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HYDROTHERMAL ALTERATION IN RESEARCH DRILL HOLE Y-3,
LOWER GEYSER BASIN, YELLOWSTONE NATIONAL PARK, WYOMING

By KerTH E. BARGAR and MELVIN H. BEESON

ABSTRACT

Y-3, a U.S. Geological Survey research diamond- drill hole in Lower
Geyser Basin, Yellowstone National Park, Wyoming, reached a depth of
156.7 m. The recovered drill core consists of 42.2 m of surficial (mostly
glacial) sediments and two rhyolite flows (Nez Perce Creek flow and an
older;, unnamed rhyolite flow) of the Central Plateau Member of the
Pleistocene Plateau Rhyolite. Hydrothermal alteration is fairly extensive in
most of the drill core. The surficial deposits are largely cemented by silica
and zeolite minerals; and the two rhyolite flows are, in part, bleached by
thermal water that deposited numerous hydrothermal minerals in cavities
and fractures. Hydrothermal minerals containing sodium as a dominant
cation (analcime, clinoptilolite, mordenite, Na-smectite, and aegirine) are
more abundant than calcium-bearing minerals (calcite, fluorite, Ca-smec-
tite, and pectolite) in the sedimentary section of the drill core. In the
volcanic section of drill core Y-3, calcium-rich minerals (dachiardite, lau-
montite, yugawaralite, calcite, fluorite, Ca-smectite, pectolite, and truscot-
tite) are predominant over sodium-bearing minerals (aegirine, mordenite,
and Na-smectite). Hydrothermal minerals that contain significant
amounts of potassium (alunite and lepidolite in the sediments and illite-
smectite in the rhyolite flows) are found in the two drill-core intervals. Drill
core Y-3 also contains hydrothermal silica minerals (opal, B-cristobalite,
chalcedony, and quartz), other clay minerals (allophane, halloysite,
kaolinite, and chlorite), gypsum, pyrite, and hematite. The dominance of
calcium-bearing hydrothermal minerals in the lower rhyolitic section of the
Y-3 drill core appears to be due to loss of calcium, along with potassium,
during adiabatic cooling of an ascending boiling water.

INTRODUCTION

Research diamond-drill hole Y-3 is one of 13 holes com-
pleted by the U.S. Geological Survey at selected sites in
hot-spring and geyser areas of Yellowstone National Park
(fig. 1). The holes were drilled in 1967 and 1968 in order to
obtain detailed physical and chemical data on the shallow
part of a high-temperature geothermal system (White and
others, 1975). Drill hole Y-3 is located at the western mar-
gin of the Pocket Basin hydrothermal explosion crater
debris ridge (Muffler and others, 1971). The drill-hole sur-
face occurs at an elevation of ~2,193 m; Y-3 is about 76 m
north of and 2 m higher than Ojo Caliente Hot Spring, a
major thermal feature in the area (White and others,
1975).

Drilling of Y-3 (using water as the circulating fluid)
began on June 8, 1967, and was terminated on June 28,
1967, after reaching a depth of 156.7 m. The drill hole was
later plugged with cement in 1969. The core diameter is
10.2 cm for the interval from the surface t0 9.8 m, 6.0 cm for

the interval from 9.8 to 27.4 m, and 4.4 cm for the interval
from 27.4 m to the drill-hole bottom. Core recovery, accom-
plished by wire-line method, averaged 65 percent from the
surface to 28.7m, only 3 percent from 28.5t041.1 m, and 94
percent in the remainder of the drill hole.

The drill core, which was usually obtained in 1.5- or 3-m
intervals, was logged at the drill site by R.O. Fournier, A H.
Truesdell, and D.E. White as soon as possible following
core recovery. At that time approximately 370 pieces of
drill core were selected for detailed laboratory study on the
basis of being representative of an interval or because of
secondary mineral deposits in veins, vugs, or fractures.
This “skeleton” core was systematically studied by optical
(44 thin sections and polished thin sections), X-ray diffrac-
tion (more than 700 X-ray diffractograms), electron micro-
probe, and scanning electron microscope (SEM) methods.
Whole-rock chemical analyses by rapid rock methods and
semiquantitative spectrographic analyses for 16 selected
Y-3 core samples are reported in Beeson and Bargar (1984).
Bulk-rock and powdered-rock density measurements were
also obtained for these 16 core samples. Two of the more
abundant hydrothermal minerals (chlorite and laumont-
ite) were concentrated by heavy liquids for conventional
rock analysis.

