
NUREG/CR-6645 BNL-NUREG-52576

Reevaluation of Regulatory Guidance on Modal Response Combination Methods for Seismic Response Spectrum Analysis

Brookhaven National Laboratory

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

NRC publications in the NUREG series, NRC regulations, and *Title 10, Energy*, of the *Code of Federal Regulations*, may be purchased from one of the following sources:

- 1. The Superintendent of Documents U.S. Government Printing Office P.O. Box 37082 Washington, DC 20402–9328 <http://www.access.gpo.gov/su_docs> 202–512–1800
- 2. The National Technical Information Service Springfield, VA 22161-0002 <http://www.ntis.gov> 1-800-553-6847 or locally 703-605-6000

The NUREG series comprises (1) brochures (NUREG/BR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) technical and administrative reports and books [(NUREG-XXXX) or (NUREG/CR-XXXX)], and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Office Directors' decisions under Section 2.206 of NRC's regulations (NUREG-XXXX).

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: Office of the Chief Information Officer Reproduction and Distribution Services Section U.S. Nuclear Regulatory Commission Washington, DC 20555–0001 E-mail: <DISTRIBUTION@nrc.gov> Facsimile: 301-415-2289

A portion of NRC regulatory and technical information is available at NRC's World Wide Web site:

<http://www.nrc.gov>

After January 1, 2000, the public may electronically access NUREG-series publications and other NRC records in NRC's Agencywide Document Access and Management System (ADAMS), through the Public Electronic Reading Room (PERR), link <http://www.nrc.gov/NRC/ADAMS/index.html>.

Publicly released documents include, to name a few, NUREG-series reports; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigation reports; licensee event reports; and Commission papers and their attachments.

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852–2738. These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42nd Street New York, NY 10036–8002 <http://www.ansi.org> 212–642–4900

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

NUREG/CR-6645 BNL-NUREG-52576

Reevaluation of Regulatory Guidance on Modal Response Combination Methods for Seismic Response Spectrum Analysis

Manuscript Completed: September 1999 Date Published: December 1999

Prepared by R. Morante, Y. Wang

Brookhaven National Laboratory Upton, NY 11973-5000

R. M. Kenneally, NRC Project Manager

Prepared for Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 NRC Job Code W6521

ABSTRACT

Regulatory Guide 1.92, "Combining Modal Responses and Spatial Components in Seismic Response Analysis," was last revised in 1976. The objectives of this project were to re-evaluate the current regulatory guidance for combining modal responses in response spectrum analysis; evaluate recent technical developments; and recommend revisions to the regulatory guidance. In addition, Standard Review Plan Section 3.7.2, "Seismic System Analysis," was reviewed to identify related sections which may need to be revised. The objectives were addressed through a literature review of past studies, supplemented by analysis of a piping system model previously utilized in NUREG/CR-5627, "Alternate Modal Combination Methods in Response Spectrum Analysis."

This project evaluated (1) methods for separation of the in-phase and out-of-phase modal response components; (2) methods for combination of the out-of-phase modal response components; (3) the contribution of "missing mass"; and (4) the combination of the three elements of response to produce the total response. Numerical results from response spectrum analyses were compared to corresponding time history analysis results to assess the accuracy of the various combination methods tested.

During the course of the project, several insights relating to potential improvements in the methodology for seismic analysis were identified and documented. These include (1) improvements in correlation between mode superposition time history and direct integration time history; (2) use of response spectrum generation single degree of freedom oscillator responses to define the frequency above which modal responses are in-phase with the input time history; and (3) evaluation of the effects of potential differences in mass distribution used in static and dynamic analyses of a piping system.

The conclusions of the project are (1) several of the modal response combination methods evaluated should be included as acceptable methods in the next revision to Regulatory Guide 1.92; (2) deletion of several of the modal response combination methods currently in the Regulatory Guide should be considered; (3) the Regulatory Guide should be revised to specifically define acceptable procedures for constructing the total response spectrum analysis solution; and (4) several variations of modal response combination methods, which were examined to try to improve accuracy, showed promising results and warrant further study.

