. The curved flow is

generally restricted to z < 0.3 and z > 0.7. Flow measurements are taken within the range of
0.3<z<0.7.

Run 4: smoke flow observations for ¢y =—0.94

Figure 32 shows the observed steady flow for Va = 137, U 1 =1,and gy=-0.94.
Figures 32(a) and 32(b) show strong positive velocities in the centerline region and negative
velocities in the viscous layer near the tube wall. Radial velocities are very small. Figure 32(c)
shows that the observed smoke flow qualitatively confirms the model. The observed flows are in
the centerline region and are seen to quickly flow in the positive direction with little radial displace-
ment, except near the positive end (z = 1) where the curved flow due to end effects begins to
compress the pathlines.

Orifice pulse tube measurements

Mean-steady particle velocity measurements were taken near the centerline and within the
viscous layer near the tube wall for an OPT configuration for Va = 68, Uy =1 with ¢y =-0.254,
and ¢ =—0.125. Particles were observed flowing with the directional sense and speed as predicted

by equation (79). Circulating flow from the centerline region to the viscous layer near the tube wall
was observed; it also was in general agreement with predictions.

Run 5: particle velocity measurements for ¢y = —0.254
Centerline and viscous layer flow near tube wall

Figure 33(a) shows the measured and predicted velocities for flow in the centerline region.
Calculations correspond well with measured values. The measured velocities at times greater than
18 time-increments (1.8 sec) are due to the curved flow end-effects as described in the observation
section. The inlets to the tubes from the compressors are at right angles to the tube, and so the
flow is curved at the tube ends. This results in a significant particle position change in r as z
approaches 0.3. '

Figure 33(b) shows the five-point moving average of axial particle velocity in the viscous
layer near the tube wall. Although there is scatter in the data, the results are still in general
agreement with prediction.
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Figure 32. Particle velocity for OPT, € = 0.0435, Va = 137, U 1 =1, 0y =-0.94: (a) particle
velocity field, ﬁp(r,z); (b) calculated component velocities u,(r) atz=0andz =1 and ,(r);

(c) observed smoke flow at indicated times. The observed flow is seen to stretch axially in the
positive direction with little radial displacement, as predicted by the flow field of (a).
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Circulating flow between centerline region and viscous layer near tube wall

Figure 34 shows the flow for an OPT configuration with Va= 68, U 1 =1,and ¢y=-0.254.
The flow field of figure 34(a) shows negative flow in the centerline region and positive flow near the
wall. Figure 34(b) predicts a radial component of flow that is significant betweenr 0.5andr 0.8.

The radial velocity allows for flow reversal where fluid particles can move from the negative axial
flow region to the positive axial flow region.
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Figure 34. Particle velocity for OPT, € = 0.0435, Va = 68, U 1 =1, 0y =—0.254: (a) particle
velocity field, W,(r,z); (b) calculated component velocities ip(r)atz=0andz=1and Tp(r);

(c) plot of measured particle coordinates, and measured and cal_culated axial particle velocity
iy (r,z) for corresponding elapsed times. )
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Figure 34(c) plots the measured and calculated velocities of equation (79). The data confirm
flow reversal between the negative-flow centerline region and the positive-flow viscous layer near
the tube wall. Particles, initially at 7 = 0.42 and z = 0.45 have negative velocities. As time progres-
ses, the positive radial component of flow moves the particles outward toward the viscous layer
which has positive velocities. The particles enter the viscous layer region and so reverse from
negative to positive flow. Equation (79) predicts reasonably well both the magnitude and direction
of the particle velocities, and the location at which the particles flow from the negative to the
positive velocity regions.

Run 6: particle velocity measurements for ¢y = ~0.125

Figure 35(a) shows the mean-steady particle velocity field and figure 35(b) shows a plot of
the axial and radial particle velocities for an OPT with Va = 68, U; =1, and ¢y =—0.125. The flow
field is negative in the centerline region and positive in the viscous layer near the tube wall, with
radial flow significant between r = 0.5 and » = 0.8. This is similar to the previous case in which
¢y = —0.254. However, the magnitude of the flows is about 30% less than for ¢yy=-0.254. The plots
of figure 35 are the predicted fields for the data presented in figures 36 and 37.
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up(r)atz =1 -3 5,(r)

13}
]
ey

W
"
LT
"W
Y
HHY
THe
Wi
e
W
Wi
"W
W
Wi

i
(3]
[}
AN

[T '
"“"iiO
"..1
"0.‘
"h!
“h\
"h\
"h.

it

"fl‘
'f’o,
"’0.
'fio,
e,
Ty

H
]
o

Figure 35. Particle velocity for OPT, € = 0.0435, Va = 68, U =1, oy =— 0.125: (a) particle
velocity field, u,(r,z); (b) calculated component velocities y(r) atz=0andz =1 and Tp(r)

Flow near centerline

Figure 36 shows the measured and predicted velocities for the centerline region. The data for
elapsed times greater than 15 time-increments are again due to the flow end-effects as described
previously. The measured results are in general agreement with prediction.
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Figure 36. Plots of measured and calculated axial particle velocity U, p(r, 2) at the indicated r and z

coordinates and given elapsed times for OPT in the centerline region, € = 0.0435, Va = 68, U =1,
oy =-0.125.

Circulating flow between centerline region and viscous layer near tube wall

Figure 37 shows the measured axial velocity and position corresponding to the calculated
results of figure 35. Figure 37(a) shows a plot of the results for one-half of the radial domain and
figure 37(b) is a plot of the results for the other half.2 Figure 37 shows flow reversal between the
centerline region and the viscous layer near the tube wall. The calculated velocity using equa-
tion (79) shows good prediction of axial particle speed and direction. There is also good prediction
in the transition region where flow goes from being negative to being positive. The transition from
negative to positive flow is not as steep as that for the case of ¢yy= — 0.254, figure 34(c). This is due
to the much smaller radial velocity in the flow-reversal region between r = 0.5 to r = 0.6 of
figure 37.

2The smoke comes off the wire nearly axisymmetric within a single plane perpendicular to the camera view.
Subsequently, two “smoke blobs” can be tracked, one on either side of the centerline.
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Discussion

The measured and observed axial velocities of smoke particles were well predicted by the
particle velocities given by equation (79). These results provide confidence that the present theory is
valid and useful.

The measured direction and magnitude of the axial centerline velocities were predicted for a
BPT configuration in which the only variable parameter is Va. For Va = 34, the axial velocities in
the centerline region were positive. For Va = 103, the axial centerline velocities were negative,
which is in agreement with prediction. For Va = 103, a double boundary layer is predicted. Unfor-
tunately, this could not be confirmed with the present system. Future work using more precise
methods of measuring velocities over the entire flow field should be conducted to further validate
the theory.

OPT operation adds U ; and ¢y to Va as variable parameters. For the OPT experiments, U I
was set to 1, and Va and ¢y were allowed to vary. OPT observations of the secondary streaming for

Va= 137 and ¢y = —0.5 were in good qualitative agreement with predictions. The smoke was
observed to stretch axially owing to opposite flow between the outer layer and centerline regions.
The smoke also was seen to compress radially because of a radial flow component between the outer
layer and centerline region. This stretching and compressing was predicted by theory. Observations
for a change in velocity phase angle, ¢r=—0.94 while retaining Va= 137 showed strong positive
streaming in the centerline region with little radial flow; this was also predicted.

Measurements of the axial velocity were taken for an OPT configuration, and compared with
theory. Once again, the predictions were in good agreement with measurements. For Va = 68 and
¢y = —0.254, smoke that began in the centerline region was observed to flow in the negative axial
direction and positive radial direction. Upon entering the viscous layer near the tube wall, the smoke
reversed itself and flowed in the positive axial direction. The speed and direction of this axial flow
were well predicted. Also predicted were the coordinates at which the flow reversal occurred. At the
point of flow reversal, a strong radial velocity was predicted and verified.

A change in the phase angle ¢y = —0.125 showed the same type of flow reversal as for

¢y = —0.254. In this case a weaker radial velocity at the point of flow reversal was observed, and the
axial speed and direction were again well predicted by equation (79).

In general, the measured secondary mean-steady particle velocities obtained from the flow-
visualization experiments indicate that the present linear theory 1s applicable, and can be cautiously
extended to £€Va 1. Though this is beyond the £Va << 1 constraint for linearization of the momen-
tum equation, a case can be made—from the present flow-visualization experiments—that the theory
is useful for engineering calculations in the region e¢Va = O(1), and that the theory can be used to
help understand the transport mechanisms, particularly mass streaming and enthalpy flows, in
pulse tubes.
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6. CONCLUDING REMARKS AND FUTURE WORK

The present study formulates a set of two-dimensional, axisymmetric differential equations
for describing mean-steady secondary flows generated by periodic compression and expansion of an
ideal gas in a pulse tube. An anelastic approximation of the fluid equations—mass and energy
conservation, and the equation of motion—is used to construct a consistent set of linear differential
equations amenable to a series-expansion solution in the small parameter €, where € is the inverse
Strouhal number and is the ratio of gas displacement length to tube length. The anelastic approach
applies when shock and acoustic energies are small compared with the energy needed to compress
and expand the gas. Other parameters resulting from the formulation are the Valensi number, Va,

. relating system transverse length to viscous diffusion length; the Prandtl number, Pr; the Mach
number, M; the velocity amplitude ratio at the tube ends; and the velocity phase angle at the tube
ends. Additionally, heat transfer to a tube wall that has thin but finite thickness is considered, thus
introducing the tube wall Fourier number, Fo.

The elasticity parameter A relates € and M and is used to order the pressure gradient in the

momentum equation. It is the product of Mach number and the ratio of the oscillation frequency to
the system acoustic resonance frequency, and is useful for identifying the distinguished limit

between € and M. A linear acoustic set of equations results when A = O(1) and € << 1. This

corresponds to a distinguished limit of M = €%, An anelastic set of equations results when

A < £ << 1. This corresponds to a distinguished limit of M < €. For pulse tubes, 4 << € << 1, which
is the limit used in this study. Additionally, a linear approximation of the momentum equation is
taken. This requires the added constraint eVa <<1.

The derived set of leading-order relations requires simultaneous solution of the zeroth-,
first-, and second-order set of equations. The zeroth-order temperature—which is the equilibrium
bulk temperature—is coupled to the zeroth-order equation of state, the first-order oscillating
advection of enthalpy, and the second-order mean-steady conversion of work flow to heat flow. The
full problem is nonlinear and requires solving 15 equations in 15 unknowns—an ambitious task left
for future work.

In determining the lower-order mechanisms for the mean-steady transport of momentum and
enthalpy, a solution to the equations is obtained for the strong temperature case T, = 0. This

effectively decouples the three separate orders of equations, leaving for the basic state problem the
first-order oscillating equations, which are completely self-contained.

The oscillating solution is used to compute oscillating heat transfer and shear at the tube
wall. It is found that the complex Nusselt number, relating the ratio of conduction heat flux at the
wall to bulk temperature difference between the gas and tube wall, is independent of the Fourier
number and of the velocity boundary conditions at the tube ends. This also applies to the wall shear
factor, which is similarly defined as the ratio of momentum flux to bulk velocity difference. The
complex Nusselt number and shear wall factor are simply scaled by the Prandtl number. The
usefulness of these two relations is to correct for transverse heat transfer and wall shear when used
with a 1-D model.

83



The leading-order oscillating solution is taken to the next higher order to arrive at the mean-
steady solutions for the Eulerian and Lagrangian velocity fields, the enthalpy flow field, and the
mean-steady radial temperature profile. These are each examined as functions of Va, Uy, ¢y,
and Fo.

Plots of the velocity fields for the basic pulse tube (BPT) and orifice pulse tube (OPT)
configurations show complicated flow patterns. The flows are highly dependent on Va and ¢y
Examination of the higher-order mean-steady velocity equation shows that the Reynolds stress and
the quadratic product of oscillating density and oscillating velocity produce the steady secondary
streaming. The streaming depends on gradients of the velocity amplitude and phase angle. In
general, the leading-order solutions for all properties (temperature, pressure, velocity) depend on the
velocity amplitude; hence, for any mean-steady quantity the magnitude will depend on the square of
the velocity amplitude.

Plots of the enthalpy flux field show the effect of heat transfer with the tube wall. For a near

isothermal wall (Fo — 0), gradients in the enthalpy flux result in mean-steady heat transfer to the
tube wall. This can be seen in the mean-steady enthalpy equation where the work flux is balanced
by heat flux. Under these isothermal wall conditions, the thermal and viscous diffusion layers are of
the same form, both pinned at the wall, and scaled only by the Prandtl number, which for most cases
is of O(1) but not equal to 1. This allows a unidirectional flow of enthalpy for the BPT, because the
difference in viscous and thermal diffusion lengths enables a favorable phase angle between velocity
and temperature. Alternatively, for a BPT with Pr =1, the phase angle between velocity and
temperature is 90°, hence enthalpy flow is locally zero everywhere.

The OPT overcomes the necessity of heat transfer by obtaining appropriate phase angles
through the axial velocity boundary conditions. This allows favorable phase angles to be present
throughout the entire transverse domain, whereas for the BPT, phase angles are favorable only in the
diffusion layer. Also, the inclusion of a finite velocity at the hot end of the tube allows a finite
enthalpy flow at this end, whereas for the BPT the enthalpy flow goes to zero. The velocity
boundary conditions also allow a more constant enthalpy flux throughout the axial domain (when
compared with the BPT). Hence, there is less conversion of work flow into heat flow along the tube
length, and so more of the work flow is available for enthalpy flow to the hot heat exchanger for
rejection. (For the BPT, the steep decrease in work flow results in a large heat flow that is conducted
back to the cold end.)

The experimental smoke-wire flow-visualization experiments confirmed the predictions of
the present theory. The system was configured for BPT and OPT operation, with Va varied for both,
and ¢y varied with U; =1 for the OPT. The experiments were conducted in the range
1.5 < £Va < 6, which is not strictly within the constraint €Va << 1 required for linearization of the
momentum equation. However, for all cases examined, the calculated particle velocities
satisfactorily described the observed and measured experimental particle velocities, including flow
reversals between the centerline regions and diffusion layers, and the locations at which flow
reversal occurred.

The major points of this study can be summarized as follows.

1. Basic pulse tubes should be operated at Fo — 0 and PrVa = 10. The first condition represents an
isothermal tube wall, thereby allowing good heat transfer between the gas and the tube wall, and
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the second condition ensures that most of the gas is efficiently used to transport enthalpy.

Calculations also show that an isothermal wall reduces mass streaming relative to an adiabatic
wall for a BPT.

Orifice pulse tubes should be operated for large Fo and large PrVa. The first condition represents
an adiabatic tube, thereby reducing heat transfer between the gas and the tube wall, and the
second confines the diffusion layer to a thin layer near the wall. Calculations also show that an
adiabatic wall reduces mass streaming relative to an isothermal wall at large PrVa. However,
large Va tends to increase mass streaming. Maximum enthalpy flow for orifice pulse tubes was
shown to be at a phase angle of ¢;; = —0.25.

The mean-steady velocity increases linearly with Va for Va < 10 and can be of O(1) for
Va>100. It 1s strongest when ¢ = ~0.25.

"The complex Nusselt number can be used for one-dimensional linear oscillating flow in a tube to

correct for radial heat transfer. It is of the form Nu(PrVa)= A ¢ and is independent of Fo,

velocity amplitude ratio U 1.» and velocity phase angle ¢, at the tube ends. A is about 4 for
PrVa < 3 and is linear with PrVa for PrVa > 25. The phase angle, for Prva<0.51s ¢ — -0.5,
and for PrVa> 500 is ¢ — —0.38. A similar relation for the complex shear wall factor exists
using Va as the independent parameter.

Heat transfer between the gas and the tube wall can shift the phase between the pressure and
temperature phasors. This is important because 1-D models often assume adiabatic conditions on
the gas and so there is a presumption that temperature is always in phase with pressure. Most
pulse tubes operate at Fo = O(1), which is closer to isothermal wall conditions. Calculations
indicate the phase shift between pressure and temperature to be as much as 20°.

The calculated particle velocities using the linear anelastic approach were supported by the
measured velocities from the flow-visualization experiment for 1.5 < €Va < 6, even though this
is not strictly within the linear constraint eVa << 1.

Though this first attempt to verify the theory has proved relatively successful, there is

considerable room for further validation and improvement. Possible areas for future study include
the following.

1.

A numerical solution to the full coupled set of equations. This would yield the leading-order
equilibrium temperature Ty, and allow a better understanding of how mass streaming affects the
Ty temperature gradient, the trade- offs between enthalpy flow and heat flow, and the ability to
optimize pulse tube operation by calculating entropy generation due to temperature gradients.

Extending the theory to individual components, such as regenerators, heat exchangers, and
inertance tubes; and adding lumped-parameter boundary conditions to model an orifice and
reservoir. Once accomplished, a modular approach for constructing a pulse tube engineering
model from component level modules would be available.

A solution of the equations with different boundary conditions would yield some interesting
insights. For example, a solution for the case of a slowly varying tube diameter could be used to
reduce streaming losses, since streaming is a function of velocity gradients. Another example
would be to relax the no-penetration condition at the tube wall and probe how this might affect
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enthalpy and mass streaming; and whether such results could be used to design a “continuous -
stage” pulse tube. Finally, the isothermal temperature conditions at the tube ends can be re-cast
as an oscillating temperature boundary condition to determine how the temperature phasor
would be affected. This boundary condition would reflect heat exchanger ineffectiveness.

The use of laser-Doppler velocimeters or hot-wire anemometer velocimeters to measure local
velocities over the entire domain. This would substantially validate the accuracy of the linearized
approach and the limits at which it breaks down.

The theory can be extended to other types of oscillating systems in which one is interested in the
mean-steady streaming generated by oscillating flows. For example, an expansion of the
conservation equations for individual species of multi-component mixtures can be performed to
determine species streaming. Its usefulness would be in understanding species separation.

The formulation of the present set of anelastic equations, and the relative success of the

strong-temperature solution in predicting mean-steady particle streaming provide a measure of
confidence that the present theory can be used to design pulse tubes and to predict their
performance.
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APPENDIX A
SCALING

The governing fluid equations that describe the flow dynamics of the tube are scaled. A
sketch of the system is shown in figure 38. Two problem domains are taken: the gas domain extends
from r'=0to r' =r,, and 2" =0to z = L (starred variables are dimensional quantities); and the
tube-wall domain extends from y" =0 to y" =I" and from z =0 to z" = L', where /" is the tube-
wall thickness. Adiabatic conditions exist for the outer wall surface, and continuity of temperature
and heat flux must exist between the gas and the tube-wall interface. The velocity boundary condi-
tions are of small amplitude and periodic so that time can be represented using complex notation: at

. ~ i .. ~ {01+
Z7=0,u=Upe'® ;and at 2 =L,u=ULel( )
and [ is the frequency, #* is the time, ¢y is the velocity phase angle between the tube ends, and U,
and Ui are the velocity amplitudes at each end. The energy boundary conditions at the outer tube
wall are adiabatic, with the temperature at 7' =0 and z" = L takenas 7" =T, and T" =T},
respectively. We will refer to the z-direction as the axial direction, and the -direction as the
transverse direction, and use ¥, = dy/dn as the notation for partial derivatives.

where @' =27 f" is the angular frequency

ADIABATIC AT WALL
OUTER SURFACE

* %
y=1 / TUBE WALL
¥=0 - _~~ DOMAIN
T TIT I LI I IS TTTRIII IS LSS TS T TLI TS ITLS
* *> GAS
ri=n, " DOMANN
- - -
atr*=0, =0 =L at r*=0,
(?O*Ciw*t* TC* Th* i}L*Ci(w*t*"'(pU)

Figure 38. Two-dimensional axisymmetric system for r,,[L <<1.

The fluid equations of Bird et al. (ref. 64) are reduced for our system using the following
simplifying assumptions: (1) two-dimensional, axisymmetric cylindrical geometry; (2) ideal
gas; (3) constant transport properties; (4) Stokes assumption for the second viscosity; and
(5) r:2 /L' <<1 (implying that dp"/dr’= 0 so that the r-momentum equation can be decoupled
from the rest of the problem and axial viscous transport is negligible). The reduced fluid equations
for mass conservation, equation of motion, energy conservation, and equation of state become,
respectively,

N GO O
P +——:,-L+(p u )’z. =0 (A1)
p'[u“tt + v'u"r: +u*u;']= —P:Z' +l: (r‘“f,*)‘r. (A2)
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= * - L » * * - = - * K‘ * * * L] * i2
p cp[TJ. +V T +u T’Z.]- (P} +u p’z.)+7(r T ),r, T+ (AY)
p‘:p‘R‘T' (A4)
The energy conservation equation for the tube-wall domain for / <<y, is

*

P Cos 6 = k;,(B’).:y. + 9:2.2.) (AS)

where 6 is the temperature of the tube wall. The mean-steady (time-averaged) enthalpy flow is of
primary interest since it represents refrigeration,

r.
H =2n0 § j pu'CyT rdr’ |dr’ (A6)
Yo'\ 0
where the overbar represents time-averaged over a cycle. The kinematic velocity components in the
z* and r" direction are »" and v°; the thermodynamic gas variables p-, p*, and T" are pressure,
density, and temperature; the density of the tube wall material is p;,; gas properties, u°, k*, and C,,

are the dynamic viscosity, thermal conductivity, and heat capacity; and the tube-wall properties, k.,
and C;,W, are the thermal conductivity and heat capacity of the tube wall.

The above dimensional equations are scaled (normalized) resulting in dimensionless
variables ranging from 0 to O(1) (order 1). The variables are scaled as follows: r” is scaled with r,,,

z* is scaled with L*, y* is scaled with the tube-wall thickness [ *, and " is scaled with the angular
frequency @"; « is scaled with the axial boundary condition velocity Ub; Vp is scaled with

(Tprs,/L);and p*, p*, and T, are scaled with mean pressure py and reference density and

temperature pj and Tj. The transport properties u°, k*, Cp, ky, and Cp,,, and the tube-wall density

p,, are taken as constant and so they are in themselves the scaling factors. These scaling parameters
are substituted into the dimensional equations (A1)~(A6) and rearranged to give the corresponding
dimensionless form (unstarred variables are dimensionless) for mass conservation, equation of
motion, energy conservation, equation of state, tube-wall energy conservation, and mean-steady

enthalpy flow,
pur
oy +£|:( s +(pu) il:O (A7)
r .2

1 1 (”‘,r)

p[u’,+8(vu.,+uu,z)]=——i—p’z+v—a r 4 (A8)
rT -2 2

M ’r)~’ + 28T +(y—1)-M—u}’, (A9)

p[T,, + e(vT’r +ul . )] = l;—l(p', + sup’z) + rVa . 21z
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The mean-steady enthalpy flow of the gas, equation (A12), is scaled by the leading-order
oscillating enthalpy flow, Hy = nr;vzp(‘)C;,UéT;. The above set of equations identifies six dimen-

sionless scaling groups, five of which are independent. Two additional dimensionless groups, ¢/

I'?
9’, = Fo G,yy + FG,ZZ

1
H=of| $puTd:|dr
0|lVYow

(Al1)

(Al2)

and U 1., enter through the boundary conditions. The dimensionless groups are listed in table 7 along

with their physical interpretations. The relative magnitudes of the groups provide an understanding

of the importance of the various effects (friction, heat transfer, compressibility, etc.).

Table 7. Dimensionless scaling groups.

Name Definition Length scales Time scales
Inverse Strouhal T* ¥ 1% = % /7* | Displacement length to Period of oscillation to
€ | number UO/ (a) L )“do /L tube length residence time
Mach number times
i T i i io oscillation t
A Acoustic }’M2 U, Lo Mach number times ratio | ratio 0scl 1? 10n to
resonance —= - . of sound wavelength to resonance frequency
parameter £ a system length
Viscous diffusion time
Va | Valensi number r:v2 o / v Transverse system length | to oscillation time
to viscous diffusion length
~ Thermal diffusion to
Pr | Prandtl number vija Viscous to thermal viscous diffusion times
diffusion lengths
2 | Mach number U 2 RT: Ratio of velocity Period of oscillation to
M squared / 7' amplitude at z = 0 to speed | acoustic time
of sound
Fo | Fourier number o /(1'20)') Thermal diffusion to tube | Oscillation time to
w wall thickness ‘ thermal diffusion time
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The numbers also represent time ratios. If the residence-time scale is L' / Uy (time in which
a particle of velocity U, travels the length of the tube L) then ¢ is the ratio of the velocity time-

scale to the residence time-scale. Va is the ratio of viscous diffusion time-scale to velocity time-
scale, Pr is the ratio of thermal-to-viscous diffusion time-scales, and M is the ratio of acoustic
time-to-residence-time scales.
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APPENDIX B
PARTICLE VELOCITY

For a two-dimensional system, the two directional components of the mass flux vector pu
can be combined into a single scalar function—the stream function y—which exactly satisfies the
differential equation for mass conservation. For the case of axisymmetric cylindrical geometry, the
stream function is defined as — y/, = pur, and +y , = pvr where r and z are the radial and axial

directions and v and u are the corresponding directional velocities.

The stream function represents lines of mass flow. For truly steady -state flow, the loci
of points where the derivative of the stream function is zero (dy = 0) represents lines of
constant mass flow (dy = pudA = dm = 0) or streamlines. A parametric plot for the condition
dy = purdr = pvrdz = 0 over the domain gives the streamlines, with the difference between any
two streamlines being numerically equal to the difference in mass flow between those two lines.

Streamlines in the Eulerian reference frame for steady-state flow also represent particle
paths. However, for the oscillating flow investigated in the experiments, Eulerian mean -steady
streamlines are not equivalent to mean-steady particle paths. The mean-steady particle paths are
best represented 1n the Lagrangian reference frame because—as in the experiments—it is the visual
tracking of a distinguishable particle over time. Here we derive the equations for the particle path.

The exercise here is to determine the particle velocity field u,(x,), given the Eulerian

velocity field ’U(x,.t). Consider a particle at position x and time ¢ that initially was at position xy at
time ¢ = 0. Its velocity is

4
u,(x,5x0)=u, x0+jup(x,r)d1,z (B1)
0

It 1s understood that for any given position and time, the velocity of a particle is equal to the
Eulerian velocity,

u,(x,0) ="U(x,1) (B2)
hence equation (B1) is
t
u,(x,5:%9)="U x0+jup(x,1:) dT,t (B3)
0

For small particle displacements (small time increments) of O(¢), equation (B3) can be expanded in
a Taylor series, about xy,

'
up(x,t;xo)z’ll(xo,t)+e Jup(x,r)dr-Vup(x,t) + - (B4)
0

X0
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Now ‘U and u, are both expandable in ¢,
U(x.1) = Uy +&U; +0[ ) (BS)
u,(x,1)= 0+ eu,; + O[] (B6)
Substituting equations (B5) and (B6) into equation (B4), and equating like orders 1n &,

llpo(x,t;XO)‘—'KU()(Xo,I) (B7)

u,(x.1:%0) = Uy(xp,1) +

O ey

u,0(xg.1) dt-Vu,o(x.1) (B8)

Recalling the relation of equation (B2), equation (B8) becomes

t

u,(x,6%0)= Uy(xp.2)+ J%(X(),l) dt-VUy(xg,1) (B9)
0

The mean-steady observed velocities of equations (B7) and (B9) can be rewritten in terms of the
mean-steady velocity produced by the Reynolds stresses. The applicable relations are Uy = up and

U;j=u;+ P0 ang they are given by equation (76). Using these relations, equations (B7) and (B9)

Po
become
Upo(X,I;X0)=l10(X0,I) (BIO)
and
u t
UPI(X,I',Xo):(U['}'—p—I—Q) + JUO dT'VUO (Bll)
pO xo 0 xo
Equations (B10) and (B11) are now time-averaged over a cycle to arrive at the particle velocity,
W,0(XiXg) = fu ppdr =0 (B12)
and
—-—u I
ﬁPI(X',Xo):(ﬁ]'FM] + qu dT‘VUO (B13)
Po Jx, \o .

where the overbars represent time-averaged quantities. The quantity U, is the mean-steady particle
P9

Po
quadratic product of the mean-steady velocity produced by the Reynolds stresses as the particle

transverses across the O(¢) streamlines defined by U,;.

velocity. It is composed of the observed mean-steady field velocity U; =u; + and the
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APPENDIX C
ANELASTIC APPROXIMATION

The definition of anelastic flow is somewhat vague and unsettled, possibly because it is so
seldom used. In general though, it can be thought of as the “filtering of sound” from the fluid
equations (ref. 2); its effect is “to remove acoustic phenomena from theoretical considerations”

(ref. 1). Mathematically, it is an approximation of the fluid equations where pressure gradients are
ignored in the mass conservation equation, but are retained in the momentum equation. This allows
decoupling of the pressure gradient between the two equations and results in density variations
owing to bulk pressure changes in time only, ignoring density variations caused by pressure changes
In space.

