
d3dVd nVNO!SS3JOdd

ox 
SNOi±naia±Noo

SHdVU9010Hd 1V1I9UO INOtlJ 
S3d01S AUVlBNVld 9NINIWd3i3Q



A Photometric Technique for 

Determining Planetary Slopes 

From Orbital Photographs
By W. J. BONNER and R. A. SCHMALL

CONTRIBUTIONS TO ASTROGEOLOGY

GEOLOGICAL SURVEY PROFESSIONAL PAPER 812-A

Prepared on behalf of the National Aeronautics and 
Space Administration

A closed form, general solution for photometric slope 
determination has been derived by use of vector 
mathematics. The technique can be applied equally 
well to vertical and to oblique photography

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973



UNITED STATES DEPARTMENT OF THE INTERIOR 

ROGERS C. B. MORTON, Secretary

GEOLOGICAL SURVEY 

V. E. McKelvey, Director

Library of Congress catalog-card No. 73-600144

For sale by the Superintendent of Documents, U.S. Government Printing Office
Washington, D.C. 20402 - Price 40 cents (paper cover)

Stock Number 2401-02409



CONTENTS

Abstract._______________________________________
Introduction __....___________.._..__...____.__._
Photometric function--_-_-__-______.____________
Derivation of coordinate systems________________
Coordinate transformation matrix._._.......__..
Summary of the procedure to compute the slope 
Conclusions.--._______ _ _________________________
References....-.___.___..__.____..._._____..____

Page

Al
1
2
3

10
14
15
16

ILLUSTRATIONS

FIGURE 1 .
2.

3. 
4-12.

Page

Diagram showing geometry for photometric slope determination ______-__-___----_----_--_-_------------------ A2
Diagram showing phase-plane nomenclature depicting relations between brightness longitude and phase

--.----------------------------------------------------------- 2
-------------------------------------------------------------- 3Graph showing lunar photometric functions------------------------------------------------------------------

Diagrams showing:
4. Moon-center coordinate system_-------_--___---_--_--_------------------------------------------------ 4
5. Right-handed orthogonal system-_-------------------__----__   --------------------------------------- 5
6. Parameters for determining the phase angle g.. .....................-.-..---.----.----.---.----.----- 5
7. Relationships between the moon-center coordinate system and the moon-surface coordinate system. . 7
8. Image-plane coordinate system and the definition of the angle £-. ------------------------------------ 8
9. Procedure for evaluating the third image-plane coordinate Z ....-....--..--.--.-.--   .---.-----.---- 9

10. Image-plane coordinate systems------------------.--------------------------------------------------- 10
11. Geometric quantities in the plane described by the points S, O, and the center of the moon__-_---..-. 11
12. Relationships between the e'z vector and the e vector------------------------------------------------- 12

SYMBOLOGY

Greek Symbols

a Brightness longitude.
X Longitude coordinate on the lunar surface.
X,, Longitude of the optic-axis intercept at lunar surface

(X. = X T ).
X r Longitude of a point north of optic-axis intercept. 
X, Longitude of the spacecraft. 
X 0 Longitude of the subsolar point. 
/3 Latitude coordinate on the lunar surface. 
/3,, Latitude of the optic-axis intercept at lunar surface

(/8» = /8 r ).
/3r Latitude of a point north of optic-axis intercept. 
/3» Latitude of the spacecraft.

/30 Latitude of the subsolar point.
<& Photometric function.
t|/ Slope of the lunar surface measured in the phase plane. 
£ North deviation angle in the image plane. 
T) Coordinate on the lunar surface (positive toward the east). 
V Image-plane coordinate of the lunar surface. 
£ Coordinate on the lunar surface (positive toward the north). 
£' Image-plane coordinate of a point on the lunar surface. 
o> Angle between the mean lunar surface and thee z > direc­ 

	tion. 
T Point due north of optic-axis intercept (O).

in
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Vectors

e Unit vectors denning a coordinate system,
ei Base vector in the X or (17 + £) direction.
e-2 Base vector in F or (17 + £) direction.
e3 Base vector in the Z direction.
e. Base vector in the Z direction.
v Vector.

v,t Vector from the moon's center to the optic-axis intercept.
v0 Vector from the moon's center to the subsolar point.
vs Vector from the moon's center to the spacecraft.
v,, Vector from the moon's center to an arbitrary point on

	the lunar surface.
v,,s Vector from the arbitrary point p to the spacecraft.

v Unit vector as denned above.
VH Unit vector as denned above.
v0 Unit vector as denned above.
vs Unit vector as denned above.
v.,, Unit vector as denned above.
vl>s Unit vector as denned above.
vt Unit vector tangent to the local surface in the phase

	plane (also the slope of the lunar surface). 
xt Vector component in the direction of e, vector, where i can

	take the value 1, 2, or 3.

