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A MODEL FOR THE PLASTIC FLOW OF LANDSLIDES 

By WILLIAM Z. SAVAGE and WILLIAM K. SMITH 

ABSTRACT 

To further the understanding of the mechanics of landslide flow, 
we present a model that predicts many of the observed attributes of 
landslides. The model is based on an integration of the hyperbolic dif­
ferential equations for stress and velocity fields in a two-dimensional, 
inclined, semi-infinite half-space of Coulomb plastic material under 
elevated pore pressure and gravity. 

Our landslide model predicts commonly observed features. For ex­
ample, compressive (passive), plug, or extending (active) flow will oc­
cur under appropriate longitudinal strain rates. Also, the model 
predicts that longitudinal stresses increase elliptically with depth to 
the basal slide plane, and that stress and velocity characteristics, sur­
faces along which discontinuities in stress and velocity are propagated, 
are coincident. Finally, the model shows how thrust and normal faults 
develop at the landslide surface in compressive and extending flow. 

INTRODUCTION 

To further the understanding of landslide mechanics 
we have developed a model that describes many of the 
observed attributes of landslides. This model, based on 
the flow theory of Coulomb plastic materials, is similar 
in many respects to a previous model for alpine glaciers 
developed by Nye (1951). In this section, we review the 
principal results of Nye's model and other work that 
influenced ours, explain how the report is laid out, and 
give our principal results. 

N ye ( 1951) successfully applied the flow theory of a 
perfectly plastic incompressible Mises material (Hill, 
1950; Varnes, 1962) to the flow of alpine glaciers. His 
model predicted many of the flow patterns observed in 
alpine glaciers. For example, he predicted that either 
active (extending), passive (compressive), or plug flow 
would occur depending on the longitudinal deformation 

· rate. Nye based his predictions on the assumptions that 
shear stresses and that vertical normal stresses varied 
linearly with depth, and found that longitudinal stresses 
varied elliptically with depth in the glacier. Nye also 
found that, in active (extending) flow, the longitudinal 
stresses were tensile, which explains the crevasses com­
monly observed in parts of glaciers undergoing extend­
ing flow. Nye found that the predicted slip-line field 
explained the thrust surfaces seen in compressive­
flow regions of glaciers and normal faults observed 
in extending-flow regions. For the extending- and 

compressive-flow states, Nye's model predicted the 
longitudinal velocity was greatest at the surface and 
decreased elliptically toward the base. Finally, his model 
predicted the glacier to simply slide on its base as a rigid 
body during plug flow. 

Landslides have many of the same features as Nye 
modeled in alpine glaciers. For example, extending, com­
pressive, and plug flows occur, and tensile regions and 
normal fault scarps develop near the surface in parts 
of the landslide undergoing extending flow. Also, thrust 
surfaces and thrust-fault scarps occur in regions of com­
pressive flow. The~e similarities are not surprising as 
soils in general behave as materials with plastic states 
characterized by Coulomb's law, which is a generaliza­
tion of the Mises criterion for plastic material (Hill, 
1950). 

Following Nye's lead in modeling the flow of an alpine 
glacier, we demonstrate that, as with Nye's glacier 
model, our landslide model predicts that either com­
pressive, extending, or plug flow can occur-depending 
on the longitudinal deformation rate. The shear stresses 
and vertical normal stresses vary linearly from the sur­
face to the limiting depth of the landslide's slip-line field, 
and the longitudinal stress increases in an elliptic man­
ner over the same depth. Both the slope angle, and the 
density and cohesion of ice, control the thickness of the 
glacier slip-line field. However, the thickness of the slip­
line field in a landslide in homogeneous and isotropic 
soil is controlled by the slope angle, by the pore pressure, 
and by the density, cohesion, and angle of internal fric­
tion of the soil. As in the alpine glacier model, longitu­
dinal stresses near the surface of the landslide will be 
tensile during extending flow, and the slip-line field pre­
dicted for the idealized landslide will explain the thrust 
surfaces seen in compressive-flow regions of landslides. 

Also, as in the glacier model, the landslide model 
predicts that the longitudinal velocity is greatest at the 
surface and varies in an elliptic manner down to the 
basal slip plane of the landslide. Finally, like N ye' s 
glacier-flow model, the landslide model predicts that, 
during plug flow, the landslide simply slides as a rigid 
body on its basal slip plane. 

Besides Nye's important work, our model for landslide 
flow will draw heavily on other work. Frontard (1922) 

1 
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derived equations for the slip-line fields in extending 
and compressive flow for a semi-infinite mass of 
Coulomb material whose surface is inclined at an angle 
greater than the angle of internal friction. (See Terzaghi, 
1943, p. 40-41.) Sokolovskii (1960, p. 38-40; 1965, 
p. 77-80) gave similar solutions for soils, as did Johnson 
(1965) for debris flows. In each of these solutions, the 
slope angle, cohesion, and angle of internal friction of 
the soil making up the slide control the depth to which 
the slip-line field can extend. More recently, Crans and 
Mandl (1981) applied the theory of plastic flow of 
Coulomb materials to create a model of the development 
of growth faults in sediment layers. Like Frontard 
(1922) and Sokolovskii (1960, 1965), Crans and Mandl 
(1981) found that the slip-line field was bounded at a 
finite depth when the slope angle exceeds the angle of 
internal friction. Crans and Mandl (1981) considered the 
effect of an elevated pore pressure and found that under 
certain conditions this pressure led to a bounded slip­
line field, even when the slope angle was less than the 
angle of internal friction. 

In this report, we first develop the general differen­
tial equations for stress and velocity fields in two­
dimensional Coulomb plastic materials under an 
elevated pore pressure. Our results show that these par­
tial differential equations are hyperbolic and, in general, 
integrable by a method that uses special curves in an 
x-y coordinate plane called characteristics, along which 
the solution of the partial differential equations is re­
duced to integration of ordinary differential equations. 
The characteristics are also surfaces across which first 
derivatives of stress and velocity may be discontinuous. 
In general, two separate sets of characteristics may oc­
cur: one for velocities and one for stresses. However, 
for the Coulomb plastic material in our model, the stress 
and velocity characteristics are coincident. The coin­
cidence of the stress and velocity characteristics, that 
is, the slip lines, is important because these surfaces 
represent rupture surfaces along which velocity or 
deformation rate discontinuities occur in landslides. 
Finally, we see that in a Coulomb material, discon­
tinuities in the tangential-velocity component across a 
characteristic will be accompanied by a discontinuity 
in the velocity component normal to the characteristic. 

We then proceed to the landslide model, where, 
because of the assumptions regarding this model, we 
find that the governing hyperbolic differential equations 
can be integrated directly. First, we discuss the stresses 
and the stress characteristics for the idealized landslide, 
and we give the stress distribution and configuration 
of the stress characteristics for various values of pore 
pressure, slope angle, cohesion, and internal friction in 
dimensionless form for extending and compressive flow. 
Second, we derive the velocity field and give the 

distribution of longitudinal and normal velocities for 
various values of pore pressure, slope angle, cohesion, 
and internal friction in dimensionless form for extend­
ing and compressive flow. Third, we consider the spe­
cial case of a purely cohesive material-a Mises 
material-arriving at a solution similar to Nye's (1951) 
solution for alpine glacier flow. This solution emphasizes 
that our model for landslide flow is a more general treat­
ment of the gravitational flow of plastic materials for 
which Nye's solution for alpine-glacier flow is a special 
case. 

Finally, we compare our model of landslide flow with 
Nye's (1951) model for glacier flow and discuss the ap­
plicability of this landslide model to actual landslides. 
Here, we emphasize the restrictiveness of the assump­
tions made in developing the landslide model and the 
main conclusions derived from the model. 

DEDICATION 

This work is dedicated to the memory of George M. 
Sowers. 

COULOMB PLASTIC MATERIALS 

STRESS FIELD 

It is known from experiment that at a point in a soil 
at incipient shear failure there occur two intersecting 
planes along which the shear stress, denoted Tn, is 
given by 

(1) 

where k is the cohesion, ¢ is the .angle of internal fric­
tion, and u~ is the effective normal stress acting on the 
planes. (Throughout this report effective stresses, the 
difference between total normal stresses and the pore 
pressure, are denoted by primes.) The two intersecting 
planes are equally inclined at angles of 45 o - ¢/2 to the 
most compressive principal effective stress, a~, and the 
line of intersection of these two planes is parallel to the 
intermediate principal effective stress, u~. Equation (1) 
was first suggested by Coulomb (1773) for total stresses 
and is known as the Coulomb failure criterion. 