This project did not specifically analyze the modal response combination methods applied to highly flexible, low frequency systems. A separate evaluation for these systems should be considered.

CONTENTS

			Page
ABS	TRAC	Г	iii
FIG	URES	•••••	vii
TAE	BLES .	•••••	vii
EXE	CUTIV	E SUM	MARY ix
ACK	NOWI	LEDGM	ENTS xi
ABE	REVIA	TIONS	xiii
1	INTI	RODUC	TION1
2	DES	CRIPTI	ON OF MODAL RESPONSE COMBINATION METHODS5
	2.1	Comb	ination of Out-of-Phase Modal Response Components
		2.1.1	Square Root of the Sum of the Squares (SRSS) Method
		2.1.2	NRC Grouping Method
		2.1.3	NRC Ten Percent Method9
		2.1.4	Rosenblueth's Double Sum Combination (DSC)
		2.1.5	NRC Double Sum Combination (NRC-DSC)
		2.1.6	Der Kiureghian's Complete Quadratic Combination (CQC)12
		2.1.7	ASCE Standard 4 Recommended Methods
	2.2		ation of Modal Responses into Out-of-Phase Components and
		In-Pha	se Components
		2.2.1	Lindley-Yow Method
		2.2.2	Hadjian Method
		2.2.3	Gupta Method
		2.2.4	ASCE Standard 4 Recommended Methods
	2.3		bution of High Frequency Modes
		2.3.1	Missing Mass Method
	_	2.3.2	Static ZPA Method
	2.4	-	lete Solution for Response Spectrum Analysis
		2.4.1	Method 1
		2.4.2	Method 2
		2.4.3	Method 3

CONTENTS (continued)

3	_	QUANTITATIVE STUDIES OF MODAL RESPONSE COMBINATION		
	MET	CHODS		
	3.1	BM3 Piping Analysis Model		
	3.2	Description of Analyses Performed		
		3.2.1 Baseline Time History Analysis		
		3.2.2 Response Spectrum Analysis		
	3.3	Discussion of Numerical Results		
		3.3.1 Out-of-Phase Modal Response Combination		
		3.3.2 Complete Solution		
	3.4	Summary of Results		
4	SUP	PLEMENTARY STUDY OF ADDITIONAL MODAL RESPONSE		
	CON	IBINATION METHODS		
	4.1	Basis for Study of Additional Modal Response Combination Methods 51		
	4.2	Description of Additional Modal Response Combination Methods		
		4.2.1 Grouping Methods 1 and 2		
		4.2.2 Gupta Method - Variations to Value of f_2		
	4.3	Discussion of Numerical Results for Additional Modal Response Combination		
		Methods		
	4.4	Summary of Results		
5	CON	CLUSIONS AND RECOMMENDATIONS		
	5.1	Technical Conclusions		
	5.2	Recommendation for Revision to Regulatory Guide 1.92 and Standard Review		
		Plan 3.7.2		
	5.3	Recommendations for Additional Evaluation of Modal Response Combination		
		Methods		
6	REF	ERENCES		
AP	PENDL	A: Description of BM3 Piping Model A-1		
	PENDL			
	PENDL			
		for the Same Computer Model		
APPENDIX D:				
		Combination (DSC) and Complete Quadratic Combination (CQC)		
		Methods		

CONTENTS (continued)

Page

APPENDIX E:	Comparison of Time History Solution Methods - Mode Superposition
	vs. Direct Integration E-1
APPENDIX F:	Use of Response Spectrum Generation SDOF Oscillator Responses to
	Establish the Threshold Frequency for In-Phase Modal Responses F-1
APPENDIX G:	Evaluation of Lindley-Yow Method by Professor A.S. Veletsos G-1
APPENDIX H:	Independent Analysis of BM3 Piping Model by Professors
	A.K. Gupta and Abhinav Gupta H-1
APPENDIX I:	Calculation of Missing Mass Contribution to Total Response I-1

List of Figures

3-1	BM3 Piping Model	47
3-2	BM3 Input Spectrum (1%)	48
3-3	BM3 Input Spectrum (5%)	49