Coordinates

X, Y, Z Lunar-centered coordinates:
X is through the mean libration center.
Z is north pointing (collinear with the axis of

rotation).
Y completes the right-hand system. 

Z Vertical coordinate on the lunar surface. 
Z' Image-plane coordinate along the optic axis. 

7), £, Z Moon-surface coordinates. 
7)', t,\Z' Image-plane coordinates.

Other Symbols

A Altitude of the spacecraft above the lunar surface.
E Emitted ray (vector) to the camera.
/ Focal length of the lens.
g Phase angle.
7 Incident ray (vector) from the sun.

w Magnification factor.
R,n Radius of moon.
Rs Slant range along optic axis to optic-axis intercept.
S Spacecraft.
O Optic-axis intercept with the lunar surface.

SS Subspacecraft point on lunar surface.
Ti Coordinate transformation matrix.
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A PHOTOMETRIC TECHNIQUE FOR DETERMINING 
PLANETARY SLOPES FROM ORBITAL PHOTOGRAPHS

By W. J. BONNER and R. A. SCHMALL

ABSTRACT

Interest has been recurrent in applying photoclinometry 
(photometric technique for slope determination) to determine 
lunar slopes and heights where stereoscopic coverage was not 
available. Some scientists involved in the planetary program 
foresee the eventual application of the technique to such 
planets as Mars. As a result, a new approach to the problem 
by exclusive use of vector mathematics has been developed. 
The solution is generalized and can be applied equally well to 
extract slope information from either vertical or oblique 
photography. A summary of the procedure used for computing 
the slope is given for use in adapting the technique to computer 
programing.

INTRODUCTION

Photoclinometry is the process of relating the 
measured scene brightness, the viewing and 
lighting geometry, and the photometric function 
of a surface to obtain slope information. Histori­ 
cally, the technique was developed by van 
Diggelen (1951) to study mare ridges. Dale (1962) 
extended the technique to a generalized study of 
the topography of the maria. Wilhelms (1963) 
refined the technique and was first to apply it 
successfully to other types of lunar terrain. 
McCauley (1965) expanded the work to produce a 
detailed quantitative terrain map of the lunar 
equatorial belt. Finally, Watson (1968) estab­ 
lished a rigorous mathematical foundation for 
the process and extended the technique to an 
analysis of normal photography from spacecraft 
imagery. The present paper expands the work to a 
generalized solution for determining roughness 
of terrain from spacecraft imagery.

The method is based on the assumption that the 
brightness of an element of the lunar surface is 
a function of the normal albedo, one component 
of the surface, and the sun's angle of elevation. 
Normal albedo is defined as the ratio of the emer­ 
gent light to the incident light observed at zero 
phase angle. If the point-by-point variation oi 
the normal albedo on the lunar surface is elimi­ 
nated, the brightness of an element then depends 
only on the slope and the sun's angle of elevation, 
which are expressible as differences in lunar longi­ 
tude near the equator. Figure 1 is an illustration 
of the relationship. The figure gives a polar view 
of the moon. The surface elements P and Q have 
the same albedo, and as a result of their similar 
angular relationship to the sun, they have the 
same brightness.

The angles POQ and DPE are equal, and the 
angle DPE is equal to the angle ABC, which is the 
east-west component of the slope for the element 
at P. The angle ABC can be expressed in terms of 
the difference in lunar longitude between the ele­ 
ments P and Q, or the difference in the sun's angle 
of elevation for measurements made near the 
equator. Thus, if two surface elements, separated 
in an east-west direction, have the same albedo 
and the same measured brightness, the slope of 
the surface at P is equal to the difference in lunar 
longitude or the difference in the angle of sun 
elevation between the elements (McCauley, 1965). 
Stated another way, if the brightness of the ridge 
at P is equal to the brightness of the sphere at a 
given distance from P (for example, Q), then the 
slope of the surface at P with respect to the sphere 
at P is equal to the angle i/» = POQ. The same is

Al
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FIGURE 1.  Geometry for photometric slope determina­ 
tion. P and Q, surface elements.

true if P and Q are points of equal photographic 
transparency (van Diggelen, 1951).

PHOTOMETRIC FUNCTION

Use of the technique of photoclinometry to de­ 
termine the roughness of the lunar surface re­ 
quires that the reflection characteristics of the 
surface be taken into consideration', for the reli­ 
ability of the data obtained from photoclinometry 
is primarily dependent on the precision to which 
the lunar photometric function is known.