To further illuminate the meaning of anelastic flow, consider once again the problem in
which an ideal gas is enclosed in a cylindrical tube. Now take the scaled equation of motion in
which there are no body forces given by the conservative form of equation (10):

1 1
+€V- =-—Vp-—V.1 Cl
(pu), (puu) VP (ChH
yMz . : .
where A = . Consider! a series expansion for small values of g,
£

u=u0+£u1+0(82) 'p=p0+£p1+0(£2) (C2)
v=v0+svl+0(£2) p=p0+£p1+0(£2)

T=Ty+¢eT;+0(e’)

Substitute equations (C2) into the equation of motion and collect leading-order terms. For a typical
pulse tube, the leading-order pressure term is Vpy = O(4) = 0(10‘7), a very small number, hence

Vpp =0 (C3)

Although the leading-order pressure is not spatially dependent, it can still be temporally dependent,
Po = Po(t). Now, take the scaled mass conservation equation of equation (9)
_1Dp

0 —+&V-u (C4)
p Dt

1 Equation (C1) can be rearranged into a more familiar form by multiplying through by Va,

£Va
Va(pu)  +&eVaV:(puu)=— Ve

Vp — V- 1 where the quantity £Va is the dynamic Reynolds number, Re,

2

multiplied by the length ratio Ilf—, so £Va= [_/0_ rwc.o = UOT“' ﬁ‘— = Rer%'. This arrangement gives the momentum
L Lw v v L
equation in the form Va(pu) + Rei" -(pun) = - Re in -V.1.
S yM? L

93



D . . .
where F)f = ¥, + &u-Vy. The equation of state for a single-phase, single-component system allows

the density to be written in terms of pressure and temperature,
D
1Dp__zDT Dp

p Dt BDt Dt

(C5)
where B =—(1/p)(dp/ 8T)p is the thermal expansion coefficient and x = p(dp/dp); is the bulk
modulus. The equation of state is substituted into the mass conservation relation, equation (C4),
giving

eV-u=-P(T,+eu-VT)+ x(p, +&u-Vp) (C6)
Substituting the series expansion into equation (C6) and expanding to O(1) with S and k constant
gives

0=-BTy, + Kpo, (CN

which states that leading-order temperature and pressure are not, in general, time-dependent. This

implies that the density is not time-dependent, but it can still be spatially dependent. Equating O(€)
terms of equation (C6) gives

V'UO =_ﬁ(T1,t +UO'VTO)+ K(P],t +u0-Vp0) (C8)
or, since Vpy =0 from equation (C3),
V-ug=—B(T1; +ug-VTg)+ xpy, (C9)

Equation (C9) shows how the problem becomes anelastic in the limit for Vpy <<<1 where
pressure gradients do not significantly contribute to the divergence of the velocity. The divergence
of the velocity is primarily a result of bulk-pressure and bulk-temperature changes, and advection
through temperature gradients. However, pg may still have significant temperature dependence,
which will be reflected in the energy equation.

94



APPENDIX D
TWO-DIMENSIONAL ANELASTIC EXPANSION AND ORDERING

Expansion Series

Consider the conservation equations for mass, momentum, and energy conservation, and the
equation of state for an ideal gas:

0=p,+&V-(pu) (D1)
A(pu) , + €AV -(puu) = —Vp—VLV-t (D2)
’ a
-1 1 M?
(pT),t + &V (pUT) = T(p’t + &u- Vp) "I)—r—v—av -q +('}/+ I)W’E:VU (D3)
p=pT (D4)
where
A<el (DS)

Also take Va= 0(1), Pr = O(1). Assume an expansion of the variables for pressure, temperature,
density, and velocity in terms of the unknown functions f(£,4), g(€,4), h(g,A), and j(£,A),

p=po+fi(&)p;+ fr(e)py +--- (D6a)
T=T)+g,(e )T+ g2(e )Ty +- - . (D6b)
p=po+hi€)p;+h(eA)py+-- (Déc)
u=ug+ (& Ay + jr(e, Ay +--- (D6d)

The task is to determine £, g, k, andj so that a consistent set of equations is obtained that will
describe the oscillating flow problem. Substitute equations (D6a)—(D6d) into equations (D1),
(D2), and (D3) and order. At O(1), mass conservation becomes

Pos=0 (D7)
and momentum becomes
Vpy = 0(82)
or
Vpyp=0 (D8)

which implies py, = 0 from equation (D7) and the use of the equation of state, (D4). From the
energy equation, (D3), we have

To, =0 (D9)
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The leading-order equation of state is thus py = po(z)T(z)-
At next order, take the energy equation, (D3), and order,

g100T 1+ hiTopy. + €V - (PouoTp)

2

-l VYT, +(r+1)3 -0 Vug (D10

8]
Pr Va

f1p1.+&ug-Vpg)-

Note that Vpy =0 from equation (D8). Equation (D10) is an order £ relation by virtue of the
advection term. Viscous dissipation is negligible at O(¢), M? << ¢. For equation (D10) to balance,
g7 = h; = f; = € (except for the condition that 0=V -(pgugTg) =V ( poug) = poV - up which, in this
case, requires that the flow be incompressible, which does not apply to pulse tubes). Equation (D10)
becomes

_1 1
+T + . u T :_——y -
PoT 1+ TP, V (Po 0 0) » Pl PrVa

V-kVT, (D11)

which represents a balance between oscillating bulk temperature, pressure, bulk advection, and
conduction. The next-order mass conservation 1s

P1:+V-(poug)=0 (D12)
which is consistent with O(€). The next-order momentum equation is
EVp, = 0(82)
or
Vp; =0 (D13)

which implies that p; = p;(7). This is consistent with the ordering for energy given in

equation (D11). Equations (D11) and (D12) are the leading-order oscillating equations for energy
and mass conservation, but we still require the leading-order relation for momentum.

Proceeding, at next order, the energy equation (D3) is

2 .
82P0T2; + W Topy, + €T Py +EV- (gugp; + jjuipg)

:-——y—lfzpzt+———y_l€(€“0'VP1+J'1“1'VP0)‘ 52 V'kVT”'(YH)&z_T:V" (D14)
¥ , ¥ Pr Va - Va

Note that Vp, =0 and Vp; =0 from equations (D8) and (D13), respectively. Equation (D14) is an

O(£2) relation by virtue of the advection and acceleration terms. As long as M2 << €2

, VISCous
dissipation is negligible. For equation (A14) to balance, g; = hy = /> = €, and j> = €. Equation (D14)
becomes after time-averaging

1

Pr Va

V'(U0p1+ll1p0)=— VkVTz (DlS)
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which is a conversion of work to heat conduction. The next-order mass conservation is
P2, +V (pou;+ppug)=0 (D16)

which is consistent with O(&2). The next-order momentum equation is
) A
A.(pollo),t =-£ VPZ —V—a-V'TO D17

which from equation (D35) requires that A = 0(82) if equation (D17) is to balance. Equation (D17)
becomes

1
(Poup), ==Vp2 - ’\‘,‘;V "o (D18)

which implies that py = p,(x,?). Hence, momentum is driven by pressure gradients of O(4),
whereas the lower-order pressure pg represents the mean pressure and p(f) represents the bulk
oscillating pressure. This separation of pressure into time and space functions is the anelastic
approach. Equations (D11), (D12), and (D18) are the oscillating equations for energy, mass, and
momentum conservation, respectively.

Carrying out the expansion to the next order shows that the next terms are simply of o).
The expansion is thus

p=po+8p](t)+Ezpz(x,t)+83p3(x,t)+--‘ (D19a)
T= To(x)+8T1(x,t)+£2T2(x,t)+ £3T3(x,t)+ e (D19b)
P = po(x)+ €0 (x.1) + €2 pa (x,1) + €2 p3(x,1) + - - (D19¢c)
u=up(x,r)+eu;(x,2)+ Szuz(x,t)+ s3u3(x,t) + - (D19d)

Equations (D19a)-(D19d) are series expansion in € This would seem to be physically correct,
because ¢ is a displacement length of the gas at the tube ends. One would reasonably expect that an
oscillating displacement at the tube ends of order £ would result in oscillating-pressure, temperature,

and density changes of order &. However, the pressure gradient that drives the oscillating velocity
can be much less than the speed of sound and much less than the resonance frequency of the system;
hence, the pressure gradient is of higher order and an anelastic approximation is applicable.

Equations (D19) apply for the specific case of 4 = 0(82). In general, however, A can be of

higher order, that is, A = 0(83), A= 0(84), A= 0(85 ), etc. To represent these more general cases,
the pressure is written as

p=po+ep(t)+ Apr(x,t) + EAp3(x,1) +- - (D20)

where A << g << 1.
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Zeroth-Order Equations

From mass conservation, the leading-order density is not a function of time:
por =0 (D21)
From the zeroth-order momentum equation, pressure is not a function of space:
po.. =0 (D22)

Integrating the energy equation over the total system volume and using the divergence theorem, the
leading-order pressure is found not to be a function of time since the temperature boundary
conditions are steady and there is no accumulation of energy within the system: '

_r_ 1
V PrVa

Po [n-Ty,ds=0 (D23)
S

The above condition, pg, =0, combined with the previous condition, py , = 0, requires that
po = constant. The energy equation becomes

r TO
- (o), (D24)
Pr Va r
This is coupled to the zeroth-order energy equation for the tube wall
- D25
0=Fo fy,y (D25)

through the appropriate ordering Fo = 0( 5 1
r

v ) This ordering condition requires that
a

‘2 *
l,z = O(a—'fj<< 1, allowing the tube wall to be approximated as a thin flat plate with the use of
r o

g

rectangular coordinates in equation (D25).

The boundary conditions for equations (D24) and (D25) are at r =0, Tg , = 0; at y = 1,
60,y = 0; and at the interface between the gas and the tube wall, the temperature and heat fluxes are

continuous. These conditions require that Ty be independent of r. Finally, pressure, temperature, and
density are related through the equation of state,

po = Po(2)Tp(2) = constant (D26)
First-Order Equations
The next-order momentum equation 1s
0=—p;. (D27)

A
which implies that p; , =0 and hence,
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p1=p(t) (D28)

The next-order mass conservation and equation of state are

p1.e+V-(poup) =0 (D29)
p1=poT;+piTo (D30)
The first-order energy equation for the gas 1s
: T1,)
pl 1 (r 1,7‘ r
L +V-(poug) = D31
” (Pouo) PrVa  r (D31)
This is coupled to the first-order energy equation for the tube wall,
) 91,t =Fo 91’).). (D32)
The next-order momentum equation is
1 (ruo*r) r -
=—py, +— 2 D33
(Potg) , =—P2: Va 7 (D33)

An additional relation is needed to find p;(f). This relation is obtained from the volume integral of
the energy equation

A . S—fn- ,
P’_T(Pwa i n-T;,ds i n- pugdS (D34)

which states that the periodic nature of p;(r) results from the forced oscillations from the tube ends
and periodic radial heat conduction at the tube walls.
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APPENDIX E
REDUCING THE FIRST-ORDER EQUATIONS
USING COMPLEX EMBEDDING

Take the nonconservative form of the energy equation in terms of enthalpy

o (T,
~ Prva r

-1
=poTy,+ %*PL: -poug -V, Ty (ED)

Expand u, -V T, where u, -V, = 1)O§+uogi and Ty, =0
r 4 .

_ a1 Tw),
"~ Prva r

-1 ,
—poTy, + _yy P1s = PooTp (E2)
Equation (a) in table 4 gives the explicit »-dependence of uy(r,z,t) as
ug(r,z,t) = ﬁo(r,z)eit = l.pz_(Z)[l - Co(r,z;\/Va)]eit (E3)
Po(2)

Here complex embedding is used to separate out the time dependence, y = ER[ )Z(x)ei’ ], where y

represents the real part of the complex function 7(x)e”. In general, 7(x)is spatially dependent and
is itself complex. Substituting equation (E3) into (E2) and eliminating the time-dependence results
in

1 un
" PrVa r

" ipyT +i1%ﬁ1—iT5ﬁ§[l—§o(r,z;\/V_a)] (E4)

This can be solved in terms of » using the boundary conditions at » =0, fI, ,=0,andatr=1,

f’, = Twem’, where T,, is the temperature amplitude and ¢7 is the temperature phase angle at the
interface between the gas and the tube wall. Using the equation of state, 1= p,(z)Ty(z),
equation (E4) becomes

Ty = L2 ol = ol PV T 5P

(ES)
&~ . Pr . .
~T,T§ pz{[l ~Lo(rz:/PrVa)| - (Er—-—l)[go(r,z,«/Va) ~Zo(rz PrVa)]}
The quantities T,, and ¢7 are determined by solving the equation for the tube wall,
6;=Fob,, (E6)

whose solution is
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=t - on{ o) -

cosy

where Y =1/;_l'

We now know T in terms of the unknown pressure p(z), the unknown oscillating bulk
pressure amplitude p;, the zeroth-order temperature T, the interface temperature amplitude Tw ,

and the temperature phase angle, ¢7. Now substitute T ; into the first-order equation of state (eq. (h)
in table 3) and use the zeroth-order equation of state to obtain P, in terms of p,(z).

. P T
p1=ﬂ-p0 /

E8
1, T, (E8)
5 = PL_POF Jore (o Biva) - LoL L £, 2 PEV
br=p =g, 1 So(r.zvPiVa) ” To{ Lo(r.zPrVa)]
, (E9)
T ~r . Pr v -
+ %—pz{[l - Co(r,z, PrVa)] - (Pr — 1){§0(r,z,x/Va) - CO(T,A’V PrVa)]}
From the first-order mass conservation equation
(PoDor n
——r—)'i =—(poflp) , +iP1 (E10)

substitute for p; and 4y

(PoDor ),,

r

= (;35[1— Co(r,z;JV—a)]

+(lnTO),f)'z{[l—é’o(r,z;x/PrVa)]—(Pfi1)[§O(V,Z;W—a)-go(r,z; PrVa)]} (E1D)

+1;—; —x}——l%[l - Co(r,z;\/m)] _%Tweiw%(hz:m))

Integrating equation (E11), and using the boundary condition v = 0 at » = 0, results in the unknown
constant being zero and a relation for g in terms of ,
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80 = ,-(m,(r, VA )Tops

’
~

+{m1(r’z; PrVa)_(Ppr1)[m3(r,z;Jv_a)—m3(r,z; PrVa)]}To(lnTo) s (E12)

r_.

+my(r.zPrVa)p; +m3(r,z; PrVa)?—Wei"’T]

0
where
m(r,z;0) = —[%—mg(r,z;c)] (E13)
mz(r,z; PrVa) = -—[{; +y7_lm3(r, z;vPrva ):| (E14)
m3(r,z;0) = ————f’ (_rl;()?z)) (E15)

The no-penetration condition vg= 0 at » = 1 is used to obtain a second-order ordinary differential
equation for p,(z) in terms of the unknown bulk pressure amplitude p;,

) mz) e |ms(lzVa) ms(LzPrva)
° +{m,(l,z;«/V_a) Pr—l{m1(1,z;Jv—a) mi(LzVVa) (InTp) P

=P
mz(l,z;\/PrVa) P m3(l,z;«/PrVa) T

Iw 01

m(Lzwva) Ty my(lziVa) T3

This is the pressure equation to be solved for p,(z) with unknowns T(z), and p;.

(E16)

+
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APPENDIX F
SOLUTION FOR THE THERMALLY STRONG CASE, V7,=0

Leading-Order Results

Oscillating First-Order Solutions

For VT, =0, we have py =T, = py =1 and so the pressure equation given by equation (e)
in table 4 reduces to

mz(lx/PrVa) m3(1\/PrVa) s

i) i o
The general solution is
. m2(1 \/PrVa) m3(l vVPrva ) iér _Zi
P2=" [ mI(l \/—_) m1(1 \/—) 2 +CIZ+C2 (Fz)

This is substituted into the axial velocity relation given by equation (a) in table 4 to find ug

m,(1;A/PrVa m rVa
N k= Al e | di-ste) e

The boundary conditions on axial velocity

at r=0,2z=0, 4y=1 (F4)

atr=0,z=1,ﬁ0=[A/Le”=l~]Le'(¢U+l) (F5)
are used to determine the unknown constants C; and p,,

i

T ey o
N 1-0e%  my(LvVa)  ms(L; \/PrVa) Jor -
PI 1-p(0:7Va) my(1;v/PrVa ) my(L x/PrVa)
Substitution and simplification gives a simple relation for uy,
X . 1-{o(rVa)
oo ) "

which is linear in z as would be expected in the anelastic limit. After substituting for p; in the
temperature equation given by equation (b) in table 4, and recalling T = 0, the temperature
becomes



Py Al my(1:NVa) {I—Co(r;«/PrVa)}(l_ULewU)

= —i
! v my(1:vPiVa) | 1-¢(0:/Va)
(F9)
y -1 m3(1;«/PrVa) - o
+ r.~/Prva)— 1-Cp(rA/PrVal|| T, e T
(CO( NLAE s oy BN
and for the radial velocity given by equation (d) in table 4,
5 ml(l;«/Va) mz(r;\/PrVa) mI(r;«/Va) (1 i [¢U\)
= - - €
0 1—§0(O;\/Va) mz(l;«/PrVa) m,(l;«/Va) L
(F10)
) (1 «/W) mz(r;x/PrVa) m3(r;x/PrVa) F L0
—ims3|1;+/PrvVa - e
’ mz(l;«/PrVa) m3(1;«}PrVa) Y
Nu Independence on f”w and U L
Here we show that Nu is independent of both f’w and U .- Consider the definition of Nu
Nu= D = (F11)
:r1|r=1 —2rfdr
0
where g, = _TI, ,» hence
~ _f‘],r =
Nu = = (F12)
T _ -2frTdr
0
From equation (c) in table 5, T, is of the form
Ty =f1+f21 (F13)

where
f1=f(r)=-A+Alp(rWPrVa) and fy=fo(r)=-B+(+ B),o(r:WPrVa) (F14)
with

A—i}/—l m,(l;w/—\a) 1_0Lei¢u and B=y-1m3(l;x/PrVa)
- Y mz(l;\/PrVa)l—Co(O;\fV—a) Y rnz(l;vPrVa)

From equation (F13), the derivative and integral are

(F15)
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r=

1
T,| = fi+f5T,, and 2[rfydr = f;+ £37,, (F16)
0

where the superscript ‘°” indicates the definite integral from r = 0 to » = 1. Equation (F12) becomes

Ry = A_f’:fﬂ;"i _ —flo-szw : (F17)
Tw—fi-fiTw (1-£3)T. -1
Taking the derivative of equation (F17) with respect to f’w , We obtain
. T - 5= T =)+ F1+ £57,)(1- 75
o - =( w—f1=f2 w)( f2) (f1 2 w)( %) (F18)

w - o 0 2
(Tw -fi- fZTw)
and after simplifying this becomes

. _Jifs + fi(1-13) F19)

T (fu-fi-1)

Taking equation (F14), we obtain for f; and f;

1;+Prv
f1=-A~Prva CI(I;\/PrVa) and f7 =_A+2A§I(—P«/r—V—iai) (F20)
and for f5and f3
. &L, VPrva
f5(r)==(1+B)YPrVa{ (r;WPrva) and f5=-B+2(1+ B)—I(\/ﬁ-—é—) (F21)

Substituting equations (F20) and (F21) into equation (F16) and then evaluating the numerator of
equation (F12) results in

Nuj =0 (F22)

w

showing that Nu is independent of T,,. Similarly, it can be shown that Nu is independent of U L-
Take f; to be of the form

fr=e(1-0.) (F23)
where

y-1_m(iNVa) 1
Y mz(l;\/PrVa) 1- {0(0;\/%)

Substitute equation (F24) into (F23) and substitute the result into equation F17)

g1=a(—l+co(r;m)) and a=1I (F24)
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Ru = _ —g?(l - 0LA) - f.,waA
T, - g3(1-UL)- f5Tw
Now differentiate equation (F25) to give
(£, - (1= 01)- £37 )1 +(g(1-OL) + 157, )i

(o -&i{1-00)- 1)

NU’I}L =

and simplify the result as

Nu - g?TW—f3g§Tw+f§g7Tw

e (iw_g7(1_0L)_f§Tw)2

For Nu to be independent of T,,, the numerator must be equal to zero,
0=gj{1-f3)+ f¢i

Substituting for f5 and f3 of equations (F21), equation (F28) becomes

g;(—3+ 201+ B)ﬂ%%l - 1) = —(1+ B)VPrVa {;(r/PrVa )g;

or after rearranging

I;+/PrVa
g;(1+3){————€’( S )

Now from equations (F24)

_ 1] =—(1+ B)/PrvVa c_.“,(r;v PrVa)é’?

a;|r;vPrva
g = —ax/PrVaCI(r;\/ PrVa) and gy=-a+ ——Ci(———)
~PrVa
Substituting equations (F31) into equation (F30) gives
I £;(1:4/PrVa)
—avPrval,(r;vPrVal(l+ B)| ————"—1
avPrvag,(r J1+B) ove

=—(1+ B)vPrVa C;(r;\/PrVa )[—a + M

+/PrVa

which reduces to an identity.
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Mean-Steady Solutions

Eulerian Mean-Steady Velocity Vector, ’UI

The mean-steady velocity components produced by the Reynolds stresses are determined by
equations (46) and (47). Recalling that py = 1, they are respectively,

+(uouo)’Z =Pity, T,

(vog), 1 (),

(F33)

r

1
0= [(u; +ppg)rdr (F34)
0

The associated boundary conditions are #; , =0 at r = 0 (symmetry) and &; =0 at » = 1 (no slip).
Equations (F33) and (F34) and boundary conditions are used to solve for &; and p3 .. The mean-

steady quadratic components are determined by recalling that for y; = ':'K[ jlei’] and y, = EK[ )Zzei' ]

1. .
xi= S (F35)
—— _l[s zec]_1 scc
XNX2 = 293[%17{2 ]— 9‘[12 ] (F36)

where the superscript ‘cc’ represents the complex conjugate. Carrying out the integrations of
equations (F33) and (F34) gives &; and p3, in table 8. with the axial Eulerian mean-steady

velocity given by U,

Uy =iy +pup (F37)
Equation (48) gives the relation for the mean-steady mass flux

vr+prg
0=('U]r P Or),r+(u—1+%)7 (F38)

r

The observed radial Eulerian mean-steady velocity is given by ¥V,
Vi=0;+pvg (F39)
Using equations (F37) and (F39), equation (F38) can be rewritten as

(Vir), _

0=——L+11;, (F40)

r

A single quadrature of equation (F40) and using the boundary condition ¥; =0 at » = 0 gives

Vi(r.z)= —%Jrﬁ, A (F41)
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Table 8. Mean-steady solutions for &;(r,z).

3—1&= Qz(r,z)+.12(r,z)+(r2 —I)K(z) (@)
P3;= 16[43(1»1)";“12(1’2)*‘83(1,2)—%82(1»2)““k3] ®)
where
05(r.2) = q2(r.2) = g2(1,2) (©)
G,(r.2) = g2(r.2)~ g2(1,2) (d)
K(z) = 4[k3(2) + 43(2) + £3(2)] - 2[g2(1.2) + £2(1,2)] ©
and
~ ~CC 1 (f’ )
a:(r.2)=| l ] n(——“o“zo ] dndr a5(2)= [ax(r.0)rar :
,Z 0
R A ACC 1
gz(r,z)=‘[—[—véoi‘2—ldr 83(Z)=J.j2(’,z)rdr (h, 1)
0
L[5 e )
_ L (gl P04
k3(z)= o (j) 91[——2 ]d

We also note that equation (F40) defines the mean-steady stream function,

Yoog,  ad  +2E=9, (F42)
r r

Lagrangian Mean -Steady Particle Velocity Vector, u,

As previously discussed, the mean-steady particle velocity is used in describing the mean-
steady particle path. The mean-steady particle velocities were presented in equations (79) and (80),
and are reiterated here,
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_ —_ ! t
i,(r,z) =) +ug, jo VodT+ug jouodr (F43)

and

— — t t
vp(r,z) =V;+ vO»’Jo VodT + Uo,zjouodf (F44)

To compute, first recall that y = 9?[ f(eit] = %( e + f(“e—"), thus

Xn= %( Zne" + ;zfge"") and j xdr= é(— fet + ;zcce"") (F45)

so that
Xl,anZ dt= i("iﬂ%l,r}ez” + 255 + 255 - 7227216,677) (F46)

hence,
Zl,nj12 df=£(256221,n ”izftlc.cn) (F47)

Using equation (F47), the particle velocities given by equations (F43) and (F44) become
_ — [ facca A A ACC A ~ o
iZy(z,r)=U;+ Z< 05y , — Dol + g g , — uOu(sz) (F48)
and
Bp(2r)= ¥+ (0659, - 00065, (F49)
p\e 1 4 0 Yo,r ovo,r

. N _ ACC
since Uy, =V, =0.

Mean-Steady Temperature, 75

The mean-steady T, temperature is defined by the energy equation given by equation (m) in
table 3,

1 (rTz,r)r 1, r2 .
— =, +pu +—{vir+p,00r) - T, .. F50
Prva r ( 1P 0),2 r( 1 P1Y ),r Prva 0,zz ( )
For computational purposes it is found from
1 (rTZ,r)r ( 1/_ . 1-*2 _
AN Ay SO -( Acc) +-(U +%l5 vccr) _ T . Fs]
e A [l | I L L IO (Fs1)
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Integrating twice and applying the boundary conditions at r =0, T,,=0andat r=1,T,=0
leads to

9

T5(r,z) = PrVa|w;(r,z) —w;(1,2) + wa(r,z) - wy(l,z)]- %TO,ZZ(l - rz) (F52)

or since VT =0 for the thermally strong problem,

Tz(”,z)=PrVa[wl(r,z)—W1(1,2)+w2(r,z)—wz(l, 2)] . (F53)
where
wy(r.z)= J’% Jrc(ﬁ, + R pi’]) dodr (F54)
and )
wy(r,2) = (B + {95 o (F55)
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APPENDIX G
COMPUTATIONAL PROGRAM

The symbolic application used to compute the solutions was Wolfram Research
Mathematica v. 2.2.2. for the Macintosh. The following program code directly translates from
the text.

The user must specify the variables in the cell titled ‘Input system parameters and number of
terms in Bessel function for 10-digit accuracy in ber and bei’. The units are noted. Each variable is
commented for clarity. The variable ‘TERM’ is specified to provide the accuracy required of the
Bessel function that is computed with a series expansion. The number of terms depends on the value
- for Va, and a commented field suggests the number of terms for various Va.

