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A MODEL FOR THE PLASTIC FLOW OF LANDSLIDES

SYMBOLS
BC Integration constants
D Determinant
D, D, Recurring terms in denominators
d Dilation rate
€., éy, e'xy Coordinate deformation rates

¢1> €3, e; Principal deformation rates

Z[[t;, (;” ?,]] Complicated expressions used for brevity in equations

F (y) Function of y

f Yield function

g Gravitational acceleration

H Material constant

h Depth

k Cohesion

p P Pore pressure

r Constant longitudinal deformation rate

S;. S, Curvilinear coordinates

S’ Stress invariant

w v Cartesian velocity components

u, Basal sliding velocity

U, uy Velocity components parallel to 8_ and 8, characteristics
Uy, Uy Velocity components normal to 8_ and 8, characteristics
a, i, Velocity discontinuity components parallel to 8_ and 8 characteristics
by, 0, Velocity discontinuity components normal to 8_ and 8, characteristics
1_1: Resultant velocity jump vector

x, y Cartesian coordinates

y* Depth of landslide

y' Dimensionless y coordinate (= y/y*)

a Angle that greatest principal stress makes with positive x axis
B, B_ Characteristics

8 6 — ¢)

7 (2a + 6)

0 Inclination of landslide surface

A Undetermined multiplier

3 (45° — ¢/2)

v Angle of dilation

1r 3.14159...

) Density

o' Stress invariant ( = S' + H)

LA Coordinate normal stresses

0,, 05, 05 Principal normal stresses

Oy Coordinate shear stresses
T Shear stress

Trmax Maximum shear stress

¢ Angle of internal friction

Symbols may be further modified by subscripts or primes. Generally, letter subscripts refer to
coordinate directions or directions normal to given planes, whereas numeric subscripts refer to princi-
pal directions. Exceptions are D,, D,, F,[¢, 6, B, G,l¢, 6, B, etc., where the subscripts merely
distinguish between similar expressions. Effective stresses, the difference between total normal
stresses and the pore pressure, are denoted by primes.



A MODEL FOR THE PLASTIC FLOW OF LANDSLIDES

By WILLIAM Z. SAVAGE and WILLIAM K. SMITH

ABSTRACT

To further the understanding of the mechanics of landslide flow,
we present a model that predicts many of the observed attributes of
landslides. The model is based on an integration of the hyperbolic dif-
ferential equations for stress and velocity fields in a two-dimensional,
inclined, semi-infinite half-space of Coulomb plastic material under
elevated pore pressure and gravity.

Our landslide model predicts commonly observed features. For ex-
ample, compressive (passive), plug, or extending (active) flow will oc-
cur under appropriate longitudinal strain rates. Also, the model
predicts that longitudinal stresses increase elliptically with depth to
the basal slide plane, and that stress and velocity characteristics, sur-
faces along which discontinuities in stress and velocity are propagated,
are coincident. Finally, the model shows how thrust and normal faults
develop at the landslide surface in compressive and extending flow.

INTRODUCTION

To further the understanding of landslide mechanics
we have developed a model that describes many of the
observed attributes of landslides. This model, based on
the flow theory of Coulomb plastic materials, is similar
in many respects to a previous model for alpine glaciers
developed by Nye (1951). In this section, we review the
principal results of Nye’s model and other work that
influenced ours, explain how the report is laid out, and
give our principal results.

Nye (1951) successfully applied the flow theory of a
perfectly plastic incompressible Mises material (Hill,
1950; Varnes, 1962) to the flow of alpine glaciers. His
model predicted many of the flow patterns observed in
alpine glaciers. For example, he predicted that either
active (extending), passive (compressive), or plug flow
would occur depending on the longitudinal deformation

-rate. Nye based his predictions on the assumptions that
shear stresses and that vertical normal stresses varied
linearly with depth, and found that longitudinal stresses
varied elliptically with depth in the glacier. Nye also
found that, in active (extending) flow, the longitudinal
stresses were tensile, which explains the crevasses com-
monly observed in parts of glaciers undergoing extend-
ing flow. Nye found that the predicted slip-line field
explained the thrust surfaces seen in compressive-
flow regions of glaciers and normal faults observed
in extending-flow regions. For the extending- and

compressive-flow states, Nye’s model predicted the
longitudinal velocity was greatest at the surface and
decreased elliptically toward the base. Finally, his model
predicted the glacier to simply slide on its base as a rigid
body during plug flow.

Landslides have many of the same features as Nye
modeled in alpine glaciers. For example, extending, com-
pressive, and plug flows occur, and tensile regions and
normal fault scarps develop near the surface in parts
of the landslide undergoing extending flow. Also, thrust
surfaces and thrust-fault scarps occur in regions of com-
pressive flow. These similarities are not surprising as
soils in general behave as materials with plastic states
characterized by Coulomb’s law, which is a generaliza-
tion of the Mises criterion for plastic material (Hill,
1950).

Following Nye's lead in modeling the flow of an alpine
glacier, we demonstrate that, as with Nye’s glacier
model, our landslide model predicts that either com-
pressive, extending, or plug flow can occur—depending
on the longitudinal deformation rate. The shear stresses
and vertical normal stresses vary linearly from the sur-
face to the limiting depth of the landslide’s slip-line field,
and the longitudinal stress increases in an elliptic man-
ner over the same depth. Both the slope angle, and the
density and cohesion of ice, control the thickness of the
glacier slip-line field. However, the thickness of the slip-
line field in a landslide in homogeneous and isotropic
soil is controlled by the slope angle, by the pore pressure,
and by the density, cohesion, and angle of internal fric-
tion of the soil. As in the alpine glacier model, longitu-
dinal stresses near the surface of the landslide will be
tensile during extending flow, and the slip-line field pre-
dicted for the idealized landslide will explain the thrust
surfaces seen in compressive-flow regions of landslides.

Also, as in the glacier model, the landslide model
predicts that the longitudinal velocity is greatest at the
surface and varies in an elliptic manner down to the
basal slip plane of the landslide. Finally, like Nye's
glacier-flow model, the landslide model predicts that,
during plug flow, the landslide simply slides as a rigid
body on its basal slip plane.

Besides Nye’s important work, our model for landslide
flow will draw heavily on other work. Frontard (1922)

1



2 A MODEL FOR THE PLASTIC FLOW OF LANDSLIDES

derived equations for the slip-line fields in extending
and compressive flow for a semi-infinite mass of
Coulomb material whose surface is inclined at an angle
greater than the angle of internal friction. (See Terzaghi,
1943, p. 40-41.) Sokolovskii (1960, p. 38-40; 1965,
p. 77-80) gave similar solutions for soils, as did Johnson
(1965) for debris flows. In each of these solutions, the
slope angle, cohesion, and angle of internal friction of
the soil making up the slide control the depth to which
the slip-line field can extend. More recently, Crans and
Mandl (1981) applied the theory of plastic flow of
Coulomb materials to create a model of the development
of growth faults in sediment layers. Like Frontard
(1922) and Sokolovskii (1960, 1965), Crans and Mandl
(1981) found that the slip-line field was bounded at a
finite depth when the slope angle exceeds the angle of
internal friction. Crans and Mandl (1981) considered the
effect of an elevated pore pressure and found that under
certain conditions this pressure led to a bounded slip-
line field, even when the slope angle was less than the
angle of internal friction.

