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Abstract

Atmospheric turbulence models are necessary for the design
of both inlet/engine and flight controls, as well as for studying
coupling between the propulsion and the vehicle structural
dynamics for supersonic vehicles. Models based on the
Kolmogorov spectrum have been previously utilized to model
atmospheric turbulence. In this paper, a more accurate model
is developed in its representative fractional order form, typical
of atmospheric disturbances. This is accomplished by first
scaling the Kolmogorov spectral to convert them into finite
energy von Karman forms and then by deriving an explicit
fractional circuit-filter type analog for this model. This circuit
model is utilized to develop a generalized formulation in
frequency domain to approximate the fractional order with the
products of first order transfer functions, which enables
accurate time domain simulations. The objective of this work
is as follows. Given the parameters describing the conditions
of atmospheric disturbances, and utilizing the derived
formulations, directly compute the transfer function poles and
zeros describing these disturbances for acoustic velocity,
temperature, pressure, and density. Time domain simulations
of representative atmospheric turbulence can then be
developed by utilizing these computed transfer functions
together with the disturbance frequencies of interest.

Introduction

This paper addresses the need for a model that simulates
atmospheric disturbance, in both the time and frequency
domain, over a wide range of altitudes and variations in
atmospheric turbulence conditions, that is relatively easy to
implement and representative of the actual fractional order
nature of atmospheric turbulence. This is applicable to both
propulsion system flow field type disturbances as well as
vehicle gust loads.

Atmospheric turbulence have been studied for some time,
especially in the field of Atmospheric Sciences, Nastrom
(1985), and Fairall (1991), and various models have been
developed. These models are primarily based on the so called
Kolmogorov spectrum, originally developed by Tatarski (1961),
based partly on the studies of turbulence by the Russian
mathematician Andrei Kolmogorov (Kolmogorov (1941) (a)
and (b)). The Kolmogorov spectrum has an energy level that
approaches infinity as frequency approaches zero. This
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characteristic makes it difficult to implement these types of
models in the time domain. A suitable approximation to the
Kolmogorov model that is commonly used with a finite energy
spectrum is the von Karman type model, originally referred to
as the isotropic-turbulence spectrum, (Houbolt (1964)).
However, simulating the von Karman type models in the time
domain is still problematic because of their fractional order.
The Kolmogorov model has also been extended (Tank (1994))
to develop a baseline of atmospheric turbulence for the High
Speed Civil Transport (HSCT). The Tank model also covers
atmospheric acoustic wave disturbance modeling utilizing the
von Karman spectral. Hoblit (1988) introduced the Dryden
model approximation to the fractional order von Karman
atmospheric model. But this model is second order compared
to the 5/3 fractional order of the acoustic velocity atmospheric
turbulence spectral. Thus, the Dryden model underestimates
the atmospheric disturbances, increasingly with frequency.

To alleviate some of these difficulties, the Tank model for the
von Karman approximation is utilized in this paper to derive an
explicit electrical circuit analog of atmospheric disturbances.
This circuit analog will act as a low pass filter. The circuit
elements are explicitly computed as functions of atmospheric
parameters, such as eddy dissipation rate and integral length
scale. However, like the actual atmospheric disturbances,
Nastrom (1985), the circuit order also turns out to be fractional
order, which makes it difficult to simulate. Thus, the circuit
model is used as the basis in this development to derive integer
order transfer function (TF) approximations to the fractional
order model. These TF approximations are a product of first
order poles and zeros, which are determined as a function of the
parameters describing an atmospheric disturbance. This
approach alleviates the manual process of hand fitting the
approximation every time an atmospheric parameter is changed.

Fairall (1991), Tank ((1994) and (1996)) and others approach
atmospheric disturbance modeling probabilistically, as an
exceedance for controls design purposes. That means that the
probability of a time to failure is computed for controls design.
This time to failure is associated with a controls design that can
tolerate a maximum specified disturbance, and computes the
probability, in terms of flight miles or hours, that an atmospheric
disturbance will exceed this threshold. In this paper the approach
will be to compute the worst case disturbance expected, and
assume that the control system will be designed to handle this
disturbance. Thus, this paper will not cover exceedance rates,
which can be computed separately, based on the worst
disturbance expected and the specifics of the controls design.



Kopasakis (2010) extends the work discussed in this paper
to cover considerations for atmospheric turbulence
specifications for supersonic propulsion systems. This work
also provides an example for a supersonic inlet shock position
controls design in the presence of atmospheric turbulence.

This paper is organized as follows. First, the Kolmogorov
form of the atmospheric disturbance spectrum is presented
followed by the Tank model for the von Karman spectrum
forms of the acoustic disturbances. This is followed with
formulations of the equivalent fractional order TF
approximations of atmospheric turbulence. Finally, time
domain atmospheric disturbances are discussed for the derived
TF approximations, followed by concluding remarks. The
formulations covered in the body of the paper are based on an
electrical circuit analog developed for different types of
atmospheric disturbances, which is covered in Appendix B.
While the detailed derivations of these formulations are
covered in Appendix C.

Kolmogorov Form of the Atmospheric
Disturbance Model

Tank ((1994) and (1996)) utilizes a Kolmogorov one-
dimensional locally isotropic  atmospheric turbulence
spectrum, mathematically developed in Tatarski (1961), which
represents the spectral density of a structured random field of
atmospheric turbulence as

S,(k)za,82/3k_5/3 (1)

In this equation the quantity € signifies the eddy dissipation
rate, in units of (energy/(mass x time)) = (m*/sec’), and k
signifies the wavenumber, in units of (rad/m) or (cycles/m).
The subscript ¢ in the atmospheric turbulence spectral density,
S«k), signifies the type of disturbance. Based on these
definitions, the units of S,(k) are (m/sec)’/(rad/m) (Tatarski
(1961)), where the units of rad or Hz are not affected by
raising them to a power. Or Sy(k) will have units of
(m/sec)*/(cycle/m) (Tank (1994)), as rad = cycle/2n, with the
2n factor that multiplies the spectral density for this
conversion absorbed into the constants o, terms. In this
treatment, more convenient units in terms of Hz will be
utilized as ((m/sec)’/Hz), by substituting cycles with Hz*sec,
which allows displaying results in terms of the acoustic wave
velocity in (m/sec) /Hz.

Tatarski (1961) includes a more detailed treatment of €
along with a detailed derivation of Equation (1). In brief,

—v¥y'2/72
=V / ! is called the eddy dissipation rate and it
represents the energy dissipated as heat per unit mass per unit
time due to a velocity fluctuation that occurs in an
atmospheric region of size (length) /, due to a flow instability
that takes place when a certain critical Reynolds number value
is exceeded (Tatarski (1961)). This critical Reynolds number
cannot be determined precisely, but for worst -case
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atmospheric turbulence calculations it would be correct to
assume that this number is exceeded. The quantity v is the
kinematic viscosity, and v;is a velocity fluctuation in an

atmospheric region of size /.

At lower altitudes, the eddy dissipation rate can vary
significantly with altitude and severity of turbulence (Fairall
(1991)) as well as globally (Nastrom (1985)). Tank (1994)
used a worst value of 8.6e—5 based on data collected at
altitudes ranging from 25,000 to 40,000 ft (~ 7.5 to 12 km),
which is about four times the appropriate value of ¢ for North
Atlantic cruise altitudes. For supersonic cruise altitude, around
60,000 ft (~18 km), the same value of € can be used, as € is
relatively constant at altitudes above 20,000 ft (~6 km).

According to Tatarski (1961), Equation (1) holds for
turbulence lengths much greater than what would be
considered a microstructure (10’s of meters) for eddy
dissipation and much less than the long length scale (that is
considered to be about 400 km). Some sparse measurements
performed by Obukhov (1949) in the lower troposphere agree
with Equation (1), as well as other measurements by Nastrom
(1985). The constant o, is constant for each type of
disturbance, given by Tank 1994, to fit observed data:

o;=0.15 (longitudinal wind velocity gust,
dimensionless)

o,=0.2 (vertical or horizontal wind velocity
gust, dimensionless)

or=0.39 (temperature disturbance, K*s*m ?)

(pressure  disturbance, Pa’s’m ?),
where the subscript “0” denotes total
atmospheric quantities.

ap=0.0005(P,/T,)

For a flight wvehicle encountering an atmospheric
disturbance, the disturbance frequency is defined as
M
f= Ta - kMa ©)

Where M is the vehicle Mach number, a is the local speed of
sound (m/sec), A is the wave length of the atmospheric
disturbance (m/cycle), and k is 1/A (cycles/m). The
disturbance frequency is based on an aero vehicle traveling at
a certain altitude and Mach number that encounters an
atmospheric disturbance with a certain wavelength. There
would be a corresponding frequency based on Equation (2)
around which atmospheric disturbances will be exhibited.
However, a control design would need to be able to
sufficiently attenuate these disturbances under a wide range of
flight and atmospheric conditions. Thus, accounting for the
full operating envelope, a controls design would need to
attenuate atmospheric disturbances in a wide range of
frequencies. Normally, lower frequency atmospheric
disturbances will be easier for the control design to handle.
The speed of sound is related with temperature as



a = +/YRT, 3)

where 7 is the static temperature in K.