Immediately after running the program, a shaded cell block prints all relevant parameters,
including dimensional specifications and nondimensional numbers. The program continues
computing leading-order oscillating solutions:

™ = amplitude of gas/tube wall interface temperature
PHIT = phase angle of gas/tube wall interface temperature
uORe = oscillating axial velocity

vORe = oscillating radial velocity

plRe = oscillating pressure

T1Re = oscillating temperature

rholRe = oscillating density

ql = oscillating heat flux

NuC = complex Nusselt number

and mean-steady quantities:
u0TI1ReAvg = axial enthalpy flux
uOplReAvg = axial work flux

rthoSuSAvg = axial Eulerian velocity
rthoSvSAvg = radial Eulerian velocity
upAvg = axial particle vqlocity
VpAvg = radial particle velocity
T2 = temperature

These quantities are plotted in phasor diagrams and field plots.
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(" FileName and prereq *)

«<<Calculus VectoriAnalysis®
<<Graphics Graphics®
Needs(°Graphics ' PlotField "1:
Share(]:

(* conversion factorsy and constants *)

convertInTolm=(2.54 cm}/in;

convertInToCmSqrt=5qre(2.54°2 em~2)/in;

convertCgsToDyne=dyne/ (g cm/sec™2};
convertAtmtoMPaxz0.10133MPa/atm;

J=W sec:

mater= (100cm);

GasConstantStar=8.3143 J/(mol K} (*82.05cm*3 atm/ (mol*K*MW)");

{* Bounds on vector fields *)

jAxialRMSBoundIso :=(jAxialRMSFlow(0,0,0), jAxialRMSFlow{1,0,0})
jAxialRMSBoundHXfr: = (jAxialRMSFlow[0, 0, ™), jAxialRMSFlow(l, 0, TW]}

rhoSuSBoundIso: =

{(rhoSus[0,0,0].rhoSus(.67,0,0],rhoSus(.89,0,0]}, (rhoSus(0,1.0],rhoSuS(.67.1,0},rhosus{.89,1,0)}};

haxialFluxBoundIso:=

{(bAxialFlux{0,0,0,0) . haxialFlux(.67,0,0,0) hAxialFlux{.89,0.0,0}
{hAxialPlux(0,1,0,0) , hAxialFlux[.67,1,0,0] . hAxialFlux(.89,1,0,0)

hAxialFluxBoundHXfr:=

{{hAxialPlux{0,0,TW,0] hAxialFlux(.67,0,TW,0} hAxialFlux(.89,0.TW,0]
{haxialflux[0,1,TW,0]} hAxialFlux(.67.1,TW,0) hAxialFlux(.89,1,TW, 0]

(* Predefined significant digits *)
dateLockzDate(]

.

}h:
I
1

date:=Prepend|{Drop(Drop[datelock, 1],-2],5tringJein(kindSystem, N{Va,3]}]];

epsilon:=N(eps.3)

fourier:=N[Fo,5]

vpf:=valensi * prandlt * fourier
strouhal:=N(1/eps. 4]
180PR:=N[IsoPressRatio.d]
AdiPR:=N[AdiVolPR, ¢}
PHIUPrint:=N{PHIU,3]
PHITPrint:=N[PHIT, 4]

{1997, 3, 15, 19, 24, 57)

{* MASTER Linear & Secondary *)
(* Master Linear *)

14 Z/Q NED FOWCTIOND °:

(~ PARAMETERS *)

Input Parameters in English or ¢gs units

{* Ioput cgs *)
{* Input ©gs Parameters *)
(* OPT *)

(v

type="":
type2z"dT/dz=0";
freqStar= }/(sec):
rwStars .81649 cm:

LStar= 10 cm;
pistonDynAmpStar(0,0]= .02 cm;

us system parameters and number of terms in Bessel function for 10 digit accuracy in ber and bei -}

(* CC or Thesis *)
(* aT/dz<>0 *)
(* a freq baseline of lHz corresponds to Va=50. *}
{* baseline=.04442cm; 2 *.00254 (*Sqrt(.lPower{.053.2])")cm*}
{* va adjustment; .053cm corresponds to VaPrsl;.04442cm to Vasl *)
{* baselinesl0cm; eps adjustment *)
{* baseOPT=1l.0cm, BPT=1.41d2cm; M adj:*)

pistonDynampsStar(0,LStarl= 1.0*pistonDynAmpsStar(0,0]); (* as a percentage of pistonDynAmpCm(0,0] *)

PEIV =-.10;
TERM=16;

(* Iipur Tube wall domain *)
rho0TubeStar= 7.820 g/cm"3;
Cp0TubeStar= 0.46 J/ (g X);
kTubeStar= 0.163 W/(cm X);
tubeThicknessStar=z .004903 cm:

(* Znper gas domain *)
templowGasStar=50K;
tempRefGasStar= 300K;

{* velocity phase angle of UL wrt UQ; PHIU<O means UL lags U0 *)

{* .l1Hz is Va=5->TERM=7;.6Hz is Va=30->TERM=11; l1Hz is Va=50->TERM=13,
26z is Va=100->TERM=1S, SHz is Va=250->TERM=19,
6Hz is Va=300->TERM=22 *)

{* for PV and V-1 then TERM=6: for PV and V~10 then TERM=18;
for V~2=30, TERM=10; for V~2=300, TERM=22 *)

(* stainless steel ¢}
{* stainless steel °)
{* stainless steel *)
(*Fo adjustment: 0.026853 cm corresponds to Fo=1 ")

pressureRefStar= 9.866 atm; (*pressureMeanStar=presgureRefStar*)

Cp0GasStar= 5.2 J/{g K): {*air at STP 300K: 1.005 J/(g K}*) (*He: 5.2 J/{g X))

kGasStar= Q.00149 W/ (em K); {*air at STP 300K:0.000267 W/{cm K}*} ({(*He at STP: 0.00149 W/(cm X):
{note: for kGas=.0010471552, Pr=1.000000000)°)

muStars 2.0134°10~-4 g/(cm sec}: (*air at 300K:1.843%10"-4 g/{cm sec): He:2.0134°10°-4 g/(cm 38}
@ any resonable pressure*}

Mwstars ¢.2*10%-3 kg/mol; {vair at STP 300K: 32*10%-3 kg/mol; He:4.2°10"-3 kg/mol*)

GAMMA= 5/3; {* 7/5 for air *)}{* 5/3 for He *)

(= output gas calculations *)

rhoRefGasStar=pressuraRefStar* (3J00K/tempRefGasScar)*1.624*10%-4 g/ (atm cm”3}):

(*air at STP 300K: 1.170°10”-3 g/{atm em"3)*)

(*He density/atm ¢ 1 atm: 1.624*10"-4 g/(atm em”3):*)
nuStar=muStar/rhoRefGasstar; (*air at STP 300K: 0.1566 cm*2/sec: He:0.124 cm"2/sec")

a0Star=Sqre (GAMMA Simplify(

GasConstantStar/MAStar tempRefGasStar J/(sec W) (kg meter~2/sec”2}/J {(sec"2/cm"2)]) cm/sec:
(*air at STP Anderson pg.S55:

He:SQrt(GAMMA 2.08*10°7 300)jcm/s;= 101,980ck/s *)

(* Ouput convert from Star=cgs to English units *)

rwinch=rwStar/convertInToCm;
LInch=LStar/convertInTolm:

tubeThicknessInch=tubeThicknesssStar/convertInToCm;
pistonDynAmplnch(0,0]=pistonDynAmpStar (0, 0] /convertInToCm;
pistonDynampInch(0, LInchl=pistonDynAmpStar{0.LStar)/convertInTolm;
pressureRefStarMPazpressureRefStar convertAtmtoMPa:

114



¢* Input Erglish Parameters and convart to cgs *)

type="CC*: {* CC or Thesis *)
type2="dT/dz=0"; (* aT/dz<>0 *)
freqStarz 15/sec; {(* set *)

rwinch= .5°7/8 in; (" Va adjustment *) (* valuePorV*SqQrt[nu/cmegaBar]/convertInToCmSqrt allows
specified value for v *}
Linchs 5 in; (* eps adj *)(* 15°+5/8* is the undisplaced tube length *)
pistonDynAmpInch(0,0]= 1 in (*LInch/(2Pi)*); (* M adj *) (*=piston dynamic amplitude:
{(1.09)/2 in is l3cc compressor pistonDynAmpInch;
for spec eps, pistonDynAmpInch{0,0}=eps LInch/(2Pi}*}
pistonDynAmpInch(0,LInch}= 0.2 pistonDynAmpInch(0,0};

PHIU =-0.25; (" velocity phase angle of UL wrt UQ; PHIU<O means UL lags UC *)
TERM=15; (* for PV and V-1 then TERM=6; for PV and V-10 then TERM=18 *)
(* L . Tube wall domain *)

rho0TubeStar= 7.820 g/am”3; (v stainless steel *)

CpUTubeStars 0.46 J/(g K); (* stainless steel *)

kTubeStar= 0.163 W/ (cm K); (* stainless steel *)

tubeThicknessInch= 0,020 in; (* Fo adjustment *)

(* Input gas domain *)
tempRefGasStar= 300K:

pressursRefStars 10 atm; (*pressureMeanstar=pressureRefstar”)
CplOGasStar= 5.2 J/{g K): (vair at STP 300K: 1.005 J/ig X)*) {*He: 5.2 J/(g K}*)
kGasStar= 0.00149 W/ (em K); (*air at STP 300K:0.000267 W/ (cm K)*) {(*He at STP: 0.00149 W/ (cm X);

(note: for kGas=.0010471552, Pr=1.000000000}*)
muStar= 2.0134*10"-4 ¢/ {cm sec): (*air at 300K:1.843*10%-4 g/ (cm sec);
He:2.0134"10”-4 g/(cm 8) @ any resonable pressure*)
MWStar= 4.2°10%-3 kg/mol; (*air at STP 300K: 32*107-3 kg/mol: He:4.2*10%-3 kg/mol*)
GAMMA= 5/3; {* 7/5 for air *){(* 5/3 for He *)

(* Output gas calculations *)
rhoRefGasStar=pressureRefStar* (tempRefGasStar/{300K))*1.624°10*-4 g/ (atm cm3);

(*air at STP 300K: 1.170"10%-3 g/(atm cm~3)*)

(*He density/acm @ 1 atm: 1.624*10"-4 g/ (atm cm*3};:*)
nustar=musStar/rhoRefGasstar; (*air at STP 300K: 0.1566 cm~2/sec: He:0,124 cm"~2/sec*)
a0Star=5qrt{GAMMA GasConstantStar/MWStar tempRefGaaStar]| cm/sec;

{*air at STP Anderson pg.55;He:Sqrt(GAMMA 2.08+*10%7 300)cm/s:= 101,980cw/s *)

(* OQuput convert from English to Star units *)

rwstar srwinch®convertInTolm;

Lstar =LInch*convertInTolm;
tubeThicknessStar =tubeThicknessInch*convertInTolm;
pistonDynampScar[0.0]) =pisctonDynAmpInch(0, 0] *convertInTolm;

pistonDynAmpStar(0,LStar) =pistonDynAmpInch(0,LInch]*convercInTolm;

[l
po=1;
If(cype22="dT/dz=0*,T0[2]=1.T0(z])=.];
If(type2==°aT/d2=0",T0[0]=1.TO(0]=.];
rho0(z_):=1/T0(z);

omegaBarStar = 2Pi freqStar; {* characteristic inverse time period *}
UStar[0,0} = omegaBarStar*pistonDynAmpStar(0,0); (* UO=Amplitude of d/dt{[pistonDynAmpCm{0,0]
Sin(omegaBarStar t])°*)
Ustar ([0, LStar) = omegaBarStar*pistonDynAmpStar(0,LStar); {* UlzAmplitude of d/dt({{pistonDynAmpCm{0,0]
Sin(omeagaBarStar t + phiU)} *)

uUStar(0,0.t_]
ustar{0,LStar.t_]

ustar(0,0 ] Coslt ] {* t=zomegaBarStar tStar *)
UStar ([0, LStar] Cos(t « PHIU)]

alpha(Tubestar =kTubeStar/ (rho0TubeStar CpOTubeStar}:

alphalGasScar =zkGasStar/ (rhoRefGasStar CplGassScar);

hoscFlux0OStar =rhoRefGasStar*CplGassStar*ustar(0, 0] *tempRefGasScar;
XSectAreaStar =Pi*rwStar"2//N;

hoscFlow0Star =xSectAreastar*hOscFlux0OStar;

joscFluxOStar =rhoRefGasstar*ustar(0,0);

jOoscFlowOStar =x$ectAreaStar*jOscFlux0OStar;

QqGasRadialOStar =kGasStar*tempRefGagstar/rwStazr;
wallshearStressOStarzmuStar UStar{0,0]/rwStar;

tubelnnerirea =2 Pi rwStar LStarx;

drag0Star swallShearStress0Star tubelnnerArea convertCgsToDyne//N;
deltaTsStar = £ ar-templ T

deltaT = {tempRefGasStar-templowGasStar) /tempRefGagsStar;

volOfTubeStar := Pi rwStar~2 LStar
{*velocityCombo(t_] :2UL+CoB{2Pi t]/Cos{2Pi(t«PHIU)]}*)

periodStar=l/freqStar;
tauStar=periodStar; (* characteristic time is the period *)

tr Non-dimensional Parameters Calcoulated ©

M =UStax(0,0])/a0Star;

va =rwStar~2 omegaBarStar/nuStar;

Pr zmuStar CplGasStar/kGasStar:

Fo =alphaOTubeSctar/ {omegaBarStar tubeThicknessStar*2):
e =pistonDynAmpStar (0, C]/LStar;

s =l/eps:

LAMBDA =M"2/(eps GAMMA):
CAPGAMMA=rwStar/(LStar*eps);

ue =Ustar(0,0)/0Star(0,0]:

UL =UStar(0,LStar)/Ustar(0,0];
KGAS =kGasStar/kTubeStar

KTUBE zkTubeStar/kTubeStar;

EL stubeThicknessStar/rwStar//N;
Rel =308cFlux0Star 2 rwStar/muStar;
Loand LrFO used 1y e
1 an variables and onhal 4
u .
&{0)=pistonDynAnmpScar(0,0] /LStar;
d[1)=pistonDynAmpStar ([0, LStar]/LStar;
volSystemit_) := 1 - d[0]Sin(2Pi t] + QA{1; Sin{2PLi(t + PHIU)]:
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(- gals Isv end AdL prezsure Ruatics and ag
FindMinimum{volSystem{t), {t, .5}];
timevolMinst/. %{[2.1}};

If[timeVolMin<.S5, timeVolMax=timeVolMin+.5, timeVolMax=timeVolMin-.5, timeVolMax=timeVolMin-.5];
IsoPressRatio= volSystem|timeVolMaxj/volSystem{timeVolMin]//N;

AdiVolPR= (volSystem(timeVolMax)/volSystem(timeVolMin]) “"GAMMA//N;

t* cale O oprossure N
plCLhatr(Uo_,Ul_,phil_] (-1 GAMMA)*(Uo-Ul Exp(I 2Pi philU)}//ComplexExpand;
pIlCL{Uo_,Ul_.phiU_,t_] plCLhat (Uo, UL, philU} "Exp{I 2Pi t)//ComplexExpand:
PLlCLRe(Uo_,Ul_,phil..c_] = plCL(Vo,VUl, phil, t]-I Coefficient(plCL|Uo.Ul,phiU,t]),I]//N;
FindMinimum(eps*plCLRe(UC, UL, PHIV,t], {t,.5}]);

PICLAdiaAmpl=Abs (¥ {(1}]];

plCLAdiaPR= (1+plCLAdiaAmpl) / {1-plCLAdiaAmpl) ;

it D Eflew based on udpl
(* HfluxlDStar=(AdiVolPR-1) *pressureRefstar/(AdiVolPR+1}:*}

(v 10 Hilow basad on Fays Egno2-34 RIST TR LI %)
HFlowRayStar [ jOscWarmInGramPerSec_, THotInK_, PdynInAtm_, PmeanInAtm_ ) :=
{1/2) GasConstantStar/MwStar THotInK jOscWarmInGramPerSec (PdynInAtm/PmeanlnAtm} kg/ (1000 g)//N
HFlowRayStar2 [ jOscColdInGramPersSec_, TcoldInK , PdynInAtm_, PmeanInAtm_, phiRadians_]:=
(1/2) 30scColdInGramPerSec GasConstantStar/MwStar TcoldInK (PdynInAtm/PmeanInAtm) Cos|phiRadians] kg/ (1000 g} //N

f ¢ Graghics Ceordinanes b

rexter=Graphics({Text(*rs0",(0.5,-.14}.(0,1}],Text["r .{0.5,1.13),{0.-1}].
Text|[*z=0",{-.06,0.5),{1,0}), Text("z=1",{(1.06,0.5},.(~1,0}}}}:

liner({xl_,yl_}.{x2.,y2_)):=Graphics(Line({{xl.yl}, (x2.y2}}}];

mes T

{* msslgn fileNs
d{1)==0, kindSystem=BPT, kindSystem=OPT, kindSystem=0PT] ;

1£{di0]==0 1|

I£[{kindSystem==BPT,
fileNameBPTIsoList={ (*type, =) “BPT", “eps", "Va", "Pr=, “VaPr®, “UL", "PHIU", "M°. “LAMBDA", "IsoPressRatio”.
i *AdiPressRatio”, *CLAdiPRatic"}:
£ileNameBPTHXfrList={fileNameBPTIsoList, {*Fo", { “PHIT", "TW"}, “VaPrFo°'},
* (total 0, totalD: /tube, HOscFlowdStar)-, -date"};
flowNamesBPT:={ (*type,*) "BPT" . epsilon,valensgi, prandlt Nivalensi prandlt,5) LN[UL,2).,
*n/aPHIU" N(M, 4], N[LAMBDA,3}};
PRNames :={IS0PR,AdiPR,pICLAdiaPR);
HXferNames:={fourier, {(PHITPrint,TW}, vpf}:

r={drag r (Amp),totalDr: tar® (tube~-1) " hOscFlow0Star//N};
£il TIgo:={£fl T.P };
£il THXEr:a{£fil TIso, HXferNames, dragNames,date)];
1f(kindSystem==0PT,

fileNameOPTIsoList={(*type,*) "OPT*, "eps"."Va~."Pr", "VaPr", "UL*, "PHIU", "M", "LAMBDA", "IsoPressRatic",
"MiPressRatio”, "CLAdiPRatio®};
£ileNameOPTHXfrList=(fileNameOPTIsoList, {"Fo", { "PHIT", "TW'}, "VaPrFo"},
*{totalDragAmp0, totalDragRMS/tube, HOscFlowOStar}-®,"date®);
£1owNamesOPT: ={ {*type, *) "OPT" ,epsilon, valensi,prandltc,N{valensi prandlt.5], N(UL, 2], PHIUPrint N(M, 4] N{LAMBDA 3});
PRNames : = { ISOPR, AdiPR,D1CLAJiaFR) ;
BXferNames:={fourier, {PHITPrint,TW), wpf}:
dragNames: ={drag0Star (Amp).totalDragRMSStar- (tube™-1)°, noscFlow0Scar//N};
fileNameOPTIS0: = (£lowNamesOPT. PRNames ) ;
£ileNameOPTHXfr: = { fileNameOPTIso, HXferNames, dragNames,date}]:

(r

If(kindSystem==BPT,

fileNameBPTIsoList={type, "BPT",“eps~, V", "P","PV", “UL", "PHIU", "¥", *IsoPressRatio”, "AdiVolPR®, "CLAdiPRatic”J;
£ileNameBPTHXfrList= (£ileNameBPTISoList, {"F", {"PHIT", "TW"}}. {"HOsCFlow0"} date);

fileNameBPTIS0: ={type, "BPT" ,epsilon,V//N,P//N,N(PV,5] ,N(UL,2], "n/aPHIU" ,N[K¥,4),IsoPR,AdiPR,plCLAGiAFR]):

£il THXEr:={fil TIso, (F//N, {PHITPrint,TW}}.{hOscFlow0Star//N}}];

1£{kxindSystem==0OPT,

fileNameOPTIsoList=(type. "QPT","eps™,"V","P", *PV", *UL", *PHIU", "M, "IsoPressRatio®, “AdiVolPR", "CLAdiPRatio"}:
£ileNameOPTHXfrList={fileNameOPTIsoList, {“F*, ("PHIT". "TW"}}, { “HOscFlow("} .date};

fileNameOPTIgo:={type, "OPT", epsilon,V//N,P//N,N{PV,5]  NIUL, 2], PHIUPrint ,N(M, 4], IsoPR, AdiPR, pl1CLAdiaPR);
£i1eNameOPTHXfr: = (£ileNameOPTISO, {F//N, (PHITPrint, TW}), (hOscFlow0Star//N}}]:

")

P S THARA

eI

+ DIMENSIONAL VARIABLES SPECIFIED:
({OPT. eps. Vs, Pr, VaPr, UL, PHIU, M., LAMBDA, IsoPressRatio, AdiPressRatio, CLAdiPRatio}, {(Fo, {PHIT. TW}, VaPzFo),

{totalDraghmp(Q, totalDragRMS/tube, HOsCFlow(Star]. date)
- -9

({{OoPT, 0.002, 100., 0,703, 70.266, 1., -0.1, 3.789 10 ., 4.31 10 1}, {1.002, 1.004, 1.00413}), (100., {PHIT. TWi, 7026.6).

{0.00476915 Amp dyne, (tube*-1) totalDragRMSStar. 1.9734% Wi, {OPT<>100., 3, 15, 19})
-- inches:
rw =0.321453 in: L =3.93701 in; tubeThickness =0.00133031 in: pistonDynAnplInchAt0d =0.00787402 in; pistonDyrAmpInchAtL =0.00787402 in
-~ cgs:

3 2
rw =0.B1649 cm: L =10 cm; tubeThickness =0.004903 cm; volOfTube =20.9436 cm ; CrossSectArea=2.09436 cm
3

pistonDynAmpAt0 =0.02 cm: pisStonDynAmpAtL =0.02 em; freq =---

sec
0.376991 em 0.376591 em 0. cm 0.00160224 g
pistonSpeedUl ; ApistonSpeed = ; pRef =0.993722 MPa: tempRef{ =300 K: rhoRef =-----=-===m-
: 3
cm
0.045313 em
alphaTube =--------=---;
sec
2
0.178836 cm
alphalGas =---<~=------+ ; mu
sec
cm
0.942286 W 0.00060403 g 0.00126506 ¢ 0.547465 W
hOscFlux0 =z---------=~ ; hOscFlowd =1.97349 W; jOscFluxQ =------------ ; JOSCFlowQ =--~-=--------- ; QGasRadiald =---------- ; HFlowRay =
2 2 sec 2
cm o sec cm
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0.00040268 g Pi Pi
HFlowRAyStAr[-----vmecwecaan , 300 K, 0.0203251 atm, 9.866 atm, --)
6

totalDragAmpl0 =0.00476915 dyne: totalDragRMS/tube =(tube”-1) totalDragRMSStar
* NON-DIMENSIONAL SCALING VARIABLES CALCULATED:

Va=100.; Pr=0.703; Pr*va=70.2663;: S 2500.; Fo=100.; EL=0.00600497; M=3.78929 10 ; Re( =24.89902
po=1; T0(z}=1 : rhoC(z)=l

+ NON-DIMENSIONAL VARIABLES USED IN COMPLEX SOLUTION:

V=10.: P20.83825; PV=8.3825; eps=0.002; F=0.1; M=3.78529 10 ; LAMBDA=4.30762 10 ; eps°Va=0.2
5

U0=1.; UL=l.: PHIU=-0.1; TERM=16; KGAS =0.0091411; KTUBE=l.: GAMMA=-; d0=0.002; dL=0.002
3

Archive
{* FOMCTIONS *)}
Modlfaied Bersel Ixn aXpansion lnto raal and imaginaxy parts

ber(order_,r_,z_, sigma_, TERM)=(r sigma Sqrt{rho0{z])/2)“order *

Sum{Cos((lorder/4+k/2)Pi)/{Factorial[k] Gamma(order+k+l]))*(((r sigma Sqrt(rho0(z])}*2)/4)"k,{k.0, TERM}];

bei[order_.r_,z_,sigma_, TERM]=(r sigma Sqrt(rho0(z])/2)“order *

Sum(Sin{(Jorder/d+k/2)Pi)/ (Pactorial(k] Gamma|order+k+1))*({(r sigma Sqrt(rho0(z]}])"2)/4)"k, {k.0,TERM}]:

ber(0,r_,z_.V,TERM)=ber(0,r,2,V, TERM};
bei(0,r_,z_,V,TERM)=bei(0.r,2,V, TERM];
ber{l,r_.z_,V.TERM}=zber(l,r,z,V, TERM]:
bei(l,r_,z_,V.TERM)=bei(l,r,z,V, TERM];
ber(0,r_,z_, PV, TERM)zber [0, z,z, PV, TERM);
bei(0,r_,z.. PV, TERM)=bei (0, r, 2. PV, TERM]:
ber{l,r_.z_ PV, TERM}=ber{l,r, 2z, PV, TERM];
beill.r_,z_, PV, TERM]=bei[l,r,z, PV, TERM]};

ModBesselJHold [order_.r_.z_, sigma_ ] :=Hold[ber{order.r,z, sigma, TERM) |+I Hold[bei [order.r,z,sigma, TERM]];
(* BesselJ(0,.Sqrt(-I)sigmaisber[0,l,sigma, TERM]+I bei(0,1,sigma, TERN] *)

S FSANEIRIAE TN

(* BesselJ), ber+I bei, large argument approximation *}

Print(*V = = ,V//N." TERM =, TERM|

besselAccuracyLists*{ {vy ;BessalJ; (ber+I bei); ModBesselJHold: Argument->infinity approximation)}”;
besselAccuracyHizN[Abs|{{V], BesselJ (0, Sqrt(-I}V)}.ber(0,1 .z,V,TERM]+I bei[0,1 ,z,V,TERM],

ModBesselJTHold[0, 1,z,V])//ReleaseHold,Sqre(2/(Pi*Sqrt([-I} V) }Cos! sqre(-I)V-Piz4]}).9)

besselAccuracylo=N(Abs|({0.1V}, BesselJ[0,0.15qrt{-1)V] ber(0,0.1.2,V.TERM)+I bei(0,0.1,2,V,TERM],

ModBessalJHold(0,0.1,2,V)//ReleaseHold, Sqrt(2/(Pi*Sqrt[-21}0.1V)]Cos[0.15gre(-I)Vv-Pi/4]}}.9)

V=10, TERM =16
{{9.99999925), 149.847528, 149.847526, 149.847526, 148,537427)
{{0.999999925), 1.01552483, 1.01552483, 1.01552483, 1.00386903)

Xge; recoordioate Lrag
kseTemplate=ComplexExpand{ (avarKse+«I bvarKse)/(cvarkse+I dVarKse)]:
kseInmTemplatezCoafficiant (kseTemplate,I]:
kseReTemplateskseTemplate-I kseImTemplace;

kseReHold [order_.r_.z_,sigma_]=kseReTemplate/.
{avarkse->HoldForm{beriorder,r z, sigma, TERM] ],
bvarKse->HoldForm[beiorder,r, z, sigma, TERM] |,
cvarKse->HoldForm[ber|0.1,z, sigma, TERM] ],
dvarKge->HoldForm(bei (0,1, 2, sigma, TERM] ] };
kseImHold(order . r_ z_. sigma_)=zkseImTemplate/.
{avarKse->HoldForm (ber[order,r, z.sigma, TERM] ],
bVarKse->HoldPorm(bei |order,r, 2z, sigma, TERM] |,
cvarKse->HoldForm(ber(0,1, z, sigma, TERM] |,
dvarKse->HoldForm(bei(0.1.2,sigma, TERN]]);
kseHold[order_,r_,z_, sigma_]xkseReHold{order,r,z,sigma}+I kselmHold(order,r. z,sigma}:

W, reeosrdingte

miTemplates=

ConplexExpand | (avarMi+I bVarM3) (cVarM3+I dvarM3)];
m3ImTemplateszCoefficient (m3Template.1];
m3ReTenmplate=miTenplate-I m3ImTemplate:

mReHold(3,r_,z_,sigma_]=n3ReTamplate/.
{avarM3->HoldForm{-1/(sigma Sqrt(2 rho0[z]])
bvarM3i->HoldForm|-1/{sigma Sqrt(2 rheliz]])
cvarM3->kseReHold{l,r.z,sigma],
dvarM3->kseImHold{l,r z . sigma}}:
mImHold(3,r_,z_,sigma_)=miImTemplate/.
{avarM3->HoldForm|(-1/(8igma Sqrt(2 rhoOiz]]) ],
bvarM3->HoldForm[-1/({sigma Sqrt{2 rhollz]])),
cVarM3->kseReHold(l.r.z, gigma),
dvarM3->kselmHeold(l.r.z.sigma)};

B
1.

mReHoldil, r_,z_.sigma_l=-(1/p0) (r/2 - mReHold(3.r,z.8igma]});
mImMold(l, r_,z_,sigma_J=-(1/p0}( - mImHold[3,r,2,sigmal);
mReHold (2, r_.z_,sigma_]=-(1/p0) (r/(2 GAMMA) + ({(GAMMA-1)/GAMMA) mReHold(3,r.z,sigma)):
mImHold{2,z_,z_.sigma_J=-{1/p0}( + ((GAMMA-1}/GAMMA} mImHold(3,r,z,sigmal):

*
mHold(l,r_,z_,sigma_)=mReHold(l,r z,9igma] + I mimHold(l,r,z.sigma]:
mHold[2,.r_,z_, sigma_]=mReHold(2,r. z.sigma] + I mImMold(2.r.z,sigma];
mBold[3,r_,z_, sigma_]=mReHold(3,r, z,sigma] + I mImMold(3d,r,z,sigmal;

")

mRatioTemplatesCompl exExpand| (avarMRatio+I bVarMRatioc)/{cVarMRatio+I dvarMRatio)]:

mRatioImTemplatezCoefficient [mRatioTemplate I];

mRatioReTemplatesmRatioTemplate-I mRatioImTemplate;

mRatioReHold{{kindNum_, rNum_, sigmaNum_)}, {kindDem_, rDem_, sigmaDem_},z_)=mRatioReTemplate/.