From the work of Minnaert (1961) it is known 
that the functional form of the lunar photometric 
function has an interesting property (to within a 
precision of a few tens of percent): the brightness 
at any point, corrected for the normal albedo, is 
solely dependent on the brightness longitude and 
the phase angle.

Figure 2 represents the intersection of the 
phase plane with the lunar surface. The figure 
shows the path of an incident ray from the sun 
(/) and the ray emitted to the spacecraft  the 
emergent ray (E\ The angle between the incident 
and emergent rays, measured in the plane con­ 
taining both rays, is called the phase angle, g. 
Note that when the plane is tilted about the sur­ 
face point, the phase angle remains constant. The 
angle measured in the phase plane between the

emergent ray and the normal to the surface is de­ 
nned as the brightness longitude, a. (The bright­ 
ness longitude is denned positive when the projec­ 
tion of the normal into the phase plane is on the 
opposite side of the observer line from the location 
of the sun line, and negative when the projection 
lies between them the only two possibilities.)

If the plane is rotated about the line of inter­ 
section with the surface, the brightness longitude 
remains constant. However, if the plane is tilted 
along an axis at a right angle to the line of inter­ 
section, the brightness longitude varies. Thus, the 
brightness at any point is a function of the slope 
component in the phase plane, the normal albedo, 
and the phase angle (Watson, 1968).

According to Watson (1968), two accepted photo­ 
metric functions have been derived from earth- 
based observations. The first is that of Hapke 
(1963, 1966), which was derived by parametric 
fitting from theoretical considerations of a scatter­ 
ing model of the lunar surface. The second photo­ 
metric function is based entirely on lunar photo­ 
graphic data and was derived entirely empirically 
by Herriman, Washburn, and Willingham (1963) 
and was later revised by Willingham (1964). 
Figure 3 shows the two functions in graphical 
form. In the figure, brightness is plotted as a 
function of the brightness longitude, a, and the 
phase angle, g. As Watson (1968) pointed out, a 
major limitation in constructing a photometric 
function from terrestrial observations is that a 
particular lunar feature cannot be observed for a 
wide variety of earth-angle observations. The

Incident ray from sun 
(I)

Normal

/ Projection of normal 
in phase plane

LUNAR SURFACE

FIGURE 2.  Phase-plane nomenclature depicting relations 
between brightness longitude (a) and phase angle (g).
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problem is primarily that a libration in longitude 
of the moon of only ±8° makes data on a single 
feature available only over a narrow range of 
brightness longitudes. Another serious problem 
with obtaining the photometric function terres­ 
trially is that scientific data are not available on 
its dispersion characteristics. R. L. Wildey (unpub. 
data) has devised an ingenious method for deter­

mining these dispersion properties, and it is hoped 
that this experiment will eventually be carried 
out.

DERIVATION OF COORDINATE SYSTEMS

In presenting this mathematical process of 
using photometric data to evaluate the slope, it is

1.4

1.2

EXPLANATION 

Hapke (1963) 

Hapke (1966)

Herriman, Washburn, and 
Willingham (1963)

Willingham (1964)

0=0°

0.8

0.6

0.4

0.2

90 60 30 0 30 

BRIGHTNESS LONGITUDE (<*), IN DEGREES

60 90

FIGURE 3.-Lunar photometric functions. Brightness (normalized to unity at#=0°) is plotted as a function of 
brightness longitude (a) and phase angle (#). From Watson (1968).



A4 CONTRIBUTIONS TO ASTROGEOLOGY

convenient to define several coordinate systems. 
To minimize confusion, each coordinate system 
will be defined when it is needed in the mathe­ 
matical development. In addition, the nomencla­ 
ture has been selected to eliminate ambiguity.

The physical phenomenon that forms the basis 
for photoclinometric terrain analysis is that a 
functional relationship exists between the bright­ 
ness, the phase angle, and the brightness longi­ 
tude. Thus, if any two of these quantities are 
known, the third is also known. Figure 2 depicts 
the phase plane geometry. As shown in the 
figure, if the phase angle g and brightness 3? are 
known, the brightness longitude a can be evalu­ 
ated. The scene brightness can be determined by 
relating the measured film density to brightness 
through the film H and D curve. The phase angle 
is obtained from the position geometry of the point 
of interest on the film, the lunar time, and the 
season. The problem is thus reduced to evaluating 
g from the image information to permit the evalu­ 
ation of a. Then a and the image information are 
used to evaluate the slope of the surface.