According to the International Standard Atmosphere (ISA)
or (Anderson (2000)), the temperature decreases at a rate of
approximately 6.5 K per km, from sea level up to 36,000 ft
(~11 km). From 36,000 to 65,000 ft (~11 to 20 km) which
would be the approximate cruise altitude of a supersonic
transport, the temperature remains constant at about 216 K.
Thus, temperature (K) as a function of altitude, /# (km), can be
expressed as

T(h) =Ton = 6.5(h—hop) “

where Ty, is the temperature at an arbitrary reference height
hon, Which is accurate up to 36,000 ft and then stays constant
above that. Based on that, at supersonic cruise conditions the
speed of sound would be approximately 295 m/sec.

Figure 1 shows the zonal (east-west) winds, meridional
(north-south) wind, and potential temperature power spectral
as reported in Nastrom (1985). The units of the wind power
spectral are in (m*/sec?)/rad and temperature is in (K*m/rad).
As shown in this figure, at the long length scale (i.e., beyond
400 km) the power of turbulence decreases as the —3 power
with decreasing wavelength (increasing frequency), thereafter
decreasing as the —5/3 power which agrees with Equation (1).
Therefore, Equation (1) shows a good representation of the
atmospheric spectral density with a wavelength smaller than
400 km.

108 [77x)
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wind (K2 mrad-1)

Spectral Density (m3s2)
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Wavenumber (radians m-1)

Figure 1.—Wind and Potential Temperature Spectra as
reported by Nastrom (1985). Note: for clarity, the meridional
wind and potential temperature spectra have been shifted
one and two decades to the right, respectively.
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The Tank Model of the Atmospheric
Disturbance

As an alternative to the Kolmogorov spectrum, Tank
(Soreide and Tank (1996) and (1997)) scaled the von Karman
spectrum to fit the Kolmogorov model in the limit (i.e., for
large k), which compares well with other data. For
longitudinal disturbances this spectrum is

Sy yx (k)=2.7¢2/315/3 2 (5)
’ ,]576
1+(1.339(2n)Lk) ]
For transverse disturbances this spectrum is
1+ 5(1.339(2n)Lk P
S,k (k)=2.7¢2/315/3 (6)

1+(1.339(2n)Lk)2]l Ve

The main difference of this von Karman form (compared to
Kolmogorov model) is that the disturbance spectral levels off at
low frequencies. Another difference is that in the von Karman
form of the Tank model, the integral length scale, L, is explicitly
employed, Equations (5) to (6). The integral length scale is
related to the outer scale length, L, (the length of the
atmospheric turbulence patch) by L=Ly/14.7 for the longitudinal
disturbance, and L=2L,19 for the transverse disturbance
(Soreide and Tank (1996)). Figure2 shows a plot of the
Kolmogorov acoustic wave velocity spectral in (m/sec/Hz)
compared to the corresponding von Karman spectral for the
longitudinal and transverse acoustic wave velocity disturbances.
Different values of L will produce the same curves
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Figure 2.—Acoustic wave velocity spectral comparisons for the
Kolmogorov and von Karman spectral.
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Figure 4. —Longitudinal acoustic wave velocity spectral
comparisons for different integral scale lengths.

with either a higher or lower, low-frequency asymptote as
shown in Figure 3 for the longitudinal disturbance. For
comparison, a value of L=762 m pertains to an atmospheric
turbulence patch of approximately 11 km for the longitudinal
disturbance, while a value of L=10 km pertains to a turbulence
patch of approximately 147 km long. Tank used a value of
L=762 m, which he called as standard in the airplane industry.
Since a typical control design can sufficiently attenuate
disturbance frequencies well beyond 1 Hz, based on Figure 3
differences in the value of L and thereby, differences in the
lower frequency asymptote, will have negligible effect on the
control design. For completeness, the Kolmogorov spectrum
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for the longitudinal acoustic wave velocity is shown in
Figure 4 for different values of eddy dissipation rates. As can
be deduced from Figure 4, orders of magnitude difference in
eddy dissipation rate doesn’t produce a corresponding
appreciable change in the Kolmogorov spectral density. For
instance, approximately four orders difference in € only makes
approximately a factor of 8 difference in velocity as

2/9
SH(f) = [‘Z—ﬂ Si1(/). ((m/sec)/Hz) 7

1

Where S is a known spectral density with an eddy dissipation
rate g, and S, is the calculated spectra density for a different
eddy dissipation rate ¢,.

Fractional Order Fit of Atmospheric
Turbulence Model

Atmospheric turbulence, as shown in Figure 1, and as
described by Kolmogorov and the Tank models in
Equation (1) and Equations (5) and (6), is fractional order. In
Appendix B a circuit analog of the Tank model von Karman
form is utilized, which serves as the basis for deriving integer
order pole-zero product TF approximations to the fractional
order atmospheric disturbances. The reason for the need to
derive approximations to the fractional order equations is
because of the difficulty of explicitly or numerically solving
fractional order differential equations. The reason is fractional
order derivatives, unlike integer order derivatives, do not obey
the locality law (i.e., the limit theorem), as further explained in
Appendix B.

The idea behind the integer order TF approximation for a
fractional order TF is as follows (see Fig. C.1): Starting at a
frequency near the beginning of the equivalent 3 dB point of
the fractional order TF, an integer order TF approximation can
be developed symmetrically centered about the fractional
order TF, like a descending staircase shape, by interleafing
integer order poles and zeros. As the number of steps of this
staircase TF approximation increase, the steps become shorter,
eventually collapsing to the straight line of the fractional order
TF as the number of poles and zeros of this approximation is
increased to infinity. For this approach to work, the frequency
of the poles and zeros need to be related to the atmospheric
disturbance parameters and also be derived in a way such that
the staircase TF approximation is symmetrically centered
about the fractional order TF.

Based on the fractional order circuit analog of Equations (5)
and (6), see Appendix B for detailed derivations, the values
for the equivalent capacitance and resistance of atmospheric
turbulences are determined as

1
C = ®)

(0c2?)" (ba)




R, =1.3390(2n)(a,e2/3) " L

©)
and the corresponding natural frequency is computed as
K
W, =—2- (10)
R,C,

where the adjustment factor K, is 1, but represented in this
form in case any adjustments need to be made to the
atmospheric disturbance natural frequency.

Utilizing these circuit analog parameters, a time domain
disturbance can be derived (see Appendix C for detailed
derivations) based on an integer order TF approximation for
atmospheric turbulence, given the atmospheric disturbance
parameters €, L, g, t, and r for the units conversion factor (with
qg=xr; x=5/3 and r=1/3 for acoustic disturbances and 2 for
temperature and pressure) as

m;

H(s/(’)zi +1))
Wio gKt,ﬁt,,llp—Wt (11)

H(s/mp,»+l)

1

where W, is series of input sinusoids with unit amplitude
frequency components distributed over the frequency range of
interest, which is discussed more in Kopasakis (2010) for
propulsion system type disturbances. The frequencies of the
poles can be computed as

i—1

Kwpi“’HpiH ((’)Hpi/“)pi—j + 1)
j=1

1
lon(Zi—l)Qﬁ(mei/mzi—j + 1)_1
=1

®pi = i=23,..,m, (12)

where the first pole is computed as follows

l-¢q
@1 = 0, (107 —1) ¢ (13)
and the frequencies of the zeros can be computed as

i-1
K mthOHziH ((DHzi o+ 1)
= i=12,...m; (14)

10*2*1i‘11L[(wHZ,- J i +1)-1

J=1

Oz =

For n number of frequency decades desired to be estimated, the
number of poles and zeros in the TF approximation can be
determined as

m,=(n—1)m (15)
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m,=my,— 1 (16)

For a desirable pole-zero density pair, p,., per decade to be
used to approximate the fractional order disturbance

1
2p

n (17

and the terms oy,; and oy; in Equations (11) and (12) can be
computed as

Opppi = 0, (101920 19 =0 (18)

o =0, (10200 1) =12, m, (19)

The utility of @y, and o,; are to maintain symmetry, so that
the staircase pole-zero approximation is symmetrically located
on top of the fractional order TF asymptote. The proportional
gains K, and K,,.; in Equations (12) and (14) are reserved for
final adjustments that may be needed to these frequencies for
more closely approximating the fractional order TFs
representing atmospheric disturbance.

Longitudinal and Transverse Acoustic Wave
Turbulence

The longitudinal and transverse acoustic wave atmospheric
disturbances are in the form of pure wind gusts in the axial
direction of vehicle motion and in the vertical direction of
motion respectively. Based on the fractional order fits
determined in Appendix C, using Equations (8) to (19), with
q=xr=5/9 (r=1/3), then K,5 in Equation (11), based on
inspection of Equations (5) and (6), is

R AR

for the longitudinal disturbance, and

K, fit 2(2.782/3L5/3)1/3 on

for the transverse disturbance. For n=3 (i.e., the TF fit over the
span of 3 decades in frequency), the proportionality factor
adjustments to improve these fits have been found to be
(Appendix C),

K= [Kmn;Kmpi;KwZi] (22)

=[24;111/24 171511 1]
for the longitudinal acoustic wave, and

Kv,w = [Kmn;Kwpi;Ku)zi

(23)
=[427;1 1 1724 1/1.5; 1 1 1]



for the transverse. These TF fits are compared against the
Tank von Karman spectral of Equations (5) and (6), with the
units conversion exponent r, as shown in Figures 5 and 6 for
€=8.6e—5 (m?/sec’) and L=762 m. As shown in these figures,
the fits do a good job in approximating these disturbances.
More accuracy can be achieved around the knee of these
spectral by increasing the density of pole-zero pairs per
frequency decade in this region. A certain inaccuracy at the
lower frequencies would be acceptable for a feedback control
design, since a typical control design should have no problem
attenuating disturbances at this low frequency range.