In this report, we first develop the general differen-
tial equations for stress and velocity fields in two-
dimensional Coulomb plastic materials under an
elevated pore pressure. Our results show that these par-
tial differential equations are hyperbolic and, in general,
integrable by a method that uses special curves in an
x-y coordinate plane called characteristics, along which
the solution of the partial differential equations is re-
duced to integration of ordinary differential equations.
The characteristics are also surfaces across which first
derivatives of stress and velocity may be discontinuous.
In general, two separate sets of characteristics may oc-
cur: one for velocities and one for stresses. However,
for the Coulomb plastic material in our model, the stress
and velocity characteristics are coincident. The coin-
cidence of the stress and velocity characteristics, that
is, the slip lines, is important because these surfaces
represent rupture surfaces along which velocity or
deformation rate discontinuities occur in landslides.
Finally, we see that in a Coulomb material, discon-
tinuities in the tangential-velocity component across a
characteristic will be accompanied by a discontinuity
in the velocity component normal to the characteristic.

We then proceed to the landslide model, where,
because of the assumptions regarding this model, we
find that the governing hyperbolic differential equations
can be integrated directly. First, we discuss the stresses
and the stress characteristics for the idealized landslide,
and we give the stress distribution and configuration
of the stress characteristics for various values of pore
pressure, slope angle, cohesion, and internal friction in
dimensionless form for extending and compressive flow.
Second, we derive the velocity field and give the

distribution of longitudinal and normal velocities for
various values of pore pressure, slope angle, cohesion,
and internal friction in dimensionless form for extend-
ing and compressive flow. Third, we consider the spe-
cial case of a purely cohesive material—a Mises
material—arriving at a solution similar to Nye’s (1951)
solution for alpine glacier flow. This solution emphasizes
that our model for landslide flow is a more general treat-
ment of the gravitational flow of plastic materials for
which Nye’s solution for alpine-glacier flow is a special
case.

Finally, we compare our model of landslide flow with
Nye’s (1951) model for glacier flow and discuss the ap-
plicability of this landslide model to actual landslides.
Here, we emphasize the restrictiveness of the assump-
tions made in developing the landslide model and the
main conclusions derived from the model.

DEDICATION

This work is dedicated to the memory of George M.
Sowers.

COULOMB PLASTIC MATERIALS
STRESS FIELD

It is known from experiment that at a point in a soil
at incipient shear failure there occur two intersecting
planes along which the shear stress, denoted 7, is
given by

|7,| =k + o, tan ¢, (1)

where k is the cohesion, ¢ is the angle of internal fric-
tion, and o, is the effective normal stress acting on the
planes. (Throughout this report effective stresses, the
difference between total normal stresses and the pore
pressure, are denoted by primes.) The two intersecting
planes are equally inclined at angles of 45° — ¢/2 to the
most compressive principal effective stress, ¢, and the
line of intersection of these two planes is parallel to the
intermediate principal effective stress, o,. Equation (1)
was first suggested by Coulomb (1773) for total stresses
and is known as the Coulomb failure criterion.
Equation (1) plots as two straight lines in two-
dimensional Mohr stress space (Terzaghi, 1943,
p- 15-24), as shown in figure 1. When ¢ = 0, the two
straight lines in figure 1 are parallel, and the soil is
termed purely cohesive or a Mises material. These lines
also separate the Mohr stress space into two parts: a
stable part and an unstable part. If a Mohr circle



COULOMB PLASTIC MATERIALS 3

)
oy
x6°
A S
L)
Oxy
Tphf———
|
|
o
|
| Trax
|
|
|
1 |
|
’ |a’n U'y 2c{ o'y o'y o

€ ——&
Q
w

/Vz

FIGURE 1.—Sketch showing Coulomb failure criterion. Normal and shear stresses are represented by ¢ and 7,
respectively. Here, 7, . is the maximum shear stress, 7, is the shear stress acting on planes inclined at
an angle o to o] (the most compressive principal effective stress), g, is the least compressive principal ef-
fective stress, ¢ is the angle of internal friction, and % is the cohesion. Other symbols are defined in the text.

constructed from o, and g, (the least compressive prin-
cipal stress at a point) lies between the Coulomb failure
lines, the soil behaves elastically. However, if a Mohr
circle becomes tangent to these lines, failure is immi-
nent and Coulomb plastic flow will ensue. This state of
incipient failure is termed a state of limiting equilibrium.
No Mohr circle can lie beyond these limiting lines
because the shear stress cannot exceed the yield
strength if the body is to remain in equilibrium.
Certain other relationships in a region at limiting
equilibrium can be derived from figure 1. For example,

H=FEcoto, (2)

and

0,- 03

o = ——— = (8" + H sin 6, (3)

max

where
a + o,
S = 1 3 (4)
2
Defining
od=8S"+H (5)
we can write equation (3) as
7 _=g¢'siné. (6)

max

Also, Coulomb’s failure criterion can be written by us-
ing equations (1) and (2) as

|7l = (o, + H) tan ¢ . (7)

By using the equations for stress transformation



4 A MODEL FOR THE PLASTIC FLOW OF LANDSLIDES

o, = l (o, + o) + l (o, — g,) cos 2, (8a)

2 2

1 1
0, == (0, + o)) — = (0, — 0,) cos 2, (8b)

2 2

and
_1 .

0, = 5 (0, — 0,) sin 2, (8c)

we can write expressions for the three Cartesian com-

Here, o, and o, are the normal effective stresses that
are positive in compression; o, is the shear stress; and
a is the angle between the direction of the maximum
compressive principal effective stress ¢, and the posi-
tive x axis. The magnitudes of o,, 0, and o, , as given
by equations (8) and (9), are represented in Mohr stress
space in figure 1. The angle « is reckoned positive in
a counterclockwise direction as shown in figures 1 and 2.