List of Tables

3-1	BM3 Model Modal Frequencies	
3-2	BM3 Model-8 Mode Combinations-Time History vs. Response Spectrum	
	Support Reactions	
3-3	BM3 Model-8 Mode Combination-Time History vs. Response Spectrum	
	Pipe End Moments	
3-4	BM3 Model-14 Mode Combination-Time History vs. Response Spectrum	
	Support Reactions	
3-5	BM3 Model-14 Mode Combination-Time History vs. Response Spectrum	
	Pipe End Moments	
3-6	BM3 Model-31 Mode Combination-Time History vs. Response Spectrum	
	Support Reactions	
3-7	BM3 Model-31 Mode Combination-Time History vs. Response Spectrum	
	Pipe End Moments	
3-8	BM3 Model-Modal Time History vs. Method 1-Response Spectrum	
	(14 Modes Plus Missing Mass)-Support Reactions	
3-9	BM3 Model-Modal Time History vs. Method 1-Response Spectrum	
	(14 Modes Plus Missing Mass)-Pipe End Moments	

CONTENTS (continued)

Page

3-10	BM3 Model-Modal Time History vs. Method 2-Response Spectrum
	(14 Modes Using Lindley-Yow Approach Plus Missing Mass)-
	Support Reactions
3-11	BM3 Model-Modal Time History vs. Method 2-Response Spectrum
	(14 Modes Using Lindley-Yow Approach Plus Missing Mass)-
	Pipe End Moments
3-12	BM3 Model-Modal Time History vs. Method 2-Response Spectrum
	(31 Modes Using Lindley-Yow Approach Plus Missing Mass)-
	Support Reactions
3-13	BM3 Model-Modal Time History vs. Method 2-Response Spectrum
5-15	(31 Modes Using Lindley-Yow Approach Plus Missing Mass)-
	Pipe End Moments
3-14	BM3 Model-Modal Time History vs. Method 3-Response Spectrum
J-14	(14 Modes Using Modified Spectrum Approach Plus Static ZPA)-
	Support Reactions
3-15	BM3 Model-Modal Time History vs. Method 3-Response Spectrum
5-15	(14 Modes Using Modified Spectrum Approach Plus Static ZPA)-
	Pipe End Moments
3-16	BM3 Model-Modal Time History vs. Method 3-Response Spectrum
5-10	(14 Modes Using Modified Spectrum Approach Plus Static ZPA)-
,	Support Reactions-5% Damping
3-17	BM3 Model-Modal Time History vs. Method 3-Response Spectrum
J-17	(14 Modes Using Modified Spectrum Approach Plus Static ZPA)-
	Pipe End Moments-5% Damping
3-18	Equivalence of R.: Lindley-Yow Plus Missing Mass vs. Static ZPA
4-1	BM3 Model-14 Mode Combination-Time History vs. Response Spectrum-
1	Support Reactions Comparison Among Different Methods
4-2	BM3 Model-14 Mode Combination-Time History vs. Response Spectrum-
4-2	Pipe End Moments Comparison Among Different Methods
4-3	BM3 Model-14 Modes Plus Missing Mass Combination-Time History vs.
J	Response Spectrum - Support Reactions Comparison Among Different
	Methods
4-4	BM3 Model-14 Modes Plus Missing Mass Combination-Time History vs.
4-4	Response Spectrum-Pipe End Moments Comparison Among Different
	Methods
	Methous

EXECUTIVE SUMMARY

Regulatory Guide 1.92 "Combining Modal Responses and Spatial Components in Seismic Response Analysis" was last revised in 1976. The objective of this project were to re-evaluate the current regulatory guidance for combining modal responses in response spectrum analysis; evaluate recent technical developments; and recommend revisions to the regulatory guidance. In addition, Standard Review Plan (SRP) Section 3.7.2, "Seismic System Analysis," was reviewed to identify related sections which may need to be revised. The objectives were addressed through a literature review of past studies, supplemented by analysis of a piping system model previously utilized in NUREG/CR-5627, "Alternate Modal Combination Methods in Response Spectrum Analysis".