- =
o (52
T

(5]
T

Longitudinal acoustic wave velocity spectral, dB(m/sec/Hz)

Frequency, Hz
Figure 5.—Longitudinal von Karman spectral, final adjusted TF
fit (¢ = 8.6e-5 m%sec®, L = 762 m).
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Figure 6.—Transverse von Karman spectral, final adjusted TF
fit (¢ = 8.6e-5 m?/sec®, L = 762 m).
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Temperature Turbulence

Atmospheric temperature turbulence causes both temperature
as well as acoustic velocity disturbances due to the change in
the speed of sound. For the most part, temperature disturbances
result in vertical displacement of air parcels (so called gravity
waves). Therefore, acoustic velocity disturbances caused by
temperature will generate vertical wind gusts that add with any
transverse acoustic velocity gusts. However, for the propulsion
system, according to Ashun (2004), the wing forebody will turn
a vertical gust into a longitudinal gust, by multiplying the

vertical gust by the conversion factor (M., — 1)/ JM2 —1 . This

factor amounts to 0.63 for M,, = 2.35, and can be ignored for
worst case purposes. However, this conversion factor
decreases with speed and can be taken into account, especially
at lower supersonic speeds, for longitudinal acoustic gusts due
to temperature turbulence. In Appendix B, Section B.2, first the
Kolmogorov spectrum of the longitudinal acoustic wave and
that of the temperature, based on Equation (1) are plotted
(Fig. B.6). This results in parallel spectral lines with frequency,
similar to the Kolmogorov spectra shown in Figure 2. Then the
von Karman temperature spectral is constructed by scaling the
horizontal von Karman type acoustic wave spectral (i.e., scaling
it by the difference in magnitudes of these Kolmogorov spectra
as shown in Fig. B.6).

Temperature turbulence spectral density, as can be seen in
Figure 1, also follows the 5/3 law, but its units are in terms of
Kelvin squared. Thus, in order to convert the units to Kelvin,
the exponent » becomes '%, which makes the fractional order
q=5/6. Based on this, the TF fit performed for temperature is
done the same way as with acoustic wave in the previous
section (i.e., utilizing Equations (8) to (19), with the additional
relations.

KT fit(temp) = \14.082/315/3 (24)

KT,U) = [Kom ; Kwpi;szi]

(25)

=511 /1111211 1]
Figure 7 shows this TF fit and the spectral of Equation (5)
(i.e., Eq. (5) substituting the scaled Eq. (24) for the numerator
and by also applying the units conversion factor in the
denominator, for €=8.6e-5 an L=762 m.

The proportionality factors, K, for all the fits can also be
considered part of the formulations. Their accuracy at higher
frequencies starts deviating somewhat with higher values of L
(integral length scales of few thousand meters and above),
values that are considered to be outside the typical range. As
discussed before, L=762 m is considered standard in airplane
industry.

Temperature turbulence also causes acoustic wave gusts due
to change of the local speed of sound. By perturbing the
relation of the speed of sound and temperature in Equation (3),
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Figure 7.—Temperature von Karman spectral and
its TF fit (¢ = 8.6e-5 m%/sec’, L = 762 m).
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and substituting the resulting expression for Aa into the Mach
number equation of M=v/a, the relation between the change in
temperature and acoustic velocity can be obtained as

_ MyR

2a,

Av

AT (26)

This relation can be applied to Equation (24) to compute
K7 fivacousticy for the acoustic wave velocity disturbance due to
an atmospheric temperature fluctuation as

MyR |
KT,ﬁt(acoustic) = 2;/ 14.0g2/315/3 27
0

Equation (27) is applicable to transverse or vertical wind gust
disturbances generated by temperature turbulence, and
accurate in the worst case sense for longitudinal wind gusts,
especially at higher supersonic Mach numbers. Generally,
longitudinal wind gusts due to temperature variations can be
expressed as follows by utilizing the conversion factor

(M, —1)/ M2 -1

M., (M, ~1)yR
K1 fit(longitudinal) = ¥V 14.0g2/3 1573 (28)

2a M2 -1

This TF fit for the acoustic velocity disturbance at supersonic
cruise altitude, at Mach 2.35, for L=762 m and two different
values of & is shown in Figure 8. The TF fit for £=8.6x10~°
(m*/sec’) and for two different values of integral scale lengths
is shown in Figure 9. As can be seen from Figure 8 or Figure 9
compared to Figure 5, the acoustic velocity gusts produced by
fluctuations in temperature are much higher in amplitude than
those produced by pure acoustic velocity gusts.
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As shown in Appendix B, Figure B.§, for the combined
acoustic wave, the acoustic wave velocity due to temperature
gust dominates in the low frequency range and at higher
frequencies both acoustic waves affect the total. At worst case,
it can be assumed that both affects of the acoustic wave
velocity can combine. It is also assumed that both the
longitudinal and transverse acoustic wave velocities will not
combine to produce worst case affects. For engines under the
wing, the transverse wave is assumed to be converted to a
longitudinal wave via the wing forebody (Ahsun (2004)), see
Appendix B.



Pressure Turbulence

The longitudinal velocity wave spectral and the pressure
spectral of Equation (1) was utilized the same way as
described in the previous section for the temperature to scale
the von Karman type acoustic wave spectral to come up with
the pressure spectral of atmospheric disturbances, see
Section B.3. The units conversion exponent for pressure is the
same as that for temperature (i.e., 7=1/2), which makes the
fractional order the same (i.e., g=5/6). As such, K, and K,
were computed as follows

Kp g =V11.682/313/3 (29)

KP,(u = [K(un ;Kmpi;K(uzi]

(30)

=[5 11 /11 1/12 11 1]
Figure 10 shows this TF fit for &=8.6e—5 (m*/sec®) and
L=762 m compared to the scaled von Karman type spectral—
i.e., Equation (29) substituted for the numerator and
proportional factor of Equation (5) and the denominator of
Equation (5), raised to the power r.

Density Turbulence

Density disturbances are contained within temperature and
pressure fluctuations and its inclusion in a simulation, along
with pressure and temperature will produce unnecessary
additional disturbances. However, if need be, the relation of
density disturbance with temperature and pressure can be
derived as (by perturbing the state equation)

__R+AP B
R(T,+AT) RT,

Ap (€2))

A plot of density disturbance utilizing Equation (31) is
shown in Figure 11.

Simplified Atmospheric Turbulence Model for
Controls Design

The attempt in this section will be to further simplify the
fractional order TF fit developed in the previous sections, by
identifying certain characteristics of this model that are
important for controls design to handle atmospheric
turbulence.

Based on observations, utilizing Figure 8, differences in
eddy dissipation rates, €, produce spectral densities with the
same frequencies, offset by a fixed magnitude. This offset is
accounted by differences in TF gain. Calculating these
frequencies using the formulations developed so far also
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(¢ = 8.6e-5 m¥sec’, L = 762 m).

supports this observation. Differences in the fractional order of
the disturbances, such as longitudinal acoustic wave velocity
vs. temperature, obviously, will produce different spectral
frequencies. Unlike differences in eddy dissipation rates that
produce the same frequencies with different TF magnitudes,
inspection of Figure 9 shows that spectral with different
integral length scales, L, will be represented by different
frequencies. However, different integral length scales only
affect the low frequency spectral, where a typical feedback
controls design should have no difficulty attenuating
disturbances at such a low frequency range.



Figure 12 shows spectral density TF fits, first, with a fixed
integral length scale and two different values of €. This shows
that the differences in € produce a fixed offset in magnitude,
but with the same pole-zero frequencies. Then Figure 12 also
shows comparison between two spectral densities with the
same value of & and two different values of L. This later
comparison, with different values of L, is represented with
different pole-zero frequencies. However, their high frequency
asymptotes match, which means that for the purpose of
controls design, either of these TF fits can be utilized, despite
their differences in pole-zero frequencies.

Therefore, the frequency domain atmospheric turbulence
model can be simplified by utilizing the model developed in
the previous section to calculate the fixed frequencies due to a
fixed integral length scale and variable eddy dissipation rates.
Based on that, the simplified model developed for atmospheric
turbulence, which ignores differences in the pole-zero
frequencies due to different integral length scales can be
represented as

GLA(S) = 7082/9

(s/9.2+1)(s/55.0+1)(s/335.5+1)
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Figure 12.—von Karman longitudinal acoustic wave velocity
spectral and its TF Fits due to different values of eddy
dissipation rates and Integral Length Scales.

GVA (S) = 5682/9

Gr(s) =943g2/6

GTLA (S) = 47282/6

GTVA (S) = 47282/6

32
(s/1.46 +1)(s/30.1+ 1)(s/85.7 + 1)(s /1593.1+1) (32)
(s/9.2+1)(s/55.0 +1)(s/335.5+1) 33)
(s/1.46+1)(s/30.1+1)(s/85.7 +1)(s /1593.1+1)
(s/33.0+1)(s/45.6+1)(s/602.4+1) G4
(s/1.1+1)(s/25.1+1)(s/109.8+1)(s/816.3+1)
(M -1) MyR (5/33.0+1)(s/45.6+1)(s/ 602.4 +1) 35)
JMZ_1 a, (s/11+1)(s/25.1+1)(s/109.8+1)(s/816.3+1)
MyR (s/33.0+1)(s/45.6+1)(s/602.4+1) 36)
ay (s/1.1+1)(s/25.1+1)(s/109.8+1)(s/816.3+1)
(s/33.0+1)(s/45.6 +1)(s/602.4+1) 67

Gp(s)=859¢2/6

(s/1.1+1)(s/25.1+1)(s/109.8 +1)(s/816.3+1)

Where GLA; GVA; GT, GTLA, GTVA and GP are the s1mp11ﬁed
atmospheric disturbance TF for longitudinal and transverse
acoustic wave velocity, temperature, longitudinal and vertical
acoustic velocities due to temperature, and pressure

respectively. The factor (MQO —1)/ M2 -1 in Equation (35)

can be set to one for worst case turbulence conditions,
especially for relatively high Mach numbers, in which case it
makes Equation (35) and Equation (36) the same.