The yield criterion can be written in terms of o, o,
and o,, by using equation (3) or

. . . o, — 0y log+ o) .
ponents of stress in a region undergoing Coulomb Toax— = sing¢ +Hsing, (10)
plastic flow as 2
and the relations (Sokolovskii, 1965, p. 12)
Z’f} =8'* 1., €0s 20 = ¢' (1 + sin ¢ cos 2a) -H, (9a) ote o to 11
g’ 2 2
and and
o, — o, 1 \ J
Oy = Toax sin 2a = ¢’ sin ¢ sin 2« . (9b) 2 = T (o, — "y) + o, (12)
[
o
B+
B-
*x ' +y
Vs
1Z]
uy %—%

V2

uz

FIGURE 2.—Sketch showing Cartesian coordinate system inclined at an angle 6 to the horizontal. Also shown
are the angle « between the positive x axis and the direction of ¢;; the two stress characteristics 8, and
B_; the tangents to the two stress characteristics at a point; the velocity components u,, u,, v,, and
v, on each characteristic; and the resultant velocity vectors o, and 7,.



COULOMB PLASTIC MATERIALS 5

The yield criterion in terms of o, g), and o, then
becomes

in2
-i— (0, — o) + 0,2 = -’324-2 (o} + o) + 2H). (13)

In addition to satisfying the yield criterion, stresses
in regions of incipient Coulomb plastic flow must also
satisfy the differential equations of plane equilibrium

da, do,, opP
_ =pg sin § — — (14a)
dx dy ax
and
do,, Jo, apP
+ — =pgcosf — —. (14b)
ox dy oy

Here, p is the density, 6 is the inclination of the x axis
from the horizontal (fig. 2), and P represents the pore-
water pressure.

Provided that the pore-pressure distribution is
known, the three equations (13), (14a), and (14b) contain
three unknowns o, oy and o_, and can in principle be
solved for the stress field if the boundary conditions are
expressed in terms of stresses—that is, if the system
is statically determinate. The method for solving (13)
and (14a, b) for the stress field, the method of charac-
teristics, will now be discussed.

Equations (9a, b), which identically satisfy equation
(13), the Coulomb yield condition, are substituted in the
equilibrium equations (14a, b), and result in

. do’ da
[1 + sin ¢ cos 2a] — — 20’ sin ¢ sin 200 —
dx dx

dc' da
+ sin ¢ sin 2o — + 26’ sin ¢ cos 2a —

(15a)
ay ay

0 o apP
= pg sin § — —
ax
and
da’ do’
sin ¢ sin 2o — + 20’ sin ¢ cos 2cc —
dx dx

r !

+ [1 - sin ¢ cos 2a] a— + 20’ sin ¢ sin Zaa— (15b)
Yy

opP
= pgcos b ——
Ay

This result yields two equations for the four deriv-

d¢' 90 Oda da
atives , , , and
dx Jy Odx ay

equations, the equations of the total derivatives

. We can add two more

da' do'
do' = dx + dy (16a)
ax oy
and
Jda da
do = —dx + —dy, (16b)
dx ay

giving a system of four equations for the four unknown
derivatives. In matrix form,

1 + sin ¢ cos 2 sin ¢ sin 2« -2¢' sin ¢ sin 2« 20’ sin ¢ cos 2c
sin ¢ sin 2« 1 - sin ¢ cos 2« 2¢' sin ¢ cos 2a 20’ sin ¢ sin 2c
dx dy 0 0
0 (] dx dy
20
Ax
aP
20 og sin 0 - 5
ay ap 17
X = pgcoso—-a;

2a .
2% do'

da
da

3y

Following the procedures of matrix algebra, we can in-
vert equation (17) and obtain a unique solution for the
four unknown derivatives, provided that the determi-
nant of the square matrix

= in o1 [ 22V _ 2 si gy
D—[c082a+sm¢]‘dx) 2 sin 2« o
(18)

- [cos 2a - sin ¢]

is nonzero. However, if D = 0, the result is a quadratic

dy with the two roots

form in ax

dy | _ _sin 20 * [sin® 2a + cos? 2q - sin? ¢]'?
dx |* cos 2a + sin ¢

(19)
_ sin 2a * cos ¢ |

- cos 2a + sin ¢

or
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d~y _ sin 2o £ sin [90° - ¢]
dx |* cos 2o + cos [90° - ¢]
& (20)
=tan[ai ‘45°—~’] .
2
The four unknown derivatives, 6_0 Qi o , and
Ao ax 3y dx
8y , are then no longer unique along two curves in a re-

gion of Coulomb plastic flow with tangents at every
point given by equation (20). Curves having the slopes

dy_ dy_ -
ax ax _everywhere are called character:

istics. And the partial differential equations (15a, b) are
called hyperbolic (Crandall, 1956, p. 354) because there
are two real characteristics at a given point. The stress
characteristics labeled 8, and 8_ are shown in figure 2.

The stress characteristics intersect at every point at
the angle 90° - ¢ (fig. 2) and are loci along which the
shear stress is given by equation (1). For a plastically
deforming soil, the characteristics represent the poten-
tial paths for propagation of discontinuities in stresses
and stress gradients. Also, from equation (20), we see

that when o = 45° - ¢/2, the slopes g—z

and

are either in-
+

finite or zero. Lines of discontinuity, lines along which

Yy . o e .
[ &;L are either infinite or zero, represent boundaries

between plastic regions or between plastic and non-
plastic regions. Stresses can undergo finite jumps, and
stress gradients can be infinite across lines of discon-
tinuity. (See, for example, Prager and Hodge, 1951.)
Finally, lines of discontinuity may form on stress
characteristics or form an envelope around a system of
stress characteristics (Sokolovskii, 1960, 1965).

In addition, for a compatible system of hyperbolic dif-
ferential equations, the determinant formed by replac-
ing any column on the left of equation (17) with the
column on the right must also vanish (Abbott, 1966).
For example,

AP

1 + sin ¢ cos 2a sin ¢ sin 2o -20' sin ¢ sin 2« pgsinﬂ—a—

x

: : : . P

sin ¢ sin 2« 1 - sin ¢ cos 2a 20’ sin ¢ cos 2o pg cos 6 -—

D 2y
dx dy o do’
0 0 dx da

= cos? ¢ do' + 20’ sin ¢ |(cos 2a + sin ¢)

(%’ - sin 201] da

+"pgsin0— op sin ¢ sin 2o -
dx

cos 0 - 8P
rE 3y

(1 + sin ¢ cos 2a)‘ ‘%)

. oP . 9P
[‘pg sin 6 - Tx) (1-sin ¢ cos 2a) - ‘pg cos 6 - ay)

sin ¢ sin 2o dx = 0 . (21)

Substituting %’-] given by equation (20) in equation
(21), we find -

do'+ 20' tan ¢ da =
&3:7«;3 ’(pg sin 6 - aai;) (1-sin ¢ cos 2«)

oP
- |og cos 6 - —
dy

sin ¢ sin 2a] dx

. aP . .
" oo pg sin 0 - E) (sin ¢ sin 2«)

- |log cos 6 —aa£ (1 + sin ¢ cos 2a)| d: (22)
Yy

If the pore-pressure distribution is known, equations
(20) and (22) represent a pair of ordinary differential
equations for « and ¢’ along each characteristic. Presum-
ing that they can be solved for ¢’ and «, we find the
stresses ¢, 0, and o, along each characteristic from
equations (9a, b). In general, this system must be solved
numerically (Sokolovskii, 1960, 1965).