To determine the phase angle, use was made of 
a coordinate system whose lines intercept at the 
center of the moon. Figure 4 shows this moon- 
center coordinate system. The Z axis goes through 
the north pole, the X axis is located through the 
mean libration plane, and the Y axis completes

FIGURE 4.   Moon-center coordinate system.

a right-handed orthogonal coordinate system. 
(See fig. 5.)

Figure 6 illustrates the geometry of the phase 
plane projected onto the plane containing the 
origin (center of the moon), the subsolar point, 
and an arbitrary point of interest, p, on the lunar 
surface.

The following subscripts are used to denote 
position vectors (these vectors originate at the 
origin of the coordinate system):

Subscript
o

Position vector
Subsolar point (on the lunar surface). 

Arbitrary point (on the lunar surface).

Spacecraft (at an altitude A above lunar 
surface).

In addition to the above notation, an overscribed 
caret represents a unit vector and an overscribed 
line denotes a vector; thus 

v = unit vector. 
v= vector.

From figure 6, the phase angle is found from the 
vector relationships

(1)
where

Also,

and

A Vnv = -zr

Vps

Vp S = Vs   Vp.

(2)

From figure 4, the latitude and longitude are 
used to locate positions on the lunar surface. The 
vector representation in rectangular coordinates
is

vp = cos /3p cos \p i 4- cos ftp sin \p j 4- sin /3P k, (3)

where i, 7, and k are unit vectors in the X, Y, and
Z directions.
Similarly,
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FIGURE 5.  Right-handed orthogonal system. A right- 
handed system means that if one rotates OX into 
OY, then OZ will lie in the direction in which a right- 
hand screw would advance. The lines OX, OY, OZ 
indicate the positive directions of the coordinate

v0 = cos /30 cos X 0 i + cos /3G sin X0j + sin /30 k (4) 

= cos ps cos X s i + cos ps sin \s j + sin /3s A\ (5)

^o 

Vs

We note that

Vps = Vs   Vp = (R m + A) Vs   R m Vp. (6)

Substituting equations 3 and 5 in equation 6, we 
obtain

VpS = Rm\ ( 1 +B~ ) COS /3S COS \s ~ COS /3p COS Xp \i

Ml +77~
L \ R m

cos /3« sin \s   cos ftp sn
J

sn ^ -

Also,

  V

A\ I 2 
-  j cos /3s cos Xs   cos pp cos X p

A \ I 2 
+ | ( I+T;  ) cos/3s sin X s   cos/3P sin Xp

-ftm/ J

2-i 1/2

[cos /3scos /3Pcos (Xs   Xp) + sin /3ssin (8)

Using equations 4, 7, 8 in 1, we now determine 
the phase angle.

Vpscos g = p_

:. cos r =

/ A \ (
1 1 H    ) \ [cos/30cos /3S cos (X s   XQ) + sin /3e sin /3S ]
V R m ' l

- [cos /3 0cos /3Pcos (Xp   Xo) + sin /3 Q sin /3P]

}cos (X«   X p) + sin /3S sin /3p] [
1/2

(9)

Incident ray

0 [Origin of moon-centered coordinate system]

FIGURE 6.   Parameters for determining the phase angle g. 
p, arbitrary point on the lunar surface.



A6 

where

CONTRIBUTIONS TO ASTROGEOLOGY

/30 , X0 are the latitude and longitude of the
subsolar point. 

/3S , X s are the latitude and longitude of the
subspacecraft point, (also latitude
and longitude of the spacecraft). 

/3P , X p are the latitude and longitude of an
arbitrary point of interest on 'the
lunar surface. 

R m is the radius of the moon.

The quantities X0 , /30 , X s , /8 S can all be determined 
from the mission support data. R m is a constant 
over the area of interest, and /3P , X p can be deter­ 
mined from the location of R m in the image plane. 
The method by which /3p, Xp are determined will 
be discussed later.

Referring to figure 2 the vector vt represents the 
local tangent. Therefore, the slope of vt is the 
local slope of the terrain. Since vp is a unit vector 
in the radial direction (that is, points to the local 
zenith, see fig. 6), the slope of the terrain can be 
found from the relationship

cos (90   i//) = Vt ' vp , (10) 

where <|/ = the slope of the terrain.

The unit vector vt is determined as follows. By 
defining vg as a unit vector normal to the phase 
plane, then

_V0 X Vps _ V0 X V t

Also,

V

X

sin g sin (90   a + g) '

X V vs) _ V0 X X

sin g sin (90   a   g)'
(12)

Expansion of equation 12 by means of the triple 
vector product identity yields

(Vo ' V us) Vo   ( Vo ' Vo) Vys _ (^o ' Vt) Vo ~ (^o ' ^o) Vt

sin g sin (90   a   g)

(13)

Note that
v0 * vPs = cos g (which is equation 1)

vt = cos (90   a + g) = - sin (g   a).