{avarMRatic->mReHold[kindNum, rNum, z, sigmaNum],
bvarMRatio->mImHold [kindNum, rNum, z. sigmaNum],
cVarMRatio->mReHold (kindDem, rDem, z, sigmaDem) ,
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dvarMRatio->mImHold [kindDem, rDem, z, sigmaDem] };
mRatioImHold{{kindNum_, rNum_, sigmadum_}. {kindDem_, rDem_, sigmaDem_},z_]=mRatioImTemplate/.
{avarMRatio->mReHold {xindNum, rNum, z, sigmaium],

bVarMRatio->mImHold[kindMum, rNum, z, sigmadum],

cvarMRatio->mReHold[kindDem, rDem, z, sigmaDen),

dvarMRatio->mIzHold[kindDesm, rDem, z, sigmaDen) ) ;
mRatioHold[ (kindNum_, rNum_, sigmaNum_), (kindDem_, rDem_, sigmaDem ), z_]=

mRatioReHold{ {kindNum, rNum, sigmaNum}, { kindDem, rDem, sigmaDen},z] +
I mRatioImHold|{kindNum, rNum, sigmaNum}, {kindDem, rDem, sigmaDem}, 2];

v end m's *}

Limz Ca

timeHold(t_)=HoldForm(timeRe(t))+I HoldPorm(timeIm{t]]:
timeRe{t_]=Cos(2Pi t];
timeIm(t_]=Sin(2Pi t);

timeTwHold({t_, phiT_]=HoldForm|timeTwRe(t),phiT]+I HoldForm|timeTwRe(t],phiT]:
timeTwRe{t_,DhiT_]=Cos{2Pi (t+phiT}];

timeTwim([t_,phiT_]=5in[2Pi (tephiT}]:

(* and time ")

set certain functiony thal remain ceistant to a zal value

Xeleavehold

Timing(

mRe[3,1,z_,V) smReHold(3,1,2,V)//ReleaseHold//N;
mIm[3,1,2.,V] smImHold(3,1,z,V]//Releasenold//N;
mRe(3,1,z_,PV]smReHold(3,1,z, PV]//Releasetold//N:
mIm(3,1,2_,PV]smInHold(3,1,2,PV]//ReleaseHold//N;
mRe(1,1,z_,V)=mReHold(1.1,z.V]//ReleaseHold//N:
mIm{1,1,z_,V)=mInHold(l.1,2.V]//Releasetold//N;
mRe{2,1,z_,PV]|=mReHold{2,1,z,PV]//ReleaseHold//N;
mIm(2,1,z_,PVismImHold[2,1,z, PV]//Releasetold//N;

xseRe [0, x_,z_, VizkseReHold {0, r,2.V]//ReleaseHold//N;
xselm(0,x_,z_,V]=kseReHold [0, r,z,V]//ReleaseHold//N;
kseRe{0,r_,z_, PV]=kseReHold (0, r, z.FV)//ReleaseHold//N:
xseIm[Q,r_,z_, PV]=kseReHold (0.1, 2, PV]//ReleaseHold//N:

kseRe[l,r_,z_,V]=kseReHold(l,r .z,V]//RelsaseHold//N;
kseIm(1,r_,z_, V]izkseReHold(1,r,z,V])//ReleasaHold//N;
kseRe(l,r_,z_,PV)=kseReHold[1l.r,2,PV]//ReleaseHold//N;
kseIm[l,r_.z_,PV)=kseReHold[l,r, 2, PV]//ReleaseHold//N;

mRatioRe({1,1,V},{2.1,PV),z_)=mRatioReHold[{1,1.V),(2.1,PV},z])//Releasetold//N:
mRatioIm({1.1.V),(2,1,PV]), z_)=mRatiolmHold({1.1.V},{2,1.PV}.z])//Releaserold//N;
mRatioRe({3,1,PV}, {2.1.PV},z_]=mRatioReHold({3.1,PV},{(2.1,PV}, z]//ReleaseHold//N;
mRatioIm{{3.1,PV}.{2.1,PV}, z_|-mRatioImHold({3.1,PV},{2,1,PV},z)//ReleaseHold//N:

mRatioRe{{1,r_,Vv}.{1,1.V}, z_]l=mRatioReHold({1l.z,V}.{1,1,V},z]//ReleaseHold//N;
mRatiolm((1,r_.V},{1,1,V}, z_]=nmRatiolmHold[{1,r.Vv}.{1,1,V},z]//Releasatold//N:
mRatioRel (2,r_.PV),{2,1,PV). z_]=mRactioReHold({2.r PV}, (2,1,BV},z]//ReleaseHold//N;
mRatioIm[{2.7_. PV}, {2.1,PV},z_]=mRatiolmHold({2.r.PV),{2,1,PV}, z]//Releasetold//N;
mRatioRe[{3.z_,PV},{3.1,PV},z_]=mRatioReHold({3.r.PV). (3,1, PV}.z]//Releaseliold//N:
mRatioIm({3.z_, PV}, (3,1,PV},z_)=mRatiolmHold{{3.r,PV}),{3,1,PV},z]//ReleaseHold//N;
)

{12.4333 Second, Null}
Derivatives of r.oz.t imns 7

DkseRer{0,r_.z.,V]=DlkseRe(C.r,2,V].Z)//N;
DkseImR(0,r_,z_.V]=D(kseIm(0,r,2,V],r]//N;
DkseReR{0,r_,z_,PV]=D(kseRe[0.r, z,PV],r]//N;
DkseIms(0,r_,z_,PV]=D(kseIm[0,x,z, PV}, r]//N;

DmRatioReR{{1.r_,V},{1.1,V}.z_]=D(mRaticRe{{1l,r V). {1,1.V},z], z1//N;
mRatioImR({{1,r_,V),{1,1.V).z_)=DimRatioIm[{l,z,V],{1.1,V}.zl.x)//N;
DmRatioReR{{2,r_,PV),{2.1,PV),z_]=D[(mRatioRe{{2.r PV}, {2,1,BV}.z].z]//N:
DmRatioImR({2,r_, PV}, (2.1,PV),2_)sD(mRatioIm[{2.r PV}, {2.1.PV),2),x)//N;:
tmRatioReR{{3,r_.PV}, (3,1,PV),z_)=D({mRatioRe[(3,r, PV}, {3.1.pv},z],r)//N;
DmRatioImR|{3.r_.PV}, (3,1, PV}, z_}=D[mRatioIm[(3,r PV} {3.1,BV},z].ri//N;

(=

OkseReR(0,r_,z_, sigma_]=D[kseReHold[0.r,z,sigma)//ReleaseHold, r]//N;
DkseImR{0,r_.z_,sigma_]=D(kseImHold(0,r.z,sigma)//ReleaseHold, rl//N;
pkseReR[0.x_,z_.V)=D{kseReHold[0,r,z,V]//ReleaseHold. r]//N;
DkselImR[0,r_,z_,V]=D(kseImHold(0,r,z,V]//ReleaseHold. r}//N;

")

otimeReT(t_]=D{timeRe{t].t]:
vrimeImT(t_]=DltimeIm(t].t];
DtimeTwReT [t_,phiT_)=D[timeTwRe[t,.phiT], . t};
CtimeTwImT(t_,phiT_}=D{timeTwlm{t,phiT].t]);

("
DuChatETemplate
Dulhat2Template

{Uo- (Uo~Ul ExplI 2Pi phiU]}z) (1-{DkseRelrzvy + I skseIm0rzVR} )/ (1- (kseRe00zV » I kselm0CzV}):
5[ (Uo- (Uo-Ul ExplI 2Pi phiU))z) (1- (kseReOrzV + I kselmOrzV))/ {1-(kgeRe00zV « I kseIm00zV)),z];

DvOhat®Termplate = ((mRellzV + I mImllzV)/(1-(kseRe00zV+I kseIm00zV)))*
{{DmRatioRe2rPV21PVzR « I DMRATioIM2rPV21PVZR) - (DoRatioRelrVilVzR + I DmRatioImlrV11Vzk)) (Uo-Ul BExpll 2pi phiu)) -
1* (mRe31zPV+I mIm31zPV)* ( (DMRAtioRe2rPV21PVzR+I DuRatioIm2rPVZIPVzR) -
(DmRatioRe3rPVi1PVzP+I DmRatioIm3rPV3lPVzR))*TW*Exp(I 2Pi phiT};

DvOhat2Template = ((mRellzV + I mImllzV)/ (1- {kseReQ0zV+I kseIm0QzV)})*
{(mRatioRe2rPV21FVz + 1 mRatioIm2rPV21PVz) - (mRatioRelrVvilvz + I mRatioImlrvilvz)) (Uo~Ul Expl[I 2Pi phil)} -
I°(mRe31zPV+I mIm31zPV)~((mRatioRe2rPV21PVz+1 mRatiolm2rPV21FVz)-
{mRatioRe3rPV3I1FVz+I mRatioIm3rPV3IL1PVz))*Tw*Exp(I 2Pi phiT}:

rvOhatzTemplate = 0; (* for at least the gratTO=0 case *!
")

Thin tLoe-ws
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do,m

Wil L o

si=F Sqtcl I
irodirier for thenan. ')

thetalr’xnd't\ucamlexzxpand{‘hvl'm[! 2Pi phiT] BExpl[I 2Pi t]{Exp(I si y]l-ExplI 8i]) I Sin(si y)/Cos[si))):
thetalReFindTwly_,t_,F_.phiT_, Tw_]}=thetalFindTw-I Coefficient[thetalFindTw,I];

QbR al lernran e

)the:dlﬁe?:nd‘rw‘l ly_,

ey The amg ot Macnen

t_ F_,phiT_, Tw_ ]sCollect[Dl:heulReFmdw(y t F, phx'r

,‘N] )’] T/ /N

(-

MTIETEpIat e memplane s v fing Tw, Tt
DTIRTemplateFindTw lexbmlnd(( I ({(GAMMA-1)/GAMMA) (Uo-Ul Exp(I 2Pi phiU]}
(mtionenvnw:d oRatioImllV2ipvz)*
{0- {DkseReROrzPV+I DkseImROrzPV)) / (l-{kseRe(0zV+I kseIm00zV)}) «
{ {(DkseReROrzPV+l DkseImROrzPV)-{( (GAMMA-1)/GAMMA) (mRatioRe31PV21PVz+I mRatioIm3lPV21PVz}*
(0- (OkseReROrzPV+I DkseImROrzPV)))) Tw ExplI 2Pi phiT])*Exp(Il 2Pi t}):
DT1lImRTemplateFindTw = Coefficient[DT1RTemplaterindTw,I];
DT1ReRTemplateFindTw = DT1RTemplateFindTw-1 DT1ImRTermplateFindTw;

= vake d : iy e TOTI T FavE
D'rmei‘indMHold'rup [, z_, £_.V.,PV,Uo_,Ul_, pth ,phiT_,Tw_]=DT1ReRTemplateFindTw/ .
{mRatioRellV2iPVz->HoldPorm([mRatioRe({1,1,V)}, {2,1,PV}.2]]),
mRatioImllV21PVz->HoldPorm{mRacioIm({1,1,V},{2,1,PV}.z]],
DkseReROrzPV->HoldForm(DkseReR [0, 1.z, V] ],
DkselmR0rzPV->HoldPorm|[DkseImR{0,r,z,PV]],
kseRe00zV->HoldForm(kseRe[0,0.2,V] ],
kseIm00zV->HoldForm{kseIm(0,0,2.V]],
mRatioRe31PV21PVz->HoldForm[mRatioRe[(3,1,PV),{2.1,PV}.2]].
mRatioIm31PV21PVz->HoldForm[mRatioIm{(3,1,PV}, (2,1,PV}.2]});
DT1ReFindTwRHold(r_,z_,t_,V.PV,Uo_,Ul_,phiU_,phiT . Tw_|=
Collect {Expand[DT1ReFindTwRHoldTemp(r, z.t.V, PV, U0, UL, phiU, phiT, Tw] ], Tw]);

rhoTame *i

DT1ImFindTwhHoldTemp(r_,z_.t_,V, PV, Uo_.Ul_,phiU_,phiT_, Tw_]=DT1ImRTemplateFindTw/.
{=RatioReliV21PVz->HoldForm(mRatioRe({1,1,V},{2,1,PV}.2]].
zRatioImllV2iPVz->HoldForm(mRatioIm({1,1,V},{2,1,PV},2]],
DkseRer0rzPV->HoldForm|LkseRer (0, r,z,PV]],
DkseImROrzPV->HoldForm{DkseImR[0,x, 2, PV]],
kseRe00zV->HoldForm(ksere(0,0,2,V]],
kselm00zV->HoldForm{kselm(0,0,2,V]],
mRatioRe3diPV21PVz->HoldPorm[mRatioRe({3.1,PV),{2,1,PV},z]],
mRaticIm31PV21PVz->HoldForm(mRatioIm({3.1,PV},{2,1,.PV},2]}}:
DT1ImFindTwkHold{r_,z_,t_,V,PV,Uo_,Ul . phiU_,phiT_,Tw_}=
Collect [Bxpand{DT1ImFindTwRHoldTemp(r,2,t,V, PV, Uo, UL, phil, phiT, Tw} ), Tw]:

¢ condnotay

condDataStar={{.8, 20,.02830},(.8, 25..03108),{.8, 30,.03518},{.8, 40,.04160},{.8,50,.04766),(.8,60,.05342},
(.8, 80,.06826),(.8,100,.07439),(.8.120,.08396),(.8,140..09310},(.8,16C,.1019},(.8,180,.1103},
(.8,200,.1185) ,{.8,220,.1265) ,{.8,240, .1343),{.8,260,.2418) .(.B,280,.1492).(.8,300,.1565}.
{.8,350,.1740) ,{.8,400,.1905}}:

condritStar(p_.T_]=Fit[(condDataStar, (1.p,T.p"2,7T"2,p"3, T3} {p.T)I:

" BOLVE FPOR TW AND PNIT °)
{* Solve for TWhat bexe *:

For Fo = 99.9996
Twhat = 0.31027 - 0.0779612 I
™ = 0.31991%
PHIT = -0.0391796
{* OLD Solve for TW =)
Pirst Round: Solve for implicit function

I ) L& Wl Seave tor ‘Z‘-: and make tie as 5 o

gonstant in oz

Timing[
tempvar=Solve|[DthetalReFindTwy{0,t,F,phiT, Tw]==KGAS IT1ReFindTwRHold(l,z,t,V.PV,Uo,Ul,phil,phiT, Tw] JTw);
Twall{l,z_.t_,V,PV.Uo_.Ul_,phiU_,phiT_,KGAS, F.KTUBE}=Tw/.tempVar((1,1]}//ReleaseHold//N;
deltaTwil.z_, {tl_,t2_),V.PV,Uo_, Ul_,phiU_,phiT_,KGAS F XTUBE)=
Twallll,z,t2,V,PV,Uo, Ul,phiU,phiT, KGAS,F,KTUBE)-Twall(l,2z.t1,V,PV,Uo,Ul,phiVU, phiT, KGAS, F. KTUBE] ; |

(17.6667 Second, Null}

Second Round: Wumerical Root Pinder

d Tw df you can maxe oo
"platnl

It oot ¢
Check nne value found for BHIT.

aula be censtant for all =

tempVarsN[FindRoot [deltaTw(1,0,{.1. .45}, V. PV, U0, UL, PHIU, phiT, KGAS, F,KTUBE]==0, {phiT, .3}]];
CempPHIT = 0.2607BS; tempTW = -0.516552

PRIT=-0.239215

Twallz{0.516552, 0.516552, 0.516552, 0.516552, 0.516552, {0.516552)}

(* check z {in)dependence of Twall *)

Plot{Twall[l,2,0,V,PV.UOQ,UL, PHIU, PHIT, KGAS, F, KTUBE], {z.0,1}]

-Graphics-

WOINY T AL SEIT G Lonuny Yool

O FLot ower E

Timing [Block((

(v2=.1,t0=.45}, Plot[deltaN[l 0.{tl.t2},V,PV,U0,UL, PHIU, phiT, KGAS, F, KTUBE},
{phiT,0,1).

{*PlotRange->{-.1, .1}, *)Axesiabel->{*phiT*, "ATw"}]]]
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{3.05 Second, -Graphics-}

{* Flot over

tha

up T Arendli te the
i > down Lo Ater? char are far from the sinag

Tu\inqlnlock[(tlz 45,t2=.55),Plot ({deltaTw (1.0, (tl f.2) V,PV,UQ,UL, PHIU, phiT, KGAS, F, KTUBE] ,

{phiT. .35, .45}, (*PlotRange->{-.1, .1}, *)AxesLabel->{"phiT", *ATw"}]]]

re ¢l

{0.483333 second, -Graphics-}

* Ty he Num » Eiod PHIT

¥OADOVE L gel 4l &Pproxinate

[ ‘.t vou Can now make & guod
s of where he root is.
FindRoo:[dcl Tw{l,0,{.45,.55},V, PV, U0, UL, PRIV, phiT.KGAS,F, KTUBE]- 0,
{(phiT, {.16,.38}}]
(*PHIT=phiT/.8[[1])); ")
If{Less{tempTW, 0], PHIT=tempPHIT- .5, PHIT=CempPHIT) ;
(*If (Greater |[tempPHIT, +0.5) , PHIT=tempPHIT- 1, PHIT=tempPHIT]:"

Print ("PHIT=*
Print|-Twall=

PHIT);
. {Twall(1.,0,.0, V,PV.UO,UL, PHIU, PHIT, KGAS, F, KTUBE},

Twall(1,0,.125, V,PV.UD, UL, PHIU, PHIT, KGAS. F,KTUBE] .
Twall(l,0,.25, v, PV, U0, UL, PHIU, PHIT, KGAS, F, XTUBE],
Twall[1.0,.50, V. PV,U0, UL, PHIU, PHIT, KGAS, F, KTUBE],
Twall(l,0,Random(],V,PV,UQ, UL, PHIU, PHIT. KGAS, P KTUBE] } ]

T™W = Twall(l,(,Random(],V, PV,UQ,UL, PHIU, PRIT, KGAS, F, KTUBE]

Print (" (* INTERMEDIATE SAVING OF CALCULATED Twall{l, 0 ¢t V PV,U0 UL, PHIU, DhiT KGAS F, KTUBE WIADH
Print{°(* FOR ParameterList(".plListvar,®]"." *}°]
Print|*Twall(l,0,t_.V.PV,UQ, UL, PEIU,phiT_,KGAS,F. KTUBB]"' Twall[l.0,t,V,PV, U0, UL, PHIU, phiT, KGAS,F, KTUBE]. ;"]

(* INTERMEDIATE SAVING OF CALCULATED lambdaAtl and Twall(l,0,t,V.PV,UQ,UL,PHIU, phiT, KGAS, F KTUBE] *)
(* FOR ParameterList{plListVar] *)

lambdaAtl=0.00394773 - 0.0000298093 I: lambdaAtlRe=0.00394773; lambdaAtllIm=-0.0000298083;
Twall(l,0,t_,V,.PV,UO, UL, PHIU, phiT_, KGAS,F . KTUBE]=

(-0.00807124 (77.2504 Cos(6.28319 t] + B8.2443 Sinf{6.28319 cl)) /

(15.1675 Cos(1.3376 - 6.2831% phiT - 6.2B319 t] - 6.39891 Cos(6.28319 (phiT + )} -
84.1828 Cos|6.28319 phiT + 6.28319 t] - 8.66834 Sin(1.3376 - 6.28319 phiT - 6.28319 t] +
0.526423 Sin(6.28319 (phiT + t)) + 84.1828 Sin(6.28319 phiT +» 6.28319 tl}):

srsezxnzex (* AUTOBREAK *) sszzrmzzmoas

+ PARAMETER LIST {for use in exporting to plot routines)
ParameterLists (V. PV, KGAS,KTUBE, U0, UL. ¥, eps, GAMMA, PHIU, F, TERM, N[TW. 5] . N{PHIT.5])

H
ParameterList=(5.6419 Sqrt(Pi]. 4.72932 Sqrt{Pi), 0.0091411, 1., 2., 1., 1.20617 10 Pi, 0.002, -. -0.1, 0.0564191 Sqre(Pi). 16, 0.31991, -0.03918)
k)

» SOLUTION OF TW AT PHIT FOR CONTINUITY OF MEAT FLUX AT GAS/TUBE BOUNDARY
TW=0.319915 at PHIT=-0.0391796

« RANDOM TIME CHECK, ALL VALUES FOR TW SHOULD BE THE SAME

tRandom=0.21554%

PHIT=-0.0391796

Twalls{Twall(l.., 0., 0., 10., 8.3825, 1.. 1., -0.1, -0.0391796, 0.009141l, 0.1, 1.],

Twall[l., 0, 0.125, 10., 8.3835. 1., 1., -0.1, -0.0351796, 0.0091411, 0.1, 1.].
Twsll(l., 0, 0.25, 10., B.3825, 1., 1.. -0.1. -0.0391796, 0.0091411. 0.1, 1.1,
Twall{l., 0, 0.5, 10., 6.3825, 1., 1., -0.1, -0.0391796, 0.0051411, 0.1, 1.},
Twall(l., 0, 0.21554%, 10., 8.3825, 1., 1., -0.1, -0.0391796, 0.0091411, 0.1. 1.1)
Bessel Fxn Accuracys { (4] ;Besseld; (berel bei): ModBesselJHold; Argument->infinity approximation)}

Bessel Accuracy Hi = {{9.99999925). 149.847528, 149.B47526. 145.847526. 148.537427}
Bessel Accursey Lo = {{0.999999925), 1.01552483, 1.01552483, 1.01552483. 1.003B6903}

» NON-DIMENSIONAL SCALING VARIABLES CALCULATED:

Vas100.; Pr=0,703; Pr*Va=70.2663; $ 3500.; Foz100.; EL=0.00600497: Mx3.78929 10 ; Red =4.89902
pOsl; TO[z]=1 : rhol(z]=l
+ NON-DIMENSIONAL VARIABLES USED IN COMPLEX SOLUTION:

Val0.; P=0.83825; PV=8.3825; epm=0.002; Fx0.1; M=3.78929 10 ; LAMBDA=4.30762 10 eps*Vas0.2

U0sl.: UL=l.; PHIU=-0.1:; TERMal6: KGAS =0.0091411; KTUBEsl.: GAMMAx-; d0=0.002; AL=0.002; PHIT=-0.0391796; TW=0.31891S
3

ARCHIVE Parametsr List

* NEY 4

[

s oond DL oane rheoenovho daflusson lavey
Answers » lincar flow
(* ANSWERS to Pirst Oxder Plow *)
{* w0, v0, T3, pl1, rhol %}
{* A
plhatTemplate = ((-I/{1-(kseRe00zV+l kselm00zV}))~

(mRatioRellV21PVz + I mRatioImllV21PVz ) {Uo-Ul Exp(I 2Pi phiU])-~
(mRatioRe31PV21PVz + I mRatioIm31PV21PV¥z) Exp(I 2Pi phiT]Tw):
plhatTemplateTwhat = {((-I/{1-(kseReC0zv+I kselm00zV}) [
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(mRatioRellV21PvVz + I mRatioImllV21lPVz ) (Uo-Ul Exp(I 2Pi phiU]}-
(mRatioRe3l1PV21PVz + I mRatioIm31PV2iPVz) Twhat):
p2hatTemplate = I ((Uo-Ul Bxp(I 2PL phiU])/(1-(kseRe00zV+I kseIm00zV))) (2°2/2) - I z/{1-(kseRed0zV+I kseImi0zV));
ulhatTemplate = (Uo-({Uo-Ul Exp[I 2Pi phiU))z) (1-(kseRedrzV + I kseImOrzV))/(l-(kseRe00zV + I kseIm00zV));
TlhatTemplate = (-I (({GAMMA-1)/GAMMA) (Uo-Ul BExp([I 2Pi phiU}) (mRatioRellV21PVz+I mRatiolmllV21PVz) *
(1-{kseRe0rzPV+I kseIm0rzPV}) / (1-(kseRe00zV+I kseIm00zV)}) +
{(kseRe0rzPV+I kseImOrzPV)-{((GAMMA-1)/GAMMA) (mRatioRe31PV21PVz+I mRAtioImI1PV21PVZ)~”
(1-{kseRe0rzPV+I kseImOrzPV))}) Tw Exp(I 2Pi phiT)):
vOhatTemplate = {{mRellzV + I mImllzV)/(1l-(kseRe00zV+I kseIm00zV)))}*
{ (mRatioRe2rPV21PFVz + I mRatioIm2rPV21PVz)-(mRAtioRelrVilvz + I mRatioImlrviivz)) {Uo-Ul Bxp(I 2Pi phiU)} -
I*{mRe31zPV+I mIm31zPV)* ((mRAtioReZrPV21PVz+I mRatioIm2rPV21PVz)-{mRatioRe3rPV31PVz+I mRatiolm3rPV3lPVz))*
Tw*Bp(I 2Pi phiT]):
rholhatTemplate = plhatTemplate/T0[z) - rhollz] TihatTemplate/T0(z]:
particleTracehatTemplate = ~I{do-(do-dl Exp(I 2Pi phiU))z) (1~ (aDORe+I aD0Im))}/(1-(bDORe«I bDOIm}):
plvolhatTemplate = (-I 2 GAMMA {r (DTlhatReRVar+I DTlhatImiVar)/Power(PV,2] -
(mRellzV+I mImllzV) (Uo-Ul BxplI 2Pi philU))/(1l-(kseRe(0zV + I kselmd0zV}))):

plTenmplate = ComplexBxpand{Exp{I 2Pi t) plhatTemplate];
uOTemplate = ComplexBxpand {Exp(I 2Pi t] ulhatTemplate):;