The project evaluated (1) methods for separation of the in-phase and out-of-phase modal response components; (2) methods for combination of the out-of-phase modal response components; (3) the contribution of "missing mass"; and (4) the combination of the three elements of response to produce the total response. Numerical results from response spectrum analyses were compared to corresponding time history analysis results to assess the accuracy of the various combination methods tested.

The methods selected for evaluation were those which have been subjected to the greatest level of prior review and assessment. For separation of the in-phase and the out-of-phase modal response components, the methods proposed by Lindley-Yow, Hadjian and Gupta were evaluated. For combination of the out-of-phase modal response components, the Square Root of the Sum of the Squares (SRSS), NRC Grouping, NRC Ten Percent, Rosenblueth's Double Sum Combination (DSC), the NRC DSC, and Der Kiureghian's Complete Quadratic Combination (CQC) methods were evaluated. For treatment of the "missing mass" contribution, the method of Kennedy was evaluated. Response spectrum analyses were conducted by combining elements of the above methods to construct complete response spectrum analysis solutions.

Baseline time history solutions, utilizing both mode superposition and direct integration methods, were also generated. Excellent correlation between the two time history methods was obtained by adding the missing mass contribution to the mode superposition solution. Missing mass proved to be significant even though the mode superposition solution included 31 modes, up to 70 Hz.

Based on the literature review and the numerical results generated in this project, it is concluded that Rosenblueth's DSC and Der Kiureghian's CQC methods for combining out-of-phase modal response components, coupled with the Lindley-Yow or Gupta method for separation of the in-phase and the out-of-phase modal response components, and inclusion of Kennedy's missing mass contribution to account for modes with frequencies above that corresponding to the Zero Period Acceleration (ZPA) of the response spectrum, constitute the best methodologies currently available for response spectrum analysis.

EXECUTIVE SUMMARY

The NRC Grouping, NRC Ten Percent and NRC-DSC methods for combining out-of-phase modal response components produced more conservative but less accurate results. Removal of these methods from the Regulatory Guide should be considered, because absolute summation of closely spaced modal responses has no documented technical basis. SRSS remains applicable in the absence of closely spaced modes.

Separation of modal responses into in-phase and out-of-phase components for modes with frequencies below the ZPA frequency of the response spectrum produced more accurate results than commonly applied past methods, in which all modes below the ZPA frequency were considered to be out-of-phase. It is important to note that at low frequency (<frequency of the peak spectral acceleration) modal responses should be treated as out-of-phase. A limitation of the Lindley-Yow formulation is that low frequency modal responses are separated into out-of-phase and in-phase components; consequently, when significant low frequency modal responses exist, the Lindley-Yow formulation must be appropriately modified. The Gupta formulation correctly assumes low frequency modes are out-of-phase. This project did not specifically analyze modal response combination methods applied to systems with significant low frequency response.

At the request of the Project Peer Review Panel, an extensive investigation of individual modal response contributions to both the response spectrum and time history solutions was conducted for selected support reactions, in order to explain significant differences in prediction. Once the phenomenon was understood, several variations of the initial modal response combination methods were defined and additional response spectrum analyses were conducted. Improvement in accuracy was achieved. As part of this additional analytical effort, a methodology was defined to utilize the SDOF oscillator responses from the response spectrum generation analysis to establish the frequency above which modal responses are in-phase with the input time history. This technique should be applicable to all response spectra.

During the course of the project, static analysis results for the mass times the ZPA were generated utilizing system mass distributions developed by both the dynamic analysis option and the static analysis option of the same computer code (based on SAP V). Significant differences in solution were noted, which are attributed to differences in the treatment of mass. In the dynamic analysis model, mass is apportioned to node points; in the static analysis model, mass is treated as distributed along the element length. While this situation may not exist in all piping analysis codes, it is important to verify that consistent static analysis results are obtained for both dynamic and static mass distributions. Lack of consistency usually indicates that the element breakup in the piping model is not sufficiently refined to accurately predict support reactions and internal bending moments.