Physical data for the 13 Yellowstone research drill holes
are reported in White and others (1975). The highest tem-
perature recorded in Y-3 was 196.0 °C at a depth of
~150.6 m (fig. 2), and the maximum near-bottom fluid
pressure was ~1,497 kPa.

Bargar and others (1973) indicate that the Y-3 drill
hole encountered at least two major water-producing
zones at depths of 28 and 88 m, and they provide a
chemical analysis of the slightly alkaline water from the
88-m aquifer (table 1, column 2). More recently a chemi-
cal analysis of water from the bottom of the Y-3 drill hole
was reported by Keith and others (1983), and the analy-
sis is reproduced here in table 1, column 1. This water is
slightly more concentrated in the major constituents
(Na, HCOg, and Cl) than water from the 88-m aquifer.
Silica was not reported in either of the two analyses;
however, SiO, (along with Na, HCOj3, and Cl) is one of
the four main components of nearby Ojo Caliente Hot
Spring water (table 1, column 3) (Thompson and Yadav,
1979).
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FIGURE 1.—Map of Lower Geyser Basin showing locations of Y-3 and
other research drill holes. Index map of Yellowstone National Park
shows the locations of Lower Geyser Basin, drill holes Y-1 through
Y-13 drilled by U.S. Geological Survey in 1967 and 1968, and drill
holes C- I and C-II drilled by the Carnegie Institution of Washington
in 1929 (Fenner, 1936).
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STRATIGRAPHY
SURFICIAL DEPOSITS

The upper 1.6 m of Y-3 drill core consists of buff-to-
white clayey (smectite and kaolinite) alluvial soil that
contains some sand-sized grains of black spherical ob-
sidian and clear botryoidal opal and angular-to-sub-
rounded light-gray rhyolite pebbles.

Between 1.6 and 42.2 m the drill core is composed of
red, brown, gray, or green hydrothermally cemented
siltstone, sandstone, and conglomerate. The massive to
thinly bedded sediments have dips that range from hori-
zontal (perpendicular to drill core that is presumed to be
vertical) to about 30°; several samples display crossbed-
ding or contorted bedding. The conglomeratic material
is poorly sorted and contains mostly rhyolite and obsid-
ian clasts, although a few samples have sandstone peb-
bles. These sediments were deposited during the
Pinedale glacial episode (=45,000-14,000 years B.P)
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FicURE 2.—Plot showing depth distribution of unaltered obsidian, a-cristobalite, and hydrothermal alteration minerals from drill core Y-3. Left
column shows a generalized stratigraphic section of rock units penetrated by the drill hole. The unnamed rhyolite flow and the Nez Perce Creek
rhyolite flow are included in the Central Plateau Member of the Plateau Rhyolite. Horizontal lines adjacent to left column represent distribution of
samples studied. Only a few core fragments and drill cuttings were recovered between 28.5 and 41.1 m, and the distribution of hydrothermal
minerals in the interval, as suggested by these few samples, is shown by vertical dotted lines. Width of mineral columns given as an estimate of
relative abundance based on X-ray diffraction analyses and microscopic observations. Vertical continuity in mineral presence between samples is
assumed except where a mineral abundance becomes zero, in which case the zero point is arbitrarily placed 0.3 m from the last occurrence of the
mineral. Dashed curve connects bottom-hole temperature measurements obtained as drilling progressed. Solid curve shows reference boiling
temperature for pure water assuming a surface altitude of ~2,329 m and a water table at the surface. Temperature data from White and others
(1975).
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TABLE 1. - Chemical composition (in milligrams per liter), pH, temperature, and
calculated geothermometers (in degrees Celsius) of thermal water from Y-3
drill hole compared with values from nearby Ojo Caliente Hot Spring
(Analyst: R.B. Barnes. Geothermometers calculated from formulas in table
4.1 of Fournier (1981)]