TiTemplate = ComplexExpand[Exp(I 2Pi t] TlhatTemplate];

vOTemplate = ComplexExpandiBxp(I 2Pi t) vChatTemplate]:
particleTraceTenplate = ComplexExpand (Exp[I 2Pi t] particleTracehatTemplate]:
plvolTemplate = ComplexExpand (Exp(I 2Pi t] plVolhatTemplate]:;

rholTemplate = ComplexExpand[Expl[I 2Pi t) rholhatTemplate);

plReTemplate = plTemplate-I Coefficient(plTemplate.I):
uOReTemplate = ulTemplate-1 Coefficient{uQTemplate,I):
TlReTemplate = TlTemplate-I Coefficient{TiTemplate.I];
vOReTemplate = vOTemplate-I Coefficient{vOTamplate,I):

particleTraceReTenmplate = particleTraceTemplate-I Coefficient (particleTraceTemplate, I]:
plvolReTemplate = plVolTemplate-I Coefficient(plVolTemplate, I];:
rholReTemplate = plReTemplate/TO[z] - rho0[z] TiReTemplate/T0(z):

(-

plRehatTemplate = plhatTemplate-I CoefficientplhatTemplate.I):

uORehatTemplate = uChatTemplate-I Coefficient[uChatTemplate,I):

TlRehatTemplate = TihatTemplate-I Coefficient[TlhatTemplate,I];:

vORehatTemplate = vOhatTemplate~I Coefficient|vlOhatTemplate, I];

particleTraceRehatTemplate = particleTracehatTemplate-I Coefficient([particleTracehatTemplate, I);
plvolRehatTemplate = plVolhatTemplate-I Coefficient{plVolhatTemplate, I];

rholRehatTemplate = plRehatTemplate/TO[z] + rho0{z] TlRehatTemplate/TO(z);

")

ulhatInTemplatesCoefficient (ComplexBxpand (ubhacTemplate]. I):
uOhatReTemplate=ComplexExpand (ubhatTemplate) -I ulhatImTemplate;
uChatCCTemplatesuChatReTemplate-I ulhatImTemplate;

vOhatImTemplate=Coefficient [ComplexExpand(vOhatTemplate] , I];
vOhat! latesCompl d(vOhatTemplate) -I vOhatImTemplate;
vOhatCCTemplatesvihatReTenplate-I vOhatImTemplate:

TihatlnTemplate=Coefficient (ComplexExpand (TlhatTemplate], I);
TilhatReTenmplate=ComplexExpand [TlhatTemplate] -I TlhatImTemplate;
TlhatCCTemplatesTihatReTemplate-I TlhatImTemplate;

plhatImTemplatesCoefficient [ComplexExpand (plhatTemplate] I};
plhatReTemplates=ComplexBipand (plhatTemplate] -I plhatimTemplate:
plhatCCTemplatesplhatReTemplate-I plhatIimTemplate:

plvolhatInTemplatesCoefficient [ComplexExpand [plVolhatTemplate),1);
plVolhatReTenplatesComplexExpand [plVolhatTenplate] -I pivolhatImTemplate:
plvolhatCCTemplatesplVolhatReTemplate-I plVolhatImTemplate;

rholhatImTemplatexzCoefficient [ComplexExpand{rholhatTemplate], I
rholhatReTenplatexComplexExpand (rholhatTemplate] -I rholhatImTemplate;
rholhatCCTemplatesrholhatReTenplate-I rholhatImTemplate;

DTihatRTemplate = ComplexExpand| (-I (({GAMMA-1)/GAMMA) (Uo-Ul Exp{I 2Pi phiU]) (mRatioRellV21PVzeI mRatioImllV21PVz)*
{0- (CkSeReROrzPV+I DkSeImROrzPV)) / (1-(kseRe00zV+I kselm00zV))) «+
{  (DkseReROrzPV+I DkseImROrzPV)-({ (GAMMA-1)/GAMMA} (mRAtioRe31PV21PVz+I mRatioIm31PV21PVzZ)*
(0- (DkseReR0rzPV+1 DkseImROrzPV)})) Tw ExplI 2Pi phiT])]:
DrihatImRTemplate = Coefficient[DTlhatRTemplate.I};
DrihatReRTemplate = DTlhatRTemplate-I DTlhatImRTemplate;

CTlhatReRHoldTemp({r_.z_.t_,V,PV,Uo_.Ul_,phiU_,phiT_, Tw_|=DTlhatReRTemplate/.
{mRatioRellV21PVz->HoldForm(mRatioRe[(1.1,V},{2,1.PV},z2}},
mRatioImllV21PVz->HoldForm{mRatioIm{{1,1.V},{2,1.”},2]],
DkseReROrzPV->HoldForm[DkseRek {0, r .z, PV]],
DkselmROrzPV->HoldForm!{DkseImr {0, z,PV]].
kseRe00zV->HoldForm|kseRe(0,0,2,V]],
kseIm00zV->HoldPorm[kseIm{0,0,2z.V]],
pRatioRe31PV21PVz->HoldForm[mRatioRe({{3,1,PV}, {2,1,PV),z]].
mRatioIm31PV21PVz->HoldForm(mRatioIm((3.1,PV}, (2,1,PV),2]]);
DTihatReRKoldlr_.z_.t_.V.PV,Uo_, Ul ,phiU_,phiT_, Tw_]=

Collect [Expand[DTlhatReRHoldTeamp(z, z,t,V, PV, Uo. Ul, phil, phiT, Tw] |, Tw):

PlhatImRBoldTemplr_.z_, t_,V.PV,Uo_,Ul_,phiU_,phiT_, Tw_]=DTlhat InRTemplate/.
{mRatioRellV21PVz->HoldForm|[mRatioRe[{1,1,V}.{2.1,PV}.2]],
mRatioImllV21PVz->HoldForm[mRatioIm|{{1.1,V],{2.1,PV}, z]],
DkseRerOrzPV->HoldForm{DkseRer [0, 1,2, PV},
DkseImROrzPV->HoldForm(Dkselm? (0.1, 2, PV} ],
kseRe00zV->HoldForm (kseRel0, 0,2, V1],
kseIm00zV->HoldForm{kseIm{0,0,2,V!]],
mRatioRe31PV21PVz->HoldForm|{mRatioRe((3,1,PV}.{2,1,PV},2]].
mRatioIm31PV21PVz->HoldFormimRatioIm{{3,1, PV}, {2,.1,PV},2]]);
DTlhatImRHold{z_,z_.t_.V,PV,Uo_,Ul_,phiU_.phiT_,Tw_}=
Collect |Expand (TihatImPHoldTemp{r,z.t,V, PV, Uo, UL, phil, phiT, Tw]], Tw];

(=
vOhatTemplate//ComplexExpand
f==v0hatReTenplate+I vOhatInTemplate
")

(-

plhatCCTemplate = piRehatTemplate-I Coefficient(plhatTemplate.I);

vOhatCCTemplate = vORehatTemplate-I Coefficient|vOhatTemplate,I};

particleTracehatCCTemplate = particleTraceRehatTemplate-I Coefficient [particleTracehatTemplate, I);
plvolhatCCTemplate = plVolRehatTemplate-I Coefficient(plVolhatTemplate,Il:

.) - -
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(* Assignments and Compilations *)
(LA LA

plAssign={kseReQ0zV->HoldFormikseReHold (0,0, 2, sigmaV]],

kseImD0zV->KoldForm[kselmHold [0, 0.z, sigmav]]),
mRatioRellV21PVz->HoldForm{mRatioReHold[{1.1,sigmaVv}, (2,1, sigmaPV),2)},

mRatiolmllV21PVz->HoldForm[mRatioImiold[ (1,1, sigmav}, {2.1,sigmaPv}.z)],
mRatioRe31PV21PVz->HoldForm(mRatioReHold ([ (3,1, sigmaPV), {2.1,sigmaPV}.2]],
mRatioIm31PV21PVz->HoldForm{mRatioXmHold[ (3.1, sigmaPV), (2.1, sigmaPV}.z}]}:

plReHold[z_, t_, sigmaVv_, sigmaPV_,Uo_.Ul_,phiU_.phiT_, Tw_]=plReTemplate/.plAssign;

piRe(z_.t_,sigmaV_, sigmaPV_,Uo_,Ul_, phiU_,phiT_, Tw_] :=plReHold(z,t, sigmaV, $igmaPV,Uo,Ul,philU,phiT, Tw] //

ReleaseHold//ReleaseHold//N;
piRe(z_,t_,V.PV,U0, UL, PHIU, PHIT, TW)=plRe(z, t,V, PV, U0, UL, PHIU, PHIT, ™)
piae{z_,t_,V,PV,U0, UL, PHIU, PHIT, 0]=plRe(z,t V. PV, U0, UL, PHIU, PHIT,0];

wlhatHoid[z_, sigmaV_, sigmaPV_, Uo_,Ul_,phiU_,phiT_, Tw_}=plhatTemplate/.plAssign;

pihat{z_, sigmav_, sigmaPV_,Uo_, Ul_,phiU_,phiT_, Tw_] :=plhatHold{z, sigmaV, sigmaFV,Uo, Ul,phil, phiT.Tw]//
ReleaseHold//ReleaseHold//N;

pihat{z_.V, PV, U0, UL, PHIU, PHIT, Tw_] =plhat(z,V,PV,U0,UL, PHIU, PKIT, Tw]/ /ComplexExpand;

pihatHold(z_, sigmaV_, sigmaPV,_,Uc_.ULl_, phiU_, Twhat_]=plhatTemplateTwhat/.plAssign;

pihat{z_,sigmaVv_,sigmaPV_,Uo_,Ul_,phiU_, Twhat_]:=plhatHold(z, sigmaV. sigmaPv,Uo.Ul,phiU, Twhat}//
ReleageHold//ReleaseHold//N;

pihat{z_,V,PV,U0,Ul_,phiU_, fo_] =pihat{z.V,PV,U0,Ul,phiV, Twhat (Ul phiV.fol):

p2hatidoid(z_, sigmav_,Uo_,Ul_,phiU_]=pZhatTemplate/ .plAssign:

p2hat(z_, sigmav_, Uo_, Ul_,phiU_]):=p2hatHold(z. sigmaV, Uo,Ul,phiU)//ReleaseHold//ReleaseHold/ /N
(*p2nac[z_,V.U0, UL, PHIU] =pzhat{z,V,U0,UL, PHIU}//ComplexExpand;*}
Dp2hatZ(z_,V,Uo_,Ul_,phiU_)=D[plhat[2.V,Uo, Ul,phiV]),z}:
DpzhatZ{z_.V,U0,UL,PHIU)=D[p2hat(z,V.UQ, UL, PHIU], 2];

ivopluel )

PlVolAssign= {mRellzV->HoldPorm(mRe([l,1,z,V]],
nimllzV->HoldForm(mIm(1,1,2.V]],
kseRe00zV->HoldPorm|kseReHold[0,0,2.V]]},
kseIm00zV->HoldForm(kseImHold(0.0.2.V]).
OTlhatReRVar->HoldForm{DT1hatRePHold(1,z,t,V.PV.Uo,Ul,philU, phiT, Tw] ],
DrihatImRVar->HoldForm{OTlhatImrHold(1,2.¢t,V, PV, Ue, UL, philU, phiT, Tw] ],
T->1};
plVolReHold(z_,t_, sigmaVv_, sigmaPV_, Uo_,Ul_,phil_
plVolRe(z_.t_, sigmav_,sigmaPV_,Uo_. Ul_.phiu_.ph
ReleaseHold//ReleaseHold//N;
pivolRe{z_.t_,V,PV,U0.UL, PRIV, PHIT, TW]=plVolRe[z,t,V, PV,UC, UL, PRIV, PHIT, TW];
plVolRe{z_,ct_,V,PV.U0.UL, PHIU, PHIT, 0] =plVolRe{z,t .V, PV, U0, UL, PHIU, PHIT, 0}

,phiT_, Tw_]=plVolReTerplate/ .plVolAssign:
_.Tw_]:=plVolReHold{z,t, sigmaV, sigmaPV,Uo,Ul phiU, phiT, Tw]//

T1Assign= (mRatioRellV21PVz->HoldForm(mRatioReHold ({1, 1, sigmaVv}, (2.1,sigmaPV},zl).
mRatiolmllV21PVz->HoldForm(mRatioImHold{{1,1,sigmav}, (2, 1,sigmaPV).z]],
kseRe00zV->HoldForm{kseReHold[0.0,z.sigmaVv]].
kseIm00zV->HoldForm{kseImHold (0.0, 2z . sigmav]],
mRatioRe31PV21PVz->HoldPorm(mRatioReHold[(3,1,sigmaPV),{2,1,signa?Vv),z]].
mRatioIm31PV21PVz->HoldForm(mRatioImHold((3.1, sigmaPV}.{2,1, sigmaPv),z]).

kseReOrzPV->HoldForm{kseReHold (0, r, z, sigmaPV] ],
kseIm0rzPV->HoldForm{kseImHold(0,r,z. sigmaPV)]}:

T1ReRold(r_,z_.t_, sigmaV_,sigmaPVv_,Uc_, Ul ,phiU_,phiT_, Tw_}=T1ReTemplate/.TlAssign:

TiRe[r_.z_.t_.sigmav_, sigmaPV_,Uo_,Ul_.phiU_,phiT_, Tw_]:=

TiReHold(r.z.t,sigmaV, sigmaPV,Uo,Ul,phiU, phiT, Tw}//ReleaseHold//Releasetold//N:

TiRelr_,z_,t_,V,PV,U0, UL, PHIU, PHIT, 0)=T1Re(r, z, € .V, PV.U0. UL, PHIV, PHIT, 01:

~Relr_,z_,t_,V,PV.U0, UL, PEIU, PEIT, TW) =TlRe(r,  z,t,V, PV, U0, UL, PHIU, PHIT,TW]:

qlir_,z_.t_.V,PV,U0,UL, PEIU, PHIT, 0] =-Expand [D{T1ke(x, z,t,V, PV, UD, UL, PHIU, PHIT,0). r}}:
Qlir_.z_,t_,V.PV,U0, UL, PHIU, PHIT, TW]=-Expand [D(TiRe(r, z.t,V, PV, U0, UL, PHIU, PHIT, TW] . 2] ]

TihatHoldlr_,z_. SigmaV_, sigwaPV_,Uo_,Ul_,phiU_,phiT_, Tw_]=TlhatTemplate/ .TlAssign:
Tihatlr_,z_, Sigmav_, sigmaPV_,Uo_,Ul_,phil_,phiT_, Tw_]:=
TihatHold([r,z, sigmaV, sigmaPV,Uo,Ul, phil, phiT, Twl/ /Releasetold//ReleaseHold//N;
wihat{r_,z_,V,PV,U0, UL, PHIU, PHIT, Tw_} =Tlhat [r,2z,V,PV,U0, UL, PHIU, PHIT, TW]//ComplexExpand
{* Expand for some unknown reason keeps in a form for DT1hatR to be in Re+«I Im form*)

DTihatR{r_,z_,V,PV.UO,Ul_.phiU_, PHIT, Tw_]=D[7lhat [z, z,V,PV,U0,Ul, phiU, PHIT, Tw} , z] (*//ComplexExpand®) ;
DTlhatR{r_,z_,V.PV,UQ,UL, PKIU, PRIT, Tw_]=D{Tlhat [r,z V. PV,U0, UL, PHIU, PHIT. Tw], r] {*//ComplexExpand®};

qlhatlr_,z_,V,PV,U0, UL, PHIU, PHIT,0] =-DrlhatR(r,z.V,PV,U0, UL, PHIU, PHIT,0);
qlhat(r_,z_,V,PV,U0,UL, PEIU, PHIT, TW]=-DT1hatR(x, z,V, PV, U0, UL, PHIU, PHIT, TW];

IntTihatROl[z_, V. PV, U0, UL, PHIU, PHIT, Tw_]=
2 Integrate(r Tlhac{r,z,V,PV,U0,UL, PHIU,PEIT,Tw], (r,0.1}] (*//ComplexExpand®);
NuC({z_,V.PV,U0,UL, PHIU, PHIT, Tw_]=
-prihatR[1,z,V, PV, U0, UL, PHIU, PHIT, Tw]/ (Tw Exp(I 2Pi PHIT] - IntTihatRO1{z,V, PV, UQ, UL, PHIU, PHIT, Tw])
(*/ /ComplexExpand*} //N;

(* CAN't Do this, cannot specify PHIT and TW independent of phill and Ul!!i!!
IntTihatRO1(z_,V, PV, U0, Ul_,phiU_, PHIT, Tw_]=
2 Integrate(r w1hat [z, z.V,PV,U0,Ul, phil, PHIT, Tw]. {r.0,1}} (*//ComplexExpand*) :
NuC(z_,V,PV,U0,Ul_,phiU_, PHIT, Tw_]=
-DTlhatR(1,z.V,PV,UQ, UL, phil, PHIT, Tw]/ (Tw Bxp(I 2Pi PKIT] - IntTlhatR0l[z,V.PV,U0, UL, phil, PHIT, TW])
{*//ComplexExpand*) //N;
")
(*DTlhatTwhatR(r_, z_,V, PV, U0, Ul_, phiU_, Twhat_]=
Collect [Expand (D(TlhatTwhat [z, z,V,PV,U0,Ul, phil, Twhat] ]}l . Twhat];*)

IntTlhatR01(z_,V, PV, U0, Ul_, phiU_, Twhat_j=
Collect (2 Integrate{r TihatTwhatir,z.V,PV,U0,Ul,phiU.Twhat],(r,0.1}],Twhat] {*//ComplexExpand*};
NuClz_,V,PV,U0,Ul_,phiu_. fo_]=
- (DTlhatTwhatR[1,z,V,PV,U0,Ul,phil, Twhat (Ul,phiU, fo]}/ (Twhat{Ul,phil. fo] -
IntT1lhatRO1[z.V,PV,U0,Ul,phil, Twhat (UL, phiU. fo]]})

{*//ComplexExpand//N*);
DeltaTlnaz{0,V,PV,U0, UL, PHIU, PHIT, 0] " mat[1,0,V,PV,UC, UL, PHIU, PHIT, 0} -IntT1hatRO1 {0, V, PV, U0, UL, PEIU, PHIT,0};
DelcaTlhati0.V, U0, UL, PHIU, PHIT, TW) 2at(1,0,V, PV, U0, UL, PHIU, PHIT, TW] -IntT1hatROL (0, V, PV, U0, UL, PHIU, PHIT, TW};

PV,
DeltaT1[0,t_,V.PV,.UQ, UL, PHIU, PHIT, 0] =Re(DeltaTitaX[0.V,PV,U0, UL, PHIU, PKIT, 0] Expl(I 2Pi t]]//N;
DelcaTl[O&_.V.W.UO,UL,PHIU,PHIT,TW]:Re[DeItaT"..A..\:{D,V.W.UO,UL,PHIU,PHIT,N] Exp{I 2Pi t]}//N:
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Tilr_,z_,t_.V.PV,U0,UL, PHIU,PHIT,0) =Re(Tlhat(r,z,V,PV,U0,UL, PEIU, PRIT.0] B[l 2Pi t])//N;
TL lz_.z_.t_,V PV, U0,UL, PRIU,PHIT, TW] =Re[T1hat(r,z,V,PV,U0,UL, PHIU, PHIT,T™W] Exp{I 2Pi t}]]//N:

" rhal

rholReHold(r_.z_.t_, sigmaV_, sigmaPV_,Uo_.Ul_,phiU_,phiT_,Tw_)=

(PlReHold(2z, ¢, sigmaV, sigmaPV,Uo,Ul, phil, phiT, Tw]) -T1ReHold[r, z, t, sigmaV, sigmaPV, Uo, Ul, phil, phiT, Tw) ) ;
rholRelr_,z_.t_,sigmav_, sigmaPV_,Uo_,Ul_,phiU_,phiT_,Tw_):=

rholReHold{r,z,t,signaV, sigmaPV,Uo, Ul,phiU,phiT, Tw) //ReleaseHold/ /ReleaseHold/ /N;
rholRelr_,z_,t_.V,PV,UQ, UL, PEIU, PHIT, TWj=rholRe(x, 2z, t,V, PV, U0, UL, PHIU, PHIT, TW) ;
rholkelx_,z_,t_.V,PV,U0, UL, PHIU, PHIT, 0} srholRe(r,z, t,V, PV, U0, UL, PHIV, PHIT,0);

{7 thetal =)

thetalzComplexExpand (TW*Exp|{I 2Pi phiT) Exp(I 2Pi t](BxplI 8i y)-Exp(l $i) I Sin(si yl/Cos{sil}]:
thetalRely_.t_.fo_,phiT_, Tw_]=N{thetal-I Coefficient{thetal, I)]:

thetalRa(y_, t_, fo_, PHIT, TH)=thetalRe(y, t, fo, PHIT, TW]:

thetalRely_, t_, fo_, PHIT, O)=zhetalRe([y, €. fo, PRIT.0):

u0Assign=(kseRedrzV->HoldForm|[kseReHold(0,r, z, sigmav] ],
kseImOrzv->HoldFormfkseImHold [0, r, z, sigmaV) ],
kseReQ0zV->HoldForm(kseReHold (0,0, z,sigmav]],
kseIm00zV->HoldForm(kselmHold (0. 0.z, sigmav]]);
ulReHold[r_,z_,t_, sigmav_,Uo_,Ul_,phiU_]=ulReTemplate/ . uQAssign;
uwlRelr_,z_.t_.sigmav_,Uo_, Ul_,phiU_] :=u0ReHold(zr,z,t,sigmaVv,Uo,Ul,phiU)//ReleaseHold/ /ReleaseHold//N;
cORelr_.,z_,t_,V, U0, UL, PKIU]=u0Re[r, z,t,V, U0, UL, PKIV] ;

uChatHold{zr_, z_, sigmaVv_,Uo_,Ul_,philU_)=ulhatTemplate/ .u0Assign;
uChat{r_,z_,sigmav_,Uo_,Ul_,phiU_] :=udhatHcld(r, z, sigmaV,Uo,Ul,phil)//ReleaseHold/ /Releaselold/ /N;
uChat(r_.z_.V,Uo_,Ul_,phiU_} =sudnhac|[r,z,V,Uo,Ul,phiU}//ComplexExpand;

IntuChatR0l(z_,V.Uo_,Ul_,phiU_]=2 Integrate(r udhat(r,z,V,Uo,Ul,phil}, {(£,0, l)l//CowplexExpand~
IntuChatR{z_,V,Uo_ U} ,PhiU_]=2 Integrate(r ulhat(r,z,V,Uo,Ul,phiU),r]//Compl
£C{z_,V.Vo_ Ul_lphiu ]=Dp2hatZ{z.V.VUo,UL,phil]/ (I rho0(z] IntuOhatROl[z,V,Uo,Ul, mel)//Comlexzxpand//N

vChatlr_,2z_,V,U0,UL, PHIU) =udhat[r,z,V,U0.UL, PHIU)//ComplexExpand;
IntulhatR01(z_,V,UD, UL, PHIU)=2 Integrate(r udhat(r,z,V,U0,UL,PHIU], {r,0,1)}//ComplexExpand;
IntuChatR(r_.z_.V.U0,UL,PHIU]=2 Integrateir ulhat(r,z,V,U0,UL, PHIU),x]//ComplexExpand;
£Clz_,V)=DpzhatZ(z,V,U0,UL, PKIU} /(I rho0(z] IntubhatROl[z,V,UD,UL,PHIU))//Simplify:

localwallShearStress{z_,t_,V,U0, UL, PHIU]=Expand[2 Pi D{uORe[r.z,t,V,U0,UL,PHIU],r]/.z->1];

(*2Pi is for integration around circumference*)
localWallShearStressSquared(z_,t_,V,U0, UL, PHIU) sPower [localWallShearStress(z,t,V, U0, UL, PHIUL.2]//BExpand;
localwallshearStressRMS(z_,V,U0,UL, PHIU) =Sqrt(Integrate[localWallShearStressSquared(z,t.V, U0, UL, PHIU], {£,0.1}]];

totalDragRMS [V, U0, UL, PEIU)=Integrate(localwallShearStressRMS(z,V, U0, UL, PHIUJ, {2,0,1)]//N;:
zotalDragRMSStar=totalDragRMs (V, U0, UL, PHIU) *drag0Star;
totalDragRMS (t,V,U0, UL, PHIV)=Integrate{localWallShearStress(z,t,Vv,U0, UL, PHIU], {2.0,1}}//N;

vOAssign={mRellzV->Hold[mReHold(l,1, 2z, sigmaV}], mImllzV->Hold{mImHold[1,1,2,sigmav]),
kserRe00zvV->Hold (kseReHo1d(0,0,z, sigmaVv]], kseIm00zV->Hold{kselmHold(0,0,z,sigmav]},
mRAtioRe2rPV21PVz->Hold {mRatioReHold ({2, r,sigmaPV}, {2.1,sigmaPV),z]), mRatioIm2rPV21PVz->
Hold[mRatioImHold[{2,r, sigmaPV}, {2,1, sigmaPV}.2z]]),
mRAtiORelrV1lVz->Hold{mRatioReHold[(1,r, sigmaV ), {1,1,sigmav },z)),mRatioImirvlivze>
Hold([mRatioImHold{ ({1, r.sigmav }, {1.1,sigmaV },z]],
mRe31zPV->Hold({mReHold (3.1, z, sigmaPV] ], mIm31zPV->Hold (mImHold{3,1,z, sigmaPV)],
mRatioRe3rPV31FVz->Hold [mRatioReBold ({3, r,sigmaPV}, {3.1,sigmaPV},z) ]}, mRatioImirPV31FVz->
Hold(mRatiolmHold((3,r,sigmaPV}, {3,1,sigmaPV),z]],
mRatioRe2rPV21FVz->Hold (mRatioReHold ({2, r,sigmaPV}, {2,1,sigmaPV},z]), mRatioIm2rPV21FVz->
Hold{mRatiolmHold({2,z.sigmaPV}, (2.1,sigmaPV},z]});
vOReHold{zr_,z_,t_, sigmav_,sigmaPV_,Uo_,Ul_,phiU_,phiT_,Tw_]}= vOReTemplate/.vOAssign:
werelr_.z.,t_.sigmaV_,sigmaPV_,Uo_,Ul_,phiU_,phiT_,Tw_}:=
vOReHold[r.z,t,sigmaV, sigmaPV,Uo,Ul,phiU,phiT, Tw) //ReleaseHold//ReleaseHold/ /N;
vCRelr_.z_.t_.V.PV,U0,UL, PHIU, PHIT,.0)=vORe(r .z, t,V, PV, U0, UL, PHIU, PHIT, 0]:
vCRelr_,z_.t_.V,PV,U0,UL, PHIU, PHIT, TW] svORe(r, 2, t,V, PV, U0, UL, PKIU, PHIT, TW] ;

icoac v}

dOAssign=(aDORe->HoldForm|kseReHold [0, r, z,sigmal].
aD0Im->HoldForm|kselmHold(0,r,z, sigma}],
bDORe->HoldForm(kseReHold[0,0, z. sigma) .
bD0Im->HoldForm| kseImHold(0,0,z,sigmal});
dCReHold[r_,z_.t_,sigma_.do_,dl_,phiU_)=particleTraceReTemplate/.d0Assign;
deRe(r_.z_,t_.sigmaVv_,do_,dl_,phiU_) :=d0ReHold{r,z,t, sigmaV,do,dl,phil)//ReleaseHold//ReleaseHold//N;
déRefr_.z_,t_,v.d{0],d[1],PHIU)=d0Re(r z.t.V, [0}, 4(1) ,PHIU]

iv Save L a notebos) .thetal,pl,rhol, T1.u0, v0 i

Save(fileNameHXfr, thetal,pl,rhoi,Ti, ul, vd}

(* {{eps, Va, Pr, UL, PHIU, M, appPRatio}, {(Fo, (PEIT, TW}), Date) *)
(* {{p1(0: £=0.1,0.2,0.3]}, p1(TW at t=.2], pisDynAmp([0,0), vO([0,.B,.2], w0[0..8,.2}, {T{0,0,.1],T(0.0,.2],.T{0,0,.31})

If([kindSystem==OPT,Print|fileNameOPTHX{r], Print{fileNameBPTHXfr]]};

Prant({{plRe{0,.1,V,PV,U0,UL, PHIU, PHIT, 0} ,plRe(0. .2,V, PV, U0, UL, PRIU, PRIT, 0] ,plRe(0, .3,V.PV,U0, UL, PHIU, PHIT, 0]},
plRel0, .2,Vv,PV,U0, UL, PHIU, PHIT, TW] ,N(pistonDynAmpInch(0,0]/LInch],
vORe{.8,0,0.V, PV, U0, UL, PKIU, PHIT, 0] ,uORe(.8,0,0,Vv,PV, U0, UL, PHIV),
{TiRe(0,0,.1,V, PV, U0, UL, PHIU, PHIT.0),T1Re(0,0, .2, V, PV, U0, UL, PHIU, PHIT, 0],
T1lRe([0,0..3,V.PV,U0, UL, PHIU, PHIT.0])}]

-6 -9
({{BPT, 0.002, 1., 0.703, 0.70266, 0., n/aPHIU, 3.789 10 , 4.31 10 }, {1.004, 1.007, 1.0066%9}},

{10.001, {0.1022, 0.000203363}, 7.02719}. (0.00276915 Amp dyne, 0.00338034 (tube”-1) dynme., 0.019734% W),
{BPT<>1., 2, 21, 18}}

*)
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{(0.317212, 0.485368, 0.46813), 0.485313, 0.002, 0.0722032, uORe(0.8, 0, O, 0.56419 Sqrc(Pil,
0.472932 sqrt{Pi), 1.. 0., -0.3].