ACKNOWLEDGMENTS

The authors wish to thank Mr. Wallace E. Norris, Mr. Roger M. Kenneally and Dr. Nilesh C. Chokshi of the U.S. Nuclear Regulatory Commission for their guidance and support in carrying out this project. The authors also wish to thank the Peer Review Panel - Dr. Robert P. Kennedy and Professor A.S. Veletsos - for their valuable input and recommendations during the conduct of this project and preparation of this report. The authors wish to acknowledge Dr. Paul Bezler of Brookhaven National Laboratory for his technical assistance and advice in the early stage of this program.

Following completion of the initial draft of this report, Professors A.K. Gupta and Abhinav Gupta of North Carolina State University volunteered to review and comment upon the technical content. Their technical comments and independent analytical results are greatly appreciated, and have been incorporated into the final report.

Special thanks to Ms. Susan Signorelli, Ms. Barbara J. Roland, and Ms. Linda Thompson of Brookhaven National Laboratory for typing and formatting this manuscript.

ABBREVIATIONS

- ASCE American Society of Civil Engineers
- BNL Brookhaven National Laboratory
- CQC Complete Quadratic Combination
- DSC Double Sum Combination
- MODF Multiple Degree of Freedom
- NRC Nuclear Regulatory Commission
- RB-DSC Rosenblueth's Double Sum Combination
- RG Regulatory Guide
- RSA Response Spectrum Analysis
- SDOF Single Degree of Freedom
- SRP Standard Review Plan
- SRSS Square Root of the Sum of the Squares
- ZPA Zero Period Acceleration

1 INTRODUCTION

General Design Criterion 2, "Design Basis for Protection Against Natural Phenomena" of Appendix A, "General Criteria for Nuclear Power Plants" to 10CFR Part 50, "Licensing of Production and Utilization Facilities" requires that nuclear power plant structures, systems, and components which are important to safety be designed to withstand the effects of earthquakes without loss of capability to perform their safety functions. In addition, Paragraph (a)(1) of Section VI of Appendix A, "Seismic and Geologic Siting Criteria for Nuclear Power Plants" to 10CFR Part 100, "Reactor Site Criteria" identifies the use of a suitable dynamic analysis as one method of ensuring that structures, systems, and components can withstand seismic loads. Related requirements for new license applicants (after January 10, 1997) are specified in Paragraph (a) (1) of Section IV of Appendix S, "Earthquake Engineering Criteria for Nuclear Power Plants" to 10 CFR Part 50.

The United States Nuclear Regulatory Commission (NRC) issues Regulatory Guides (RG) which describe methods acceptable to the NRC staff for satisfying regulations. One such guide is RG 1.92, "Combining Modal Responses and Spatial Components in Seismic Response Analysis," (Reference 1). This guide was last revised in 1976, prior to a number of significant technical developments for combining modal responses.

The 1989 revision to Standard Review Plan (SRP) Section 3.7.2, "Seismic System Analysis," (Reference 2) recognized a number of recent technical developments by reference, and stated that their application to nuclear power plant seismic analysis is subject to review on a case-by-case basis. Also incorporated into SRP Section 3.7.2 as Appendix A was a procedure developed by Kennedy (Reference 3) to address high frequency mode effects.

The objective of this project was to evaluate these recent developments for modal response combination, through a literature review and analytical effort, and to provide recommendations for revision of RG 1.92 and SRP Section 3.7.2 which reflect the current state of technology for combining modal responses in seismic response spectrum analysis.

The design of structures, systems, and components for seismic loads is complicated by the uncertainty about the future seismic event. For seismic analysis where an accurate record of the seismic input exists, time history analysis is the best approach to mathematical prediction of seismic structural response. In the seismic design process, two primary approaches are available to account for the uncertainty in the seismic ground motion: perform a number of time history analyses utilizing an appropriate set of acceleration records or perform response spectrum analysis utilizing a bounding peak acceleration vs. frequency spectrum. Either approach, properly implemented, should provide a conservative basis for seismic design.