VELOCITY FIELD

Let us adopt the hypothesis of associated plasticity
(Hill, 1950; Drucker and Prager, 1952; Shield, 1955)
which states that the principal plastic-deformation rates
e, ., e,, and ¢, are proportional to the gradients of the
yield function with respect to the principal stresses o,
o,, and g;. Although the associated flow-rule hypoth-
esis is adopted for mathematical simplicity, it leads to
unrealistically large dilation rates. (More will be said
about this problem later.)

Writing the yield function (equation 10) as

f=5li-o)-yloi + o) sing - Hsing=0, 2

and taking the appropriate derivatives, we find that

af D N
601 2(1 sin ¢),

e, = (24a)
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(24b)

and

(24¢)

where A is an undetermined parameter that is eliminated
in the following equations.

Equation (24b) is a result of assuming that flow oc-
curs only in the plane of ¢, and ¢,. Adding (24a) and
(24c), we find the mean deformation rate

e t+ e,

2 (25)

=2 sin ¢
2 .
Subtracting (24a) from (24c) yields the maximum shear

deformation rate

e, - &
2

A
=5 - (26)

Eliminating \ from equations (25) and (26) yields the
equation of continuity
e, t+e, + (e -¢e)sing =0. (27)
When ¢ is greater than zero, the volume increases
during flow. When ¢ = 0, equation (27) becomes the
equation of continuity for plane incompressible flow.
We also assume isotropy—that the principal axes of
deformation rate and stress coincide. Then, from stress
transformation equations (8a, b, c), we have

20 2e

V= L
oI = tan 2« .
o,-0, e -e,

(28)

By taking u and v to be the velocity components in
the x and y directions, respectively, and by taking con-
tracting deformation rates as positive, we can define the
deformation rates by

-du

. = W , (29a)
. _ -2
e, = —37” : (29b)
and
=_1(3v 2u
by =-5 |5 6y’ : (29¢)

Then, with these equations, the condition of isotropy
(equation 28) becomes

dv , du
_+_..
M: tanza'
du dv

dx Qdy

(30)

Using the deformation-rate transformation equations,

e, +e e, -e
e, = 12 1+ 12 ? { cos 2a , (31a)
e, te e, -e
e, = 12 - 12 2 { cos 2a , (31b)
and
e, —e
e, = [—l—z——l]sin 2a , (31¢)

which are of the same form as equations (8a, b, c) for
stress transformation, and equations (25) and (26), we
arrive at

e = P = E)\ [sin ¢ - cos 2], (32a)

6 = :%’: 2 [sing +cos2a,  (32b)
and

e, = -;—% %=%sin2a. (32¢)

As with equation (11) for the stresses, the sum of the
principal deformation rates is an invariant, or

e te, = +é =-2u_0U

dx dy (83)

The difference of principal deformation rates from equa-
tions (31a, b) is

. . _[0u  dv
o -6 =2x"% _ l0x 3y|. (34)
173 cos 2a cos 2a

We can rewrite equation (27), the equation of continu-
ity, as

9u _dv
_u _dv 1% Oylgng-o, (35)
dx 9y cos 2«
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or

du . dv .

—(cos 2«a + sin ¢) + — (cos 2« - sin ¢) = 0. (36)
dx dy

Equation (28), the condition of isotropy, is rewritten
as

o -—-—-—tan 2a = 0. (87)
y

Equations (36) and (37), together with the equations
for the total derivatives

_ du du
du = x dx + —6y dy (38a)
and
17 adv
dv = e dx + —ay dy , (38Db)

yield a system of four equations for the four derivatives

u, du, dv, .4 2Y,
dx 9y dx ay or
i . .o faul [ .]
cos 2a+sin¢ 0 O cos 2¢-sin ¢ o 0
tan 2« -1 -1 -tan 2« % 0
Yi=| [.(39)
dx dy 0 0 LLAIFS
9x
dv
i 0 O dx dy | La_y. Ldl)_

The determinant of the square matrix is given by the
quadratic form

2
D = (cos 2a + sin ¢) (%) - 2 sin 2« %

(40)
- (cos 2a - sin ¢) .

Then, following the procedure outlined for determining
the stress characteristics, we find the velocity
characteristics

dy ] _sin 2« * [sin? 2o + cos? 2a - sin? ¢]!2
+

dx cos 2a + sin ¢
(41)

sin 2o + cos ¢
cos 2a + sin ¢

or

sin 2« + sin [90° - ¢]
*  cos 2a + cos [90° - ¢]

-3

dl]
dx
(42)

=tan[ai

Comparing equations (20) and (42), we see that the
stress and velocity characteristics coincide. For a plas-
tically deforming soil, the characteristics then represent
potential paths for propagating discontinuities in veloci-
ty and deformation rates (equations 32a, b, c), as well
as stresses and stress gradients. Because these coin-
cident surfaces (the stress and velocity characteristics)
are potential paths for propagating velocity discon-
tinuities, they are called slip surfaces. Like stresses,
velocities can also undergo finite jumps and shear- and
normal-deformation rates can be infinite across lines of
discontinuity—that is, at boundaries between two
plastic regions or between plastic and nonplastic
regions. Finally, lines of discontinuity can form along
velocity characteristics or form an envelope to a system
of velocity characteristics.

Like stresses, a compatible system of hyperbolic equa-
tions for the velocities requires that the determinant
formed by replacing the last column of the square
matrix in equation (39) by the column on the right of
the equals sign must also vanish. Carrying out this
operation, we find that

cos2asing 0 O O
tan 2« -1 -1 0
dx dy 0 du

0 0 dx dy

. D=

(43)
= = dy _
=dudx +dvdy =du+ dv l—O.

Substituting equations (42) in (43) yields the differen-
tial relations between du and dv along the characteris-
tics 8, and B_

du + tan ’a + [450 ”% (44)

]dv=0.