(0.0297984, 0.0133024, -0.00827462})

({cC, OPT. 0.698, 6.016 1CE-7, 0.703, 0.66, -0.1, 0.003208, 1.427, 1.808), (1.7559 10E6. {-0.125, 0.00407389)}. (1994, 8, 24, 17, 7. 5}}
({2.97577, 2.68448, 1.36781), 2.68702, 0.111311, 2.76102, 0.36, {1.25176 10E-7, -3.63274 10E-7, -7.12965 10E-7})

{* phasors *!

{{{oPr, 0.002, 100.., 0.703, 70.266. 1., -0.1, 3.789 10 . 4.31 10 }, {1.002, 1.004. 1.004131), {300., (-0.03918, 0.319915), 7026.6},

(0.00476915 Amp dyne, 0.199157 {tube~-1) dyne, 1.373d49 W). {OPT<>100., 3. 15, 193}
1 TWADD

Phasors: Amp PH. PHITW Re+Im ReTWe+ ImTW

uo 1. 0

ul{z=.5) 0.951 -0.05

w0(z=.7) 0.959 -0.0706

u0(z=.85) 0.975 -0.0856

UL 1. -0.1

Pl 0.805 -0.0116 ¢.883 -0.026

TiRe (D) 0.318 -0.0137 0.353 -0.0264

TiRe(l) 0. 0.32 -0.0392

Tlhat(0,z)0.318 -0.0137 0.353 -0.0264

Tihat(l.z)0. 0 0.32 -0.0392

Tlbulk ¢.272 0.0176 0.343 -0.0256 0.2706 + 0.03006 I 0.339 - 0.05502 1
DTL 0.272 -0.482 D.0368 -0.393 -0.271 - 0.0301 I -0.0288 - 0.0229 I
uOpliz=0} 0.403 -0.00%8 0.401 -0.013

v0ir=.8) 0.0743 -0.845 0.0504 -0.856

qilr=1l) 2.539 -0.879 0.35 -0.79

qlhat(1,2)2.59 0.121 0.35 0.21 1.87988 « 1.78154 I 0.086417 « 0.339235 1
NuCSimple 9.51 0.603 9.51 0.603 -7.58476 - 5.74094 I -7.58476 - 5.74094 I
NuC 9.51 -«0.397 9.51 -0.397 -7.585 - 5.741 I -7.585 - 5.741 I
£C(0)Y 1.15 0.476 -1.138 « 0.1741 X

£C(2} 1.15 0.476 -1.138 « 0.1741 I

1+ SEQOWDARY FLOW sreciiiC enthalpy
{* Enthalpy Stresming and Phascrs®)

T velGolbles wn the Qi f Lo laver

{(* Prelim *}
Calcs .
Tl

cwoTimesulTlAvgTenplate = ulhatTemplate * TlhatCCTemplate //ComplexExpand:

twoTimesuOT1ReAvgTemplate = twoTimesuOTlAvgTemplate -I Coefficient [twoTimesulOTlAvgTemplate, I];

twoTimesuOT1ReAvgFluxHoldlr_, z_, siqmaV_, sigmaPV_, Uo_, Ul_, phil_,phiT_, T™_]=
twoTimesu0TiReAvgTemplata/.Union[u0Assign, Tl1Assign]:

uOT1ReAvgFlux|r_.z_. sigmaV_, sigmaPV_,Uo_, Ul_,phiU_,phiT_,Tw_l:= 1/2 *
twoTimesu0T1ReAvgFluxHold[r, z, sigmaV, sigmaPV,Uo,Ul. phiU,phiT, Tw)//Releasetiold//ReleaseHold/ /ReleaseHold//N;

wOTi1ReAVgFlux (r_.z_,V.PV,U0, UL, PHIU, PHIT, 0] a2u0TIReAvgFlux(r,z.V, PV, U0, UL, PRIV, PHIT, 0}/ /Expand;
uOT1EpsReAvgFlux(r_,z_.V, PV,U0, UL, PHIU, PEIT,C} =eps wOT1ReAvVgElux(r, z, V.PV,U0, UL, PHIU, PKIT, 0]/ /Expand;

uOT1ReAvgFlux(r_,z_.V, PV, U0, UL, PHIU, PHIT, TW] =u0TiReAvgFlux(r.z,V, BV, U0, UL, PHIU, PHIT, TW] //Expand;
wOT1EpsReAvgFlux(r_,z_,V, PV,UQ, UL, PRIV, PHIT. TW]=eps uOTl1ReAvgFlux(r,z, V,PV,U0,UL, PHIU, PHIT. TW] //Expand;

AxialHFlowNOEpsS|[z_.0)} =2 Integratelr uOT1ReAvgFlux(r, z,V,PV,U0, UL, PHIU, PHIT, 0}, (r.0.11}]:
AxialHFlowStarNoEps(z_. 0)zhOscFlow0Star*AxialHFlowNoEps z.C1:
AxialHFlowStarNormalizedNoEps [z, 0)=AxialHFlowStarNoEps iz, il/xSectAreaStar;

AxialHFlowNoEDS (z_.TW)=2 Integrateir u0T1ReAvgFlux|(r, z,V, PV, U0, UL, PHIU, PHIT,TW}.({r.0.1)1:
AxialHFlowStarNoEps|z_, T]=hOscPlow0Star*AxialHFlowNoEps {z,T¥):
AxialHFlowStarNormalizedNoEps [z_, Tv) =AxialHFlowStarNoEps (2, Tw] /xSectAreaStar:

AxialHFlow(z_,0]1=2 Integrate({r uOT1EpsReAvgFlux(r,z, V,PV,UQ, UL, PHIU.PHIT, 6}.(r,0,1}}):
AxialHFlowStar(z_, 0)=hOscFlow0Star*AxialkFlow(z . Cl:
AxialHFlowStarNormalized{z_,C}=AxialHFleowStar{z.0]/xSectAreasStar;

AxialHFlow(z_,Tw]=2 Integrate(r uOT1EpsReAvgFlux(r,z.V.PV,U0,UL,PHIU. PHIT,Tw1,{r,0,1)]:
AxialHFlowStar[z_,TW] shOscPlow0Star*AxialHFlow(z, Tw];
AxialHFlowStarNormalized[z_, T¥]=AxialHFlowStar [z, TW}/xSecthreastar;

{* v0Tl at r=0 *)

AxialHFlowlD(z_,0]=2 Integrate(r uOT1EpsReAvgFlux(0.z V. FV, U0, UL. PHIU, PHIT.0), {r.0.1}]:
AxialHFlowlDStar|z_.0]=hOscFlowOStar*AxialHFlowlD(z,0):

AxialHFlowiDStarNormalized(z_, (:]=AxialHFlowlDStar[z,{]/xSectAreaStar;
AxialHFlowlD{z_,Tw}z2 Integrate(r uOT1EpsReAvgFlux[C,z.V,PV.U0, UL, PHIU, PHIT, T4, (r,0.1}};
AxialHFlowlDStar{z_, T«w)shOscPlowOStar*AxialdHFlowlD([z, ™W1;
AxialHFlowlDStarNormalized{z_, TW]=AxialHFlowlDStar{z, TW]/xSectAreaStar:

froulpitan roequian b7
twoTimesulplAvgTamplate = uQhatTemplate * plhatCCTemplate //ComplexExpand;
twoTimesuCplReAvgTenplate = twoTimesuOplavgTemplate -I Coefficient (twoTimesulplAvgTenplate, I]:
cwoTimesuOplReAvgFluxHold(r_, z_. sigmaV_, sigmaPV_.Uo_, Ul_,phiU_,phiT_, Tw_]=
cwoTimesuOplReAvgTemplate/ .Union[ulOAssign,plhAssign]:

uOplReAvgFlux{0,z_, sigmav_, sigmaPV_,Uo_,Ul_,phiU_,phiT . Tw_]:= 1/2 *
twoTimesuOplReAvgFluxHold (0, z, sigmav, sigmaPV,Uo, Ul,philU, phiT, Tw] //ReleaseHold//ReleaseHold//ReleaseHold//N:

qulEpsReAnglux[O.z_.V,PV,UO.UL.PKIU,PHIT,O] zeps qulReAquluxlO,z,V,W,UO,UL.PHIU,PHIT,O] 7 /Expand;
u0plEpsReAvgFlux(0,z_,V,PV,U0,UL, PHIU, PHIT, TW)=eps quchAvqi‘lux[O,z,V.W,UO,UL,PHIU,PHIT,N]//Bxpand;

AxialuOplFlowi{z_,J)=2 Integrateir uOplEpsReAvgFlux(0,z,V, PV, U0, UL, PHIU, PHIT,0).{r.0.1}]:
AxialuOplFlowStar{z_, 0]=hOscFlowOStar*AxialuOplFlow(z.0}:
AxialuOplflowStarNormalized(z_, 3} =AxialuOplFlowStar(z,u)/xSectAreastar;

AxialuOplFlow(z_, T#)=2 Integrate(r uOplEpsReAvgFlux[0.z .V, PV, U0, UL, PHIU, PHIT, ), {r,0.1}):
AxialuOplFlowStar(z_,Tw) =hOscFlow0Star*AxialuOpiFlow{z, TvW};
AxialuOplFlowStarNormalized(z_, Tw]=AxialuOplFlowScar(z. TW]/xSectAreasStar;

(o plpiMaxorkhmpial rl. uniio T
MaxWorkAmpStar [0, 0] =hOscFlow0Star*MaxWorkAmp ; h
MaxWorkAmpStarNormalized[0, 0! =MaxWorkAmpStar (0, U] /xSectAreaStar;
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MaxwWorkAmpStar(l, 0)=hCscFlow(Star *MaxworkAmp;
MaxWorkAmpStarNormalized(l, D] sMaxwWorkAmpsStar(l, )] /xSectAreastar;

MaxWorkAmpStar [0, T¥) =hOscFlow0Star*MaxWor kAmpTW;
MaxWorkAmpStarNormalized [0, TW) =MaxWorkAmpsStar(C. T¢]/xSectAreasStar;
MaxWorkAmpStar (1, T%W)=hOscFlow0Star* MaxworkAmpTW
MaxwWorkAmpStarNormalized[1l, Tw) =MaxWorkAmpStar{l, TW]/xSectAreaStar;

r ulbplivolworklntoTube Tw] Macroescspic Yoeiwse Integrated FV-FPlowtiork fur T0ixs

twoTimesuOplVolavgTemplate = ulhatTemplate * plVolhatCCTemplate //ComplexExpand;

twoTimesu0plVolReAvgTenplate = cwoTimesulplVolAvgTerplate -I Coefficient [twoTimesulplVolAvgTemplate,I;

twoTimesudplVolReAvgFluxBold{r_,z_,sigmaV_, sigmaPV_,Uo_,Ul_,phiU_,phiT_,Tw_]=
twoTimesulOplVolReAvgTenplate/. . Union[uOAssign, plVolAssign];

ulplvolReAvgPlux|r_.z_, sigmaVv_,sigmaPV_.Uc_,Ul_.phiU_,phiT_,Tw_]:= 1/2 *
twoTimesuOplVolReAvgFluxHold(r, z, sigmaV, sigmaPV, Uo,Ul,philU, phiT, Tw) / /ReleaseHold/ /RelaasaHold/ /ReleaseHold/ /N;

ulplVolEpsReAvgFlux(r_,z_,V,PV,U0, UL, PHIU, PRIT, 0] »eps u0plVolReAvgFlux(r,z,V,PV,UC, UL, PHIU, PHIT,0] //Expand;
ulplVolEpsReAvgFlux(r_, z_,V,PV,UC, UL, PHIU, PHIT, TW) seps ulplVolReAvgFlux[r,z,V,PV,UQ, UL, PHIU, PHIT, TW] //Expand;

ulplVolFlow{z_, 0]=2 Integrate(r ulOpliVolEpsReAvgFlux(r,z.V, PV, U0, UL, PRIV, PHIT,0), (2.0,1}]);
ulplVolFlowStar (z_, 0} =hOscFlow0Star*uOplVolPlow(z, 0}
ulplVolFlowStarNcrmalized(z_, 0]=ulplVolFlowStar|z, (] /xSectAreastar;

ulplVolFlow{z_, TW)=2 Integrate(r ulOplVolEpsReAvgFlux|(z,z,V,PV,U0, UL, PHIU, PHIT,TW], {r,0,1}];
ulplVolFlowStar(z_, TW]}shOscFlow0Star*ulplVolFlow(z, ™];
ulplvolFlowStarNormalized{z_, TW)}=ulplVolFlowStar(z, Tw] /xSectAreasStar;

(*

ulplVolworkIntoTubeStarInMinusOutAvg(z_, 0} =ulplVolFlowStar(z,0}-u0plVolFlowStar(z,0)//N;
ulplvolWorkIntoTubeStarInMinusOutAvg{z_, TW}=u0plVolFlowStar{z,Tw])-ulpivolFlowStar [z, TWI//N;

ulplvolWorkIntoTubeStarNormalizedInMinusOutAvg(z_, 0] =ulplVolFlowStarNormalized(z,0}-ulplVolFlowStarNormalized{z,C]//N:
ulplvolworkIntoTubeStarNormalizedInMinusQutavg (z_, TW]= (u0plVolFlowStar|z. TW) -u0pivVolFlowStar{z, TW] ) /xSectAreaStar//N;

*)

Prousrhioliat o oeguail Lo
twoTimesulrholAvgTenmplate = uChatTemplate * rholhatCCTemplate //ComplexExpand;
twoTimesulrholReAvgTemplate = twoTimesulrholAvgTemplate -I Coefficient(twoTimesuOrholAvgTemplate,I):

twoTimesuOrholReAvgFluxHold(r_.z_,sigmav_, sigmaPVv_.Uo_ . Ul_,phiU_,phiT_,Tw_]=
twoTimesuOrholReAvgTemplate/ . Union[u0Assign, plAssign, T1Assign):

ulrholReAvgFlux [0, z_, sigmav_, sigmaPV_,Uo_,Ul_,phiU_,phiT_, Tw_}:= 1/2 *
twoTimesuOrholReAvgFluxHold[(C, z, sigmaV, sigmaPV,Uo,. UL, phiU, phiT,Tw)//ReleaseHold/ /Rel 14/ /Rel 1d//N;

u0rholEpsReAvgFlux(0,z_ .V, PV,UC, UL, PHIU, PHIT,0) =zeps uOrholReAvgFlux{0,z,.V,PV,U0, UL, PHIU, PHIT, 0] //Expand;
ulrholBpsReAvgFlux(0, z_, V, PV, UC, UL, PHIU, PHIT, TW]=eps ulrholReAvgFlux(0,z .V, PV,U0, UL, PHIU, PHIT, TW] //Expand;

AxialuOrholFlow{z_,()=2 Integrate(r ulrholEpsReAvgFlux{{.z,V,PV.U0,UL, PHIU, PHIT,0], {r,0.1}};
AxialuOrholFlowStarlz_, 0)=hOscFlowOStar*AxialuOrholFlow(z, 9);
AxialuOrholFlowStarNormalized(z_, O}=AxialulrholPlowStar|(z, }}/xSectAreastar;

AxialuOrholFlow[z_,Tw)=2 Integrate[r uOrholEpsReAvgFlux[0,z,V,PV, U0, UL, PHIU, PHIT, T%], {r,0.1});
AxialuOrholFlowStar(z_, T#]=hOscFlow0Star*AxialulrholFlow(z,TW);
AxialuOrholFlowStarNormalized{2_, Tw]lsAxialulrholFlowStar(z, TW)/xSectAreaStar;

i oweTi o
twoTimesvOTlAvgTemplate = vOhatTemplate * TlhatCCTemplate //ComplexExpand:
twoTimesvOT1ReAvgTemplate = twoTimesv0TlAvgTemplate - I Coefficient|[twoTimesvOTlAvgTemplate I):
twoTimesv0T1ReAvgFluxHold(r_,z_, sigmaVv_, sigmaPV_,Uo_.Ul_,phiU_,phiT_, Tw_|=
twoTimesv0TiReAvgTemplate/.Union(vOAssign, T1Assign]

vOT1ReAvgFlux(r_.z_, sigmaV_, sigmaPV_,Uo_.Ul_,phiU_,phiT_,Tw_]:= 1/2 *

twoTimesv0OT1ReAvgFluxHold(x, z, sigmaV, sigmaPV, Uo,Ul,philU,phiT, Tw]//Releasetold/ /ReleaseHold/ /ReleaseHold/ /N
vOT1ReAvgFlux|r_,z_,V.PV,U0,UL, PHIVU, PHIT, 0] =vOT1ReAvgFlux(r,z,V,PV,U0,UL, PHIU, PHIT.0)//Expand;
vOT1ReAvgFlux(r_,z_.V, PV, UQ, UL, PHIU, PHIT, TW)=vOT1ReAvgFlux(r,z .V, PV, U0, UL, PHIU, PKIT, TW] //Expand;

Phasors

{{{OPT. 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 , 4.31 10 }, (1.002, 1.004, 1.00413}}, {200..
{-0.03918, 0.319915}. 7026.6},

{0.00476915 Amp dyne, 0.199157 {tube*-1) dyme. 1.97349 W}, (OPT<«>100., 3, 15, 19}}
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-Graphics-

Eathelpy Flow Plots

N Plot ulpi.

i* Enthalpy Fi wipivel anc Hflew *@

({({oPT. 0.002, 100.., 0.703, 70.266, 1., -0.1, 3.78% 10 ., .31 10 ). (1.002, 1.004, 1.00413) 1},
(100., {(-0.03918, 0.319915)}, 7026.6},

(0.00476915 Amp dyne, 0.199157 (tube”-1) dyme, 1.97349 W}, (OPT<>100.. 3, 15, 19)}

c* -> H [(z=0 z=1) uP [z=20 z=1} HFlowRay (iso] MaxwWworkAmp [z=0 z=1}
cTW® -> HTW(z=z0 z=1] uPTW(z=0 z=1) HFlowRay{adia) MaxWorkAmpTw(z=0 z=1)
c*/Href* (1/eps) -> 0.137 0.113; 0.402 0.342; 0.118; 0.403

c*/Href* {l/eps) -> 0.145 0.143; 0.436 0.395; 0.196; 0.401

[ (W/eps) -> 0.269568 (0.222384; 0.793 0.675; 0.232; 0.795; 0.795
CTW* (W/eps) -> 0.285877 0.282791; 0.86 0.779: 0.387; ¢.791; 0.791

c*  /Ax*(W/cm2eps) -> 0.128711 0.106182; 0.378 ©.322; 0.111; 0.379; 0.379%
CTW® /Ax* (W/cm2eps) -> 0.136499 0.135025; 0.411 ©0.372: 0.185; 0.378; 0.378

c* /fup* (W/Weps) -> 0.34 0.281; 1.000 0.852; 0.293; 1. 1.

cTW*/up* (W/Weps) -> 0.361 0.357; 1.09 0.983; 0.488; 0.999; 0.999

c* /max* (W/Weps) -> 0.339 0.28; 0.997 0.85; 0.292: 1.000; 1.

CTW®/max” (W/Weps) -> 0.36 0.356; 1.08 Q.98; 0.487; 0.996: 0.996

Href® = hOscFlow0Star =1.97349 W
CrossSectionalArea =2.09436 ™2

plue is iso, red is thin wall, green is Radebaugh, purple is local area integrated plul flow-work
sxxzz=zazE=zsas

AxialHFlow(l/eps) vs z

AxialHFlow(l/eps) and RayAdiaCalc(l/eps) vs z
AxialHFlowStar(W/eps) vs 2
AxialHFlowStarNormalized(W/cm"2eps) vs z
zz=zzsEREETETI=

HFlow/uQplFlowWork{W/W) vs z

u0Tl{1/eps} vs t for isothermal wall
u0Tl{l/eps) vs t for thin-wall

0MSfr — = = = — - — - — -

0.14

0.135

0.125

z
0.2 0.4 0.6 > 1
0.115

126



b — e~ ————— — —
0.135 —————
0.13
0.125
0.12
0.115
z
0.2 0.4 0.6 048\1
0.42 /
z
0.2 0.4 0.8 1
0.38
0.36

0.35
0.3
0.25
0.2

0.2 0.4 0.6

* Gas Conduction Loss Plot irfov
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Plot[{{deltaTStar)/ (LStar})* (condFitsStar(pressureRefStarmMPa/MPa, (z*tempRefGasStar+50K) /K] (W/ (M X))}~
(M/ (100 em)) (*xSectAreastar*)cm*2/W, {z,0,1}, AxesLabel->("z", *q" (W/cm"2)"}]};

q* (W/cm”2)
0.045
0.04

0.035

0.025

z
0.2 0.4 0.6 0.8 1
0.015

Listing;

« DIMENSIONAL VARIABLES SPECIFIED: .
({OPT, eps, Va, Pr, VaPr, UL. PHIU, M, LAMBDA, IsoPressRatio. AdiPressRatio, CLAdiPRatio), {Fo, (PEIT. TW}, VaPrFo},

{totalDragAmp0, totalDragRMS/tube, HOscFlow(Star}, date)scalingNames
-6 -

({{(oPT, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 , 4.31 1C }. {1.002, 1.004, 1.00413)), {100., {-0.03918, 0.319915}, 7026.6},

{0.00476915 Amp dyne, 0.199157 (tube~-1) dyne, 1.97348 W), (OPT<>100., 3, 15. 19}}, scaling
-- inches:
rw =0.321453 in; L =3.93701 in; tubeThickness =0_. 00193031 in:; pistonDynAmpInchAt0 =0.00787402 in; pistonDynampInchAtL =0.00787402 in
-- cgs:

3 2
rw =0.81648 cm; L =10 cm; tubeThickness =0.004903 cm; volOfTube =20.9d436 cm ; CrossSectArea=2.09436 cm
3

pistonDynAmpAtd =0.02 cm; pistonDynAmpAtL =0.02 cm: freq =---

sec
0.376991 o 0.376851 cm 0. em €.00160224 ¢
pistonSpeedut =-- ; ApistonSpeed =----- ; pRef =0.999722 MPa; tempRef =300 K: rhoRef =----------u-
sec 3
cm
2
0.46 sec W 0.163 w 0.045313 e
R ; kTube =-=-<-w-= ; alphaTube =-----v------
g K cm K sec

99488.6 cm 0.125662 cm 0.00020134 g
alphalGas =-----===c=n- ; rho0Gas z--------=--- ; Cp s 80 sec-c-aeo-- ; AU S----esmmm-e ;MY Fememmmmem——eee
sec 3 9K sec sec cm sec
=3
0.942286 W 0.00060403 g 0.00126506 g 0.54746S W
hO$cFlux0 =------cv=- ; HOscFlow0 =1.97349 W: jOscFlux0 = ; JOSCFlowQ =----c----o-o- ; gGasRadiall =----=-ea-- ; HFlowRay =
2 sec 2
=] cm
©.00040268 g Pi Pi
HFlowRayStar[---«-=e==--=-c-- . 300 K, 0.0203251 atm., 9.866 atm, --]
sec 6

totalDragAnplO =0.00476915 dyne: totalDragRMS/tube =0.199157 dyne

« PARAMETER LIST (for use in exporting to plot routines)
Plzamer.exl.is:=(v,PV,XGAS,m!E.UO,UL,H,eps,Gm,PHIU,F,TERH,NITH.Sl,N[PHIT,S])
- 5
ParameterList={5.6419 Sqrt(Pi], 4.72932 Sqrt(Pi], 0.0081411, i., 1., 1., 1.20617 10 Pi, 0.002. -, -0.1, 0.0S564151 Sqrt(Pi].
16, 0.31991, -0.03918}
3

« SOLUTION OF TW AT PHIT FOR CONTINUITY OF HEAT FLUX AT GAS/TUBE BOUNDARY
TW=0.319915 at PHIT=-0.0391796

+ RANDOM TIME CHECK, ALL VALUES FOR TW SHOULD BE THE SAME

tRandom=0.657914

PHIT=-0.0391796

Twall=(Twall{l., 0, 0., 10., 8.3825, 1., 1., -0.1, -C.039179¢, 0.0091411, 0.1, 1.1,

Twall{l., 0, 0.125, 10., 8.3825. 1., 1., -0.1, -0.0391796, 0.0091411, 0.1, 2.1,
Twall({l., 0, 0.25, 10., 8.3825, 1., 1., -0.1, -0.0392796. 0.0091411, 0.1, 1.1,
Twall{l., 0, 0.5, 10., 8.3825, 1., 1., -0.1, -0.0391796, 0.0091411. 0.1, 1.7,
Twall(l., 0, 0.657914, 10., 8.3825, 1., 1., -0.1, -C.03917%6. 0.0091411, 0.1, 1.1}
Bessel Fxn Accuracys { v} :BesselJ; (bereI bei): ModBesselJHold: Argument->infinity approximation}

Bessel Accuracy Hi {{9.99999925), 149.847528. 149.847526, 149.847526, 148.537427}
Begsel Accuracy Lo {{0.999999925), 1.01552483, 1.01552483, 1.01552483, 1.00386903}

» PHASORS:

PHI TWAZD PHITW
ue 1. 0
uL 1. -0.1
pl 0.805 -0.0116 0.883 -0.026
T1{r=0) 0.318 -0.0137 0.353 -0.0264
Tl(r=1) 0. 0.32 -0.0392
v0(r=.8) 0.0743 -0.845 0.0504 -0.856

» NON~DIMENSIONAL SCALING VARIABLES CALCULATED:

-6
va=100.: Pr=0.703; Pr*va=70.2663; § =500.; Fo=100.; EL=0.00600497; M=3.78929 10 : Re0 =4.83902
po=1; T0{z}=1 ; rhoO(z]=1

« NON-DIMENSIONAL VARIABLES USED IN COMPLEX SOLUTION:
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V=1C.; P=0.83825; PVs=6.3825; eps=0.002; F=0.1; M=x3.78929 10 ; LAMBDA=4.30762 10 ; eps*va=0.2

5
UO=1.; UL=1.; PHIU=-0.1: TERM=16; KGAS =0.0091411; XTUBE=l.; GAMMA=-; d0=0.002; dL=0.002; PHIT=-0.0391796; Tw=0.31991§
3

ARCHIVE
Entialpy Plux fualds

{{{oPT, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 . 4.31 10 }, (1.002, 1.004, 1.00413)). {106.,
{-0.03918, 0.31991S5}, 7026.6),

{0.00476915 Amp dyne, 0.199157 (tube“-1) dyne, 1.97349 W}, {(OPT<>100., 3, 15, 19}}

r=1
- s e LD - e = -
- e e e e te e
——— e e e
—
z=0 zml
—_——=
———==
rs === ====
b > s > > > et s
SSSS=|====
r=0
-Graphics-
rsl

~-Graphics-
Enthalpy Flux Plots
Isothermal and thin wall comparison at zz0, .5, 1
-6 -9
{{{oPT, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 , 4.31 10 1}, {(1.002, 1.004, 1.00413}}, {100.,
(-0.03918, 0.319915). 7026.6},

{0.00476915 Amp dyne, 0.199157 (tube~-1) dyne, 1.97349 W}, (OPT<>100., 3, 15, 19}}
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0.1
0.075
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G.oheran nlul arowall
If[kindSystem==OPT,Print (fileNameOPTHXfr), , Print[fileNameBPTHXfr]];

Plot[(5i{1,0,t,V.PV,UO, UL, PHIU, PHIT.0), gl {1,0, . VI PV, U0, UL, PHIU, PHIT, TW] . TiF¢ (0, 0. t,V, PV, U0, UL, PHIU, PHIT, 0],
Deltarl(0,t,V,PV,U0, UL, PHIU, PHIT,0) ,DeltaTi (0, t,V,PV,UC, UL, PHIU, PHIT, TW]}, {t, 0.1},
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PlotStyle->({}, {Dashingl{0.03,0.03}}) ,{Dashing({0.005,0.02,0.03,0.02}],RGBColox(1,0,0]),{}.{RGBCOYor[0.0,1],
Dashing[{0.03,0.03})) }.PlotRange->All];

1£[kindSystem==0PT,Print {fileNameOPTHXfr], Print{fileNameBPTHXfr]);
Plot[{qgi(1,0.t.V,PV,U0, UL, PHIU, PHIT,0],q1(1.0,t,V, PV, UC, UL, PHIU, PRIT, TW) ,
DeltaTl(0.t.V,PV,U0, UL, PHIU,PHIT, 0], DeltaTi [0, ¢, V. PV, UQ, UL, PHIU, PHIT, TW]}, {£.0.1).
PlotStyle->{{)}, {Dashing({0.03,0.03})} ,{RGBColor{0,0,1!}, {RGBColor(0.0,1),Dashing[{0.03,0.03}}} Y.
PlotRange->All):

(* {{Thesis. OPT, eps. V. P, PV, UL, PHIU, M, IsoPressRatio, AdiVOlPR, CLAdiPRatio), {F, {PHIT, TW}}.
{HOscFlow0), (datel}) *)

({{oPT, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 , 4.31 10 }, {1.002, 1.004, 1.00413}), {100..
(-0.03918, 0.319915}, 7026.6),

(0.00476915 Amp dyne, 0.199157 (tube”-1) dyne, 1.97349 W}, {OPT<>100.. 3, 15, 19}}
-6

({{OPT, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 , 4.31 10 }. (1.002, 1.004, 1.00413}}, (100.,
{-0.03918, 0.319915), 7026.6).