The TF fit described in the previous section was carried up
to 200 Hz, which should make it accurate even beyond this
frequency range. However, the model simplification
represented by Equations (30) to (34) introduces additional
error at high frequencies and its validity should be limited to
about 200 Hz. The frequencies of this model are based on an
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integral length scale of L=762 m. This means that this
simplified model is not unique, and other equivalent models
can be calculated using different values of L with the
equations developed in the previous sections. Thus, for a
controls design, which can adequately attenuate 1 Hz
disturbances, this model is accurate for values of L as low as
100 m, which is well below the expected range of L. A value
of L=762 m is considered standard in the airplane industry as
mentioned before.

Time Domain Disturbances

The TF fits in the previous section can be thought as filters,
which take input disturbances at desirable frequencies and



convert them to representative free stream atmospheric
disturbances. The TF fits contain the representative
magnitudes of these disturbances. Thus, the discrete time
domain frequencies, W, only need to have unity RMS values.
For instance, a time domain input can be constructed as a sum
of unit amplitude sinusoids, starting with a low frequency,
somewhere at the low frequency asymptote of the spectral,
and continuing up with sinusoids that are dispersed along the
high frequency asymptote up to frequencies that covers the
controller bandwidth. Also, the control design can be checked
with single frequency sinusoids, sequentially simulated. Of
course, the total energy or the maximum amplitude of the
disturbance will need to be reasonable. For instance, it may be
considered that total wind gust will not exceed an amplitude of
180 mph, or some other reasonable number that depends on
altitude. For more information on propulsion type disturbance
considerations, see Kopasakis (2010).

For most of the spectral density simulations covered so far,
the worst case eddy dissipation rate for low to moderate
turbulence was used for altitudes of about 36,000 ft (~11 km)
and above. However, the highest atmospheric turbulence ever
recorded had an eddy dissipation rate of 1.7e-3 (m%/sec’)
(Tank (1994)). Theoretically, it is possible that even more
severe turbulence can be encountered according to McMinn
(1997). McMinn provides tables for altitudes, turbulence
severity, and associated eddy dissipation rates. Kopasakis
(2010) covers more in this area of simulating atmospheric
disturbances, including considerations for atmospheric
turbulence specifications. Fairall (1991) also covers
implementation of time domain sinusoidal input disturbances
by utilizing Fourier sinusoids.

As mentioned before, previous works cover atmospheric
turbulence probabilistically, as an exceedance for controls
design purposes. In terms of probabilistic atmospheric
turbulence models, there are no comparisons drawn here
between those models and the non-probabilistic approach
described in this paper, even though exceedance can also be
incorporated with this approach. The modeling approach
developed in this paper is geared towards implementing
controls design by considering worst case atmospheric
turbulence. This also allows implementation of control designs
to cover worst case turbulence encounters, without penalizing
performance under normal atmospheric conditions, by
incorporating control scheduling in the design.

Figure 13 shows a time domain longitudinal acoustic wave
disturbance utilizing the acoustic wave TF fit discussed in the
previous section. The input to this TF is a combination of
unity amplitude sinusoids distributed along the frequency
range shown in Figure 5. For a single unity amplitude sinusoid
at low frequency, the amplitude of the acoustic disturbance
would be approximately 9 m/sec according to Figure 5. For
this summation of unity amplitude input sinusoids, their
amplitudes combine to give approximately 15 m/sec
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Figure 13.—Longitudinal acoustic wave velocity disturbance
created using the TF fit of the longitudinal acoustic wave
with unity input sinusoids.

maximum disturbance. The same approach can be used to
construct other atmospheric disturbances for time domain
simulations.

In Kopasakis (2010), considerations for atmospheric
turbulence specifications are provided, with more discussion
on the frequencies of these turbulences, also involving the
vehicle Mach number. In this reference a control design
example is also provided for the supersonic inlet shock control
problem, in the presence of atmospheric turbulence.

Conclusion

In this paper derivations were carried out to approximate the
fractional order atmospheric turbulence with integer order
pole-zero transfer function fits for more accurate time domain
simulations. An existing von Karman type model form of the
Kolmogorov spectral is utilized initially for the acoustic
velocity gusts disturbances. This model is scaled in this paper
in order to also develop the von Karman model forms for other
type of atmospheric disturbances like temperature, pressure,
and density. Because of the fractional order of these models, a
circuit equivalent is developed that is used as the basis to
derive the integer order pole-zero approximations. Utilizing
the formulations presented in this paper, the transfer function
poles and zeros of the approximations to the atmospheric
disturbances can be directly computed for different parameters
describing atmospheric turbulence. The model is derived to
duplicate the fractional order form of atmospheric turbulence
and is more accurate than previous models developed. These
new models could be used to design controls for aerospace
vehicle propulsion or flight control systems.
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Appendix A.—Nomenclature

speed of sound, (m/sec)
ambient speed of sound, (m/sec)

equivalent electric circuit capacitance for t-type of
disturbance, (farads)

frequency, (Hz)

natural frequency, (Hz)

frequency of computed correction factor, (Hz)
altitude, (km)

vector of intersection points to match estimated and
fractional order TFs

wavenumber, (rad/m) or (cycles/m)
proportional gains

von Karman horizontal asymptote for t-type of
disturbance

adjustment factor to disturbance natural frequency
length, (m)

integral length scale, (m)

outer scale length, (m)

number of poles in the TF approximation

number of zeros in the TF approximation

mach number

number of frequency decades desired to estimate the
fractional order TF

pressure, (Pa)

standard atmospheric pressure, (Pa)

fractional order of equivalent electrical circuit
universal gas constant, 287 (N*m)/(kg*K)

units conversion exponent of atmospheric disturbance

equivalent electric circuit resistance for t-type of
disturbance, (ohms)

atmospheric turbulence spectral density

atmospheric velocity turbulence spectral density,
(m’/sec?)/(rad) or (m/sec)’/(Hz) also converted to
(m/sec)/(Hz) by taking 1/3 root

Laplace operator

temperature, (K)

standard atmospheric temperature, (K)

temperature at an arbitrary reference height, (K)

flow velocity, (m/sec)

velocity fluctuation in a region of size / of the basic
laminar flow, (m/sec)

unity disturbance time domain signal

disturbance time domain

disturbance

signal for t-type of
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X

Al

oy

a,

ap

Ppz

Oy

0

A2

N

fit

LA

VA

TLA

fractional order of atmospheric disturbance spectral

Greek

constant associated with atmospheric turbulence
spectral density

longitudinal, (unit less),
transverse or vertical, (unit less)
temperature, (°K’sec’m™)
pressure, (Pa’sec’m™)

ratio of specific heats, (y = 1.41)
eddy dissipation rate, (m*/sec’)

the ratio of each decade interval where a pole or a
zero will be used to estimate the fractional order TF

wave length of atmospheric disturbance (m/cycle)

kinematic viscosity of a laminar flow, (m%/sec)
weight density, (kg/m’)

density of pole-zero pairs per decade for estimated
TF

natural frequency, (rad/sec)

frequency of TF pole i of integer order approx.
(rad/sec)

frequency of TF zero i of integer order approx.
(rad/sec)

Subscripts

constant associated with circuit capacitance
correctional factor

variable associated with an adjustment

constant associated with circuit capacitance

correctional factor
associated with symmetry frequencies for the approx.
variable associated with TF fit or approximation

variable associated with longitudinal atmospheric
disturbance

variable associated with acoustic

disturbance

longitudinal

variable associated with vertical or transverse

acoustic disturbance

variable associated with pressure disturbance
variable associated with type of disturbance
variable associated with temperature disturbance

variable associated with acoustic

disturbance due to temperature

longitudinal



TVA variable associated with vertical or transverse
acoustic disturbance due to temperature

v variable associated with vertical or transverse
atmospheric disturbance

VK variable associated with the von Karman spectral
density

VKA  variable associated with the von Karman spectral
density circuit approximation
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N YRy O

wpi

wzi

variable associated with an output
variable associated with TF poles
variable associated with a static quantity
variable associated with TF zeros
variable associated with pole frequencies
variable associated with zero frequencies

variable associated with freestream conditions



Appendix B.—Circuit Analog of the von Karman Model Form

In this appendix the von Karman approximations to the
different atmospheric disturbances based on the Kolmogorov
spectrum given by (Soreide and Tank (a) and (b)) are
approximated by utilizing an electrical circuit analog. The
purpose of the circuit analog is to serve as basis for deriving
integer order pole-zero product TF approximations to the
fractional order atmospheric disturbances. The reason for the
need to derive approximations to the fractional order equations
is because of the difficulty of numerically solving fractional
order differential equations. For instance, unlike integer order,
fractional order derivatives obey the law of non-locality. This
property of fractional order derivatives makes the state
transition matrix a convolution integral, with each integration
step necessitating the computation of the convolution of the
state all the way back to time zero where the state had an
initial value of zero.