Equation (1) plots as two straight lines in two­
dimensional Mohr stress space (Terzaghi, 1943, 
p. 15-24), as shown in figure 1. When ¢ = 0, the two 
straight lines in figure 1 are parallel, and the soil is 
termed purely cohesive or a Mises material. These lines 
also separate the Mohr stress space into two parts: a 
stable part and an unstable part. If a Mohr circle 
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T 

FIGURE 1.-Sketch showing Coulomb failure criterion. Normal and shear stresses are represented by u and T, 

respectively. Here, T max is the maximum shear stress, T n is the shear stress acting on planes inclined at 
an angle a to ui (the most compressive principal effective stress), u3 is the least compressive principal ef­
fective stress, </> is the angle of internal friction, and k is the cohesion. Other symbols are defined in the text. 

constructed from u~ and u~ (the least compressive prin­
cipal stress at a point) lies between the Coulomb failure 
lines, the soil behaves elastically. However, if a Mohr 
circle becomes tangent to these lines, failure is immi­
nent and Coulomb plastic flow will ensue. This state of 
incipient failure is termed a state of limiting equilibrium. 
No Mohr circle can lie beyond these limiting lines 
because the shear stress cannot exceed the yield 
strength if the body is to remain in equilibrium. 

Certain other relationships in a region at limiting 
equilibrium can be derived from figure 1. For example, 

where 

(1~ + (1~ 
S'= . 

2 

Defining 
u' = S' + H 

we can write equation (3) as 

Tmax = u' Sin {j>. 

3 

(4) 

(5) 

(6) 

H=kcot(j>, 

and 

(2) 
Also, Coulomb's failure criterion can be written by us­
ing equations (1) and (2) as 

(7) 
(11 - (13 

T max = = (S, + H) sin (j> ' 
2 

(3) 
By using the equations for stress transformation 
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and 

(8c) 

we can write expressions for the three Cartesian com­
ponents of stress in a region undergoing Coulomb 
plastic flow as 

a~} = S' ± Tmax cos 2a =a' (1 ± sin <P cos 2a) -H, (9a) 
ay 

Here, a; and a; are the normal effective stresses that 
are positive in compression; axy is the shear stress; and 
a is the angle between the direction of the maximum 
compressive principal effective stress a~ and the posi­
tive x axis. The magnitudes of a;, a;, and axy' as given 
by equations (8) and (9), are represented in Mohr stress 
space in figure 1. The angle a is reckoned positive in 
a counterclockwise direction as shown in figures 1 and 2. 

The yield criterion can be written in terms of a;, a;, 
and axy by using equation (3) or 

a1 - a3 (a~ + a~) • . 
T max= = sm <P + H srn <P ' 

2 2 
(10) 

and the relations (Sokolovskii, 1965, p. 12) 

(11) 
2 2 

and and 

axy = Tmax Sin 2a = a' Sin</> sin 2a. (9b) --- = - (a - a )2 + a 2 • 
a1 - a3 [ 1 ]1/2 

2 4 x y xy 

FIGURE 2.-Sketch showing Cartesian coordinate system inclined at an angle(} to the horizontal. Also shown 
are the angle a between the positive x axis and the direction of qi; the two stress characteristics {3+and 
{3_; the tangents to the two stress characteristics at a point; the velocity components ul' u2, vl' and 
v 2 on each characteristic; and the resultant velocity vectors ti 1 and v2• 

(12) 
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The yield criterion in terms of u;, u;, and uxy then 
becomes 

In addition to satisfying the yield criterion, stresses 
in regions of incipient Coulomb plastic flow must also 
satisfy the differential equations of plane equilibrium 

and 

au; auxy . aP 
- + -- =pg sm fJ - -ax ay ax 

a~y a~ aP 
-- + - =pg cos (} - - . ax ay ay 

(14a) 

(14b) 

Here, p is the density, fJ is the inclination of the x axis 
from the horizontal (fig. 2), and P represents the pore­
water pressure. 

Provided that the pore-pressure distribution is 
known, the three equations (13), (14a), and (14b) contain 
three unknowns u;, u;, and uxy' and can in principle be 
solved for the stress field if the boundary conditions are 
expressed in terms of stresses-that is, if the system 
is statically determinate. The method for solving (13) 
and (14a, b) for the stress field, the method of charac­
teristics, will now be discussed. 

Equations (9a, b), which identically satisfy equation 
(13), the Coulomb yield condition, are substituted in the 
equilibrium equations (14a, b), and result in 

au' aa 
[1 + sin <P cos 2a] - - 2u' sin <P sin 2a -

ax ax 

au' aa 
+ sin <P sin 2a - + 2u' sin <P cos 2a -

and 

ay ay 

aP 
= pg sin fJ-­

ax 

au' au' 
sin <P sin 2a- + 2u' sin <P cos 2a-

ax ax 
au' au' 

+ [1 - sin <P cos 2a] - + 2u' sin <P sin 2a -ay ay 
aP 

= pg cos (} - - . ay 

(15a) 

(15b) 

This result yields two equations for the four deriv-
au' au' aa aa 

atives --, --, --, and--. We can add two more 
ax ay ax ay 

equations, the equations of the total derivatives 

au' au' 
du' = -dx + -dy ax ay 

(16a) 

and 

aa aa 
da = - dx + - dy , ax ay 

(16b) 

giving a system of four equations for the four unknown 
derivatives. In matrix form, 

[ 
l+sinlj>cos2a sin 4> sin 2a -2u' sin 4> sin 2a 2u' sin 4> cos 2a 

l sin 4> sin 2a 1-sinq,cos2a 2u' sin 4> cos 2a 2u' sin 4> sin 2a 
dx dy 0 0 
0 0 dx dy 

au· 

ax 
aP 

au' pgsin6-a; 
ay aP (17) 

X pg cos 6- ay 
a a 

ax du' 

da 
a a 
ay 

Following the procedures of matrix algebra, we can in­
vert equation ( 17) and obtain a unique solution for the 
four unknown derivatives, provided that the determi­
nant of the square matrix 

D =[cos 2a +sin <~>l(!f- 2 sin 2a : 

(18) 
- [cos 2a - sin <P] 

is nonzero. However, if D = 0, the result is a quadratic 

form in dy with the two roots 
dx 

ldy I -
dx ± 

or 

sin 2a ± [sin2 2a + cos2 2a - sin2 <PJ1'2 

cos 2a + sin <P 

(19) 
sin 2a ± cos <P =....;...._ ____ ..;... 

cos 2a + sin <P 
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l
dy l += sin 2a ±sin [90°- cp) 
dx - cos 2a + cos [90° - cp) 

(20) 

Th f kn d . t• a a' a a' a a d e our un own er1va 1ves, -,-,- , an 
aa ax ay ax 
a y , are then no longer unique along two curves in are-

gion of Coulomb plastic flow with tangents at every 
point given by equation (20). Curves having the slopes 

I: ] + and I: ]_everywhere are called character· 

istics. And the partial differential equations (15a, b) are 
called hyperbolic (Crandall, 1956, p. 354) because there 
are two real characteristics at a given point. The stress 
characteristics labeled {3 + and {3 _ are shown in figure 2. 

The stress characteristics intersect at every point at 
the angle 90° - cJ> (fig. 2) and are loci along which the 
shear stress is given by equation (1). For a plastically 
deforming soil, the characteristics represent the poten­
tial paths for propagation of discontinuities in stresses 
and stress gradients. Also, from equation (20), we see 

that when a = 45 o - cp/2, the slopes I dy ] are either in-
dx ± 

finite or zero. Lines of discontinuity, lines along which 

I~ I± are either infinite or zero, represent boundaries 

between plastic regions or between plastic and non­
plastic regions. Stresses can undergo finite jumps, and 
stress gradients can be infinite across lines of discon­
tinuity. (See, for example, Prager and Hodge, 1951.) 
Finally, lines of discontinuity may form on stress 
characteristics or form an envelope around a system of 
stress characteristics (Sokolovskii, 1960, 1965). 

In addition, for a compatible system of hyperbolic dif­
ferential equations, the determinant formed by replac­
ing any column on the left of equation (17) with the 
column on the right must also vanish (Abbott, 1966). 
For example, 

1 + sinl/>cos2a sin 1/> sin 2a -2u' sin 1/> sin 2a pg sin 9- aP 
ax 

D= 
sin 1/> sin 2a 1-sinl/>cos2a 2o' sin 1/> cos 2a pg cos 9- aP 

ay 

dx dy 0 do' 
0 0 dx da 

= cos' <I> du' + 2u' sin <I> [(cos 2a + sin</>) 

(:) - sin 2a] da 

+ l(pg sin 8- ::) sin <1> sin 2a- (pg cos 8- :~) 

(1 + sin <1> cos 2a)] (~) 

-l(pg sin 8 - ~:) (1-sin <I> cos 2a) - (pg cos 8 - :~) 

sin <1> sin 2a] dx = 0 . (21) 

Substituting [ dy I given by equation (20) in equation 
dx ± 

(21), we find 

da' ± 2a' tan cp da = 

co!'<!> [(pg sin 8 - ~~ ) (1-sin q, cos 2a) 

- (pg cos 8- ~:)sin <I> sin 2a] dx 

- co!'<!> [(pg sin 8- ~~) (sin <1> sin 2a) 

- (pg cos 8- ~:) (1 + sin <1> cos 2a)] dy. (22) 

If the pore-pressure distribution is known, equations 
(20) and (22) represent a pair of ordinary differential 
equations for a and a' along each characteristic. Presum­
ing that they can be solved for a' and a, we find the 
stresses ax', uY', and axy along each characteristic from 
equations (9a, b). In general, this system must be solved 
numerically (Sokolovskii, 1960, 1965). 