{0.00476915 Amp dyme, 0.199157 (rube~-1) dyne, 1.97349 W}, {OPT<>100., 3, 15. 19})

ar wall

(* TW vs Fo *)
1f [kindSystem==OPT, Print [£ileNameOPTHXfr),  Print|fileNameBPTHXIr)]:
AmpPlotTw|V, PV, U0, 0. PHIU, fol=LoglLogPlot [Tw (0, phil, fol, {fo,.1,150),PlotRange->All}
-6 -9
({{OPT, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 ., 4.31 10 ). {1.002, 1.004. 1.00413}}. {100.,
{-0.03918, 0.,31991S), 7026.6},

(0.00476915 Amp dyne, 0.199157 (tube~-1) dyne, 1.97349 W), {OPT<>100.. 3. 15, 181}

0.5

0.1 0.5 1 S 10. 50.100.
-Graphics-

{* PhiT vs Fo ")
ArgPlotTw(V,PV,UC, 0, PHIU, fo}=LoglLogPlot {-phiT{0.phiU. fol, {f0,.1,150}. PlotRange->All)

0.1 0.5 1 s 10. 50.100.
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-Graphics-
{* Code for Graphics Plots *)
If(kindSystem==OPT, Print[fileNameOPTHXfr),, Print|fileNameBPTHXEr)):

-6 -9

{{(OPT, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 , 4.31 10 ), {1.002, 1.004, 1.00413)), {100., (-0.03918, 0.319915}, 7026.6}.
{0.00476915 Amp dyne, 0.199157 (tube*-1) dyne, 1.97349 W}, (OPT<>100., 3., 15, 19)}

?PhasorPlot

Global ‘PhasorPlot

PhagorPlot(All, 31.83098385134257*Pi, 1., -0.1, 314.1578982435413/Pi) =

Graphics[{(Line[{{(0, 0}, {(-7.584757533613621, -5.740944894744813))],
{Dashing{(0.03, 0.03)], Line({{0, O}, {0.3165449091259953, -0.02735771620622396})]},
{Dashing[{0.00S, 0.02, 0.03, 0.02}), Linef{{0, 0}, (1.879881736290323, 1.781540335669683}}]),
{Dashing[(0.01, 0.01}}, RGEColor{0, 1, 0}. Line[{{0, 0}, {1, 0}}1}.
{Dashing[{0.01, 0.01}}, RGBColor(0, 1, 0], Line({{0, 0}, {0.809016994374348, -0.5877852522924733}}}).
{Dashing[{}], RGBColor[0, 1, 1], Line({(0, 0}, (0.B0328142036292%, -0.05861243832123366}}]},
{Dashing[(0.02, 0.02}), RGBColor(0, 1, 1), Line{{{0, 0}, {0.871707058032187, -0.1436918561245787)1}]}.
{Dashing[{0.03, 0.03}), RGBColor(0. O, 1], Line({{0, 0}, {0.2706043229945105, 0.03006237550349716}}1},
{Dashing[{0.03, 0.03}), RGBColor([l, O, 1], Line({{C, 0}, {-0.2706043229945105., -0.03006237550349716})1},
{Dashing[{D.02, 0.02}], RGBColor(0, 0, 1}, Line[{{C. 0), {0.3390299606637685, -0.05501704229984794}}]},
{Dashing[{0.03, 0.03}], RGBColor{l, 0. 0), Line({{0. 0}, {0.3484200046661029, -0.05826763675797807}}]1},

{RGBColor(l, 0, 0], Line[{{0, 0), (-7.58475753361361, -5.740944894744814}}1),

{Dashing[{0.00S, 0.02, 0.03, 0.02)}], RGBColor(l, 0, 0}. Line[{(0, 0}. (0.0864170124197421, 0.3391354590856961}}1}}.

(DisplayFunction -> (Display($Display, #1] & }, AspectRatio -> 1, PlotRange -> Automatic, AspectRatio -> GoldenRatio“(-1).

DisplayFunction :> Identity, ColorOutput -> Automatic, Axes -> Automatic, AxesOrigin -> Automatic, PlotLabel -> None, AxesLabel -> Nona,

Ticks -> Automatic, Gridlines -> None, Proleg -> {}, Epilog -> {}, AxesStyle ~-> Automatic, d -> ic, DefaultColor -> Automatic,

DefaultFont :> $DefaultFont, RotateLabel -> True, Frame -> False, FrameStyle -> Automatic, FrameTicks -> Automatic, FrameLabel -> None,

PlotRegion -> Autocmaticl]

PhasorPlot [NuC, 31.83098385134257°Pi, 1., -0.1, 0] =

Graphics({Line{{{0, O}. {~-7.584757533613621, -5.740944894744813}}],
{Dashing[{C.00S, 0.02, 0.03, 0.02}], Line{({0, 0}, {1.879881736290323, 1.781540335669683}}]),
{Dashing[(0.01, 0.01)]. RGBColor(0. 1, 0}, Line[({0, 0}, (1, 0}}]),
(Dashing((0.01, 0.01}], RGBColoxr{0, 1, 0]. Line[{{0, O}, (0.B09016994374948, -0.5877852522924733}}1},
(Dashing ({¢.03, 0.03)), RGBColor{0. O, 1]. Line[({0. 0}, {0.2706043229945105, 0.03006237550349716}}]}.
(Dashing{(0.03, 0.03)}], RGBColor(l, 0, 1), Lime[({0, 0}, {(-0.2706043229945105, -0.03006237550349716}}]}},

{DisplayFunction -> Identity, PlotRange -> Automatic, AspectRatio -> GoldenRatio”(-1), DisplayFunctiocn :> Identity. ColorOutput -> Automatic,
Axes -> Automatic, AxesOrigin -> Automatic, PlotLabel -> None, AxeslLabel -> None, Ticks -> Automatic, Gridlines -> None, Prolog -> (}. Bpilog -> (}.
AxesStyle -> Automatic, Background -> Automatic, DefaultColor -> Automatic, DefaultFont :> §DefaultFont, Rotatelabel -> True, Frame -> False,
FrameStyle -> Automatic, FrameTicks -> Automatic, FrameLabel -> None, PlotRegion -> Automatic}]

PhasorPlot [NuC, 31.83098385134257*Pi, 1., -0.1, 314.1578982435413/Pi] =

Graphics({{RGBColor(l, 0, 0}, Line{{(0, 0}, {-7.58475753361361, -5.740944894744814}}]}.

{Dashing[{0.005, 0.02, 0.03, 0.02)), RGBColor[l, O, 0}, Line{{{0, 0}. (0.0864170124197421, 0.3391354590856961}}]},

{pashing[{0.01, 0.C1)}, RGBColor(d, 1, O], Line{{(0, 0}, (1, 0}}1},

{Dashing[{0.01, 0.C1}}, RGBColor(0, 1, 0), Line{{{0, 0), {0.809016994374948, -0.5877852522924733}}}},

{Dashing({0.02, 0.02)). RGBColor{0, 0, 1]. Line({(0. 0), (0.3390299606637685, -0.05501704229984794}}}}.
{Dashing({0.03, 0.03)], RGBColor(l, 0, 1], Line[{{0, 0}, (-0.02876004518396047, -0.02294412494308133}}]}).

(DisplayFunction -> Identity, PlotRange -> Automatic, AspectRatio -> GoldenRatio"(-1), DisplayFunction :> Identity, ColorOutput -> Automatic,
Axes -> Automatic, AxesOrigin -> Automatic, PlotLabel -> None, AxeslLabel -> None, Ticks -> Automatic, GridLines -> None, Prolog -> {}. Epileg -> (),
AxesStyle -> Automatic, Background -> Automatic, DefaultColor -> Automatic, DefaultFont :> SDefaultFont, RotateLabel -> True, Frame -> False,
FrameStyle -> Automatic, FrameTicks -> Automatic, Framelabel -> None, PlotRegion -> Automatic}]

PhasorPlot [PTU, 31.83098385134257*Pi, 1., -0.1, 314.1578982435413/Pi) =

Graphics|{{Dashing[(0.01, 0.01}], RGBColor{0, 1, 0], Line[{{0. 0), {1, O}}1},
(Dashing ({0.01, 0.01)}, RGBColor[0, 1, 0], Line[{{0, D), {0.809016994374948, -0.5877852522924733}}]1},
(Dashing [(}]. RGBColor{0, 1, 1], Line[{{0, 0}, {0.803281420362929, -0.05861243832123366)})!}.
{Dashing[{0.02, 0.02)}], RGBColor[0, 1, 1}, Line[{{0, 0}, {0.871707058032187, -0.1436918561245787}}]}.
{Dashing[{0.03, 0.03}], RGBColer(C, 0, 1), Line({{0, 0}, {0.2706043229945105, 0.03006237550349716}}] ),
{Dashing[(0.02, 0.02}}, RGBColor(0, 0. 1], Line[{{0, 0}, {0.3390299606637685, -0.05501704229984794}})) },

{DisplayFunction -> (Digplay[sDisplay, #1] & ), AspectRatio -> 1, PlotRange -> {{-0.2. 1). (-1. 0.2}}, PlotRange -> Automatic,
AspectRatio -> GoldenRatio~(-1), DisplayFunction :> Identity, ColorOutput -> Automatic, Axes -> Automatic, AxesOrigin -> Automatic,
PlotLabel -» None. AxesLabel -> None, Ticks -> Automatic, GridlLines -> Nome, Prolog -> {}. Epilog -> {}, AxesStyle -> Automatic,
Background -> Automatic, DefaultColor -> Automatic, DefaultFont :> SDefaultFont, RotateLabel -> True, Frame -> False, FrameStyle -> Automatic,
FrameTicks -> Automatic, FrameLabel -> None, PlotRegion -> Automatic}]

?PhasorPlotBlack
Global' PhasorPlotBlack

PhasorPlotBlack{NuC, 31.83098385134257*P4, 1., -0.1, 0] =

Graphics({Line[{(0, 0}. {-7.584757533613621, -5.740944894744813}}],
(Dashing ({0.005, 0.02, 0.03, 0.02}), Line[{{(0, 0}, (1.879881736290323, 1.781540335669683}]1}. {Dashing[(0.01, 0.01}}. Line[{{O. 0}, (1, 0)}]},
(Dashing{(0.01, 0.01)]., Line({{0. 0). {0.809016394374948, -0.5877852522924733})]},
(Dashing{(0.03, 0.03)1, Line[{{0, 0}. (0.2706043229945105, 0.03006237550349716}}}}.
{Dashing [(0.03, 0.03}}. Line[{{0, 0). {-0.2706043229945105, -0.63006237550349716)}]}}.

{DisplayFunction -> Identity, PlotRange -> Automatic, AspectRatio -> GoldenRatio”{-1), DisplayPunction :> Identity, ColorOutput -> Automatic,

Axes -> Automatic, AxesOrigin -> Automatic, PlotLabel -> None, AxesLabel -> None, Ticks -> Automatic, GridlLines -> None, Prolog -> {}, Bpilog -> (}.
AxesStyle -> Automatic, Background -> Automatic, DefaultColor -> Automatic, DefaultFont :> $DefaultFont, Rotatelabel -> True, Frame -> False,
FrameStyle -> Automatic, FrameTicks -> Automatic, FrameLabel -> None, PlotRegion -> Automatic}]

PhasorPlotBlack {NuC. 31.83098385134257*Pi, 1., -0.1, 314.1578382435413/Pi] =

Graphics{{(Line{ ({0, 0}, {-7.58475753361361, -5.740944894744814}}]}.
(Dashing({0.005, 0.02. 0.03, 0.02)], Linel{{0, 0), {0.0864170124197421, 0.3391354590856961))]), {Dashing({0.01. 0.01}1, Line[{(0, 0}, {1, 0}}1)}.
(Dashing ({0.01, 0.01)}, Line[{{0. 0}, {0.809016994374948, -0.5877852522924733}}]1}.
{Dashing[{0.02, 0.02}], Line[({0, 0}, (0.3390299606637685, -0.0550170422998475%4) })},
{Dashing{{0.03, 0.03}), Line[{{0, 0}, {-0.02876004518396047, -0.02294412494308133)}1) 1,

(DisplayFunction -> Identity, PlotRange -> Automatic, AspectRatic -> GoldenRatio®(-1l}, DisplayFunction :> Identity, ColorQutput -> Automatic,

Axes -> Automatic, AxesOrigin -> Automatic, Plotlabel -> None, AxesLabel -> None, Ticks -> Automatic, GridlLines -> None, Proleg -> {}. Epilog -> (}.
AxesStyle -> Automatic, Background -> Automatic, DefaultColor -> Automatic, DefaultFont :> $DefaultFont, Rotatelabel -> True, Frame -> False,
FrameStyle -> Automatic, FrameTicks -> Automatic, Framelabel -> None, PlotRegion -> Automatic})

phasorPlotBlack [PTU, 31.83098385134257*Pi, 1., -0.1, 314.1578982435413/Pi] =

Graphics({{Dashing{(0.01, 0.01}], Line{({0, 0), {1, 0}}I}. (Dashing[(0.01, 0.01}), Line[{{0, 0)., {0.809016394374948. -0.5877852522924733}1)}.
(Dashing[{}], Line[({0. 0}, (0.803281420362529, -0.05861243832123366})1 1),
{Dashing[{0.02, 0.22)]. Line({{0, 0}, {0.871707058032187, -0.1436918561245787)}]),
(Dashing ((0.03., 0.03}], Linel{{{0. 0}, {0.2706043229945105, 0.03006237550349716}})}.
(Dashing{{0.02, 0.02}], Line{{{0, 0}, {0.3390299606637685, -0.05501704229984794}}]}},

(DisplayFunction -> (Display[$Display, #1) & ). AspectRatio -> 1, PlotRange -> ({-0.2. 1}, {-1, 0.2}}, PlotRange -> Automatic,

AspectRatio -> GoldenRatio~(-1). DisplayFunction :> Identity. ColorQutput -> Automatic, Axes -> Automatic, AxesOrigin -> Automatic,
PlotLabel -> None, Axeslabel -> None, Ticks -> Automatic, Gridlines -> None, Prolog -» (}. Epilog -> {}. AxesStyle -> Automatic,
Background -> Automatic, DefaultColor -> Automatic. DefaultFont :> §DefaultPont, Rotatelabel -> True, Frame -> False, FrameStyle -> Automatic,
FrameTicks -> Automatic, FramelLabel -> None, PlotRegion -> Automatic}]

AmpPlotTw(5.641895413009938°Pi~(1/2), 4.729318913240664*Pi"(1/2), 1., 0, -0.1, fo] =
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Graphics|[{{(Line[{{-1., -1.927863365411739), (0.8024B8661624436, -0.749019990532986}, {1.1000832182914, -0.5574421622356803}.

.275023265322688, -0.470051901193316), (1.399385249546218, -0.4196936259076566), (1.495948843114022, -0.3869530852775928),
{1.574898989258946, -0.3639836092490773), {1.641680632207503, -0.3469931894273173), {1.699548677948487. -0.3339242959739331),
(1.750604808323138, -0.3235644698694219), {1.79628516981876, -0.3151533050972453}, (1.837614739188246, -0.3081300048869743},
(1.875350696579289, -0.3023314621012289), {1.910068287208911, -0.2973348150100153), {1.942214810694346, -0.2930233835759382},
11.972144559458221, -0.289265596918928}. (2.00014474070519, -0.2085961481476084}, {2.026448140455147, -0.2830337261160283),
(2.051249021610516, -0.2804216135760304), {2.074709803628545, -0.2780768007838732), {2.096967915078924, -0.27596032318851111},
(2.118140671487759, -0.2740404283127187}, {2.138329018246402, -0.2722909827598751), {2.157620441425085, -0.2706902832036441}.
(2.176091259055681, -0.2692201567724531)111}). {DisplayFunction -> {Display[$Display. #1) & ).

PlotRange -> {{-1.079402281476392, 2.255493540532073}, (-1.969329445627721. -0.2277540765564709)}.

AxesOrigin -> {-1.0794022081476392, -1.969329445627721), PlotRange -> All, AspectRatio -> GoldenRatio”(-i), DisplayFunction :> Identity,

ColorCutput -> Automatic, Axes -> Automatic, AxesOrigin -> Automatic, Plotlabel -> None, AxeslLabel -> None, Ticks -> {LogScale, LogScale},

Gridlines -> None, Prolog -> {), Bpilog -> {}, AxesStyle -> Automatic, Background -> Automatic. DefaultColor -> Automatic.

DefaultFont :> $DefaultFont, RotateLabel -> True, Frame -> False, FrameStyle -> Automatic, FrameTicks -> {LogScale, LogScale, LogScale, LogScale).

FramelLabel -> None, PlotRegion -> Automatic})

-

Clear{PhasorPlot, PhasorPlotBlack, AxpPlot, AzgPlot, AmpPlotTw]

(* Mass Plux Pield ¢)

rhoSuSAvg: axial secendary wass flux

(= AYTAL FEVNOLIS STRESS - Ruaal Eeymolds Stress - uwlud =

twoTimesDrholubulzAvgTemplate = D(rho0O[z] uOhatTemplate ulhat{CTemplate,z] / /ComplexBxpand;
twoTimesDrhoOuluOZReAvgTerplate =

(twoTimesdrhoOufulzAvgTenplate - I Coefficient [twoTimesDrholuQuOZAvgTemplate, I));
twoTimesDrholululIReAvgFluxHold (r_, z_, sigmaV_, Uo_, Ul_, phiU_] =twoTimesDrhoOuOulZReAvgTemplate/ . ulAssign;

DrhoOuOuOZReAvgFlux{r_, z_, sigmav_,Uo_,Ul_.phiU_ ):= 1/2 twoTimesDrholululZReAvgFluxHold(r, z, sigmaV, Vo, Ul, phil)
//ReleaseHold//ReleaseHold/ /N;

DrhoOulu0zReAvgFlux(r_,z_,V,U0,UL, PHIU] = DrhoOuCuliReAvgFlux(r.z,V,U0,UL. PHIU]//Expand:
axialStress(r_,z_]=Integrate(Integrate[r*DrhodululZrReAvgFlux{r.z,V, U0, UL, PHIU],rl/r,x]//Expand;
728} )
ntegrate(r * axialStress(r.z).r]//Expand; *)(*don’t really need r-dependence ...

coded here for completaness®)
qQ3{z_] =Integratelr * axialstress(r,z],{r.0,1}]//Expand;

(e mens wimengueraged u-velocity. or mean-gready Revoclds St
twoTimesrhoOuQulAvgTemplace = (rhol(z) uChatTemplate u0hatCCTemplate} //ComplexExpand;
twoTimesrhoOuluOReAvgTemplate = (twoTimesrhoOuCuCAvgTemplate - I Coefficient [twoTimesrholuluOAvgTemplate, I}
twoTimesrhoOuluOReAvgFluxHold(r_,z_,sigmav_,Uo_, Ul_.phiU_] =twoTimesrhofuQulReAvgTemplate/ . ulAssign:

gy canvany

rhoOuOuCReAvgFlux|r_, z_. sigmaV_.Uo_,Ul_,phiU_]:= 1/2 twoTimesrhoOuludReAvgFluxHold|[r, z, sigmaV, Uo, Ul phiu]
//ReleaseHold//ReleaseHold//N;
rhoOuOuOReAvgFlux[r_, z_,V,UQ, UL, PHIU] = rhoCuQuOReAvgFluxir,z,V,U0, UL, PHIU)//Expand:

v ogverage velngity amplitnde for rhelsiv

localReynoldsStress|z_)=Integrate|r*rho0uluOReAvgFlux(r,z,V,U0, UL, PHIV], {r.0,1}] //Expand;
RMSReynoldsStress{z_)aSqrt[localReynoldsStress(z]);

¢ egual s rumply,

twoTimesrhoOvOuOAvgTemplate = rho0(z) vOhatTemplate uQhatCCTemplate //ComplexExpand;

twoTimesrhoOvOuOReAvgTemplate = twoTimesrhoCvOulAvgTemplate - I Coefficient [twoTimesrhoOvQulbAvgTemplate, I};

twoTimesrho0vOuOReAvgFluxHeld(r_,z_, sigmaV_, sigmaPV_,Uo_.Ul_,phiU_,phiT_.Tw_] =twoTimesrhoOvOulReAvgTenplate/ .
Union|[vOAssign,uCAssign);

rhoOvOuOReAvgFlux{z_, z_, sigmav_, sigmaPVv_, Uo_. Ul_,phiU_,phiT_,Tw_):= 1/2 *
twoTimesrhoOvOuOReAvgFluxHold(x, z. sigmaV, sigmaPV, Uo, UL, philU, phiT, Tw]/ /ReleaseHold//ReleaseHold//N;

rhoOvOuCReAvgFlux{r_, z_, V. PV, U0, UL, PHIU, PHIT. 0] = rhoOvOuOReAvgFlux(r,z,V, PV, U0, UL, PHIU, PHIT, 0]/ /Expand;
rhoOvOuOReAvgFlux[x_, z_,V,PV,U0, UL, PHIU, PHIT, TW] = rhoOvOuOReAvgFlux{r, z,V, PV, U0, UL, PHIU, PHIT, TW)//Expand;

radialStress(r_.z_,0]=Integrate(rho0vOuCReAvgFlux(r,z.V, PV, U0, UL, PHIU, PHIT, 0}, 1] //Expand; (*radialStress=j2*}
radialStress{r_.z_, TW)=Integratelrho0vOuOReAvgFlux(r, z,V,. PV, U0, UL. PHIU, PHIT, TW).r)//Expand;

j3{r_.z_.0}= Integrate(r * radialStress(r.z,0].r]//Expand:
33(z_.0)= Integrate(r * radialStress(r,z,0],{r.0.1}}//Expand;

(* 33[{z_.z_,TW]= Integrate(r * radialStress{r,z,TW], r}//Expand;*)

(*don’t really need r-dependence ... coded here for completenass®)
33[z_.TW]= Integrate{r * radialStress(r,z,T™], (r,0,1}]1//Expand;

= MASS

to Mags Joenservatior - rholul

twoTimesrholu0AvgTemplate = rholhatTemplate ulhatCCTemplace / /ComplexExpand;
twoTimesrholuOReAvgTenplate = twoTimesrholuOAvgTemplate - I Coefficient{twoTimesrholulAvgTerplate, I]:
twoTimesrholuOReAvgFluxHold (r_, z_, sigmaV_, sigmaPV_, Uo_,Ul_.phiU_. phiT_, Tw_]=twoTimesrholuOReAvgTenplate/ .
Union|[plAssign, TlAssign,uOAssign]:

rholuQReAvgFlux|r_,z_,sigmav_, sigmaPV_,Uo_,Ul_,phiU_,phiT_,Tw_]:=

1/2 twoTimesrholudReAvgFluxHold|(r, z, sigmaV, sigmaPV,Uo.Ul, phil,phiT, Tw]

//ReleaseHold//ReleaseHold//N;

rholuOReAvgFlux{zr_,z_.V.PV, U0, UL, PHIU, PHIT. 0} = rholuOReAvgFlux(r,z.V,PV,U0, UL, PHIU, PHIT, 0] / /Bxpand;
rholuOReAvgflux({r_,z_,V,PV,UQ, UL, PHIU, PHIT, TW] = rholulReAvgFlux(r,z,V,PV,U0, UL, PHIU, PHIT, TW] //Expand;

k3(z_.0] (1/Power(Vv,2]) In:ean.e[r'tholuOReAnglux[x,z,V.W,UO,UL,PHIU,PHIT,O], (r,0.1})//Expand//N;
(ras S L
X3[z_,TW)

Stregzardtl
(1/Power|V,2]) Integrate(r®rholulReAvgFluxir, z,V,PV,U0, UL, PHIU, PHIT, TW;. {r.0.1})//Expand//N;

fobgeyrved?) ulAvg - Jue no Rey ! .
Klr..z_.0) = & {k3{2,0] =+ Q3f{z] = §3(z.0]) - 2 (axialStress(l.z] <« radialStress{l,z,0]) //Expand:
Kir_,z_,TWl= 4 (k3[z,TW] + q3lz] « 3I(z,TW]) - 2 {axialStress(l,z) + radialStress[l,z,TW])//Expand:
rhoQulAvgir_,z_.0i =Powsrlv,2)((axials:ress[r,z]-axxalscress[l,z))~(zadialsr.zess(r,z,0] -

radialStress{l,z,0]} «{r*2-1) Kir,z.0])//Expand;
rhoOulAvg(r_, z_. TW] =Po~oer[v,2]((axialscxess[r,z]-nxalstress(l,z])dradials:ress[nz,TW]-
radialStress(1.z,TW))«+(r*2-1) Kir.z,TW])//Expand;

rhoSuSAvg (r_,2z_.0] = rhoOulAvg(r,z.C]  + rholuOReAvgFlux(r,z.V, PV, UQ, UL, PHIU, PRIT,0];
rhoSuSAvg(r_.z_,T™W] = rhoCulAvg(r,z,IW} + rholuOReAvgFlux{r,z V, PV, U0, UL, PHIU, PHIT, TW];
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rhoSvSAvg: racdia. sacondarv mass fiux