B.1

The Kolmogorov atmospheric turbulence spectral model as
described in the main body, Equation (1), of this paper is

Longitudinal and Transverse Disturbances

St(k)=at82/3k’5/3 (B.l)

And the von Karman longitudinal and transverse models
respectively, reproduced from Equations (5) and (6) from the
main body of this report are:

2

Syyx (k)=2.762/315/3 (B.2)

l+(l.339(2n)Lk)2]

1+ 8(1.330(2n)2k P
S,y (k)=2.762/315/3

(B.3)

1+ (1.339(275)Lk)2]1 e

The shape of the von Karman spectrum approximations of
Equations (B.2) and (B.3) is that of a parallel network
consisting of a resistive element corresponding to the horizontal
von Karman asymptote and capacitive element corresponding to
the high frequency Kolmogorov asymptote as

kS
St 8= G s

Where r represents the units conversion exponent from
(m/sec)’/Hz to (m/sec)/Hz (i.e., r=1/3 in this case—for the
longitudinal and transverse acoustic wave disturbances).The
variable Syk) signifies the Kolmogorov spectrum of
Equation (B.1) or the high-frequency asymptote of the von
Karman spectrum, and K, signifies the von Karman low-
frequency asymptote or TF gain for the type of disturbance of
Equations (B.2) and (B.3) as

, (m/sec)/Hz (B.4)
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— 2/375/3
K] =5.4¢ L (BS)

— 2/375/3
K, =2.762/3[ (B.6)

Equation (B.4), for a flow, such as that of the acoustic velocity
spectral, is equivalent to a circuit as shown in Figure B.1. The K;
element is a gain for the type of disturbance and is a function of
the parameters describing the atmospheric disturbance. The
parameter W, represents an input flow and W, represents the
resulting output flow, where the exponent q represents the
fractional order of these elements. The circuit is an analog of
this representation, acting as a disturbance source connected to a
filter, meant to be connected to a sink or a system simulation in
order to establish an output flow. Applying circuit theory, the
TF of this circuit can be computed as

K/

W, o=t
Y (RCs) +1

Wi (B.7)

Where W, in the circuit stands for a unity flow signal
representing the atmospheric disturbance, containing the
disturbance frequencies of interest. More on that will be
discussed later. The output signal, W,,, will be the time
domain signal representing the von Karman spectral
approximation. The subscript ¢ stands for the type of
disturbance as before, the exponent ¢ represents the fractional
order of the circuit, and the factor K, is given by Equation (20)
or (21). Where 1/(Cy)® and R are the capacitive and resistive
impedances of the circuit, with s representing the Laplace
operator.

The wvalues of resistance R, capacitance C, and the
fractional exponent ¢ remain to be determined. The natural
frequency of this circuit, ®,, can be directly obtained by
inspection of the TF of Equation (B.7). This frequency will
coincide with the frequency at which the low-frequency
asymptote (Figs. 2 and 3) intersects the high-frequency
asymptote associated with the Kolmogorov spectral or the
capacitive impedance of the circuit as

R

WW

_— W,
0 )

>
v®

—1/(Cs

Figure B.1.—Equivalent circuit TF of atmospheric
disturbance.



_ Ko
RC,

o, (B.8)

For now K,,, is used as a placecholder in case any adjustments
are needed to this natural frequency and its value here is set to 1.

In Equation (B.1), £ stands for the wavenumber and it is
related to the frequency of the disturbance as

_Ma

=kMa
A

f (B.9)

For the circuit analogy, the natural frequency of the circuit
should be set to the same as that for the von Karman spectral
of Equations (B.2 and B.3). By inspection, the natural
frequencies of both the von Karman longitudinal and
transverse disturbances are the same and can be calculated by
substituting Equation (B.9) for f into Equation (B.2) or (B.3)
to obtain the relationship

2= 1.339(2n)LMLa. (B.10)

(O]

Then by substituting the magnitude s for 2nf on the right hand
side of Equation (B.10) and also setting ®, = 2mf, on the left
hand side, we can solve for the natural frequency as

Ma

TN

(B.11)

Additionally, the TF of Equation (B.7) needs to represent the
von Karman approximation of the Kolomogorov model (i.e.,
the Kolmogorov asymptote). However, the Kolomogorov
model, as a straight line decreasing with frequency in a log
scale, can be represented in Figure B.1 with a capacitive
impedance. Thus, Equation (B.1) must be this capacitive
impedance. This capacitive impedance is raised to the »=1/3
power to account for the units change from (m*/(sec’cycle)) to
(m/sec)/Hz. Therefore, taking Equation (B.1) and raising it to
the power r, replacing k with f/(Ma) using Equation (B.9), then
multiplying both numerator and denominator by (27)*””, and
by setting the resulting equation to 1/(Cs)?, the following
expression can be obtained.

.

1 [ ag?32nMa)”
g /3

(C,s) (2ch )5

By inspection of Equation (B.12), since |s| = 2rf, then

q= (5/3)r or in general g=xr (i.e., with x=5/3 in this case), then
the capacitance, C,, can be computed as

(B.12)

C, = ! (B.13)

t (a,82/3)”x(27cMa)

Plugging Equations (B.11) and (B.13) into (B.8), with
® = 27f, R, can be solved as
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R, =1339(2n)a,e2/3)"* L (B.14)
Neither the capacitance C, nor the resistance R, depends on the
exponent r, utilized for units conversion, which could be
indicative of the fundamental nature of these parameters.

With this analysis, the circuit elements for the longitudinal
and transverse von Karman model approximations, pertaining
to Equation (B.7) have been computed. Figures B.2 and B.3
show the von Karman longitudinal and transverse spectral of
Equations (B.2) and (B.3) respectively and their circuit
approximation of Equation (B.7). These approximations can
be improved by increasing the magnitude of the circuit
approximation (K, in Equation (B.7) for the longitudinal wave
in order to reduce the high frequency asymptote error at the
lower frequency.

To do this, an offset dB level is chosen (AdB) so that the
resultant horizontal asymptote of the circuit approximation is
not too high above the corresponding horizontal asymptote of
the von Karman spectral. This can be done by multiplying
Equation (B.7) by a proportional gain K,, corresponding to
this AdB level, as KG,IIOAdB 120 However, doing that will also
raise the high frequency asymptote of the circuit
approximation by the same dB level. To counter this affect,
the high frequency asymptote can be lowered by the same
amount. Lowering the high frequency asymptote can be done
by lowering the capacitive impedance, since, the capacitive
impedance is inversely proportional to the capacitance, see the
circuit in Figure B.1. Thus, this will also require multiplying
the capacitance by the same proportional gain, K.

For the transverse approximation, illustrated in Figure B.3,
it is seen that the high frequency asymptotes of the circuit
approximation runs in parallel with the von Karman Spectral.
Therefore, the asymptote corresponding to the transverse
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Figure B.2.—von Karman longitudinal spectral of Equation (B.2)
and their respective circuit TF approximation of Equation (B.7),
(e =8.6e-5 m?/sec’, L = 762 m).
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Figure B.3.—von Karman transverse spectral of Equation (B.3)
and their respective circuit TF approximation of Equation (B.7)
(¢ =8.6e-5 m?/sec?, L = 762 m).

approximation needs to first be raised by doing the reverse of
what was done to the capacitance in the previous step (i.e.,
multiplying the capacitance by the reciprocal of a certain
correction factor, K. Secondly, the magnitude of the
transverse approximation can be adjusted upwards by a
desired level, K, by performing the two steps described for
the adjustment of the longitudinal approximation. These
correction factors can be computed as follows.

Kt 0= 104dB/20

(desired AdB level may range from 0 to 6 dB)

Kl,c =1, Kv,c = v,VK( c)_Wv,o(fc)’

(B.15)

(B.16)

where f, is the frequency where this correction factor is to be
computed. With these factors computed, Equation (B.13) for
the capacitance can be modified utilizing Equations (B.15) and
(B.16). But the approach would be to keep the values of the
capacitance and resistance generic and instead incorporate
these adjustment factors directly into Equation (B.7) as

K
Wion = e (B.17)
1/q
el RCs| +1
Kt,c
where
KI,A = Kt,aKtr (B.18)

and K/ (for the type of disturbance) comes from Equations
(B.5) and (B.6) raised to the power r.
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magnitudes of adjustment (¢=8.6e-5 m?/sec’, L=762 m).

Figures B.4 and B.5 show the longitudinal and transverse
acoustic wave spectral for the von Karman forms of Equations
(B.2) and (B.3) and the equivalent circuit adjustments based on
Equation (B.17) for different magnitude adjustments. The K,
values for these adjustments are based on Equation (B.15). The
K, value used is 1.424. As discussed before, the important
frequencies to match are the higher frequencies, above 1 Hz,
because a typical control system design should have no problem
attenuating disturbances at the lower frequencies. Therefore, the
6dB or even the 3 dB, adjustments would normally provide
sufficient approximations to the von Karman spectral.



B.2  Temperature Disturbance

Unlike the von Karman model forms of Equations (B.2) and
(B.3) for the acoustic wave given by Soreide and Tank (1996),
no comparable models exist for temperature, temperature
generated acoustic wave, pressure, or density disturbances.
Thus the approach here is to utilize the Kolmogorov spectral
of Equation (B.1) for the acoustic wave disturbance and
compute the differences from that and those of the
Kolmogorov Spectral of Equation (B.1) for temperature. Then
scale the respective von Karman models of Equations (B.2)
and (B.3) by these differences to generate the von Karman
models for temperature, pressure and density.