Here, « is known from the stress solution.
To interpret equation (44), we rewrite it in the
canonical forms,

—+ tan [a - p] — = (45a)

and
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du dv
2L 4 tan o +p] == =0,
as, e +ud 5,

(45b)
where S, is a curvilinear coordinate coincident with the
B_ characteristic, S, is a curvilinear coordinate along

the 8, characteristic, and p = 45° — % Next, we de-

fine the velocity components u, and u,, which are the
velocities respectively parallel to the g_ and 8,
characteristics. The relationships between these veloci-
ties and the Cartesian velocity components u and v are
given by

u, = ucos (o~ p) + v sin (o - p) (46a)

and
u, = ucos(a + p) + vsin(a + 4, {46b)

which have the inverses
u=ulsm(a+,u)-uzsin(a—,u) (47a)
Ccos ¢

and

o= u, COs (a + [l,) + u, cos ((X - [L) . (47b)

Ccos ¢

Substituting equations (47a, b) in (45a, b), we find the
canonical equations describing the variation of u, and
u, along the S, and S, curvilinear coordinates, the _
and g3, characteristics:

du, + ¢ u, da 0

as, u, tan ¢ - cos ¢ a_sl - (48a)
and

04 fu, ¢ M) 0e 48b

682_u2 an ¢ - cos ¢ 5§;— ) (48b)

Equations (48a, b) represent the extension rates along
the two characteristics (Salencon, 1977) and show that
the extension rate along each characteristic vanishes.
In addition, we can write equations (48a, b) as the or-
dinary differential equations

du, + 2

E u, tan(ﬁ—m =0 (49&)
and

du u,

7‘;— u, tan ¢ - cos ¢ =0. (49b)

Equations (48a, b) become the Geiringer equations of
perfect plasticity when ¢ = 0 (Davis, 1968, p. 367).

Suppose that a discontinuity in velocity occurs across
a B_ characteristic, with the sense of relative displace-
ment shown by the arrows in figure 2. If this discon-
tinuity, symbolized by u,, is to continue in an
unimpeded manner along the 8_ characteristic, any
discontinuity in u,, symbolized by u, must vanish
where the two characteristics intersect. Thus, for the
propagation of the discontinuity u, along S,, we have
from equation (49a)

du

—+u,tané =0 . (50)
da

By a similar argument for the 8, characteristic, we
find that for the propagation of the discontinuity u,
along S,,

du, _
— + u, tan ¢ =0 . (51)
da
Integrating equations (50) and (51) yields
u, = ﬁlo exp [ - (@ - o) tan ¢] (52)

for propagating tangential velocity discontinuities
along a 3_ characteristic and

u, = l_‘2., exp [ - (a - «) tan ¢] (53)
for propagating tangential velocity discontinuities
along a 8, characteristic. Here, u, and u, are known
tangential velocity discontinuities at some o = o,
along S, or S,.

In Coulomb materials (¢ # 0), discontinuities in veloci-
ty can also occur in directions normal to the charac-
teristics B_ and B,. Defining the normal velocity
components v, and v, along S, and S,, we have for the
relationships between these velocity components and
the Cartesian velocity components « and v

v, = -u sin (@ - u) + v cos (@ - p) (54a)

and

v, = -usin (@ + p) + v cos (@ + p) . (54b)

Inverting the pair of equations (46a) and (54a), we ar-
rive at

u = u, cos (o - p) - v, sin (@ ~ p) (55a)

and
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v = u, sin (@ - p) + v, cos (« - p) (55b)
for the B_ characteristic. Inverting equations (46b) and
{54b), we find

u = u,cos (a + p) - v, sin (@ + p) (56a)

and

v =u,sin (a + p) + v, cos (¢ + p) (56b)
for the 8, characteristic.

Substituting equations (55a, b) in equation (45a), and
equations (56a, b) in equation (45b), we find the can-
onical equations describing the relationships between
the tangential and normal velocities along each
characteristic:

Ou, _, 2 _y (57a)
2s, ' a8,

and
Ouy oy 22y, (57b)
2s, ? a8,

We can also write equations (57a, b) as the ordinary dif-
ferential equations

. (582)
da
and
b,= du, (58b)
do

If a discontinuity in u,, represented by u,, occurs
along the B_ characteristic, there will then be a corre-
sponding discontinuity in v, represented by v,, which
is given by substituting equation (50) in equation (58a),
or

U, =-u, tan ¢ . (59)
Similarly, substituting equation (50) in equation (58b)
yields

v, = u, tan ¢ . (60)

Then, from equations (52) and (53), we determine that
v, =-tan ¢ Elo exp [- (@ - ) tan ¢] (61)

and

v, = tan ¢ 1720 [exp (o - o) tan ¢] , (62)
which are the relationships for propagating normal
velocity discontinuities along the g_ and g8,
characteristics. For a material where ¢ = 0, we see that
v, = v, = 0 and only tangential-velocity discon-
tinuities u, and u, are propagated along the 3_ and 8,
characteristics. Finally, from equations (59) and (60), we
see that the resultant jump in velocity on either
characteristic is at an angle ¢ to the characteristic at
every point.

Equations (52), (53), (59), (60), (61), and (62) are
originally due to Shield (1953), and were discussed by
Pariseau (1970) and by Houlsby and Wroth (1980).
Physically, velocity discontinuities are manifested as
zones of intense shear along which volume expansion
(dilatancy) and slip occur (Drucker and Prager, 1952).
The normal component of velocity discontinuity con-
trols the amount of dilatancy (equations (61) and (62)).
In general, velocity discontinuities originate at bound-
aries between two plastic regions, or between plastic
and nonplastic regions—that is, along lines of
discontinuity—and propagate into the plastically de-
forming mass along the velocity characteristics in an
exponential manner (equations (52), (53), (61), and (62)).

We are now in a position to proceed to the landslide
model, but, before doing so, let us summarize some of
the salient points about Coulomb plastic materials. We
have developed general differential equations for stress
and velocity fields in two-dimensional Coulomb plastic
materials and found them to be hyperbolic and in-
tegrable by the method of characteristics. Also, we have
found that the surfaces along which discontinuities in
velocities and deformation rates may occur (velocity
characteristics) and the surfaces along which deriv-
atives in stress may be discontinuous (stress character-
istics) are coincident. Also, we have seen that, if ¢ # 0,
the material must dilate. Finally, because these surfaces
are potential paths for propagation of velocity discon-
tinuities, we have termed them slip surfaces and found
that velocity discontinuities grow and decay along them
exponentially with changes in the angle « between the
maximum compressive principal stress and the x axis.

THE LANDSLIDE MODEL
DETERMINATION OF THE STRESS FIELD

Our idealized landslide is assumed to form with a
definite basal slip plane at depth y*, in the semi-infinite,
isotropic, and homogeneous mass of soil inclined at
an angle ¢ to the horizontal as shown in figure 3. The
soil mass, acted upon by gravity, fails according to
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FIGURE 3.—Sketch showing semi-infinite mass of soil inclined at an angle ¢ to the horizontal. The linearly
varying pore pressure P and the predicted slide depth y* are also shown.