[ - rhoSvSAvg i
rhoSvSAvg(r_.z.,0) = - 1/r * Integrate{r*D(rhoSusAvg{r.z,0], z),r) //Expand;
rhoSvSAvgir_.z_,TW] = - 1/r * Integrate{r*D(rhoSuSAvgir,z, ™|, z).z] //Expand:
(r BADTAL A% - rholv0 !
twoTimesrholviAvgTenplate = rholhatTenmplate vOhatCCTemplate //ComplexExpand;
= twoTimesrholvOAvgTenplate - I Coefficient(twoTimesrholv0AvgTenplate,l];

twoTimasrholvOReAvgTenplate
twoTimescholvOReAvgFluxHold(r_, z_, sigmav_, sigmaPV_, Uo_, Ul_,phiU_, phiT_, Tw_! =twoTimesrhol vOReAvgTemplate/.
Union{plAssign,T1Assign,vOAssign] ;

rholvOReAvgFlux(r_,z_. sigmaV_, sigmaPV_,Uo_,Ul_,philU_,phiT_,Tw_):=
1/2 twoTimesrholvOReAvgFluxHold!r, z, sigmaV, sigmaPV,Uo,Ul,phil, phiT, Tw]
//ReleaseHold//ReleaseHold/ /N;
= rholvOReAvgFlux|[r,z,V, PV, U0, UL, PHIU, PHIT, 0)//Expand;

rholvOReAvgFlux(r_.z_,0)
= rholvOReAvgFlux(r,z.V, PV,UQ, UL, PHIU, PHIT, TW] / /Expand;

rholvOReAvgFlux|[r_,z_,TW] =

rhoOvlAvg(r_,z_,0) =(rhoSvSAvg{r,z,0} -rholvOReAvgFlux(r.z,.0) );
rho0v1Avg (r_.z_, T™W}=(rhoSvSAvg(z, z, TW] -zholvOReAvgFlux{r, 2z, TW]) ;

If(kindSystem==OPT,Print (fileNameOPTHXfrList ] Print([fileNameOPTHXfr], , Print[£ileNameBPTHXErList];

Print[fi{leNameBPTHXfr)]:

Timing (massFlux (1, meanSteady,0) =PlotVectorField|(rhoSuSAvglr,z,.0},rhoSvSAvg(r.z,0)), (z,0.1},{r.0.1},
AspectRatio->1/3,DisplayPunction->Identity]};

Timing [massFlux{l.meanSteady, TW)=PlotVectorField( (rhoSuSAvg(r,z, TW).rhoSvSAvgir,z,T™W]}, (z.0.1}, (r.0,1},
AspectRatio->1/3,DisplayFunction->Identity]]:

Show[{massFlux(l meanSteady,0],linezr{{0,1),(1,1}], texter), DisplayPunction->$Displayfunction]

Show[{massFlux(l meanSteady,TW), liner[{0,1},{1,1)],texter}, DisplayFunction->$DisplayFunction]

({OPT, eps, Va, Pr, VaPr, UL, PHIU, M, LAMBDA, IsoPressRatio, AdiPressRatio, CLAdiPRatio),

{(Fo. (PHIT, TW}, VaPrFo},

{totalDraghmp0, totalDragRMS/tube, HOscFlowOStar), date)
-6 -
{{{oPT. 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 , &.31 10 ), {1.002, 1.004, 1.00413}},

{100., (-0.03918, 0.31991S5), 7026.6},
{0.00476915 Amp dyne, 0.199157 {tube~-1} dyne, 1.97349 W}, {OPT<>100., 3, 15, 19)}
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-Graphics-

Show[{massFlux{]l, meansSteady,0]. liner({0.1},(1,1}),texter}, DisplayFunction->$DisplayFunction]
Show{ {massFlux(l, meanSteady, TW],liner({0,1},(1,1}), texter}, DisplayFPunction->$DisplayFunction]
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-Graphics-
(* of mags flux at a given z, Check for zero net mass flow *}

{7 Plots v

If(kindSystem==OPT, (*Print [fileNameOPTHXfrList] ;*)Print[fileNameOPTHXfr],, (*Print{fileNameBPTHXfrList]; ")
Print[fileNameBPTHX{r])

Block{{z=.5},

Plot({ Avglr,z.0}.r g(r,z,. TW] (*, rhoSuSAvg{r,1,0}*) }.{r.0.1),

PlotStyle->{{},{Dashing{(0.03,0.03}),RGBColor(0,0,1]} . {Dashing[{0.005.0.02,0.03,0.02}),

RGBColor(1.0,0)) T
PlotRange->All,AxesLabel->{(*r*,"*}] {*rhoSuSavg®)

Timing [NIntegrate[rhoSuSAvg(r,z,.0]"r. (r,0.1}])]
(*
{{BPT, eps. Va, Pr, VaPr, UL, PHIU, M, LAMBDA, IsoPressRatio, AdiPressRatio, CLAdiPRatio},

{Fo, (PHIT, TW)}},

{totalDragAmp0, totalDragRMS/tube, HOscFlow(Star}, date)

")

4.31 10 3}, {1.002, 1.004, 1.00413}),

{{{oPr, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 .,
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{-0.03918, 0.319915). 7026.6),
0.199157 {(tube~-1l) dyne,

{100..
{0.00476915 Amp dyne,

1.97349 W), {(OPT<>100., 3, 15, 19)}

-0.2

-0.3
5

-0.4

-16
{51.9333 Second, 2.53812 10 }

Other
Plot [{rhoSuSAvg(r.0,0],rhoOulAvg(r,0,0), rholuCReAvgFlux(r. 0,V,PV,U0,UL, PHIU,PHIT, 0]}, {x,0.1}.
PlotStyle->{ (RGBColor(0,0,1]}. (RGBColor(0,1,0])), {RGBColor(1,0,0]}},

PlotRange->All, Axeslabel->{*r", “rhoSusAvg~l}];

rhoSuSAvg

(* Plot of Integrated over area Transverse RMS Reynolds Stress (integration z *)

Plot [RMSReynoldssStress(z). (z,0.1). PlotStyle~>{{RGBColor(1.0,0]1}1}1;
0.465 ’

0.46

0.455

0.2 0.4 0.6 0.8 1

0.445 {

ARCHIVE

OTHER FLOW COMPONENTS

(* Steady rhoCUlFlux Field *)
Print(fileNameBPTHXfrList):Print (fileNameBPTHXEr]];
,0.1) ., AspectRatio->1/3

1€([kindSystem==0PT, Print|fileNameOPTHXfrList);Print [fileNameOPTHXEr], ,
Timing (rhoOULFlux|l, quasiSteady, 0] =pPlotVectorField{ {rhoQulAvg(r,z,0]. rholviAvglr.z, 01} ,{z,0.1}.(x
{*.AxeslLabel->("r/rw*, "z/L'}, Axes->True,*)]]
Timxng(rhoouu‘luxn,quasisr.udy.TH]:Plo:VectorField[ (rhoOulAvglr,z. W}, rhoOvlAvg(r,z, TW)}, {z,0.1}. (r, 0,1),AspectRatio->1/3
(*,AxesLabel->{"x/rw","z/L"}, Axes~>True, "} ]}

((BPT, eps. Va, Pr, VaPr, UL, PHIU, M, LAMBDA. IsoPressRatio. AdiPressRactio. CLAdiPRatio}, {Fo, {PHIT, TW}},

{-0.288669, 0.490179}},

{totalDragAmp0, totalDragRMS/tube, HOscFlowOStar}. date}
-7
0.703, 13.254. 0., n/aPHIU, 0.0093158, 5.98 10 1}, {1.222, 1.397, 1.4}}). (20

{{{BPT, C.1, 250.,
(0.397429 Amp dyne, 2.17228 (tube~-1) dyne, 246.69 W}, {BPT<>250., 6. 7. 13}}
SAborted
“« 4 % % a4 a e« =
- - - v '
————— st - -
—— —y — — iy i - > - ;
e . e W W W & .- - v
3533335331 Y
- - > o - 4 - - - >
-— e > > @ ® @ @ .
- W~ e e M &> & - r Y
- g . A A e - 2 ]
T e e T - o &> 2
D r—— e A— — A W > -
At A W e G = = - - -
{60.8833 Second, -Graphics-)
{* Steady rholUOFlux Field *)
HXfrList):Print{fileNameOPTHXfr],  Print|fileNameBPTHXfrList) ;Print[£ileNameBPTHXEr]]:
=zPlotVectorField{ {rholuOReAvgFlux(r,z,V, PV, U0, UL, PHIU, PHIT.0]. rholvOReAvgFlux{r,z.0}} ,

If{kindSystem==z0PT, Print(fileNameOPT!

Timing{rholOUOFlux(1,quasiSteady.0]
{z,0.1}, (=, 0, 1},AspectRatio->1/3(*,AxesLabel->{ r/rw", *2/L"}.Axes->True,*)}]

1df (rholuOReAvgFlux(r,z,V,PV,UQ, UL, PHIU, PHIT, TW}, rholvOReAvgFlux(r,z,TW] ],
sLabel->{"r/rw", "z/L"}, Axes->True, *}}]

Timing [rholOUOFlux (1, quasiSteady. Tw]=PlotVectorFie
{z,0,1}.{r,0,1),AspectRatio->1/3{", Axe:
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({BPT, eps. Va, Pr, VaPr. UL, PHIU, M, LAMBDA, IsoPressRatic, AdiPressRatio, CLAdiPRatio}, {Fo, (PHIT, TWi}}.
{totalDragAmp0, totalDragRMS/tube, HOscFlow0Star). date}

({{(BPT, 0.1, 250., 0.703. 13.254, 0., n/aPHIU, 0.0003158, 5.98 10 }, {(1.222, 1.397, 1.4}), (20., (-0.288663. 0.490179)},

{0.397429 Amp dyne, 2.17228 (tube*-1) dyne, 246.59 W}, (BPT<>250.. 6, 7, 13})
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- - - - > - +» - ow
e v s e @ e 4 ¢ 4 @
- - - = = e * » ¢ e
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- > L I - - >
- > > > > e > > > - >
{43.1333 Second, -Graphics-)
——————— - o - > o & & O ¥
-——— -—® @ o ® @ @ @ @ a
- » -« @ @« 4 « a @« -
- - @ - P
. - . = ool .
: - . = Lol
- v sy £ 44
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- = a« . = oo
- - -« - = N P
- = - = -+ = . . .

{45.1667 Second. -Graphics-)
{* Isothermal Flow movie )

Block({tEnd=,95}, If [kindSystem==OPT, Print[fileNameOPTHXfrList ] Print (fileNameOPTHXEr], . Print|fileNameBPTHXfrList];Print[fileNameBPTHXfr]]:
Timing (Do[velField[2,t, O}aPlotVectorField|
{uORe(r,z,t,V,U0,UL, PHIU}+eps rhoSuSAvg(r,z,0),vORe(r, z,t,V,PV,U0, UL, PHIU, PHIT, 0) +eps rhoSvsAvglr,z,0]},{z.0,1}.(r.0.1},
AspectRatio->1/3, (*AxesLabel->{“r/rw", *z/L"),Axes->True, *)PlotLabel->t}. {t.0. tEnd, .05}))]

(* thin wall Flow movie *)

Block({tBnd=.95), If [kindSystems=OPT, Print [£ileNameOPTHXfrList]:Print[fileNameOPTHXEr), ,Print(fileNameBPTHXErList} ;Print {fileNameBPTHX{r]):
Timing[DolvelField[2, t, TW}aPlotVectorField|

{uORe(zr,z,t,V,U0,UL, PHIU]) +eps rhoSuSAvg(r,z,TW],vORe([r,z,t,V, PV, U0, UL, PHIU, PHIT, TW] »eps rhoSvSAvg{r,z,™WJ)},{z,0,1}.{r.0.1),
AspectRatio->1/3, (*Axeslabel->{*z/rw","z/L"},Axes->True, *)PlotLabel->t], {t,0.tEnd, .05}])]

(* Mesan-steady Particle Velocity *)

- cai

FETo%:

DuORe#(r_,2_.t_,V,U0, UL, PHIU] = D{uORe(r.z,t.,V,U0, UL, PHIU].r];
DuOReZ(r_.z_,t_,V,U0, UL, PHIU] = D(uORe(r,z,t,V,UQ, UL, PHIU], z};
CuORer1vOReTAvgFlux(r_,z_.0] :=

Integrate|DuOReR([r,z,t,V,UQ, UL, PHIU) Integrate(vORe(r,z,t,V, PV, U0, UL, PHIU,PHIT,0].t], (¢, 0.1}]
TuOReRIVORETAVGRIux(z_ .2z, TH]:=

Integrate|lulReR{r,z,t,V, U0, UL, PHIU] Integrate(vORe(r,z,t,V,PV,U0, UL, PHIU, PHIT, TW}, t1. {t.0.1}]
DulReiZIuOReTAvgFlux(r_, 2. ) ]

Integrate(DulReZ [z, 2,t,V, U0, UL, PHIU} Integrate|ulRe(r,z,t,V,U0, UL, PHIU],t),{t,0.1}}
upAvg(r_.z_,0) ;= rhoSuSAvglr,z,0] <+ DuQOReFIvOReTAvgPlux(r,z, 0} « DuOReZIuOReTAvgFlux(r,zl//N
upAvglr_,z_, W] := rhoSuSAvgir,z,TW] + DuCReRIvOReTAvgFluxir,z TW] + uOReZIuOReTAvgFlux(r,z]//N

vORen[r_.z_.t_,V, PV, U0, UL, PHIU, PHIT, 0] = D{vORe[r,z,t,V,PV, U0, UL, PHIU, PHIT,0].z]:
vOReZ{r_,z.,t_,V,PV,U0, UL, PHIU, PHIT, 0] = D{vORe(r,z,t,V,PV, U0, UL, PHIU, PRIT, 0] .z}
DvOReR[r_.2_.t_,V, PV, UO,UL, PKIU, PHIT, TW] = D(vORe[r,2z,t,V,PV,U0,UL, PHIU, PHIT, TW], ]
DvOReZ(r_.z_,t_,V, PV, U0, UL, PHIU, PHIT, TW] = D(vORelr,z, t,V,PV,U0, UL, PHIU, PHIT, TW} , 2]
vOReRIVOReTAvgFlux([r_,z_., 0] :=

Integrate|vORei (x.2,t,V, PV, U0, UL, PHIU, PHIT,0] Integrace{vORe(r.z, t,V,PV,U0,UL, PHIU, PRIT,0), ], {t, 0% 1}]
TvOReZTuOReTAvgFlux{x_,z_, 0] :=

Integrate[DvOReZ{r, 2z, t,V,PV,U0, UL, PHIU, PHIT, 0] Integrate(ulRe(r,z.t,V,U0, UL, PHIU] . £, {t,0,1}]
DVOReRTVOReTAVGFlux (x_, z_, TH] :=

Integrate[IvOReR([r,z,t,V, PV, U0, UL, PHIU, PHIT,TW] Integrate{vORe(r.z,t.V, PV,UO, UL, PHIU, PHIT,TW].t]. {t,0,1}]
OvOReZIuOReTAVgFlux{r_,z_.TW} :=

Integrate(DvOReZ(r,z,t,V,PV,U0. UL, PHIU, PHIT, TW] Integrate[uORe(r, z,t,V,U0, UL, PHIU], t], (£,0.1}]
vpavglzr_.z2_.0] rhoSvSAvglr.z, 0] + LvOReRIVOReTAvgFlux(r.z.0] « DvOReZIuOReTAvVgFlux(r,z.0]//N
vpAvglr_,z_, TW] 1= rhoSvSAvglr,z,TW] + DvOReRIVOReTAvgFlux[z,z,TW] + DvOReZIuOReTAvgFlux(r,z, TW) //N

{CoapAveG Y

uSPlot[{r..5).0)=Plot[rhoSuSAvg(r,.5,0),{r.0,1}};
uSPlot({r.1).0}=Plot(rhoSusAvg(r,1,0]1,{z,0,1});:

Show({uSPlot((r,0},0}, Graphics[(mlhing[m‘m,0.02)].RGBColor[0,0,l),upAngle:(O.Dll]),Axes-vz'm]
{*Show({uSPlot[{r,.5},0]. anhics[(Dashingl(0.02.0.02)l,RGBColox‘[0,0,l].upAnglo:[.s,D])l),ues-ﬂrue]')
Show! {uSPlotl(r,1}.0), Graphics{{Dashing({(C.02,0.02)],RGBColor(0,0,1],upAvgPlot(1,0]1]), Axes->True]
Show{Graphics({upAvgPlot[(.0], {Dashing{{0.02,0.02}},RGBColor[0, 0,1}, upAvgPlot (0.TW}}} ) . Axas->True)

Show( (usPlot{{r,0}.0], Graphics|[(Dashing(({0.02,0.02}]).RGBColor(0,0,2],upAvgPlot{0,0]1}]},
{usPlot{{r.1},0]. anhics[(nashingl(0.0240,02)],RGBCDLO![O,D.I].upAqulo:[l.O])]).Axes-ﬂ‘rue]
(=
Show{Graphics({{ uphvgPlot[0.0)),
{Dashing( {0.02,0.02}]. RGBColor{0,0,1),upAvgPlot[.5,0]},
{Dashing|( (0.005,0.02,0.03,0.02}},RGBColor [1,0.0], upAvgPlotil,0]}}
}].Axes->True]

Show [Graphics [ { CuORex: vOReTAvgFluxPlot(0,0], (Dashing({0.02,0.02)] ,RGBColor(C,0,11}.
DuOReRIVvOReTAVgFluxPlot [0, TW) } ). Axes->True]

Show|Graphics| DuOReZIuOReTAvgFluxPlot[0)] . Axes->True]

")
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-Graphics-

-Graphics-

oWy

show[ {vSPlot[{r.0)}.0]), Graphics{{Dashing((0.02,0.02)),RGBColor(0,0,1].vpAvgPlot(0.0)}]).Axes->True]
Show [Graphics [ (vpAvgPlot (0, 0], {Dashing{{0.02,0.02}]),RGBColor(0.0,1).vpAvgPlot [0, TW])}].Axes~->True}

(=
Show(Graphics([{{ vpAvgPlot (0,01},
{Dashing( (0.02,0.02}}, RGBColor{0,0,1]1.vpAvgPlot(.5,0]),
{Dashing( {0.005,0.02.0.03,0.02}],RGBColor{1,0,0}. vpAvgPlot(1.0])}
}].Axes->True]
Show (Graphics{ { vOReRIVOReTAVgFluxPlot[0,0], {Dashing{{0.02,0.02}},RGBColor(0,0.1],
Dv0ReRIVOReTAvgFluxPlot|{0,TW]) } ] . Axes->True)
Show({Graphics [ { OvOReZIuOReTAvgFluxPlot{0,0], {Dashing[{(0.02,0.02)}],RGBColor(0,0.1].
Dv0ReZIulReTAvgFluxPlot[0,TW]}}], Axes->True]
*)

-Graphics-

0.015 SN

0.005 4 \

-0.005

-0.01

-Graphics-
V4o FPlelds v
If(kindSystem==OPT,Print[fileNameOPTHXfrList];Print(fileNameOPTHXEx], ,Print(£fileNameBPTHXfrList];
Print{£ileNameBPTHXfr]):
Timing [particlevelField[l, meanSteady, 0) =PlotVectorField({Re{upAvg(r.z,.0]], Re{vpAvg(r,z.0]] },{z.0.2},
{r.0,1),AspectRatio->1/3, DisplayFunction->Identity]]:
Timing[particlevelField(l, meanSteady, TW]=PlotVectorField{{upAvgir,z, W], vpAvgir,z, T™W]], {z,0.1}.{z,0.1}.
AspectRatio->1/3, DisplayFunction->Identity}};
Show( {particlevelField({l, meanSteady, 0], liner([{0,1}.{1.1}), texter},DisplayFunction->$DisplayFunction]
sShow( {particleVelField(l, meanSteady,TW), liner[{0,1},{1,1}], texter}, DisplayFunction->$DisplayFunction]

{{OPT, eps, Va, Pr, vaPr, UL, PHIU., M, LAMBDA, IsoPressRatio, AdiPressRatio, CLAdiPRatio}, (Fo, {PHIT. TW}, VaPrFo},
{totalDragAmp0, totalDragRMS/tube, HOscFlow(OStar}. date}

-9
{{{OPT, 0.002, 100., 0.703, 70.266, 1., -0.1, 3.789 10 , 4.31 10 ), (1.002, 1.004, 1.00413}).
{100., (-0.03918, 0.319915}, 7026.6},

{0.00476915 Amp dyne, 0.199157 (tube-1) dyne. 1.97349 W}, (OPT<>100., 3, 15, 19}}

(* T2 Scolution *}
{* Calculations *)

ulavg(r_,z_,0] =rhoQulAvg[r.z,.0)/ rhollz]//Expand:
ulavgir_,z_,TWl=rhoOQulAvg(r,z,TW]/rho([z]//Expand;

DulAvgl{r_.z_.0] =D(ulAvglzr,z,0},2]: -
DulAvgl{r_,z_,TW}=D[ulAvglr,z,TW].z}:
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(*esesrcacassccaveanrarannresserces)

twoTinesplulAvgTemplate =z plhatTemplate * u0hatCCTemplate //ComplexExpand;

twoTimesplulReAvgTemplate = twoTimesplulAvgTemplate - I Coefficient{twoTimespluOAvgTemplate,.I]:

twoTimesplulReAvgFluxHold(r_,z_, sigmav_, sigmaPVv_,Uo_,Ul_,phiU_,phiT_, Tw_]stwoTimespluOReAvgTemplate/.
Union{plAssign,ulAssign);

PLludReAvgFlux(r_.z_. sigmav_,sigmaPV_,Uo_, Ul_,phiU_.phiT_, Tw_):= 1/2 *
twoTimesplulReAvgFluxHold(r, z, sigmaV, sigmaPV, Uo,Ul,phiVl,phiT, Tw) / /ReleaseHold//ReleaseHold//
ReleaseHold//N
plulReAvgFlux(r_,z_,V,PV,U0,UL, PRIV, PHIT, 0] =plufReAvgFlux{r,z,V,PV, U0, UL, PHIU, PHIT,0)//Expand;
plulReAvgFlux(r_.z_,V.PV,U0,UL, PHIU, PHIT, TW)splulReAvgFlux{r,z,V, PV, U0, UL, PHIU, PHIT, TW]//Expand;

CplufReAvgFPlux2({r_,z_,0) =D{pludReAvgFlux(r,z,V,PV,U0, UL, PHIU, PHIT,0]. z};
CplulReAvgFluxZ (r_.z_.™W]=D(pluOReAvgFlux(r,z,V, PV, U0, UL, PHIU, PHIT, TW] .2} ;

wlfr_,z_,0] =Integrate{l/r * Integrate(r®(DulAvgZ(r,z,0] +DplulReAvgFluxz[r,z,0]),.r ), r);
wll{r_,z_, TW)=zIntegrate(l/r * Integrate(r*(DulAvgZ|(r,z, TW)+DplulReAvgFlux2ir,z, ™)), 2], z);

(**evesnrevevenvrnrrenrerrasevenann)

viAvglr_,z_,0] =rhodvlAvg(r,z,0)/ rhoOlz]//Expand;
v1Avglr_,z_, TW)arhoOvlAvg{r,z, TW) /rhoO(z]//Expand;

twoTimesplviAvgTenmplate = plhatTemplate * v0hatCCTemplate //ComplexExpand;

twoTimesplvOReAvgTemplate = twoTimesplvOAvgTemplate - I Coefficient(twoTimesplvOAvgTemplate,I);

twoTimesplvOReAvgFluxHold{r_.z_,.sigmaV_, sigmaPV_,Uo_,Ul_.phiU_,phiT_, Tw_]stwoTimesplvOReAvgTemplate/.
Union[plAssign, vOAssign]

plvOReAvgFlux(r_.z_.sigmaV_,sigmaPV_,Uo_,Ul_,phiU_,phiT_,Tw_):= 1/2 *

twoTimesplvOReAvgFluxHold(r, 2z, sigmaV, sigmaPV,Uo,Ul,phiU, phiT, Tw) / /ReleasaHold//ReleaseHold/ /ReleaseHold/ /N
plvOReAvgFlux(r_,z_,V.PV,UQ,UL, PHIU, PHIT.0) =plvOReAvgFlux(r,z,V,PV,UQ, UL, PHIU, PHIT,0)//Expand;
plvOReAvgFlux(r_.z_,V, PV, U0,UL, PHIU, PHIT, TW)=plvOReAvgFlux|(r,z,V, PV, U0, UL, PEIU, PHIT, TW]//Expand;

w2(r_,z_,0} =Integrate([vlavg(r,z,0] <+ plvOReAvgFlux(r,z,V,PV,UQ,UL,PHIU,PHIT, 0], r)//Expand:
w2{r_.,z_,TW]=Integrate[viAvg(r,z,T™W) + plviReAvgFlux|[r.z,V,PV,U0, UL, PHIU, PHIT, TW] ,r)//Expand;

(swaessversvurernnsenvseonrnvrnsny)

T2(r_.z_,0] = (PV)}"2 (wl[r,2,0] -wl[l,2,0} +w2[r,z,0] -w2(1,2,0]} -
CAPGAMMA~2 D(TO[2],{%,2}) 1/4 (1-r~2)//Expand;

T2{r_,2..TH] = (PV}"2 (wllr,z,TW]-wl[l,z,TW])+w2[r, 2z, TW)-w2(1.z,TW]) -
CAPGAMMA~2 D(T0[2],{(z.2}] 1/4 (1-r*2)//Bxpand;

(" plots *)

If(kindSystem==0PT, Print [fileNameOPTHXfrList): Print[fileNameOPTHXfr], , Print [fileNameBPTHXfxList];
Print[fileNameBPTHXfr]];
T2IsoxPlot({T2{r.0.0,0].T2(r,.25,0},
T2(x,.50,0},T2{x,.75,0},
T2(r.1.0.0)}.1r.0.1},
PlotStyle->{ {RGBColor{0,0,.6})}. {RGBColor{0,0..9)}, {RGBColor(0,0, .8]}. (RGBColor(0.0,.7)), {RGBColor{0,0.1])},
PlotRange->All, DisplayFunction->Identity];
T2TW=Plot {(T2(r.0.0,.TW]. T2(x. .25.TW],
T2[r,.50.TW],T2[r,.75,TW],
T2(r,1.0,7TWi}, (r,0,1},
PlotStyle->{ {RGBColor(.6.0.0)}, (RGBColor(.9,0,0]}. {RGBColor(.8.0,0]}, (ARGBColor{.7,0.0]}, {RGBColox(1,0.01}},
PlotRange->All, DisplayFunction->Identity];
Show({T21s0, T2TW) . DisplayFunction->$DisplayPunction, AxesLabel->{"z", ""}}

-Graphics-
ARCHIVE
ARCHIVE
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{{Thesis, OPT, 0.1, 22,5122, 0.83825, 18.871, 0.3, -0.5, 0.0006315, 1.299, 1.546, 1.55319}, {0.0003?72373, (-0.253, 0.B81585)}), {500.081 wW}}
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APPENDIX H
EXPERIMENTAL DATA

The data presented are for Runs 1, 2, 5, and 6 discussed in section 5. The columns are
generally self-explanatory. The first two columns list the frequency and phase angle. The raw data
give position and calculate axial particle velocity, which is then converted into dimensionless
velocity. The system parameters € and Up are then listed. The calculated axial particle velocity
corresponding to the measured position is in the next column. The final four shaded columns are
used in the plots of section 5. The first shaded column lists the single-point velocity, the second
column lists the 3-point running average of the single point velocity, and the third column lists the
. 5-point running average. The last column lists the corresponding calculated axial velocity.
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