Figure B.6 shows this scaling, with the resulting von
Karman spectral for the temperature disturbance. This scaling
can be done by graphically finding or by computing
the difference in dB magnitude (at any frequency using
Equation (B.1)) between the Kolmogorov temperature and the
Kolmogorov longitudinal spectral, and then multiplying the
von Karman longitudinal spectral by this scale factor
(corresponding to the difference in dB magnitude) to come up
with the von Karman temperature spectral. As a result, the von
Karman temperature spectral is computed as

Sy (k)

=7.0g2/3[5/3 2

—. ®19)
1+(1.339(27c)Lk)2]5 °
<(K2 *m/sec)/Hz)

The horizontal asymptote for this spectral, based on
Equation (B.19), is
Kr =14.0e2/3[5/3 (B.20)

The circuit approximation for this model is similar to that of

Equation (B.17), except for some differences in the
proportional gains and the fractional exponent as
Kr.4
Wr on = . wr (B.21)
K 1/q q
La | ReCrs| +1
K T,c

Where Kr, is the same as Equation (B.15) for the desired
adjustment and

Kr.4=Kr.K7, Kr =1 (B.22)
As before, the fractional exponent is g=xr. However, this time

for the temperature disturbance, the units conversion exponent
is r=1/2 (see Fig. 1 for the temperature units). As such, the
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fractional exponent for temperature is ¢=>5/6, instead of g=5/9
for the acoustic wave disturbances. Figure B.7 shows a plot of
the circuit approximation for temperature based on Equation
(B.21), with Ky, = 1.4125 (i.e., raising the circuit
approximation magnitude by 3 dB) , compared to its scaled
von Karman spectral of Equation (B.19).
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Figure B.6.—Kolmogorov spectral of the longitudinal wave and

temperature and scaling of the longitudinal von Karman
spectral to come ug) with the von Karman temperature model
form (¢ = 8.6e-5 m*/sec®, L = 762 m).
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Figure B.7.—Kolmogorov and von Karman spectral for
temperature and its von Karman circuit approximation
(e = 8.6e-5 m?*/sec’, L = 762 m).



By perturbing the relation of the speed of sound and
temperature, a =4/YyRT , and substituting the resulting

expression for Aa into the Mach number equation of M=v/a,
the relation between the change in temperature and acoustic
velocity can be obtained as

MyR
2a,

Av=

AT (B.23)

Where vy is the ratio of specific heats (~1.41), R is the universal
gas constant (~287 — N*m/(kg*K)), and «a, is the standard
speed of sound at that altitude (~ 295 m/sec at supersonic
cruise altitude). Figures B.8 and B.9 show the von Karman
spectral for the longitudinal and transverse acoustic waves
respectively, the temperature gust based on Equation (B.19)
turned to either longitudinal or vertical acoustic wave velocity
gust, and the combination of the two. As shown in these
figures, for the combined acoustic wave the acoustic wave
velocity due to temperature gust dominates in the low
frequency range. At higher frequencies, both affect the total
and the resultant slope is more of a combination of the two
disturbances. The question in encountering atmospheric
turbulence is if it’s possible that the two effects (i.e., the
acoustic wave due to pure wind gusts and acoustic wave
disturbance due to a temperature fluctuation) can combine at
the same time to produce worst case conditions. As for
longitudinal and transverse disturbances combining, in terms
of the propulsion system, the assumption is that the
longitudinal disturbance would be the worst case (i.e., the
longitudinal and the transverse or vertical would not combine
at the same time). This is especially true for propulsion
systems located under the wing, since, the vertical acoustic
wave loses some velocity when it’s turned to a longitudinal
acoustic gust via the vehicle wing forebody (Ahsun (2004)).

B.3 Pressure Disturbance

For an atmospheric pressure disturbance, as discussed in the
previous section, the Kolmogorov spectral of Equation (B.1)
will be used to come up with the von Karman model form by
scaling the respective models of the longitudinal acoustic
wave disturbance. Figure B.10 shows this scaling, with the
resulting von Karman spectral for the pressure disturbance. As
a result, the von Karman pressure spectral is computed as

Spyx (k)=

5.8¢2/315/3 2

[1+(1.339(2n)Lk)2]3/6°
((Pa2 *m/s eC)/Hz)

The horizontal asymptote for this spectral, based on
Equation (B.24), is

(B.24)
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Kp=11.6e2/3[5/3 (B.25)
Similar to the Temperature spectral, the circuit
approximation for this model is the same as that of Equation
(B.17), except for some differences in the proportional gains

as
Kp, 4

Wp.oa = ; s

K 1/q
ZPal RpCps | +1
KP,C

(B.26)
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Figure B.11.—Kolmogorov and von Karman spectral for
pressure and its von Karman circuit approximation, (¢ = 8.6e-5
m?/sec’, L = 762 m).

Where Kp, is the same as Equation (B.15) for the desired
adjustment and

Kp4=Kp.Kp, Kp.=1 B.27)
As with the temperature in the previous section, the fractional
exponent is g=xr, with ¥=1/2. As such, the fractional exponent
for pressure is the same as that for temperature (i.e., g=5/6,).
With the value of Kp, = 1.4125. Figure B.11 shows a plot
of the circuit approximation for pressure based on

Equation (B.26), compared to its scaled von Karman spectral
of Equation (B.24).
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Figure B.12.—Kolmogorov and von Karman spectral for
density and its von Karman circuit approximation (¢ = 8.6e-5
m?/sec®, L = 762 m).

B.4  Density Disturbance

The density disturbance won’t be needed when acoustic
velocity, temperature and pressure disturbances are included
in a simulation. However for completeness, density
disturbance will be discussed here in brief. The magnitude of
the density disturbance can be computed from the equation of
state, P=pRT, by perturbing this equation, which can be
solved as

__B+AP P,
R(T,+AT) RT,

Ap (B.28)

where P, and T, are the standard atmospheric pressure and
temperature in Pa and Kelvin respectively, which would be
around 5500 Pa and 216 K at supersonic cruise. Figure B.12
shows a plot of the Kolmogorov, the Von Karman, and the
circuit approximation spectral for density, all based on
Equation (B.28) from values of temperature and pressure
obtained in the previous sections. It can be seen from this
figure that the Kolmogorov spectral obtained from Equation
(B.28), actually looks like a finite von Karman spectral at low
frequencies. Also, its low frequency asymptote would be
approximately —20 dB, which equates to a density of
0.1 kg/m’. From standard atmospheric tables, the atmospheric
density at about 62,000 ft (i.e., at approximate cruise altitude)
is also approximately 0.1 kg/m’. Even though, at the limit as
frequency approaches zero, the Kolmogorov spectral
approximates the mean atmospheric density at cruise, the
appropriate density disturbance would be that shown for the
von Karman or the circuit approximation.



Appendix C.—Fractional Order TF Fits of Atmospheric Disturbances

Normally, with the derivation of circuit analogs and their
respective TFs to describe atmospheric disturbances (as they
were presented in the Appendix B), time domain simulations
would be straightforward. However, these circuits and their
TFs are fractional, which complicates performing time-domain
simulations. The complication comes from a certain property
of fractional order differential equations, which deals with
non-locality. There are several works that deal with time
domain solutions of fractional order differential equations
Schmidt (2006) and Lorenzo (2008), but even to date, solving
these types of differential equations is still challenging. Unlike
integer order differential equations, the solution space of
fractional order derivatives is not local and it depends on the
whole prior history of the state, resulting in a state transition
matrix that is in the form of a convolution integral. Therefore,
solving the convolution at each time instant, taking into
account all the prior history of the state, can be both
complicated and taxing on the computing resources.

In this section the attempt will be to formulate an integer
order approximation of the fractional order TF. Given the
parameters describing an atmospheric disturbance, like eddy
dissipation rate and integral length scale, the formulations will
explicitly solve for the integer order TF poles and zeros that
approximate the fractional order disturbance. This approach
avoids the laborious process of hand fitting such an
approximation, for every type of disturbance, and for every
time an atmospheric disturbance parameter changes. After
forming this approximation to the fractional order TF, and by
selecting the frequencies of interest for the disturbance as an
input to this TF approximation, the time domain atmospheric
disturbance can be formed.

If the desire is to estimate the fractional order TF at each
frequency decade by a single first order pole-zero pair, then
the estimation process for each frequency decade starts with a
pole followed by a zero (i.e., o, < ®;), with one last pole
placed after the last decade in order to keep attenuating the TF
magnitude as

n
s/og+1 1 .
W,,=K II = W, i=
Lo { S/O)pi'i‘lJ !

L,2,...
i-1 S/O)anrl +1

(C.1)

N

Where n is the number of pole-zero pairs of the estimated TF
and X is the DC gain. So if the desire is to approximate the TF
for three consecutive decades, with one pair of pole/zeros for
each decade, starting at some desired frequency, then n would
be three in this case. A sketch of this TF approximation as a
staircase symmetrically located on top of the fractional order
TF is shown in Figure C.1, with more description to follow
later.