Coulomb’s criterion (equation (1)), and a pore pressure

P is present, which varies linearly from a depthy = &

to the surface y = 0, or
P=P yh. (63)

The depth 4 is considered to be equal to, or greater than,
the depth of the basal slip plane of the landslide.
Under these conditions, the stresses can be taken as
functions of y only, and the equations of equilibrium
(equations (14a, b)) can be directly integrated to give

., = pgy sin 6 (64a)
and

o, = pgy (cos 6 - P), (64b)
where P = P /pgh is the dimensionless pore pressure.
For the soil in the inclined half-space to be in a state
of limiting equilibrium, we have from equations (9a, b)
0., = PgY sin # = ¢’ sin ¢ sin 2« (65a)

and
o, = pgy (cos 6 - P) = ¢' (1 - sin ¢ cos 2a) - H,(65b)

from which we can solve for ¢’ and y by inverting

g

y

1 -sin ¢ cos 2a -pg (cos 0—1—’)
-pg sin 6

_|H
=l o . (66)

(67)

sin ¢ sin 2«

Carrying out the inversion, we have
H sin 6
g =

" sin 6 - sin ¢ sin (2 + 0) + P sin ¢ sin 2«

and

H sin ¢ sin 2«
y = - - . (68)
og [sin 6 - sin ¢ sin (2 + 6) + P sin ¢sin 2a)

For the sake of brevity in future equations, we shall
define the recurring terms n and D:
7 = (20 + 0) (69)

and
D, = sin 0 - sin ¢ sin n + P sin ¢ sin 20 . (70)
The validity of the solutions (67) and (68) is limited.
For equilibrium of the soil medium, we see from figure 1

that

7. < (o) + H) tan ¢ (71)

or, in this case, where 7, = o, = pgy sin 6, and

xy

o, = o, = pgy (cos 6 - P), that
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ogy [ sin @ - (cos @ - 15) tan ¢] < H tan ¢. (72)

Since & = H tan ¢ by equation (2), relation (72) can
be written
k cos ¢
y < - — . (73)
pg [sin (0 - ¢) + P sin ¢]

The upper limit

el k cos ¢ (14)
VY e lsin0-¢) + Psing] |

where o,, = k + o, tan ¢—that is, where Coulomb’s

30

criterion is satisfied—represents the limit to the valid-
ity of solutions (67) and (68). _

Thus, when sin (@ - ¢) + P sin ¢ > 0, limiting
equilibrium is possible only in the strip 0 < y<y*. If
sin (6 - ¢) + P sin ¢ = 0, then y* — oo, Stress fields
and characteristics for y* — o were discussed by Ter-
zaghi (1943) and Sokolovskii (1960, 1965). Equation (74)
clearly shows that y* will occur at a finite depth when

= ¢ and P is positive. When sin (§ — ¢) + P sin ¢
< 0 a stable slope occurs, as the slide plane is predicted
to be above the slope surface.

In figure 4, the depth y* from equation (74) is plot-
ted in dimensionless form pgy**% as a function of the

25
20—
>
S|« 15|
10—
£=00 P=05 £=0.0 P=0.25 r
$=0° =15 $=15° $=30° &=
5l \K\K\
0 | ! 1 | J
0 10 20 30 40 50 60

O, IN DEGREES

FIGURE 4.—Graph showing P8Y* versus 8 for various values of P and .

k
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slope angle 6 for various values of P and ¢. From equa-
tion (74), we see that y* increases with increasing cohe-
sion %2 and decreases with increasing density p. The
gravitational acceleration g is assumed constant. From
figure 4, we see that variations in P have no effect on
y* when ¢ = 0. In this purely cohesive case, y* depends
only on 6, p, and k. When ¢ and # are constant (¢ > 0),
the depth of the landslide y* decreases as the dimension-
less pore pressure P increases. This dependence on pore
pressure is expected from Coulomb’s criterion and the
effective stress law, as a reduction in normal stress o,
requires a corresponding reduction in the maximum
shear stress o,, = pgy* sin 6§, and hence a reduction of
y*. Also, for constant P and 6, y* increases as ¢ is in-
creased. Finally, as ¢ increases, the curves in figure 4
converge, the dependence of y* on ¢ and P lessens, and

the depth of the landslide approaches that for pure
cohesion.

13

(74) must be restricted. Let us rewrite equation (74) as
k cot ¢

y*= (75)

pg[sin0cot¢—cos&+l_’]

If P = cos 6 - sin 0 cot ¢, then y* = «. If P = cos 6,
then from equation (64b) o; = pgy (cos 6 - P) = 0, and
there will be no normal stress on any plane parallel to
y*in 0 < y < y*. If P > cos 6, there will be tensile nor-
mal stresses on all planes parallel to y*, a case not
covered by the Coulomb criterion. Thus, the limits on
P for ¢ > 0 are given by

cos 6 -sinfcotd <P<cosb. (76)

These bounds on P as functions of ¢ and ¢ are shown

in figure 5. For ¢ = 0, P is taken to have the range
0< P<cosh.

If we rewrite equation (74) as

For limiting equilibrium to be possible in the strip k cos ¢ . o =
. ; . 5 . = y* [sin (6 - ¢) + P sin ¢], (77)
0 < y <y*, the dimensionless pore pressure P in equation og
1.0
Upper limit on 4 orp
0.9
08—
0.7 ‘%e
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FiGURE 5.—Graph showing bounds on P as a function of slope angle 6 for various angles of internal friction ¢.



14 A MODEL FOR THE PLASTIC FLOW OF LANDSLIDES

equation (68) becomes

y* [sin (6 - ¢) + P sin ¢] sin 2«

78
D (78)

y=

1

If « = 45° —% is substituted in (78), it reduces to

y = y*; and, hence the line y = y* represents a line of
discontinuity along which the slopes [%xl]; given by
equation (20) are respectively infinite and zero. Because
stresses undergo finite jumps and stress gradients are
infinite as we cross a line of discontinuity, the equations
describing limiting equilibrium in the soil mass are valid
only when 0 < y < y* The line y = y* represents the
basal slip plane of the landslide.

We have equations (65a, b) for ¢,  and o) in our
idealized landslide. We can find the expression for o]
by substituting equation (67) into equation (9a), which
yields

, H sin 6 (1 + sin ¢ cos 2a)
o'= -

H. 79
x D (79)

1

For future convenience, we shall write equations
(65a, b) and (79) in the dimensionless forms

_ g, P sin 6 cos ¢ sin 2«
axy=—y=ﬂsin0= ., (80)
k k D,
_ o pgy _  cos ¢ (cos 6 - P) sin 2a
g, =-2=——(cosf —P) = ,(81)
k k D,
and
- o, __cos ol(cos 6 - P) sin 2 + 2 cos 2a sin 0]
R D, ’

which are valid for 0 < y’ < 1, where y' = y/y*—that
is, between the ground surface and the basal slip plane
of the landslide.