A significant feature of response spectrum analysis is that only the maximum dynamic response is predicted. In time history analysis, the response vs. time is predicted. The mathematical simplicity of response spectrum analysis is achieved by calculating the independent peak modal

1 INTRODUCTION

responses and then applying a rule for combining these, in order to predict the peak dynamic response. The input response spectrum defines the acceleration to be applied to each natural mode of vibration of the structure, depending on its modal frequency. However, the spectrum provides no information about the time phasing of excitation of these modes.

It is evident that the modal response combination method used to predict the peak dynamic response is a critical element of the response spectrum analysis method. Many researchers have studied this specifically for seismic analysis, and a number of increasingly sophisticated methods have been developed. In 1984, Kennedy (Reference 3) reviewed alternate methods for modal response combination for the NRC and provided recommendations for revision to regulatory guidance. Gupta (Reference 4, Chapter 3) provides an excellent review of these developments up to the late 1980's, including his own modal response combination method. In 1994, Mertens (Reference 5) presented a refinement of previously developed methods for combining amplified modal responses.

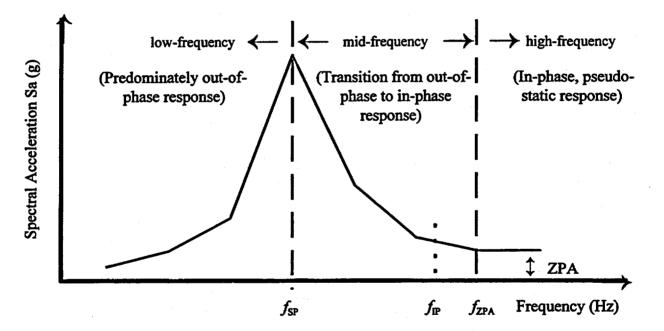
This present investigation does not address the issue of seismic design methodology - time history analysis vs. response spectrum analysis. It is focused on comparison and evaluation of different modal response combination methods for use in response spectrum analysis. Because the objective of response spectrum analysis is to predict, with reasonable accuracy, the peak dynamic response to a time varying acceleration input, comparison to time history solutions is the primary method employed to evaluate the applicability and limitations of the various modal response combination methods.

The initial phase of this program focused on review of the technical literature and selection of candidate modal response combination methods for more detailed evaluation. Acceptable methods in RG 1.92 were also included to provide a comparison to more recent technical developments. References 3 and 4 provided an excellent starting point. In addition, prior numerical studies conducted by Brookhaven National Laboratory (References 6, 7, 8) on response spectrum analysis of piping systems provided a quantitative database for alternate modal response combination methods. Industry standards such as ASCE Standard 4 (References 9, 10) were also reviewed. The work of Maison et al (Reference 11) provided a numerical study of different modal response combination methods applied to a building structure. A significant body of additional reference material was included in the literature review.

The methods selected for evaluation were those which have been subjected to the greatest level of prior review and assessment. The evaluation addressed (1) methods for combination of the out-of-phase modal response components; (2) methods for separation of the in-phase and out-of-phase modal response components; (3) the contribution of high frequency modal responses; and (4) combination of the three elements of response to produce the total response. The term "in-phase" denotes the response component that is in-phase with the time varying input acceleration; the term "out-of-phase" denotes the response component that is not in-phase with the time

varying input acceleration. Gupta (Reference 4) refers to these as the "rigid" or "pseudo-static" response and the "damped periodic" response, respectively.

It is important to note that individual modal responses which are each "out-of-phase" with respect to the time varying input acceleration may be nearly in-phase with each other. This is commonly referred to as the "closely spaced modes" issue, because modes close in frequency are likely to respond nearly in-phase with each other when excited by the same time varying input acceleration. This is addressed by methods for combination of the "out-of-phase" modal responses.