VELOCITY FIELD 

Let us adopt the hypothesis of associated plasticity 
(Hill, 1950; Drucker and Prager, 1952; Shield, 1955) 
which states that the principal plastic-deformation rates 
e1' e2' and e3 are proportional to the gradients of the 
yield function with respect to the principal stresses u~, 
u~ , and a; . Although the associated flow-rule hypoth­
esis is adopted for mathematical simplicity, it leads to 
unrealistically large dilation rates. (More will be said 
about this problem later.) 

Writing the yield function (equation 10) as 

f = i(a;- a;)- i(a~ + a;) sin cJ>- H sin cJ> = 0, (23) 

and taking the appropriate derivatives, we find that 

e = A ~ = ~ (1 - sin ,~.) 
1 a a' 2 'II ' 

1 

(24a) 
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(24b) 

and 

. '" at -A . 
e = " - = - (1 - sm ,~,.) 3 au' 2 'f' ' 

3 

(24c) 

where A is an undetermined parameter that is eliminated 
in the following equations. 

Equation (24b) is a result of assuming that flow oc­
curs only in the plane of u1 and u3• Adding (24a) and 
(24c), we find the mean deformation rate 

(25) 

Subtracting (24a) from (24c) yields the maximum shear 
deformation rate 

(26) 

Eliminating A from equations (25) and (26) yields the 
equation of continuity 

Then, with these equations, the condition of isotropy 
(equation 2S) becomes 

av +au 
a X a y = tan 2a . 
au av 

(30) 

ax- ay 

Using the deformation-rate transformation equations, 

(31a) 

(31b) 

and 

. I e1 - e3 1 e xy = 2 sin 2a ' (31c) 

which are of the same form as equations (Sa, b, c) for 
stress transformation, and equations (25) and (26), we 
arrive at 

-au -A [sin cP - cos 2a] , e =-= 
2 X ax (32a) 

-av -A 
When cJ> is greater than zero, the volume increases 

during flow. When cJ> = 0, equation (27) becomes the 
equation of continuity for plane incompressible flow. and 

We also assume isotropy-that the principal axes of 
deformation rate and stress coincide. Then, from stress 
transformation equations (Sa, b, c), we have 

e =-= 
y ay 2 

[sin cP + cos 2a], 

e = - !_I a v +au I = ~ sin 2a . 
xy 2 ax ay 2 

(32b) 

(32c) 

As with equation (11) for the stresses, the sum of the 
(2S) principal deformation rates is an invariant, or 

By taking u and v to be the velocity components in 
the x andy directions, respectively, and by taking con­
tracting deformation rates as positive, we can define the 
deformation rates by 

. -au 
ex= ax ' (29a) 

. -av 
ey = ay ' (29b) 

and 

e = - _!_ ( av +au\ . 
xy 2 ax ayf (29c) 

. . . . au av 
el + e3 = ex + ey = - ax - ay . (33) 

The difference of principal deformation rates from equa­
tions (31a, b) is 

e, - e, = -~~ -~~ . 
e1 - e3 = cos 2a cos 2a 

(34) 

We can rewrite equation (27), the equation of continu­
ity, as 

l
au ~v - au - av - ax- ay sin cP = 0 ' 

ax ay cos 2a 
(35) 
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or 

::(cos 2a + sin cp) + :~(cos 2a - sin cp) = 0. (36) 

Equation (28), the condition of isotropy, is rewritten 
as 

au au av au -tan 2a -- - - - -tan 2a = 0 . (37) 
ax ay ax ay 

Equations (36) and (37), together with the equations 
for the total derivatives 

du = au dx + au dy 
ax ay 

(38a) 

and 

au au 
dv = -dx +- dy 

ax ay ' 
(38b) 

yield a system of four equations for the four derivatives 
au au av au _, _, _, and _, or 
ax ay ax ay 

cos 2a +sin cp 0 0 cos 2a-sin cp au 
0 -

ax 

tan 2a -1 -1 -tan 2a au 
0 -

ay 
= .(39) 

dx dy 0 0 
au 

du -
ax 

0 0 dx dy au du 
ay 

The determinant of the square matrix is given by the 
quadratic form 

(
dy)2 dy D = (cos 2a + sin cp) dx - 2 sin 2a dx 

(40) 
- (cos 2a - sin cp) • 

Then, following the procedure outlined for determining 
the stress characteristics, we find the velocity 
characteristics 

or 

[
dy] =sin 2a ± [sin2 2a + cos2 2a - sin2 q,)1t2 
dx ± cos 2a + sin cp 

(41) 
+ sin 2a ± cos cp 

cos 2a + sin cp 

[
dy l _ sin 2a ± sin [90°- cp) 
dx ± cos 2a + cos [90° - cp) 

(42) 

Comparing equations (20) and (42), we see that the 
stress and velocity characteristics coincide. For a plas­
tically deforming soil, the characteristics then represent 
potential paths for propagating discontinuities in veloci­
ty and deformation rates (equations 32a, b, c), as well 
as stresses and stress gradients. Because these coin­
cident surfaces (the stress and velocity characteristics) 
are potential paths for propagating velocity discon­
tinuities, they are called slip surfaces. Like stresses, 
velocities can also undergo finite jumps and shear- and 
normal-deformation rates can be infinite across lines of 
discontinuity-that is, at boundaries between two 
plastic regions or between plastic and nonplastic 
regions. Finally, lines of discontinuity can form along 
velocity characteristics or form an envelope to a system 
of velocity characteristics. 

Like stresses, a compatible system of hyperbolic equa­
tions for the velocities requires that the determinant 
formed by replacing the last column of the square 
matrix in equation (39) by the column on the right of 
the equals sign must also vanish. Carrying out this 
operation, we find that 

. D= 

cos 2a sin cp 
tan 2a 

dx 
0 

0 0 0 
-1 -1 0 
dy 0 du 

0 dx dy 

(43) 

= du dx + dv dy = du + du : = 0 . 

Substituting equations (42) in (43) yields the differen­
tial relations between du and dv along the characteris­
tics {3 + and {3 _ 

du + tan [a ± l45° -t )] dv = 0 . (44) 

Here, a is known from the stress solution. 
To interpret equation (44), we rewrite it in the 

canonical forms, 

au av 
- + tan [a - p.] - = 0 
as1 aS1 

(45a) 

and 
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au au 
-+tan [a +JL]- = 0, 
a82 a82 

(45b) 

where 8 1 is a curvilinear coordinate coincident with the 
{3 _ characteristic, 8 2 is a curvilinear coordinate along 

the {3 + characteristic, and JL = 45 o - : • Next, we de­
fine the velocity components u 1 and u 2, which are the 
velocities respectively parallel to the {3 _ and {3 + 

characteristics. The relationships between these veloci­
ties and the Cartesian velocity components u and v are 
given by 

u 1 = u cos (a - JL) + v sin (a - JL) (46a) 

and 

u2 = u cos (a + JL) + v sin (a + JL), (46b) 

which have the inverses 

u 1 sin (a + JL) - u2 sin (a - JL) u = __..;. _____ ____;;.__ ___ _ 
cos c/> 

(47a) 

and 

u1 cos (a + JL) + u2 cos (a - JL) v = ____;; ______ _:_ ___ ....;._ (47b) 
cos c/> 

Substituting equations (47a, b) in (45a, b), we find the 
canonical equations describing the variation of u1 and 
u2 along the 81 and 82 curvilinear coordinates, the {3_ 
and {3 + characteristics: 

au1 ( u2 l aa -+ u tanct>--- -=0 
a~ 1 c~ct> a~ 

(48a) 

and 

au2 ( u1 j aa 
-- u tanct>- -- --o a 8

2 
2 cos ct> a 8

2 
- • 

(48b) 

Equations (48a, b) represent the extension rates along 
the two characteristics (Salencon, 1977) and show that 
the extension rate along each characteristic vanishes. 
In addition, we can write equations (48a, b) as the or­
dinary differential equations 

du1 ( u2 ~ -+ u tanct>--- =0 
da 1 cos c/> 

(49a) 

and 

du2 ( U 1 ~ -- u tan¢--- =0. 
da 2 cos c/> 

(49b) 

Equations (48a, b) become the Geiringer equations of 
perfect plasticity when c/> = 0 (Davis, 1968, p. 367). 

Suppose that a discontinuity in velocity occurs across 
a {3 _ characteristic, with the sense of relative displace­
ment shown by the arrows in figure 2. If this discon­
tinuity, symbolized by u1, is to continue in an 
unimpeded manner along the {3 _ characteristic, any 
discontinuity in u2, symbolized by u2, must vanish 
where the two characteristics intersect. Thus, for the 
propagation of the discontinuity u1 along 81' we have 
from equation (49a) 

du
1 

_ 

-- + u1 tan c/> = 0 . 
da 

(50) 

By a similar argument for the {3 + characteristic, we 
find that for the propagation of the discontinuity u2 
along 82, 

du
2 

_ 

-- + u2 tan c/> =0 . 
da 

(51) 

Integrating equations (50) and (51) yields 

(52) 

for propagating tangential velocity discontinuities 
along a {3 _ characteristic and 

for propagating tangential velocity discontinuities 
along a {3 + characteristic. Here, u1 and u2 are known 
tangential velocity discontinuitie~ at some a = ao 
along 81 or 82. 