When ¢ = 0, equations (80), (81), and (82) reduce to

0, = — = ————— = gin 2a, (83a)
k
_ g/ pgy (cos 0 - I_’) [cos 6 - 13]
= 2 = = - sin 2q, (83b)
k k sin 6

and
_ o, (cos 8 - P) sin 2«
r= = - + 2cos 2a; (83¢)
k sin 0
and equation (78) reduces to
y = y* sin 2« (84a)
or
sin 2o = y/y*, (84b)
from which
cos 2a = + [1 - (yy*)]". (84¢)

The stress field for the purely cohesive case can then
be given in the alternate dimensionless forms

0., = yy*, (85a)

_ (cos 6 - 13)
= —— /yY), (85b)

sin 6
and
_ (cos 6 - 13) "
= (M £ 2[1 - (y*],  (85c)
sin 6

where the upper sign in the last equation is taken for
compressive flow. These equations for g,, o;, and o,
are, with notational and coordinate axis differences,
similar to those presented by Nye (1951, equations 8,
p. 558) for stresses in a purely cohesive alpine glacier.
There are two sets of limits on «, the angle that the
greatest principal effective stress ¢, makes with the x
axis. The first set is for compressive (passive) flow when
a = 0 is at the surface and o is oriented parallel to the
x axis at y = 0. The limits on « for 0 < y'< 1 are then
0<a<45°-¢/2, (86)
where the upper limit is the value of o on the line of
discontinuity at y = y*. The second set is for extending
(active) flow when « at the surface is 90° and o, is nor-
mal to the ground surface at y = 0. The limits on o for
extending flow, 0 < y' < 1 are then

¢
45° -5 < a < 90°, (87)

where the lower limit is the value of « at y = y*. Note
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that these limits apply in the purely cohesive case when
¢ is set to zero in equations (86) and (87).

Compressive (passive) flow would be expected where
the ground surface is concave upward (where the slope
is decreasing). Extending (active) flow would be ex-
pected where the ground surface is convex upward (as
over a local topographic high on the slope)

Figure 6 shows the variation of 0., 0, and 0, with
¥y/y* in compressive and extendmg flow for 6 = 20°,
¢ = 30°, and P = 0.5. For various values of ¢, 8, and
P, the stress distribution will have this general appear-
ance so it will suffice to investigate some of its predom-
inant features.

As we can see from the first forms of equations (80)
and (81), the shear stress ¢, and the vertical normal
effective stress o, increase linearly with depth to a
maximum at the basal slip plane of the landslide =

y*). Flgures 7, 8, and 9 show the variation of o O, 0y,
and g,ony = y* with 6 for various values of ¢ and
P. These curves, obtained from the second forms of
equations (80) and (81) and equation (82), show that the
shear and normal stresses at the landslide’s basal slip
plane decrease as the pore pressure P increases for a
given 0 and ¢. This decrease is expected from the effec-

increase happens because the stresses depend on the
depth of the landslide, which increases as ¢ is increased
(fig. 4). Also, for the same reason, the stresses on
y = y*increase without limit as § approaches the value
that makes y* infinite (equation (74)) for particular
values of ¢ and P. Finally, as the slope angle increases,
the stresses on the basal slip plane decrease, become
less dependent on ¢ and P, and approach those in the
purely cohesive case. The stresses on the basal slip plane
decrease because the landslide gets thinner as the slope
angle increases (fig. 4). As the landslide gets thinner,
the mean stress on y = y* is reduced, and by the
Coulomb criterion (fig. 1) the maximum allowable shear
stress must be reduced. However, note that in the pure-

ly cohesive case, the shear stress o, on y = y* is
always equal to the cohesion k.
When y = 0, equation (82) reduces to
_ 2 cos ¢
y = —— (88)
1-sin¢

for compressive flow (a = 0 when y = 0), and to

tive stress law. Also, we see that increasing ¢ increases 5 = - 2cos ¢ (89)
each stress component for a given value of P and 6. This * 1+sing
0.0
02—
|
= &'« for compressive flow
04— I
I
x |
= |
I
I
0.6/— ]
|
I
|
{ o'« for extending flow
[
08 : ""
|
|
|
|
1.0 l l
0

-2
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NONDIMENSIONAL STRESSES

F1GURE 6.—Graph showing variation of 5',

x* Cxy’

and 5, with yly* for ¢ = 30°, 6 = 20°, and P = 0.5 in extending

and compresswe flow.
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FIGURE 7.—Graph showing variation of G a8ty = y* with 8 for various values of P and ¢.

for extending flow (o = 90° when y = 0). Thus, when
y = 0, o, depends only on ¢ and becomes more
compressive (less tensile) as ¢ increases, as shown in
figure 10,

Figure 6 shows that ¢! is tensile to a certain depth
in extending flow. By solving equation (82) for « when
o, = 0, we find that o is given by

o, 1 4 |cos @ - P
a = 45° + = tan | —|, (90)
2 2 sin 6

where « lies within the limits given by relation (87). The
value of o computed from equation (90) is then
substituted in equation (78) to give the depth y/y* to
which ¢ is tensile in extending flow. Figure 11 shows
this depth as a function of 9 for various values of P and
¢. From figure 11, we see that the depth to which o] is
tensile in extending flow increases with slope angle and
pore pressure but decreases as internal friction
increases.

Figure 6 shows that ¢ is a maximum at a certain
depth in compressive flow. By differentiating equation
(82), setting the result equal to zero, and solving for o
we find that

2 sin @
o = tan” [

l(ﬁ -cos 6) (1 - sin ¢)

(91)
12

[4 sin? @ + cos? ¢ (P - cos )%
- (P-cos ) (1-sin ¢)

subject to relation (86), for o/ to be a maximum in com-
pressive flow. This value of « is then substituted in
equation (78) to give the depth where ¢, is a maximum
and substituted in equation (82) to give the magnitude
of ¢, at this same depth. Figure 12 shows the depth of
the maximum values of ¢, in compressive flow as a



THE LANDSLIDE MODEL 17

50

40

30—

O, IN DEGREES

FIGURE 8.—Graph showing variation of g aty = y* with 6 for various values of P and ¢.

function of 6 for various values of ¢ and P. Note that
this depth decreases with increasing slope angle and
pore pressure, and increases with increasing internal
friction. Figure 13 shows the maximum value of ¢, in
compressive flow as a function of § for various values
of P and ¢. Like the other stress values shown in figures
7, 8, and 9, the maximum values of ¢, in compressive
flow decrease with increasing pore pressure and slope
angle, and become larger with increasing internal fric-
tion. Note that here, ¢, also becomes infinite as 6 ap-
proaches the value that makes y* infinite and the
dependence of the maximum o’ on ¢ and P decreases
as 0 increases.

In general then, all dimensionless stresses other than
o, at the surface (which depends only on ¢, as shown
in fig. 10) decrease with increasing pore pressure, in-
creasing slope angle, and decreasing internal friction.
Of course, the actual stresses (equations (80), (81), and
(82)) also increase in direct proportion to the cohesion k.