Thus, if one first order pole-zero pair is used to estimate
each decade of the fractional order TF, the first pole should be
placed at a certain frequency such that the pole gain dropping
at a rate of —20 dB/decade, intersects the gain of the fractional
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Figure C.1.—Pictorial diagram of fractional order TF fit.

order TF midway through, in the first decade. A fractional
order TF gain would be decreasing at a rate ¢*20 dB/decade,
where q is the fractional order. Therefore, midway through the
first decade the initial gain is expected to decrease by a factor
of (72)*q*20 dB as

_K
s/@p1+1

_ 10_71‘1(20)/20

s=1/2decade

K (C.2)

Divide by 20 is because of the 20log;o(x) base scale. Solving
for the frequency we get

R — (C.3)

¢ 1007214 _1

PL| s=1/2decade

Also, midway in the first decade, the fractional TF, based on
its circuit approximation in Appendix B, would have the same
gain as that of Equation (C.2) as

1

K -1027k

(RCrs)t +1 C4
(thts)q + 1 | s=1/2decade ( )

As was discussed in Appendix B, the natural frequency of the

fractional order TF in Equation (C.4) is

1
R,C,

(C.5)

Oy

Knowing ,, Equation (C.4) can be solved for s to find out at
what frequency to place the first pole in order for the gains of
these two TFs to intersect midway through the first decade as

=, (1007207 1)

(C.6)

s=1/2decade

Substituting Equation (C.6) into Equation (C.3) for s, the
frequency of the first pole can be solved as



l-q
01 = 0, (100729 —1) ¢ (C.7)
So far in this development the assumption was that each
decade of the fractional order TF will be approximated with
one pole-zero pair as shown in Equation (C.1). Based on that,
the estimated product of first order poles and zeros of
Equation (C.1) will match the fractional order TF at half
decade intervals. For that, the only distinction in
Equation (C.7) is the 1/2 exponent in the right side of the
equation. This successive ratio of desired decay matching,
expressed here as H, can be generalized as

®,1 = m,,(lO(le)q _1)1—711

where H), is the decay ratio for the first pole, where the two
TFs would match or the magnitudes will intercept.

Following the placement of the first pole, the need is to find
out at what frequency to place the first zero of this pair. At the
end of the first decade, the gain of the fractional TF would
have dropped by 1077 K as

(C.8)

K

— C.9
(RCys) +1 €9

s at first decade = 107K

By substituting 1/w; using Equation (C.5), for R, the
frequency s where the gain has dropped by the above
magnitude can be calculated similarly as Equation (C.6)

= w, (104 -1 (C.10)

at 1 decade

Or in general terms, as a function of the second portion of the
approximation, H, desired to be matched (i.e., the first
portion at 2> decade was matched with a pole, the second
portion at 1 decade is matched with a zero (H,;=1), and so on),
this frequency can be expressed as

01 = 0, (1007 1)/ (C.11)

where

mHZ]:|S|atHzl(decade)

The purpose of the wy frequencies is to ensure symmetry (i.e.,
to symmetrically locate the TF approximation on top of the
fractional order TF. Thus, in order to accomplish symmetry,
the desire is to also have the estimating TF with the first pole-
zero pair to equate to the same gain at this frequency, oy,
(i.e., the same gain as the right hand side of Equation (C.9),
see also Figure C.1, as

NASA/TM—2010-216961

20

K(S/(")zl + 1) — 10—(H21)qK
s/ +1

sat1decade

(C.12)

From this equation, the frequency of the first zero can be
calculated as

O pz]
10~(H =10 (0 0,1 +1)-1

.1 = (C.13)

Thus, choosing the ratio of decades at which it’s desirable to
match the TF estimate, Equations (C.2), (C.8), (C.11), and
(C.13) can be used to compute the frequency of the first zero.

Following the same procedure to calculate the frequency of
the second pole, by using Equation (C.9), but with the gain
10 4K, (i.e., H,,=1.5 decades),

2 = o 1012l 1) (C.14)

Then using the TF with two poles and one zero equated to this
gain, similar to Equation (C.12), the frequency of the second
pole can be calculated as

O = (DHP2(O)HP2 [@p + 1)
2 IO(HPZ)q((osz/wzl +1)—1

(C.15)

The same procedure can be followed to calculate the rest of
the frequencies of the poles and zeros of the estimating TF. In
order to generalize these formulations (for approximating the
fractional order TF), let’s define p,. as the desired density of
pole-zero pairs per frequency decade. In addition, let’s also
define the number of equal decade subintervals (in log
frequency scale) as m, where a pole or a zero will be used to
closely match this TF as

1
2pp;

n (C.16)

Then, pole and zero vectors of decade intervals can be formed,
where these TF will be closely matched as

H,=m[2(1)-12(2)-1...2(m,) - 1] (C.17)

H:=n[2(1) 2(2)...2(m.)] (C.18)

For n number of decades over which to estimate the fractional
order TF, m,, and m. can be computed as

m,=(n—1)n (C.19)

(C.20)

m; = my,— 1



For instance, for a density of one pair of pole-zeros per decade
(i.e., pp- =1) and estimating the TF for three decades (i.e.,
n=3), these vectors would have the values H,; = [1/2 3/2 5/2
7/21, H;=1[123].

Inspecting Equation (C.17), it can be seen that the first
element of the vector, corresponding to the calculation of the
first pole frequency, will always be equal to the value of m.
Therefore, for convenience, Equation (C.8) can also be
expressed in terms of 1.

1-q

wp1 =, (100 —1) (C.21)

Also, inspection of the equations that describe the

frequencies of the zeros and poles (i.e., Egs. (C.11), (C.13),

(C.14) and (C.15) respectively, it can be seen that a

generalized relationship for these equations can be written as
follows

O = mn(lo(Hpi)q _1)'/q (C.22)

A more generalized expression of Equation (C.22) can be
arrived by substituting into it H, from Equation (C.17) in
terms of the pole number, i and 1 as

Oppi = 0, (10NEDa Ve §=2m,  (C.23)

Then a generalized expression for the calculation of the pole
placement frequencies can be formulated as

mpi =
_ Kopi®mpi (0)1‘1171'/“)17!'*1 HX‘*)HPI'/O’IJFZ +1)-~~(‘°Hpi/mpil H)

- IO(H"i)q [(pri/wzi,l + IX(J)Hp,'/&)Z,',Z + 1)"'(0)Hpi/wzl + 1)]—1
i—1

KwﬁimeiH(mei/mPi*j + 1)
=1 .
= / , 1=2,...

- —1
10n<2f-l>qi_[(m,,pi Jou;+1)-1
j=1

(C.24)

The proportionality factors K,,; have been inserted in case any
final adjustments are needed to these frequencies to improve
the TF fit.

Similarly, for the frequencies for placing the zeros

o =0, (100D 1)} i=12, m.  (C25)
Or by substituting in Equation (C.21) the H, vector from
Equation (C.18) in terms of the zero number, i, and 1 as

o = 0,002 —1)'7 i=12. . m,  (C.26)
Then a generalized expression for the calculation of the zero
placement frequencies can be formulated as
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Oz =
— szimHzi((’)Hzi/(Dzifl +1)(0)[-]21'/0\)21'72 Jr1)"-'(0)sz'/(021'1 + ])
10~ (Hz)q [(oon,-/u)p,- + IXmHzi/wp,-,l + l)...(mHz,-/u)pl + 1) -1
i1
Ku)z[(’)HziH(szi/mz[—j + 1)

=1 .
= J fori=12,...m,

1072nfqﬁ(m,,zi/w,,,. +1)-1

J=1

(C.27)

These formulations complete the computation of the pole-zero
frequencies for the TF approximation of fractional order
atmospheric disturbances. In terms of the indexes defined
here, Equation (C.1) can be rewritten as

n;
H(S/(Dzi + 1)
Wio =K s mlp

H (S/(”pi + 1)

1

W, (C.28)

As described in Appendix B, the von Karman spectral,
Equations (B.2) and (B.3), can be approximated with a
fractional order circuit with a natural frequency that can be
determined using Equation (B.8). Equation (B.8) is
conveniently reproduced below in Equation (C.29).

K(D)’l

=—on C.29
RC, (C.29)

Wy

with an equivalent capacitance and resistance for the type of
disturbance ¢, derived as Equation (B.13) and (B.14)

C = ! (C.30)
t (0,82/3)1/x(2TCMa> .
R, =1.339(2n)(a,e23) L (C31)

Based on these derivations, TF approximations of fractional
order atmospheric turbulences can be developed (for the von
Karman spectral, for any fractional order 0 < g < 1) by using
Equation (C.28), together with supporting Equations (C.16),
(C.19) to (C.21), (C.25) to (C.27), (C.23) to (C.24) and (C.26)
to (C.27), (C.29) to (C.31).

In a pictorial sense, by referring back to Figure C.1, the first
order pole-zero pair TF approximation of a fractional order
atmospheric turbulence can be viewed as a staircase
symmetrically located on top of the fractional order TF. The
utility of ®g,; and wy; are to maintain this symmetry. This is
accomplished in the derivations above by formulating the
symmetry frequencies, my’s, such that the length segments
between intercepts (like d1 and d2) or alternatively the
horizontal distances on either side of the intercepts are equal.

In the subsections that follow, more detail will be discussed
about developing the approximations for each type of



disturbance. In addition, some final adjustments that need to
be made to the pole-zero frequencies and the proportionality
constants K will be presented. Without these final adjustments,
the fits will resemble the example fit shown in Figure C.2,
with the fractional order fit winding its way around the
fractional order TF

C.1 Longitudinal and Transverse Acoustic

Wave Disturbances—TF Fits

By applying the formulations derived in Section C.1, TF fits
for the longitudinal and transverse atmospheric disturbances
can be constructed based on Equation (C.28). Figure C.3
shows a plot of the longitudinal von Karman disturbance of
Equation (B.2), it’s circuit TF approximation reproduced from
Figure B.2, and the TF fit computed using the equations
derived previously in this Appendix for g=xr=5/9 (i.e., x=5/3,
r=1/3), n=1/2, n= 3 (decades), and with atmospheric
turbulence parameters e=8.6e-5 (m*/sec’) and L=762 m.