Substituting the above set of equations into equa­ 
tion 13 and solving for vt, we obtain

(g  a)]

Vps\
L
cos (9 - a)s (9 - a)1:      .

sm g J
(14)

The slope of the terrain may now be determined 
from equation 10. We have

sin i// = cos (90   i/;) = vp (15)

Substituting equation 14 into equation 15 we 
obtain

sin i// =   [sin (g - a) + cot g cos (g   a)] v0   vp

cos (g   a) I 
sing J

. ""' 1"- <16>

From equations 3 and 4 we note

v0 -vp = cos /30 cos /3p cos(X - Xp) + sin /30 sin (3P .

From equations 2 and 3 and 6 we have

(17)

\VpS \IRr

 Vu =

\V,ts \IR

(18)

From equations 3 and 5 we have"

vp   vs = cos /3p cos /3S cos (Xs   Xp) + sin pp sin /3S .

(19)
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Substitution of equations 8 and 19 in equation 18 
yields

vps - vp =

I l cos &p cos &s cos ^' ~~

-I- sin j3P sin /3S   1 1

cos (\s   \p)+ sin sin /3P |
1/2

(20)

.-. The slope of the surface may be elevated by 
substituting equations 17 and 20 into equation 16. 
Note, however, that the quantities /3 P and \p are 
still undetermined.

In order to evaluate /3P and \p a second coor­ 
dinate system is now defined. Figure 7 defines a 
curvilinear coordinate system which is centered 
at the camera optic axis intercept with the sur­ 
face. The coordinates 17 and £ are curvilinear and 
coincide with lines on constant longitude (north 
pointing positive £) and constant latitude (east 
pointing positive 17). The Z coordinate is in the 
direction of the local vertical with positive up. 
(Note that we are dealing with two different co­ 
ordinate systems as defined in the nomenclature. 
Also note that this is the second instance that the 
letter Z has been used in defining a system 
coordinate.)

Assume that the distances involved are small 
compared to the moon's radius. Then the arbitrary 
point p can be approximated as follows:

  'ro = m cos

Also,

Rearranging the two equations and noting that 
170 and £0 are defined as the center of the coordinate 
system and are therefore equal to zero, we have

Rm cos (21)

and

R, (22)

where /3 0 , X 0 = optic axis intercept with the lunar 
surface. Figure 8 represents the image plane coor­ 
dinate system. The origin is located at the inter­ 
section of the optic axis with the image plane. In 
other words, 170 and & is the image of the optic axis 
intercept with the lunar surface. The third coor­ 
dinate Z' is parallel to the optic axis and is positive 
in the direction toward the moon.

Figure 8 also defines the angle £. This angle is 
between the image north (the positive £' axis) and 
the image of north pointing ft0 (the north-pointing 
longitude through the optic axis intercept with the 
lunar surface).

Therefore, if the r)'p , & coordinates of the image 
plane can be transformed into the T) P, £P coordinates 
of the lunar surface, the local terrain slope can be 
evaluated as follows:

1. Equations 21 and 22 are evaluated for (/3P, XP).
2. With this information, equation 9 is evaluated

FIGURE 7.  Relationships between the moon-center coordinate 
system and the moon-surface coordinate system, p, arbitrary 
point.
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3. a is now determined from the photometric 
function.

4. Using this information and equations 17 and 20 
in equation 16, the slope can be determined.

The position vector vop in the image plane coor­ 
dinate system (17', £',Z') is

(23)

where
R 

m= magnification factor =  j-

Rs = slant range from the camera to the optic 
axis intercept with the lunar surface. 

/= camera focal length.
Equation 23 permits the evaluation of the 

vector, VOP, in the image plane coordinates (that 
is, except for Z'p which will be discussed later). 
Therefore, a transformation matrix between the 
lunar surface coordinate system and the image 
plane coordinate system will solve the problem.

Since a vector is an invariant, a vector (v) may 
be represented in two coordinate systems. (Recall 
that an invariant is an expression involving the 
coefficients of an algebraic function which re­ 
mains constant when a transformation, such as 
translation or rotation of coordinate axes, is 
made.)

where x\ is the vector component in the direction 
ei and i can take the values 1, 2, or 3.