0jo Recalculated
Caliente hot—sprin%
2,

Name=-=--~--=--——- y-31 Y-32 Hot Spring? water
Depth (m)~-------~ 156.7 88 --- -——
Date collected---- 9/25/68 - 6/10/67 —-——-

Temperature (°C)-- -——- 174 95 92
pH (field)-=--=--- 8.4 8.12 8.31 -—-
- -—= 230 -——-
- -~= 1.0 ——=
e .1 .18 .12
1.7 1.26 1.1 1.48
et .02 .02 .02

296 270 317 318

14 11 9.2 13
3.6 3.5 4.5 4.1

216 177 249 208
—— 19.1 27 22.5

290 278 331 327

- 30 33 35
Bo=--ommmmmmm oo --= 3.6 4.0 4.2
Rb-=--mmmmmmmm e .21 -—= -—= -
Cs—————mm—m—m—— R - - -

TSi0) (adiabatic)- --= == 176 --=
TNa/K (Fournier)-- 160 150 130 151
TNa/K (Truesdell)- 119 108 84 108
TNa-K-Ca------~--~ 172 166 153 167

Igeith and others (1983).
by R.B. Barnes.

2Bargar and others (1973), Fournier (1981).

3calculated, ideal composition of 0jo Caliente Hot Spring water from
column 2 assuming no wallrock reaction or precipitation of dissolved
constituents.

Ca value from original unpublished analysis

(Muffler and others, 1971; Waldrop and Pierce, 1975;
Pierce and others, 1976; Muffler and others, 1982).
Hydrothermal alteration is extensive in samples
recovered throughout most of the interval, and hydro-
thermal minerals include opal, B-cristobalite, quartz,
chalcedony, analcime, clinoptilolite, mordenite, calcite,
fluorite, allophane, halloysite, kaolinite, chlorite, smec-
tite, lepidolite, aegirine, pectolite, gypsum, alunite,
pyrite, and hematite.

VOLCANIC ROCKS

From 42.2 to 71.2 m the drill core penetrated the Nez
Perce Creek rhyolite flow of the Central Plateau Mem-
ber of the Pleistocene Plateau Rhyolite (Christiansen
and Blank, 1974), which was extruded about 150,000
years ago (Waldrop and Pierce, 1975; White and others,
1975; Leeman and Phelps, 1981). Core samples from the
Nez Perce Creek flow frequently consist of bleached
rhyolite flow or flow breccia that is extensively fractured
and in some places is quite vesicular. Predominant mag-
matic minerals are quartz and sanidine; pyroxene, pla-
gioclase, and magnetite are minor constituents.
Evidence for vapor-phase mineralization is sparse,
although a few cavities contain hydrothermal quartz
druses that appear to be pseudomorphous after vapor-
phase alkali feldspar crystals. Spherulitic or micro-

HYDROTHERMAL ALTERATION IN RESEARCH DRILL HOLE Y-3, WYOMING

spherulitic textures are common throughout the
rhyolite flow, but a-cristobalite, which frequently forms
due to devitrification of cooling rhyolite flows, is rare
and apparently has been recrystallized to quartz.
Hydrothermal quartz and chalcedony are abundant on
fractures and as vesicle fillings throughout much of this
core interval. Other open-space hydrothermal minerals
identified in the Nez Perce Creek flow include mor-
denite, dachiardite, aegirine, pectolite, calcite, fluorite,
smectite, illite-smectite, chlorite, kaolinite, hematite,
pyrite, and a 10-A mica(?).