The maximum error in this TF fit for the circuit
approximation, using 4 poles and 3 zeros, over a span of 3%
decades, amounts to approximately 1.5 dB. The error for the
actual von Karman spectral is larger; about 4 dB at 0.1 Hz and
decreases as the frequency increases. Assuming, that the
control system design can sufficiently attenuate frequencies at
this low frequency range (as it should) then this TF fit
approximation can be acceptable for the actual von Karman
spectral. For the TF fit shown in Figure C.3, which is
an approximation to the longitudinal von Karman spectral

of Equation (B.2) the pole and zero frequencies in
Equation (C.28) are
®, =[0.6 12.54 85.71 2062.0}
(rad/sec) (C.32)

o.; = [3.82 22.92 312.38]

with K;g in Equation (C.28) given by the numerator in
Equation (5) raised to 1/3 power to account for the units
conversion as

1

K = (54623053 )3 (C.33)
The preceding development to derive the equations to
approximate a fractional order TF was based on a single
fractional order TF, and a circuit approximation to the
atmospheric disturbance was used for this development.
However, as indicated by Equation (B.2) and (B.3), the von
Karman spectral is not that of a single order fractional TF,
especially in the lower frequency spectral. Therefore, for
better accuracy, the derived equations can be adjusted to better
fit the von Karman spectral. Examining Figure C.3, it can be
seen that the TF fit can better approximate the von Karman
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Figure C.3.—Longitudinal von Karman spectral, circuit
approximation, and TF fit (¢ = 8.6e-5 m%/sec’, L = 762 m).

spectral if the natural frequency ®,, Equation (C.5), is
increased, about proportionally to the difference in magnitudes
between the fractional order TF and the approximation TF, at
that frequency. However, doing that will also increase the
pole-zero frequencies of the TF fit based on the equations
derived. Therefore, some equivalent adjustment to some of
these frequencies will need to be made. Figures C.4 and C.5
show the TF fit for the longitudinal and transverse von
Karman disturbances respectively, with the following
adjustments to Equations (C.24), (C.29) and (C.27)



Kl/v,o) = [K(Dn;Koopi;Ko)zi

(C.34)
=241 11724 1715 11 1]

With Kj,, symbolizing the proportionality constants for the
frequency adjustments for both the longitudinal and transverse
disturbances, which gives the frequency values of ( for é=8.6e-
5 m*/sec’ and L=762 m)

®,; =[1.46 30.10 85.71 1593.1}

(C.35)
o =[9.18 55.02 335.48]

The proportionality factor, K5, in Equation (C.28) is given
again by Equation (C.33). Similarly, K, g is developed using
Equation (B.6) as follows, but also adjusting by 3 dB which

von Karman
1 e
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Figure C.4.—Longitudinal von Karman spectral, adjusted TF fit
(¢ = 8.6e-5 m?/sec®, L = 762 m).
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will appropriately raise its magnitude in order to match the
high frequency asymptote as

1
Ky =14(2.7623053 )3 (C.36)
As can be seen in Figure C.5, the TF fit of the transverse
disturbance is not very accurate at the low frequency, which
would normally be fine for control system design purposes as
discussed before. But it may not be acceptable, for let’s say,
wing loading. Thus, further adjustments could be made if
desirable. For instance, instead of multiplying K5 with the
3 dB gain of 1.4, the natural frequency ®, of Equation (C.29)
could be multiplied by this factor to raise its frequency. Then
for final adjustments, the natural frequency can be also
multiplied by the ratio of the difference of frequencies between
the fit and the actual von Karman spectral obtained at some
fixed amplitude, at some high frequency. This can be done
either graphically or analytically. Performing these
manipulations, a better fit of the transverse disturbance is shown
in Figure C.6, with a final value of K,,, = 4.27. This will result
in the following adjustments for the transverse disturbance

Kv,o) = [Kcon;Kwpi;szi]

(C.37)
=[427; 11 1724 1715 11 1]

which gives the frequency values of ( for e=8.6e-5 m”*/sec’ and
L=762 m)

®, i =[2.60 53.56 152.55 2835.3]

(C.38)
o, =[16.33 97.92 597.07]
with a K, g expression as
1
Ky = (276230533 (C.39)
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Figure C.6.—Transverse von Karman spectral, final adjusted
TF fit (¢ = 8.6e-5 m’/sec®, L = 762 m).



C.2  Temperature Disturbance—TF Fit

As discussed before, the units conversion factor for
temperature is »=1/2, which makes the fractional exponent
value ¢g=5/6 (x=5/3). Substituting this value for the fractional
exponent, with the same values of n, n, and with the same
atmospheric parameter values as those used for the
longitudinal and transverse acoustic disturbances, and again
using the formulations previously developed in this Appendix,
the poles and zeros for the TF fit can be directly computed as
before. The resulting TF fit with K, 5, in Equation (C.28) given
by Equation (B.20) raised to the 2 power as

1
Kr =(14.062353 )2 (C.40)
This fit (not shown here) will end-up with the same low and
high frequency asymptotes as with the von Karman form, but
at somewhat lower frequency. Similarly to the longitudinal
disturbance, this can be corrected by multiplying K,, in
Equation (C.29) by 3/2, which turns out to be the ratio of the
frequencies of these two spectra at some high frequency, for
select fixed amplitude. Finally, by some minor adjustments to
the high frequency poles, these spectra can be matched fairly
close, as shown in Figure C.7. This will result in the following
adjustments for the temperature disturbance

KT,(u = [Kmn;Kmpi;K(uzi]

(C.41)
=511 /11 1211 1]

which gives the frequency values of (for £=8.6e-5 m*/sec’ and
L=762 m)

orpi =[1.10 25.11 109.77 816.35]

(C.42)
o7 =[33.04 45.64 602.36]
with a K7, using Equation (B.20) as
K7 fistemp) = (14_082/3L5/3)l/2 (C.43)

If the desire is to simulate the acoustic disturbance
generated by a temperature gust, this conversion can be done
by utilizing the perturbation relation of the speed of sound
with temperature described in Appendix B (Eq. (B.23)) as

MyR

Av= AT (C.44)
2a,
Together with Equation (C.36) to adjust K7 g, as
MyR
KT fiacousic) = ——V14.0623033 (C.45)
2a,
NASA/TM—2010-216961
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Figure C.7.—Temperature von Karman spectral and its TF fit
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Figure C.8.—Von Karman acoustic wave velocity spectral due to
temperature gust and its TF fit (¢ = 8.6e-5 m?/sec’, L = 762 m).

The acoustic velocity disturbance due to a temperature gust, at
approximate supersonic cruise altitude is shown in Figure C.8.

Based on all the derivations carried out so far, the TF fits
should work for different values of atmospheric parameters
(like those of Eq. (C.45)). Figures C.9 and C.10 as compared
to Figures 3 and 4 for their shape, show the TF fits with
different values of eddy dissipation rates and integral scale
lengths, by employing the same TF fit equations and without
changing any other parameters, like the Kz, values,
Equation (C.41).
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Figure C.9.—Von Karman acoustic wave velocity spectral due
to temperature gust and its TF fits for different integral scale
lengths (¢ = 8.6e-5 m2/secs).
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Figure C.10.—Von Karman acoustic wave velocity spectral due
to temperature gust and its TF fits for different eddy
dissipation rates (L=762 m).

C.3 Pressure Disturbance—TF Fit

The units conversion factor for pressure is the same as that
for temperature (i.e., ¥=1/2), which also makes the fractional
exponent value ¢g=5/6. Substituting this value for the fractional
exponent, with the same values of n, n, and H as those used
for the longitudinal, transverse and temperature disturbances,
and again using Equations (C.16), (C.19) to (C.21), (C.25) to
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Figure C.11.—Pressure von Karman spectral and its TF fit
(¢ = 8.6e-5 m?/sec®, L = 762 m).

(C.27), (C.23) to (C.24) and (C.26) to (C.27), (C.29) to (C.31),
the poles and zeros for the TF fit for pressure can be computed
as before. The resulting TF fit, with K, g in Equation (C.28)
given by Equation (B.25) raised to the %2 power, is shown in
Figure C.11. It turns out, that adjustments to Kp,, are exactly
the same as those for K7, Equation (C.41). For completeness,
these frequency adjustments and the Kpg equation for
pressure disturbances are listed below.

KP,U) = [Kom;Ko)pi;szi

(C.46)
=151 1 1/1.1 112 11 1]

which gives the frequency values of (for =8.6e-5 m*/sec’ and
L=762 m)

®p i =[1.10 25.11 109.77 816.35]

(C.47)
®p..i =[33.04 45.64 602.36]
with a Kp g, , using Equation (B.25) as
Kp g =V11.682/315/3 (C.48)

C.4  Density Disturbance—TF Fit

As discussed in Section B.4, once the temperature and
pressure TF fits have been calculated based on the
formulations in the previous two sections, the density
disturbance can be directly obtained by utilizing
Equation (B.28). A plot of this density spectral is shown in
Figure C.12.
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Figure C.12.—Density von Karman spectral and its TF fit
(e = 8.6e-5 m?/sec’, L = 762 m).
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