To lunar north

FIGURE 8.  Image-plane coordinate system and the definition 
of the angle £

Dotting ei into the above equation we obtain

Solving equation 24 for 
1, we have

and noting that e t  & =

Solving the above equation for Ttj , we obtain

Tij =ei -e'j . (25)

The elements of the matrix T tj are the cosines 
of the angles between the coordinate axes. That 
is, 1*33 is the cosine of the angle between the Z 
and Z' axes, and Tis is the cosine of the angle 
between the 17 and Z' axes, and so forth.

The transformation matrix is now defined and 
some generalizations are possible with respect 
to equation 23. These are

1. The distance of concern on the lunar surface 
is small compared to the slant range.

2. The lunar surface is assumed to be flat over the 
distances involved.

In figure 9, the two coordinate systems under 
consideration have been drawn with a common 
origin. From this illustration the following can be 
seen:

.i an (t)  
(e3 Xe3)]

(26)

Expanding equation 26 using the triple vector- 
product identity (summary of the relationships 
used in this report given in Coburn (1955) and 
Kaplan (1959)), we obtain

tan <o =
(e3 -

(27)

where
7*33 = 63   63-

Noting that el   ej = 0 for i ^ j and performing the 
vector dot product, we have

tan w =
  7*33 (Tsi TJp + 7^32 £p ~t~ Tss Zp) + Zp

(28)
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plane

Intersection of the optic-axis 
and lunar-surface coordinate 
systems origins

FIGURE 9.-Procedure for evaluating the third image plane coordinate Z'. 

Note: The plane of the figure is the ez   ez < plane.

From figure 9, we note

cos (cos- 1 T33 - 90) - sin (cos- 1 r33 )
tan &> = sin (cos-^33-90) cos (cos~ l T33 )

or

tano» = (29)

Substituting equation 29 into equation 28 and 
solving for Zp, we obtain

Let,

It is now possible to evaluate TJP and ^ by knowing 
-' and .

^= w [r,nj;+ r,2g+ r23z;] (sib)

Substituting equation 30 into equation 31a and 
31b, we obtain

g] (32)

^] (33)

Equations 32 and 33 can be substituted into 
equations 21 and 22 to obtain /3P , kp . ft,, and \,, can 
then be used to determine g in equation 9. With this 
information the brightness longitude («) can be de­ 
termined from the photometric function. And then
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using equations 16,17, and 20, the slope of the ter­ 
rain can be determined. The last step remaining 
then is the evaluation of the transformation ma­ 
trix (Tij) which is determined in the following 
section.

COORDINATE TRANSFORMATION MATRIX

To facilitate the evaluation of the coefficients of 
the transformation matrix, this matrix will be 
evaluated in two steps. Recall that if three coor­ 
dinate systems exist such that

then,

where

(34)
jk

Therefore, defining an image plane coordinate 
system (V, £', Z') such that £ = 0 (see fig. 10) also 
defines a transformation matrix such that

i   }j I ijXj, (35)

where

That is,

Z=T'31 7)"+T32C'+T'33Z'.

(36a) 

(36b) 

(36c)

Since £ = 0, the £"> Z' and £ axes lie in the same 
plane and the 17" axis is perpendicular to the £" and 
Z' plane and is therefore perpendicular to the £ 
axis; also

(37a)

f

FIGURE 10.  Image-plane coordinate systems.

T' =0 L 21   v. (37b)

Now,

Referring to figure 11 and applying the law of 
cosines, we have

Solving for TM, we obtain

(38>
From figure 12, we note that

XT

Vso ' Vr
_ _ 
Vio Vro

(39)

where r is defined as a point due north of O 
(XT =Xo).

NOTE.   Recall that single subscripted vectors 
refer to position vectors relative to the center of 
the moon. 
As previously defined, we have

v 0 = Rm [cos /So cos K0ex + cos /80 sin \0eu + sin /30e*] 

v r = Rm [cos /8T cos \Tex + cos /8T sin \^ey + sin /8Te^]
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\vro \ = Rm(Pr-po), for (ft-ft,) small. (43) 

We note the following relationships

vg = (Rm + A) [cos ft cos X,ex

+ cos ps sin Xsey + sin

 '  V«o = [ (A + #m ) COS ft COS kg   Rm COS ft, COS X0] «x

+ [ (A + Rm ) cos @s sin X, flm cos j80 sin \0 ] e tf

+ [(A + #m ) sin ft-#m sin ft,] e* (40)

VTO = Rm [ (COS ft   COS ft,) COS X0ex

+ (cos ft   cos j80 ) sin \0&v + (sin ft   sin ft,) 02] (41)

Also

\Vso\ = Rg (42)

Center of the moon

FIGURE 11.  Geometric quantities in the plane described by 
the points S, O, and the center of the moon.

sin (0T - 0«) =

(cos ft   cos Po) = cos [ft + (ft   ft) ]   cos ft *
= cos ft cos (ft ft,)   sin ft 