Below 71.2 m is an older, unnamed rhyolite flow that
apparently is not exposed anywhere at the surface
within the Yellowstone Caldera. This flow is also corre-
lated with the Central Plateau Member of the
Pleistocene Plateau Rhyolite by Christiansen and
Blank (1974). The unnamed rhyolite flow is probably not
much older than the Nez Perce Creek flow because all of
the lava flows of the Central Plateau Member were
extruded about 200,000-70,000 years ago (Chris-
tiansen and Blank, 1972). In drill core Y-3, this unnamed
rhyolite flow displays conspicuous flow banding and ve-
sicularity. Quartz and sanidine are the most abundant
magmatic minerals, and pyroxene, plagioclase, and
magnetite are minor primary constituents. No vapor-
phase or devitrification minerals were identified,
although parts of the drill core have a spherulitic tex-
ture. The core is extensively fractured, and hydrother-
mal minerals are quite abundant as vesicle and fracture
fillings, to the extent that many of the fractures are
completely self-sealed. Hydrothermal minerals found in
this partially bleached rhyolite flow include quartz,
chalcedony, dachiardite, laumontite, mordenite,
stilbite, yugawaralite, truscottite, calcite, fluorite,
smectite, illite-smectite, illite, chlorite, pyrite, and
hematite.

HYDROTHERMAL ALTERATION
MINERALOGY

Figure 2 shows the distribution of unaltered obsidian,
devitrification a-cristobalite, and hydrothermal miner-
als (opal, B-cristobalite, quartz, chalcedony, analcime,
clinoptilolite, dachiardite, laumontite, mordenite, cal-
cite, fluorite, kaolinite, halloysite, chlorite, smectite,
illite-smectite, lepidolite, aegirine, pectolite, gypsum,
pyrite, and hematite) with depth in the Y-3 drill core.
Vapor-phase, magmatic, and a few hydrothermal miner-
als with only minor distribution in the drill core
(stilbite, yugawaralite, allophane, truscottite, and
alunite) are not shown in the figure.

The only unaltered obsidian occurs in the coarse-
grained sediments of the upper 10 m of the drill core.
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als. In fact, a comparison of chemical analyses of water
from the Y-3 drill hole and from nearby Ojo Caliente Hot
Spring (table 1) suggests that calcium, along with
potassium, is probably lost during adiabatic cooling of
an ascending boiling water, whereas sodium remains
unchanged after correcting for boiling (Bargar and oth-
ers, 1973).

The silica geothermometer for Qjo Caliente Hot
Spring water (176°C) is in good agreement with the
measured temperature (174°C) for water from the 88-m
aquifer in drill hole Y-3 (table 1, column 2). Other geo-
thermometer calculations in table 1 give temperatures
that are too low for Y-3. Calculated geothermometers for
the bottom-water (table 1, column 1) are significantly
lower than the 196°C measurement at the bottom of the
drill hole. At the time the Y-3 bottom water sample was
collected, White and others (1975) concluded that the
region below 80 m in the drill hole was influenced by
downflow of cooler water from the upper part of the drill
hole.

Fluid-inclusion homogenization temperatures were
measured in quartz (48 fluid inclusions in 4 samples)
and fluorite (47 fluid inclusions in 3 samples) crystals
from the Y-3 drill core. Most of the liquid-rich fluid
inclusions appear to be secondary(?) or pseudosecond-
ary and have homogenization temperatures that plot
very close to the present-day measured temperature
curve (fig. 23). One homogenization temperature mea-
surement of 313.5°C at 45.8 m was not reported in figure
23 because the value obviously was too high owing to
necking-down of the fluid inclusion by precipitation of
later silica (Roedder, 1984). Similarly a few other small,
irregular fluid inclusions, some with “tails,” may give
erroneous (either too high or too low) homogenization
temperatures. Probably the most reliable homogeniza-

@ Glacial sediment
Il Nez Perce Creek
flow

@ Unnamed flow

CaO

Na,0

FiGURE 22.—A-F-M and Na,0-K;0-CaO ternary diagrams for altered
volcanic rocks and glacial sediments from drill core Y-3.
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FicURE 23.—Plot of fluid-inclusion homogenization temperatures in
quartz (Q) and fluorite (F) crystals from seven samples in drill core
Y-3. Horizontal line segments give range of homogenization tem-
perature measurements, which are shown as short vertical tick
marks.

tion temperatures shown in figure 23 are the clustered
measurements, which usually plot less than about
20-40°C from the measured temperature curve. From
these data we infer that the temperature of the water
that deposited the quartz and fluorite crystals studied
was a little warmer than the temperatures measured
during drilling.
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