In Coulomb materials (c/> =F 0), discontinuities in veloci­
ty can also occur in directions normal to the charac­
teristics {3_ and {3+. Defining the normal velocity 
components v 1 and v2 along 8 1 and 8 2, we have for the 
relationships between these velocity components and 
the Cartesian velocity components u and v 

v 1 = -u sin (a - JL) + v cos (a - JL) (54a) 

and 

v 2 = -u sin (a + JL) + v cos (a + JL) . (54b) 

Inverting the pair of equations (46a) and (54a), we ar­
rive at 

(55 a) 

and 
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v = u 1 sin (a - JA.) + v 1 cos (a - JA.) (55 b) 

for the {3_ characteristic. Inverting equations (46b) and 
(54b), we find 

u = u2 cos (a + JA.) - v2 sin (a + JA.) (56a) 

and 

v = u2 sin (a + JA.) + v2 cos (a + JA.) (56b) 

for the {3 + characteristic. 
Substituting equations (55a, b) in equation (45a), and 

equations (56a, b) in equation (45b), we find the can­
onical equations describing the relationships between 
the tangential and normal velocities along each 
characteristic: 

(57 a) 

and 

(57b) 

We can also write equations (57 a, b) as the ordinary dif­
ferential equations 

and 

du 1 v= --
1 da 

v= 2 

(58 a) 

(58 b) 

If a discontinuity in ul' represented by ul' occurs 
along the {3 _ characteristic, there will then be a corre­
sponding discontinuity in vl' represented by vl' which 
is given by substituting equation (50) in equation (58a), 
or 

v 1 = - u1 tan cp • (59) 

Similarly, substituting equation (50) in equation (58b) 
yields 

(60) 

Then, from equations (52) and (53), we determine that 

v1 = - tan cp u1 exp [- (a - a ) tan c/>] (61) 
0 0 

and 

(62) 

which are the relationships for propagating normal 
velocity discontinuities along the {3_ and {3+ 
characteristics. For a material where cf> = 0, we see that 
v1 = v2 = 0 and only tangential-velocity discon­
tinuities u1 and u2 are propagated along the {3_ and {3+ 
characteristics. Finally, from equations (59) and (60), we 
see that the resultant jump in velocity on either 
characteristic is at an angle cf> to the characteristic at 
every point. 

Equations (52), (53), (59), (60), (61), and (62) are 
originally due to Shield (1953), and were discussed by 
Pariseau (1970) and by Houlsby and Wroth (1980). 
Physically, velocity discontinuities are manifested as 
zones of intense shear along which volume expansion 
(dilatancy) and slip occur (Drucker and Prager, 1952). 
The normal component of velocity discontinuity con­
trols the amount of dilatancy (equations (61) and (62)). 
In general, velocity discontinuities originate at bound­
aries between two plastic regions, or between plastic 
and nonplastic regions-that is, along lines of 
discontinuity-and propagate into the plastically de­
forming mass along the velocity characteristics in an 
exponential manner (equations (52), (53), (61), and (62)). 

We are now in a position to proceed to the landslide 
model, but, before doing so, let us summarize some of 
the salient points about Coulomb plastic materials. We 
have developed general differential equations for stress 
and velocity fields in two-dimensional Coulomb plastic 
materials and found them to be hyperbolic and in­
tegrable by the method of characteristics. Also, we have 
found that the surfaces along which discontinuities in 
velocities and deformation rates may occur (velocity 
characteristics) and the surfaces along which deriv­
atives in stress may be discontinuous (stress character­
istics) are coincident. Also, we have seen that, if cf> =I= 0, 
the material must dilate. Finally, because these surfaces 
are potential paths for propagation of velocity discon­
tinuities, we have termed them slip surfaces and found 
that velocity discontinuities grow and decay along them 
exponentially with changes in the angle a between the 
maximum compressive principal stress and the x axis. 

THE LANDSLIDE MODEL 

DETERMINATION OF THE STRESS FIELD 

Our idealized landslide is assumed to form with a 
definite basal slip plane at depth y*, in the semi-infinite, 
isotropic, and homogeneous mass of soil inclined at 
an angle 8 to the horizontal as shown in figure 3. The 
soil mass, acted upon by gravity, fails according to 
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X 

FIGURE 3.-Sketch showing semi-infinite mass of soil inclined at an angle 9 to the horizontal. The linearly 
varying pore pressure P and the predicted slide depth y* are also shown. 

Coulomb's criterion (equation (1)), and a pore pressure 
P is present, which varies linearly from a depth y = h 
to the surface y = 0, or 

P = P
0 

y/h. (63) 

The depth h is considered to be equal to, or greater than, 
the depth of the basal slip plane of the landslide. 

Under these conditions, the stresses can be taken as 
functions of y only, and the equations of equilibrium 
(equations (14a, b)) can be directly integrated to give 

(Jxy = pgy sin 8 (64a) 

and 

u; = pgy (cos 8 - P) , (64b) 

where P = Pipgh is the dimensionless pore pressure. 

1 - sin cf> cos 2a -pg (cos 8-i>)] [ Yu'l = [ H
0 

] 
sin cf> sin 2a -pg sin 8 · (66) 

Carrying out the inversion, we have 
H sin 8 

u'= --------------------~~--------
sin 8 - sin cf> sin (2a + 8) + P sin cf> sin 2a 

and 
H sin cf> sin 2a 

(67) 

y = . (68) 
pg [sin 8- sin cf> sin (2a + 8) + P sin cpsin 2a] 

For the sake of brevity in future equations, we shall 
define the recurring terms 11 and D 1: 

11 = (2a + 8) (69) 
and 

For the soil in the inclined half-space to be in a state D 1 = sin 8- sin cf> sin 11 + P sin cf> sin 2a. (70) 
of limiting equilibrium, we have from equations (9a, b) 

uxy = pgy sin 8 = u' sin cp sin 2a 

and 

The validity of the solutions (67) and (68) is limited. 
(65a) For equilibrium of the soil medium, we see from figure 1 

that 

u; = pgy (cos 8 - P) = u' (1 - sin cf> cos 2a) - H, (65b) 
Tn ~ (u~ + H) tan cp (71) 

from which we can solve for u' andy by inverting 
or, in this case, where Tn = uxy = pgy sin 8, and 
u~ = u; = pgy (cos 8 - P), that 



12 A MODEL FOR THE PLASTIC FLOW OF LANDSLIDES 

pgy [ sin () - (cos () - P) tan 4>] ~ H tan ¢. (72) 

Since k = H tan 4> by equation (2), relation (72) can 
be written 

criterion is satisfied-represents the limit to the valid­
ity of solutions (67) and (68). _ 

Thus, when sin (8 - cf>) + P sin cf> > 0, limiting 
equilibrium is _possible only in the strip 0 ~ y~y *. If 

k cos 4> 
y ~ . (73) 

pg [sin (() - cf>) + P sin 4>] 

The upper limit 

k cos 4> 
y= y*= - ' (74) 

pg [sin (8- cf>) + P sin cf>] 

where uxy = k + u; tan cf>-that is, where Coulomb's 

sin (8- cf>) + P sin 4> = 0, then y*- oo. Stress fields 
and characteristics for y * - oo were discussed by Ter­
zaghi (1943) and Sokolovskii (1960, 1965). Equation (74) 
clearly show~ that y* will occur at a finite dept~ when 

() = cf> and P is positive. When sin (() - cf>) + P sin cf> 
< 0 a stable slope occurs, as the slide plane is predicted 
to be above the slope surface. 