= sin (ft Po)   cos Po 

that is,

ftlimft, (cos ft-cos PO ) = -(PT-PO) sin ft,. (44) 

Similarly we have

lim , (sin ft-sin ft) = (ft-ft) cos ft,. (45)

Substitution of equation 40 and 41 into equation 
39 yields

TM = lim \ _ 1 {[ (A + Rm ) cos ft cos X,

  Rm cos Po cos X0] cos X0 (cos ft  cos ft)

+ [(A + Rm) cos ft sin \s   Rm cos ft, sin X0]

sin X0 (cos ft  cos ft) + [(A + Rm ) sin ft

  Rm sin ft] (sin ft  sin ft)}

In the limit (and from equations 44 and 45) this 
becomes

23

(46)[cos ft, cos (X«  X0 ) sin ft   sin ft cos ft,].

Equations 37, 38, and 46 provide three (7^, 
TL, TL) of the nine elements of the transforma-oo' it> '

tion matrix. Properties of the elements of the 
transformation matrix are

T" 2 _|_ T" 2 _|_ T" 2 = 1
1 11 ~ l 12 ~ l 13 A (47)
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FIGURE 12.  Relationships between the e, vector and the
vector.

T" 2 _1_ T" 2 4- T" 2 = 1
J 21 '  * 22 ' * 23 x

T" 2 _|_ T" 2 _L T" 2 = 1-* 31 ~  * 32 ~ J 33 x

r; /TV _i_ rni /TV _i_ /TV /TV   f\ 
II 1 12 ~r '£ 21'£ 22~r ^ 31^32 "

r' T" -L T" T" 4- T" T"   0 II 1 13 ~" '*21't 23~r * 31*33 "

r/ /TV _i_ rni rru _ _ /Tff /Tf> _ n 
12'£ 13~r '*22't 23~r '£ 32'£ 33 "

(48)

(49)

(50)

(51)

(52)

Therefore, having evaluated three of the ele­ 
ments previously and having six independent 
equations defining the properties of the elements 
of the matrix, it is now possible to evaluate all 
nine elements of the transformation matrix.

From equation 48, since

TZI = 0 (equation 37) 

then

(53)

NOTE.  It is possible to express equations 47 
through 49 in the form

This is not an independent equation but is im­ 
plicit from equations 47 through 49. Therefore,

r '   x/1 _ T' 2_ T' 2 13   VI   J. 33   J. 23  (54)

Dividing equation 50 by equation 51 and noting 
that

T'2l = 0 (equation 37)

then
/TV rni rni rni
* 11 * 12 _  * 31  * 32 
rni rni  rni rni
 * 11-* 1Q  * Q1  * QQ

rni __ rni 32
1 12 ~~ -* 13 T'

J.  
(55)

33

Substitution of equation 55 in equation 52 yields

(56)
__ /TV /TV

T" _ L 22 1 23 _ 
 * »»

13

Using equations 54 and 56 in equation 55,

jf72
-J ____J .33 /Ttf .
1 1 _ T" 2  * 23

A J 23

From equation 47, we obtain

(57)

r ' = \/1   T" 2   T" 2 11 vj. 1 12 J. 13 ,

which using equations 54 and 57 can be written as

rni
L 33

r ' = 11  (58)

Using equations 49 and 56, this equation becomes

V /Tt/ 2 
1 _ -t 33 

-r' (59)

Thus, all nine elements of the T£ transformation 
matrix have now been evaluated. The elements 
are given by equations 37, 38, 46, 53, 54,56,57,58, 
and 59. It is now possible to determine Xi from the 
X coordinates.
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Recall from equation 35

Therefore, if the coordinates x-' (for £=0) can be 
transformed from the #4 coordinates (^ and 4') the 
problem is finished. Referring to figure 10, we note 
that

Dotting e'J into the equation above, we have

2 *; <*;*;>= 2 tf-^n)-
Noting that e".   e".= 1, we obtain

«; = 20; -IK-S
k k

or
Tjk = e]-el (60) 

Note the following: 

1. In the £=0 and x' systems, Z' is coincident,

2. Since V' and £" are perpendicular to the Z' axis, 

Hi = n2 = 0 (62a) 

and

r"   T"   ft fA9Vk\ 13  * 23   "  \O£D)

Again referring to figure 10, we have

T"2 = cos (90 4- ^)=-

(63)

(64)

(65)

(66)