Stress characteristics are determined by integrating
equation (20), which can be written in the canonical form

a é\| 9x
—3-,-=tana:'_'{45°——)—. (92)
da 2] 0

Taking the derivative of equation (78) with respect to
a, we find

dy 2y*[sin(f-¢)+ P sin ¢] sin 8 (cos 2a - sin ¢)

- -(93)
du Dz

We now define the angle
d=1(0-9). (94)

From equation (92), we find
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FIGURE 9.—Graph showing variation of 5, at y = y* with 6 for various values of P and ¢.

dx ¢ d
— =cot]| o x| 45° — — _y (95)
a 2 da

or

ax_—2y*[sin6+ﬁsin¢]sin6(sin2a$cos¢)

—_= +(96)

da D2

1

which is integrated (Gradshteyn and Ryzhik, 1980,
p.- 149) to give

x = x, + 2y* [sin & + P sin ¢] sin 0

{Fls,6,P] + G40, P}, o)
where
-sin ¢ sin 6 B
+ [sin 6 * cos ¢ sin ¢ (P-cos 0)] cos 2«
F[¢,9,}-’]= + cos ¢ sin ¢ sin 0 sin 2« ’
2D, [sin § — sin ¢ sin 6 cos 2« (98)

+ sin ¢ (P - cos 6} sin 2a]

[sin¢(13—cos0)icos¢sin0]

Gls, 6, P] =

(D2)3I2
(99)
(sin  + sin ¢ sin 6) tan o + sin ¢ (P - cos 6)
tan - (D,)2 ’
and

D, = sin? 0 - sin? ¢ sin? § - sin? ¢ (P - cos 6)". (100)

Equation (97) represents the x coordinates of the first
(upper signs in the functions F and G) and second (lower
signs in F and G) characteristic directions and is valid
only when

sin2 § > sin? ¢ sin? 6 + sin? ¢ (P - cos 6)2 . (101)
Relation (101) can be written
(P - cos 6)2 > sin? 0 cot? ¢ , (102)
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FIGURE 10.—Graph showing variation of 5, at the surface, y = 0, with ¢.
or was made on the grounds that the normal stress o,
_ was to be compressive only.
cos 6 - sin 6 cot ¢ < P < cos 6 When ¢ = 0, equations (78) and (97) for the stress
+ sin 6 cot ¢ , (103) | characteristics reduce to
which is similar to relation (76) if the upper limit on y = y* sin 2a (104)
Pis restricted to cos 0 (equation (64b)). This restriction | and
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FIGURE 11.—Graph showing dimensionless depth y/y* to which 5, is tensile in extending flow as a func-
tion of § for various values of P and ¢.

x =x, + y* cos 2a * 2y*a . (105)
Relation (101) shows that equations (104) and (105) are
valid when the slope angle 6 is greater than zero.
Equations (78) and (97) give the y and x coordinates
of the stress characteristics. Figure 14 gives a few ex-
amples of stress characteristics for various values of 6,
¢, and P in compressive and extending flow. Compar-
ing figures 14A and 14E, we see that increasing ¢ for
a constant 6 and P causes the characteristics to become
less curved. We see the same effect as the slope angle
0 is decreased (compare figs. 14D and 14F or figs. 144
and 14C). The stress characteristics are also flattened
as P is decreased (compare figs. 14B and 14C). The flat-
tening of the stress characteristics is consistent with
our observation (fig. 4) that increasing ¢ or decreasing
6 or P increases the depth y* of the model landslide. In

fact, as y* increases without bound, the stress
characteristics approach straight lines at depth (Ter-
zaghi, 1943, p. 38). Finally, only some of the stress char-
acteristics for each value of 8, ¢, and P are shown in
figure 14; but, because of the arbitrary constant of in-
tegration x  in equation (97), there are actually an in-
finite number of stress characteristics within the
deforming regions shown.

As we mentioned before, the stress characteristics in
figure 14 intersect at every point at fixed angles depen-
dent on ¢. The characteristics are loci along which the
shear stress is the limiting shear stress given by equa-
tion (1), and loci along which potential discontinuities
in stress and stress gradient will be propagated. Also,
the basal slip planes in figure 144 through 14F form
envelopes to the second set of stress characteristics and,
hence, are lines of discontinuity.
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FIGURE 12.—Graph showing dimensionless depth y/y* of maximum values of &, in compressive flow as
a function of 9 for various values of ¢ and P.

DETERMINATION OF THE VELOCITY FIELD

To determine the velocity field in our idealized land-
slide, we use equations (32a, b, c) for the deformation
rates, equation (36) for continuity, and equation (37) for
isotropy. We assume that v, the vertical velocity, is in-
dependent of x. Such an assumption is reasonable for
an infinitely long slope. Then, from equation (36) for con-
tinuity we have

2
o _ (106a)
dx 9y
and
2
% _o, (106b)
dx?

or )
u=rx+ Fy +u,, (107)
where r and u, are constants and
du_, (108)
ox

Note that in equation (108) r represents a constant
longitudinal deformation rate, or from equation (32a)
that

(109)

Under these conditions, equation (36) for continuity
becomes
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FIGURE 13.—Graph showing maximum value of o, in compressive flow as a function of ¢ for various
values of ¢ and P.

dv _ [sin ¢ + cos 2«a]
— =
ay | sin ¢ - cos 2 |

, (110)

and equation (37) for isotropy becomes

du _

(111)

Substituting equations (108) and (110) in equation (111),
we arrive at

-2r sin 2«

Bu _
dy sin ¢ - cos 2

=F'(y) . (112)

Since a = 45° - 921 on y = y*, we see that infinities oc-

cur in_g_‘i (equation 110) and_g_u (equation 112) on the
y y

basal slip plane of the landslide. Such infinities occur
because of rapid velocity changes across a narrow zone
on the base of a landslide.

The discontinuity in the vertical deformation rate
3V relates to the volume dilatancy rate. A nonzero vol-

m%’xe dilatancy rate occurs if the soil making up the land-
slide is frictional—that is, if ¢ # 0. Expressions for
volume dilatancy rates in compressive and extending
flow are easily derived from equation (33) for the
sum of principal deformation rates, equation (108) for
g_u, and equation (110) for 9V . Combining these equa-

x 2
tions, we obtain the dilatang;r rate

2r sin ¢

= O P (113)
cos 2o -~ sin ¢

as a function of «, the angle that o; makes with the
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FIGURE 14.—Sketch(is showing stress characteristics for various slope angles 6, angles of internal friction ¢, and dimensionless

pore pressures P. Values of 9, ¢, and P used for each case are given below the lower right-hand corner of each sketch.
Arrows indicate the relative sense of slip across the characteristics and the dashed lines separate regions of compressive

and extending flow.

positive x axis. Here, r is negative for compressive
flow and positive for extending flow. Using equation
(78) the volum