In figure 4, the depth y * from equation (7 4) is plot­
ted in dimensionless form pgy */k as a function of the 

30~~--------~------~------~--------~-------------------------------, 

25 

20 

* 
~~~ 15 

10 

5 

P=O.O 
ct>=30° 

OL---------~L---------~L---------~----------~----------~----------~ 
0 10 20 30 40 50 60 

e, IN DEGREES 

FIGURE 4.-Graph showing pgy* versus 9 for various values of P and cf>. 
k 



THE LANDSLIDE MODEL 13 

slope angle 8 for various values of P and tj>. From equa­
tion (7 4), we see that y * increases with increasing cohe­
sion k and decreases with increasing density p. The 
gravitational acceleration g is assu~ed constant. From 
figure 4, we see that variations in P have no effect on 
y* when tJ> = 0. In this purely cohesive case, y* depends 
only on 8, p, and k. When tJ> and 8 are constant (tJ> > 0), 
the depth of the lan_!islide y * decreases as the dimension­
less pore pressure P increases. This dependence on pore 
pressure is expected from Coulomb's criterion and the 
effective stress law, as a reduction in normal stress u n 

requires a corresponding reduction in the maximum 
shear stress uxy = pgy*_ sin 8, and hence a reduction of 
y *. Also, for constant P and 8, y * increases as tJ> is in­
creased. Finally, as 8 increases, the curv~s in figure 4 
converge, the dependence of y * on tJ> and P lessens, and 
the depth of the landslide approaches that for pure 
cohesion. 

For limiting equilibrium to be possible _in the strip 
0 ~ y ~y *, the dimensionless pore pressure Pin equation 

(7 4) must be restricted. Let us rewrite equation (7 4) as 

k cot tJ> 
y* = ----------~=--

pg [sin 8 cot tJ> - cos 8 + P] 
(75) 

If P = cos 8 - sin 8 cot tj>, then y*- 00• If.? = cos 8, 
then from equation (64b) u; = pgy (cos 8 - P) = 0, and 
there will be no normal stress on any plane parallel to 
y* in 0 ~ y ~ y*. If P >cos 8, there will be tensile nor­
mal stresses on all planes parallel to y*, a case not 
covered by the Coulomb criterion. Thus, the limits on 
P for tJ> > 0 are given by 

cos 8 - sin 8 cot tJ> ~ P ~ cos 8 . (76) 

These bounds on P as functions of 8 and tJ> are shown 
in figure 5. For tJ> = 0, P is taken to have the range 
0 ~ p ~cos 8. 

If we rewrite equation (7 4) as 

kcostj> -
-- = y * [sin (8 - tj>) + P sin tJ>] , (77) 

pg 

OOL-----------+----------~10----------~~--------~2~0----------~2~5----------~ 

FIGURE 5.-Graph showing bounds on Pas a function of slope angle(} for various angles of internal friction t/1. 
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equation (68) becomes 

y= 
y* [sin (8 - ¢) + P sin ¢] sin 2a 

D1 
(78) 

If a = 45 o - : is substituted in (78), it reduces to 
y = y *; and, hence the line y = y * represents a line of 

discontinuity along which the slopes I Z I± given by 

equation (20) are respectively infinite and zero. Because 
stresses undergo finite jumps and stress gradients are 
infinite as we cross a line of discontinuity, the equations 
describing limiting equilibrium in the soil mass are valid 
only when 0 ~ y ~ y *. The line y = y * represents the 
basal slip plane of the landslide. 

We have equations (65a, b) for uxy and u; in our 
idealized landslide. We can find the expression for u; 
by substituting equation (67) into equation (9a), which 
yields 

H sin 8 ( 1 + sin ¢ cos 2a) u; = -H. 
D1 

(79) 

and 
U

1 (cos 8 - P) sin 2a 
U1 = -= = + 2 cos 2a ; 

X k 
(83c) 

sin 8 

and equation (78) reduces to 

y = y* sin 2a (84a) 

or 

sin 2a = yly*, (84b) 

from which 

1/2 cos 2a = ± [1 - (yly *)2] • (84c) 

The stress field for the purely cohesive case can then 
be given in the alternate dimensionless forms 

u = yty* 
xy ' 

(85a) 

(cos () - P) 
-a~= (yly*), 

Y sin () 
(85b) 

For future convenience, we shall write equations and 
(65a, b) and (79) in the dimensionless forms 

_ uxy pgy . sin 8 cos ¢ sin 2a 
uxy = - = - Sin 8 = (80) 

k k D
1 

' 

_ u; pgy - cos ¢ (cos () - P) sin 2a 
U

1 =-=-(cos()- P) = (81) 
Y k k D

1 
' 

and 

_ u; cos ¢[(cos()- P) sin 2a + 2 cos 2a sin 8] 
U

1 =- = (82) 
X k D ' 

1 

which are valid for 0 ~ yl ~ 1, where yl = yly*-that 
is, between the ground surface and the basal slip plane 
of the landslide. 

When ¢ = 0, equations (80), (81), and (82) reduce to 

(J xy pgy sin 8 
u = - = = sin 2a , xy k k (83a) 

- -_ u; pgy (cos () - P) [cos () - P] . 
ul = - = = sm 2a (83b) 

Y k k sin() ' 

(cos () - P) 112 
-a~ = (yly*) ± 2 [1 - (y/y*)2J , 

x sin () 
(85c) 

where the upper sign in the last equation is taken for 
compressive flow. These equations for u;, u;, and uxy 
are, with notational and coordinate axis differences, 
similar to those presented by Nye (1951, equations 8, 
p. "558) for stresses in a purely cohesive alpine glacier. 

There are two sets of limits on a, the angle that the 
greatest principal effective stress u~ makes with the x 
axis. The first set is for compressive (passive) flow when 
a = 0 is at the surface and u~ is oriented parallel to the 
x axis at y = 0. The limits on a for 0 ~ y 1 ~ 1 are then 

0 ~ a ~ 45 ° - ¢/2 , (86) 

where the upper limit is the value of a on the line of 
discontinuity at y = y*. The second set is for extending 
(active) flow when a at the surface is 90 o and u; is nor­
mal to the ground surface at y = 0. The limits on a for 
extending flow, 0 ~ y I ~ 1 are then 

¢ 
45 ° - 2 ~ a ~ 90 ° , (87) 

where the lower limit is the value of a at y = y * . Note 
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that these limits apply in the purely cohesive case when 
Q> is set to zero in equations (86) and (87). 

Compressive (passive) flow would be expected where 
the ground surface is concave upward (where the slope 
is decreasing). Extending (active) flow would be ex­
pected where the ground surface is convex upward (as 
over a local topographic high on the slope). 

Figure 6 shows the variation of u', u', and u with x y xy 

yly * in compr~ssive and extending flow for 8 = 20 °, 
Q> = 30°, and P = 0.5. For various values of Q>, 8, and 
P, the stress distribution will have this general appear­
ance so it will suffice to investigate some of its predom­
inant features. 

As we can see from the first forms of equations (80) 
and (81), the shear stress ux and the vertical normal 
effective stress u; increase linearly with depth to a 
maximum at the basal slip plane of the landslide (y = 
y*). Figures 7, 8, and 9 show the variation of u , u', 
'!lld u; on y = y * with 8 for various values of%~ W:d 
P. These curves, obtained from the second forms of 
equations (80) and (81) and equation (82), show that the 
shear and normal stresses at the land_!Jlide 's basal slip 
plane decrease as the pore pressure P increases for a 
given 8 and Q>. This decrease is expected from the effec­
tive stress law. Also, we see that increasing Q> increases 
each stress component for a given value of P and 8. This 

0.2 

0.4 

0.6 

0.8 

increase happens because the stresses depend on the 
depth of the landslide, which increases as Q> is increased 
(fig. 4). Also, for the same reason, the stresses on 
y = y *increase without limit as 8 approaches the value 
that makes y * jnfinite (equation (7 4)) for particular 
values of Q> and P. Finally, as the slope angle increases, 
the stresses on the basal slip plane decrease, become 
less dependent on Q> and P, and approach those in the 
purely cohesive case. The stresses on the basal slip plane 
decrease because the landslide gets thinner as the slope 
angle increases (fig. 4). As the landslide gets thinner, 
the mean stress on y == y * is reduced, and by the 
Coulomb criterion (fig. 1) the maximum allowable shear 
stress must be reduced. However, note that in the pure­
ly cohesive case, the shear stress a xy on y = y * is 
always equal to the cohesion k. 

When y = 0, equation (82) reduces to 

u' = % 

2 cos Q> 

1 - sin Q> 

for compressive flow (a = 0 when y = 0), and to 

- 2 cos Q> 
u'=----

:1: 1 + sin <1> 

(88) 

(89) 

1.0L--------i--------~-------LL---~--~--------~--~--~--------~ 
-2 0 2 4 6 8 12 

NONDIMENSIONAL STRESSES 

FIGURE 6.-Graph showing variation of u', u , and u' with y/y* for q, = 30°, 8 = 20°, and P = 0.5 in extending 
% :~:y y 

and compressive flow. 
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FIGURE 7.-Graph showing variation of oxy at y = y* with fJ for various values of P and q,. 

for extending flow (a = 90 o when y = 0). Thus, when 
y = 0, u; depends only on c/> and becomes more 
compressive (less tensile) as c/> increases, as shown in 
figure 10. 

Figure 6 shows that u; is tensile to a certain depth 
in extending flow. By solving equation (82) for ex when 
u; = 0, we find that ex is given by 

1 1 I cos (} - p l ex = 45 ° + 2 tan- . , 
2 sm 0 

(90) 

where ex lies within the limits given by relation (87). The 
value of a computed from equation (90) is then 
substituted in equation (78) to give the depth yly* to 
which u; is tensile in extending flow. Figure 11 s!_lows 
this depth as a function of 0 for various values of P and 
c/>. From figure 11, we see that the depth to which u; is 
tensile in extending flow increases with slope angle and 
pore pressure but decreases as internal friction 