In matrix notation, we have

cos £   sin £ 0

sin £ cos £ 0
0 01

Then from definition,

jk

or

and

__ ^ri rjjt frtff

which in matrix notation is

rifc=

r ' 11
T'
 *21

«,

r f Ffl t 
12 -« 13

rrti rrif
-t 22 -» 23

r3'2 «,

cosf -sinf

sin ^ cos £

0 0

0

0

1

Listing the elements we have 

!Tii = cos £7Vi + siE

/TT _ fWJ t

T2l = cos£T2l + sin£T22 

T22 - - sin £ r2', 4- cos £ T2'2

32

(67)

(68)
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T3Z = - sin £ 7*3, -I- cos £ T&

1 33 = 1 33

Where the 7y elements are given in equations 
37, 38, 46, 53, 54, 56, 57, 58, and 59. Making these 
substitutions, we obtain

- cos f r!!3

_ rjji 2 
    -I 23

_ rjjt 2 
  -I 23

33

7*23 = 7*23

(69)

(70)

(71)

(72)

(73)

(74)

(75)

_ rrii \ 2 __ TI
± 23? L 3J

7" T'
 *  23-1 33

l   T'iA -'ss

7*33  
33

(76)

(77)

It is now possible to compute TI V and £p using 
equations 32 and 33 and thus the slope. A summary 
of the equations to be used in calculating the slope 
follows.

SUMMARY OF THE PROCEDURE TO 
COMPUTE THE SLOPE

This section is presented to encourage the even­ 
tual programing of the technique developed in this 
paper. The summary is therefore arranged in the

order in which a computer program would be 
written.

1. From the support data we have the following 
parameters:

R m Radius of moon, constant.

R s Slant range along optic axis to intercept 
with surface.

A Spacecraft altitude. 
ps , As Latitude and longitude of spacecraft. 
j8u, A Latitude and longitude of subsolar point. 
p0 , A0 Latitude and longitude of optic axis inter­ 

cept with surface.

2. Determine the values of 7T23 and T^> 
From equation 46,

7*2 = [cos fts cos (As- A0) sin #>- sin ps cos p0]

and from equation 38,

3. Determine £, 17^, & from the photograph.
4. Generate the transformation matrix

whose elements are given in equations 
69 through 77:

= cos

7*12 = - sin

7" 2
1 33

_ T" 2-* 23

1-
T" 2 1 33

1 _ T" 2
A  * 23

= cos

^23 =
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TSI = COS 1 -
"" 2 
33 - sn

/TT; /TT>
 * 23  * 33

23

T' T'
1 23 L 33

d-^23)2

7T33 = r33
5. Determine the brightness from the density data 

and the H and D curve.
6. Using j]'lt and £p determine #, a, and i|/.

(a) To determine g, we use equation 9.

cos a =

+--5  ) Ucos fi cos fi s cos (As   A ) + sin fi- sin Bs]
K m / [

  [cos ft cos /3,, cos (Ap   A )+ sin (3 sin )8/J |

Rm / \ Rm

[cos /3 S cos /3,, cos (X s   \,,)+ sin )8 S sin )8,j| 1/2

where /3/>, X/j are the latitude and longi­ 
tude of an arbitrary point of interest on 
the lunar surface and are determined 
from equations 21 and 22.

Rm COS /3,,

T),, and £,, can be determined from equa­ 
tions 32 and 33.

m[(Ttl + 

where

_ T-2 ( 1 _ T«2 \
J :{:» I l *  :\:v

(b) To determine a, we use g and the bright­ 
ness value.

(c) Using a, we now determine the slope 
from equation 16.

sin ty =   [sin (g   a) + cot g cos (g   a)]

cos -

where v0   vp and v 
equations 17 and 20.

are determined from

cos cos (X 0   \p) sn

I ( 1 4- -p- ) cos & cos )8 S cos (As   Ap)

4- sin 8P sin s \   1 1

cos (A S  . sn sn 1/2

Using the equations summarized in this section, 
it is now possible to compute the slope component 
of the surface in the phase plane.

CONCLUSIONS

A new generalized derivation of an operational 
technique for extracting terrain slope informa­ 
tion from planetary surfaces photometrically has 
been developed. The solution is in a general form 
and can be applied to an analysis of either vertical 
or oblique photography. Although the solution is 
intended primarily for deriving topographic data 
for the lunar surface, it can also be applied to 
obtain information about other planetary surfaces 
if used within the limitations of the basic 
assumptions.

During the derivation the authors made two 
assumptions: (1) the mean lunar surface is flat
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rather than spherical over the area of interest, 
and (2) distances on lunar surface were small as 
compared to the radius of the moon.

Finally, the summary of equations should serve 
as a useful tool to those interested in adapting 
the technique to a digital computer.
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