increases. 

Figure 6 shows that u; is a maximum at a certain 
depth in compressive flow. By differentiating equation 
(82), setting the result equal to zero, and solving for ex 
we find that 

_1 I 2 sin 0 
ex = tan ---------

(P- cos 0) (1 - sin e/>) 
(91) 

_ [4 sin2! + cos2 c/> (P- cos 0)2] , - 1/21 

(P- cos 0 ) (1 - sin e/>) 

subject to relation (86), for u; to be a maximum in com­
pressive flow. This value of a is then substituted in 
equation (78) to give the depth where u; is a maximum 
and substituted in equation (82) to give the magnitude 
of u; at this same depth. Figure 12 shows the depth of 
the maximum values of u; in compressive flow as a 
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FIGURE 8.-Graph showing variation of o~ at y = y* with 8 for various values of P and</>. 

function of 0 for various values of cp and P. Note that 
this depth decreases with increasing slope angle and 
pore pressure, and increases with increasing internal 
friction. Figure 13 shows the maximum value of u; in 
co~pressive flow as a function of 0 for various values 
of P and cp. Like the other stress values shown in figures 
7' 8, and 9, the maximum values of u; in compressive 
flow decrease with increasing pore pressure and slope 
angle, and become larger with increasing internal fric­
tion. Note that here, u; also becomes infinite as 0 ap­
proaches the value that makes y * infinite and the 
dependence of the maximum u; on cp and p decreases 
as 0 increases. 

In general then, all dimensionless stresses other than 
u; at the surface (which depends only on cp, as shown 
in fig. 10) decrease with increasing pore pressure, in­
creasing slope angle, and decreasing internal friction. 
Of course, the actual stresses (equations (80), (81), and 
(82)) also increase in direct proportion to the cohesion k. 

Stress characteristics are determined by integrating 
equation (20), which can be written in the canonical form 

ay I ( cJ> )j ax - = tan a± 45° -- -. aa 2 aa 
(92) 

Taking the derivative of equation (78) with respect to 
a, we find 

ay 2y* [sin (0- cp) + P sin cp] sin 0 (cos 2a- sin cp) - = .(93) 
aa D~ 

We now define the angle 

0 = (0 - cp). (94) 

From equation (92), we find 
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e, IN DEGREES 

FIGURE 9.-Graph showing variation of u~ at y = y* with 8 for various values of P and cp. 

or 

ax I ~ c1>) l ay - = cot a ± 45° - - -aa 2 aa 
(95) 

()X - 2y* (sin 0 + p sin e/>) Sin 8 (sin 2a + COS e/>) 
- = ,(96) 
8a D~ 

which is integrated (Gradshteyn and Ryzhik, 1980, 
p. 149) to give 

_ [sin c1> (P - cos 8) ± cos c1> sin 8] 
G[e/>, 8, P] = (D2)st2 

(99) 

I (sin 8 + sin c1> sin 8) tan a + sin c1> (P - cos 8) ) 
tan -I , 

(D2)1/2 

and 

D 2 = sin2 8 - sin2 c1> sin2 8 - sin2 c1> (P - cos 8)
2

• (100) 

x = X
0 

+ 2y* (sin o + P sin e/>] sin 8 

{F [e/>, 8, P) + G [e/>, 8, PJ}, 
(
97

) Equation (97) represents the x coordinates of the first 
(upper signs in the functions F and G) and second (lower 
signs in F and G) characteristic directions and is valid 
only when where 

F(cJ>, 8, P] = 

-sin c1> sin 8 
+[sin 8 ±cos c1> sin c/> (P-cos 8)] cos 2a 

± cos c1> sin c1> sin 8 sin 2a 

2D2 [sin 8 -_sin q, sin 8 cos 2a 
+ sin c1> (P- cos 8) sin 2a] 

sin2 8 > sin2 cJ> sin2 8 + sin2 cJ> (F- cos 8)2 • (101) 

(98) 
Relation (101) can be written 

(.P - cos 8)2 > sin2 8 cot2 c1> , (102) 



or 
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FIGURE 10.-Graph showing variation of o~ at the surface, y = 0, with f/J. 

cos () - sin () cot ¢ < P < cos () 
+ sin () cot ¢ , 

was made on the grounds that the normal stress u Y 

was to be compressive only. 
When ¢ = 0, equations (78) and (97) for the stress 

(103) characteristics reduce to 

which is similar to relation (76) if the upper limit on y = y* sin 2a (104) 
Pis restricted to cos () (equation (64b)). This restriction and 
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FIGURE 11.-Graph showing dimensionless depth yly* to which!~ is tensile in extending flow as a func­

tion of 6 for various values of P and cp. 

x = X
0 

+ y* cos 2a ± 2y*a . (105) 

Relation (101) shows that equations (104) and (105) are 
valid when the slope angle() is greater than zero. 

Equations (78) and (97) give the y and x coordinates 
of the stress characteristics. Figure 14 gives a few ex­
amples of stress characteristics for various values of(), 
¢, and P in compressive and extending flow. Compar­
ing figures 14A and 14E, we see that increasing ¢ for 
a constant () and P causes the characteristics to become 
less curved. We see the same effect as the slope angle 
() is decreased (compare figs. 14D and 14E or figs. 14A 
and 14C). The stress characteristics are also flattened 
asP is decreased (compare figs. 148 and 14C). The flat­
tening of the stress characteristics is consistent with 
our observation (fig. 4) that increasing ¢ or decreasing 
() or P increases the depth y* of the model landslide. In 

fact, as y* increases without bound, the stress 
characteristics approach straight lines at depth (Ter­
zaghi, 1943, p. 38). Finally, only some of the stress char­
acteristics for each value of(), ¢, and Pare shown in 
figure 14; but, because of the arbitrary constant of in­
tegration x

0 
in equation (97), there are actually an in­

finite number of stress characteristics within the 
deforming regions shown. 

As we mentioned before, the stress characteristics in 
figure 14 intersect at every point at fixed angles depen­
dent on¢. The characteristics are loci along which the 
shear stress is the limiting shear stress given by equa­
tion (1), and loci along which potential discontinuities 
in stress and stress gradient will be propagated. Also, 
the basal slip planes in figure 14A through 14F form 
envelopes to the second set of stress characteristics and, 
hence, are lines of discontinuity. 
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FIGURE 12.-Graph showing dimensionless depth yly* of maximum valu~s of u~ in compressive flow as 
a function of 8 for various values oft/> and P. 

DETERMINATION OF THE VELOCITY FIELD or 
u = 'rx + F(y) + U

0 
, 

where rand u
0 

are constants and 

au 
-=r. 
ax 

21 

(107) 

(108) 

To determine the velocity field in our idealized land­
slide, we use equations (32a, b, c) for the deformation 
rates, equation (36) for continuity, and equation (37) for 
isotropy. We assume that v, the vertical velocity, is in­
dependent of x. Such an assumption is reasonable for 
an infinitely long slope. Then, from equation (36) for con­
tinuity we have 

_a_2v-= o 
ax ay 

(106a) 

Note that in equation (108) r represents a constant 
longitudinal deformation rate, or from equation (32a) 
that 

and 
. au 
e =- -= -r. 

X ax (109) 

= 0' (106b) Under these conditions, equation (36) for continuity 
becomes 
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FIGURE 13.-Graph showing maximum value of u~ in comeressive flow as a function of (J for various 
values of q, and P. 

av = r I sin tP + cos 2al 
ay sin tP- cos 2a ' 

(110) basal slip plane of the landslide. Such infinities occur 
because of rapid velocity changes across a narrow zone 
on the base of a landslide. 

and equation (37) for isotropy becomes The discontinuity in the vertical deformation rate 
a v relates to the volume dilatancy rate. A nonzero vol-

au lau avj a Y = ax - a Y tan 2a . (111) 

Substituting equations (108) and (110) in equation (111), 
we arrive at 

_a_u = . -2r sin 2a = F' (y) . 
a y sm tP - cos 2a 

(112) 

Since a = 45° - !!!_ on y = y*, we see that infinities oc-
2 

cur in a v (equation 110) and au (equation 112) on the ay ay 

~e dilatancy rate occurs if the soil making up the land­
slide is frictional-that is, if f/> :f: 0. Expressions for 
volume dilatancy rates in compressive and extending 
flow are easily derived from equation (33) for the 
sum of principal deformation rates, equation (108) for 
au , and equation (110) for a v . Combining these equa-
ax ay 
tions, we obtain the dilatancy rate 

d = 2r sin t/> 
cos 2a- sin cJ> 

(113) 

as a function of a, the angle that u; makes with the 
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COMPRESSIVE FLOW EXTENDING FLOW 

B~ 

c~ 
4>=15° 8=10° .0=0.5 

D~ 

4>=30° 8=20° p =0.5 

FIGURE 14.-Sketches showing stress characteristics for various slope angles 8, angles of internal friction t/l, and dimensionless 
pore pressures P. Values of 8, q,, and P used for each case are given below the lower right-hand comer of each sketch. 
Arrows indicate the relative sense of slip across the characteristics and the dashed lines separate regions of compressive 
and extending flow. 

positive x axis. Here, r is negative for compressive 
flow and positive for extending flow. Using equation 
(78) the volume dilatancy rate d can be obtained as 
a function of yly*. The results are shown in figures 15A 
and 15B for some _values of(), c/>, and P. Note that the 
negative sign on d represents volume expansion. The 
dilatancy rate in every case where cJ> is nonzero is infinite 
on the landslide base because of the discontinuity in 
a v on y = y*. When y = 0, the dilatancy rate 
ay 
increases with cJ> for extending and compressive flow. 
In general, the dilatancy rate is greater at a given depth 

in compressive flow than in extending flow._ The dila­
tancy rate increases as cJ> increases or as P or () de­
creases-a consequence of increasing shear stress in 
each of these cases. Finally, as we can see from equa­
tion (113), the dilatancy rate vanishes when cJ> = 0; thus 
flow in the purely cohesive case is incompressible. 

Returning to equations (110) and (112), we next in­
tegrate these equations to find the x andy components 
of velocity, u and v, of the landslide as functions of a. 
Since vis a function of y only, from equation (110) for 
au 
ay we have 
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FIGURE 15 (above and facing page).-Graphs showing varia!ion of dimensionless dilatancy rate d/lrl with 
dimensionless depth y/y* for various values of 8, cp, and P. A, Compressive flow. B, Extending flow. 
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v = r J [ s~n cp + cos 2a l dy + B 
sm cp- cos 2a 

= 2y*r [sin o + P sin cp] sin 8 

J [sin cp + cos 2a] da 

[sin 8 - sin cp (sin 2a cos 8 + cos 2a sin cp) 
+ P sin cp sin 2a]2 

+ B , (114) 

where the differential of equation (78) with respect to 
a replaces dy. Then, by integrating equation (114) (Grad­
shteyn and Ryzhik, 1980, p. 149), we get 

v - -= -[sin o + P sin ¢] sin 8 {F1[c/>, 8, P] 
Y*r 

where 

and 

sin cp (P - cos 8) (1 + sin cp cos 2a) 
+ sin 8 (1 + sin 2 cp) sin 2a 

D 2 [sin 8 - sin cp sin 8 cos 2a 
+ sin cp (P - cos 8) sin 2a] 

4 sin cp sin 8 

(115) 

(116) 

u-u - -
~ = [sin o + P sin ¢] sin 8 [F2 [¢, 8, P] 

y r -
+ G2 [¢, 8, P]] + C, 

where 
2 sin 8 (sin cp - cos 2a) 

F2 [¢, 8, P] = ---------­
D2 [sin 8 - sin cp sin 8 cos 2a 

+ sin cp (P- cos 8) sin 2a] 

and 

4 sin cp (P - cos 8) G
2

[c/>, 8, P] = __ .;...._ __ __,_ 
(D2)3t2 

(119) 

(120) 

(121) 

[ 
sin 8 (1 + sin 8) tan a + sin cp (P - cos 8) ]· tan-1 

(D2)1'2 

Equation (119) is also subject to the conditidn given by 
relation (101), and since we are only interested in how 
u varies with a on an arbitrary cross section, we ignore 
the term in x given in equation (107). The term U 0 

represents the sliding velocity when y =y*. For u to 
equal U

0 
when y = y*, we must have 

C = 4 (sin o + P sin cp) sin 8 sin cp (P - cos 8) 
(D2)3t2 

tan-1[ sino + p sin cp I· 
(D2)1'2 

(122) 

G
1

[c/>, 8, P]= ___ ;.._.__ 
(D2)3/2 When cp = 0, equations (115) and (119) for the 

(117) velocities reduce to 

[ 

sin 8 (1 + sin cp) tan a + sin cp (P - cos 8) ]· 
tan-1 (D

2
)112 

Equation (115) is subject to the condition given by rela­
tion (101), and since v = 0 when y =y*, we have 

B= (sin o + P sin ¢)2 sin 8 (1 + sin2 cp) 

D 2 (sin 8 - P sin cp cos cp - sin cp cos o) 

+ 4 (sin o + P sin cp) sin cp sin2 8 (118) 
(D2)3/2 

tan-l sino + P sin cp 
(D2)112 

By following a similar procedure for equation (112), 
we find that 

and 

u-uo 

y*r 

__!!__ = 1 - sin 2a = 1 - Y 
y*r y* 

(123) 

-cos 2a = + 2 [1 - (y/y*)2)112 . (124) 

Here, the relationships yly * = sin 2a and cos 2a = 
2 1/2 • ± [1 - (yly*)] , which apply when cp = 0, have been 

invoked. These expressions are, with notational and 
coordinate axis differences, the same as those presented 
by Nye (1951, equation 9, p. 559) for velocities in an 
alpine glacier. 

The dimensionless velocities [(u - U
0
)/ry*) and vlry* 

are shown as functions of yly* (where yly* has been 
obtained from equation (78)) for compressive and 
extending flow and various values of¢, 8, and Pin 
figure 16. 
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FIGURE 16.-Graphs showing dimensionless velocities (u- u
0
)/ry* an':! v/ry* as functions of dimensionless depth yly* 

for compressive and extending flow and various values of 8, q,, and P. A, Dimensionless longitudinal velocity for com­
pressive and extending flow. B, Dimensionless normal velocity for extending flow. C, Dimensionless normal velocity 
for compressive flow. 
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Figure 16 shows that the dimensionless longitudinal 
velocity [(u - U

0
)/ry *) is the same in compressive and 

extending flow. This velocity decreases as() increases 
and as (j> decreases. The_ dimensionless longitudinal 
velocity also decreases as P increases. Note that, in the 
purely cohesive case, the velocities are independent of 
P, beca~se y* in equations (123) and (124) is independ­
ent of P when (j>=O. (See equation (7 4).) These results 
for (u - U

0
)/ry * are consistent with the fact that the 

allowable shear stress, and hence the shear strain rate 
(equation (112)) within the slide, is increased as (j> is in­
creased or asP and () are reduced. Finally, although the 
observation that the dimensionless longitudinal velocity 
decreases with increasing slope angle seems contradic­
tory, recall that (u- U

0
)/ry* given by equation (119) oc­

curs in response to deformation within the landslide 
mass and this velocity is relative to the basal slide 
velocity U

0
, which increases with slope angle. 

Since the dimensionless y component of velocity vlry * 
is positive in the positive direction of they axis (fig. 3), 
vlry * is more negative in compressive than in extending 
flow as figure 16 shows. We see a similar effect as () is 
reduced and as (j> is increased. Again, reducing P causes 
a more negative vlry *. Whether the flow is compressive 
or extending, a more negative value of v means a greater 
dilatancy rate in the landslide. This result is consistent 
with the observation made previously that increasing 
(j>, and decreasing P or 8, increases the shear stress and 
enhances the dilatancy rate as seen in figure 15. 

So far, we have discussed the velocity distribution 
within the idealized landslide for extending and 
compressive flow. There is a third case where r, the 
longitudinal deformation rate in equation (108), van­
ishes. When r vanishes the longitudinal velocity u given 
by equation (119) decreases to the basal sliding veloci­
ty U

0
, and the y component of velocity v given by 

equation (115) vanishes. The landslide then slides as a 
rigid body on the basal slip plane, and the flow is termed 
plug flow (Nye, 1951). 

As mentioned earlier, the velocity and stress char­
acteristics for our Coulomb material coincide. Thus, 
potential discontinuities in velocities and strain rates 
will be propagated along the stress characteristics (slip 
surfaces) shown in figure 14. Also, we found that discon­
tinuities in velocity originating at, say, the line of 
discontinuity y = y * will be propagated in an exponen­
tial manner with change in the angle a along the slip 
lines (equations (52), (53), (61), and (62)). 

Suppose a local irregularity at a point Q (fig. 17A) 
on the basal slip plane of a landslide (y = y *) causes 
a discontinuity in tangential velocity u1 • This, in 

0 

turn, propagates a discontinuity of tangential velocity 
ul and a discontinuity of normal velocity v 1 along a 
(3_ characteristic with the sense of relative velocity 
shown in figure 17 A. The magnitude of the tangential 
velocity at a point on (3_ is given by equation (52) and 
the magnitude of normal velocity is given by equation 
(59). 

y 

x------------------------------------~--------~----~----------~ 

Q' 

B 

y 

FIGURE 17.-Sketches showing fault surfaces produced by propagation of discontinuities along /3_ slip lines 
in A, compressive flow and B, extending flow. The directions of the velocity jump components and the 
resultant velocity jump vectors are also shown. Arrows show sense of relative slip across the fault surfaces. 
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Since a
0 

in this case is 45 o - : , the magnitude of the 
tangential velocity jump on the surface in compressive 
flow (where a = 0) is given in dimensionless form as 

~:. = exp I( : - : ) tan ~>] , (125) 

where ¢ is in radians, and the normal velocity jump 
when y = 0 is given in dimensionless form as 

- -
vl ul =- = - =- tan ¢ . (126) 
ulo ulo 

The negative sign indicates that this component acts 
upwards. As mentioned earlier, the resultant velocity 

... 
jump vector vl is inclined at an angle¢ to the {3_ slip 
line, and its magnitude is an increasing function of ¢ 
as seen in figure 18. 

Similarly, if basal slip is impeded at a point Q' 
(fig. 17 B) when y = y* during extending flow, discon­
tinuities in ul and v 1 will propagate along a {3-
characteristic with the sense of relative velocity shown 
in figure 17 B. The dimensionless magnitude of the 
tangential velocity jump ul on y = 0 is given here (a = 
90° when y = 0) by 

~: = exp 1- ( ; -f) tan ~>] , (127) 
0 

where ¢ is in radians, and the dimensionless magnitude 

2.2,-----------------------------------------------------~ 

FIGURE 18.-Graph showing magnitude of resultant velocity jump on the surface as a function of 
angle of internal friction t/J for extending and compressive flow. 
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of the normal velocity jump v1 when y = 0 is given 
by equation (126). Again, v1 is directed toward the 
ground surface. The resultant velocity jump vector -v1 is inclined at an angle ct> to the {3_ slip line, and its 
magnitude is a decreasing function of ct> (fig. 18). 

Physically, the jump in the tangential component of 
velocity on the surface leads to a thrust fault scarp 
in compressive flow and a normal fault scarp in exten­
ding flow (fig. 18). In compressive flow, the height of 
the scarp increases as ct> increases; the opposite is true 
in extending flow. When c/> = 0, the scarp height is 
equal to the magnitude of the discontinuity on the base 
of the landslide, in both compressive and extending 
flow. 

The discontinuity in the normal component of veloci­
ty leads to a zone of disturbance along a {3 _ slip line 
that is proportional in thickness to the normal velocity 
discontinuity. Physically, one might expect a disor­
dering of the particle-packing arrangement in this 
zone-that is, dilatancy .. In compressive flow, the 
thickness of the dilatant zone increases with c/>. For 
extending flow, the thickness of the dilatant zone 
increases with ct> to a maximum at ct>::::: 37 °, thereafter, 
decreasing in thickness with increasing internal fric­
tion. When ct> = 0, the normal velocity discontinuity 
vanishes, and no dilatancy accompanies the propaga­
tion of velocity discontinuities on the slip lines. N ye 
(1951) discussed the propagation of discontinuities 
in alpine glacier flow-that is, in the purely cohesive 
case. 

DISCUSSION 

SIMILARITIES AND DIFFERENCES BETWEEN 
NYE'S ALPINE GLACIER MODEL AND OUR 

LANDSLIDE MODEL 

The flow of landslides is similar to that of alpine 
glaciers. These similarities occur because soils within 
landslides can be described as Coulomb plastic 
materials, a generalization of Mises plastic materials. 
Like Nye's (1951) Mises plastic model for alpine glaciers, 
our model for landslides predicts, depending on the 
longitudinal deformation rate, that a landslide can 
undergo compressive, extending, or plug flow. For both 
models, shear and normal stresses increase linearly with 
depth, and longitudinal stresses increase in an elliptic 
manner with depth. Both models predict tensile 
longitudinal stresses and normal fault scarps at the sur­
face in extending flow, and thrust surfaces and thrust 
fault scarps at the surface in compressive flow. 
Longitudinal velocities caused by internal deformation 

in both models are greatest near the surface and 
decrease elliptically to the basal slip plane where they 
are equal to the basal slide velocity. Also, like Nye's 
glacier-flow model, our model predicts that in plug flow 
a landslide moves as a rigid body at the basal slide 
velocity. Finally, in both models, the thickness of the 
plastically flowing region is controlled by the slope 
angle, the density, and the cohesion. This thickness in­
creases with increasing cohesion and decreases with in­
creasing density and slope angle. 

However, the landslide model and glacier model are 
in some ways dissimilar. For example, unlike the alpine 
glacier model, our model is affected by pore pressure 
and internal friction as well as slope angle, density, and 
cohesion. Increasing the pore pressure or decreasing the 
angle of internal friction for a given slope angle and 
cohesion decreases the thickness of the plastically flow­
ing region. 

The models also differ because stresses in the land­
slide are influenced by pore pressure and internal fric­
tion. In extending flow, all stresses are smaller and the 
depth to which longitudinal stresses are tensile is 
greater when pore pressure is increased or when inter­
nal friction is decreased for a given slope angle, densi­
ty, and cohesion. 

Another difference is that the stress characteristics 
are influenced by pore pressure and internal friction in 
t_he landslide model. They flatten as ct> is increased or 
P is decreased because of the increase in depth of the 
basal slide plane with increasing internal friction or 
decreasing pore pressure. An excess pore pressure also 
leads to a bounded slip line field even where the slope 
angle is less than the angle of internal friction, a point 
made by Crans and Mandl (1981). 

As in N ye 's ( 1951) model for alpine glacier flow, 
longitudinal velocities occurring in response to de­
formation in the landslide are the same in both exten­
ding and compressive flow. However, in the landslide 
model, internal deformation and hence longitudinal 
velocities increase as the pore pressure is reduced or as 
internal friction is increased. Also, in both models the 
sense of they component of velocity is consistent with 
vertical expansion in compressive flow and vertical 
contraction in extending flow. But, in the landslide 
model, the vertical expansion in compressive flow is 
amplified by dilatancy and the vertical contraction in 
extending flow is reduced by dilatancy. Dilatancy 
vanishes for c/> = 0. 

Dilatancy also influences the propagation of veloci­
ty discontinuities in the landslide model as the result­
ant velocity jump vector is inclined at the angle of 
internal friction to the slip lines. As we have noted, the 
normal component of velocity discontinuity vanishes 
when c/> = 0. 
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THE ASSUMPTION OF ASSOCIATED FLOW 

The dilatancy predicted by our model is a consequence 
of assuming an associated flow rule. Such a flow rule 
assumes that at any smooth point on a yield surface the 
plastic strain rate vector is normal to the yield surface 
(Drucker, 1956; Davis, 1968). The advantages of this 
assumption are (1) velocity and stress characteristics 
coincide, and (2) simple and useful limit theorems ap­
ply only to such materials (Davis, 1968). The principal 
disadvantage of assuming associated flow is that it leads 
to an unrealistically large dilatancy for Coulomb plastic 
materials, exemplified by the occurrence of infinite 
dilatancy rates on the basal slip plane in our landslide 
model (fig. 15). 

The implication that Coulomb plastic soils expand in­
definitely and yet retain shear strength is physically im­
plausible, and in fact, no known material behaves in this 
way (Houlsby and Wroth, 1980). Houlsby and Wroth 
(1980) pointed out that soils, when sheared monotonical­
ly, first dilate and then approach a critical state in which 
deformation occurs at constant volume. 

An alternative (Davis, 1968; Salencon, 1977; Houlsby 
and Wroth, 1980), then, is to replace the angle of inter­
nal friction in equations (32a, b, c) with a variable angle 
of dilation, v, which when deformation begins, equals the 
angle of internal friction q,, and with continued defor­
mation drops to zero. Theoretically, the angle v could be 
larger than c/>. However, this would imply volumetric ex­
pansion under hydrostatic compression. 

Using a variable angle of dilation would add con­
siderable complexity to the analysis unless we assu1ne 
that the deformation being modeled has progressed to 
the point where v = 0. Since q, + v, the flow rule would 
be nonassociated-that is, stress and velocity character­
istics would no longer be coincident, and the simple limit 
theorems referred to above would no longer apply. 

Region of extending flow 

In any case, velocity characteristics initially inter­
secting at an angle of 90° - q, would, in the course of 
continued flow, come to intersect at 90 ° and would be 
equivalent to the q, = 0 examples given earlier for the 
landslide modeL Thus velocities, velocity characteristics, 
and velocity jump relations given for q, = 0 in the 
landslide model apply when the angle of dilation v is 
zero. 

Another approach to the initiation and growth of slip 
surfaces is the Rice (1973) and Rudnicki and Rice (1975) 
proposal that the physical mechanisms involved in dilat­
ant materials lead to vertices on the yield surfaces and 
consequently to nonassociated flow rules. Flows describ­
ed by such flow rules are unstable and lead to localized 
planar zones of nonuniform deformation in otherwise 
homogeneously deforming materials. Of course, resolv­
ing the issue of whether an associated or nonassociated 
flow rule applies in a given landslide depends on careful 
field and laboratory observations. 

CONCLUDING REMARKS 

The model for landslide flow presented here is by no 
means a complete solution. Landslides are complicated 
by variable geology and topography, factors obviously 
missing in our idealized isotropic, homogeneous, inclined 
half-space. However, like Nye (1951), we have simplified 
our model so that some essential features of the 
mechanics of landslide flow can be highlighted. Any field 
test of our model should be carried out under conditions 
that best approximate our assumptions. Such field tests 
would be best carried out in relatively homogeneous and 
isotropic landslides that are long and shallow, and in 
which regions of compressive, extending, and plug flow 
are clearly identified. An idealized sketch of such a field 
situation is shown in figure 19. 

Region of compressive flow 

FIGURE 19.-Sketch of an idealized long, shallow landslide. Arrows indicate relative senses of slip along failure surfaces in extending and com­
pressive flow. 
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