Modes with frequencies higher than the frequency (f_{ZPA}) at which the spectral acceleration returns to the Zero Period Acceleration (ZPA) respond pseudo-statically to the time varying input acceleration and, therefore, are in-phase with each other. The contribution of these modes to the total response is most accurately and efficiently treated by static analysis of the "missing mass" (i.e., system mass not participating in the modes with frequencies below f_{ZPA}) multiplied by the ZPA. Modes with frequencies in the amplified region of the response spectrum ($f < f_{ZPA}$) generally have both an in-phase component and an out-of-phase component. The in-phase modal response components and the missing mass contribution are combined algebraically, to produce the total in-phase response component.

For combination of the out-of-phase modal response components, Square Root of the Sum of the Squares (SRSS), NRC Grouping, NRC Ten Percent, Rosenblueth's DSC (Reference 12), NRC-DSC, and Der Kiureghian's CQC (Reference 13) methods were evaluated. For separation of the in-phase and the out-of-phase modal response components, the methods proposed by Lindley and Yow (Reference 14), Hadjian (Reference 15), and Gupta (Reference 4) were evaluated. For treatment of the missing mass contribution, the method of Kennedy (Reference 3) was evaluated.

2 DESCRIPTION OF MODAL RESPONSE COMBINATION METHODS

To lay the groundwork for the ensuing discussions of modal response combination methods, it is necessary to define the different regions of a typical seismic response spectrum and key frequencies which divide these regions. The major application of seismic response spectrum analysis in the nuclear industry is for systems and components attached to building structures.

A building-filtered in-structure response spectrum depicting spectral acceleration vs. frequency is the typical form of seismic input for such analyses. This type of spectrum usually exhibits a pronounced peak at the fundamental frequency of the building/soil dynamic system. An idealized in-structure response spectrum is shown below; the spectral regions and key frequencies are indicated.

- f_{SP} = frequency at which the peak spectral acceleration is reached; typically the fundamental frequency of the building/soil system
- f_{ZPA} = frequency at which the spectral acceleration returns to the zero period acceleration (ZPA)
- $f_{\rm IP}$ = frequency above which the SDOF modal responses are considered to be in-phase with the time varying input acceleration used to generate the response spectrum

NUREG/CR-6645

5

The high frequency region of the spectrum (> f_{ZPA}) is characterized by no amplification of the peak acceleration of the input time history. A SDOF oscillator having a frequency > f_{ZPA} is accelerated in-phase and with the same acceleration magnitude as the applied acceleration, at each instant in time. A system or component with fundamental frequency > f_{ZPA} is correctly analyzed as a static problem subject to a loading equal to its mass times the ZPA. The system or component is said to respond "pseudo-statically." This concept can be extended to the high frequency (> f_{ZPA}) modal responses of multi-modal systems or components. The mass not participating in the amplified modal responses (i.e., "missing mass") multiplied by the ZPA is applied in a static analysis, to obtain the response contribution from all modes with frequencies > f_{ZPA} .

In the low-frequency region of the spectrum ($\langle f_{SP} \rangle$), the modal responses of SDOF oscillators are not in-phase with the applied acceleration time history, and generally are not in-phase with each other. These are designated "out-of-phase" modal responses. Since a response spectrum provides only peak acceleration vs. frequency, with no phasing information, the out-of-phase peak modal responses for a multi-modal structural system requires a rule or methodology for combination. Based on the assumption that the peak modal responses are randomly phased, the square root of the sum of the squares (SRSS) method was developed and adopted. Modifications to the SRSS method were subsequently developed, in order to account for potential phase correlation when modal frequencies are numerically close (i.e., "closely spaced modes").

In the mid-frequency region (f_{SP} to f_{ZPA}), it has been postulated that the peak SDOF oscillator modal responses consist of two distinct and separable elements. The first element is the out-ofphase response component and the second element is the in-phase response component. It is further postulated that there is a continuous transition from out-of-phase response to in-phase response. If $f_{IP} < f_{ZPA}$ can be defined, then the mid-frequency region can be further divided into two sub-regions: $f_{SP} < f < f_{IP}$ and $f_{IP} < f < f_{ZPA}$.

It is noted that past practice in the nuclear power industry has been to assume that individual modal responses in the mid-frequency region ($f_{SP} < f < f_{ZPA}$) are out-of-phase, and that the combination methods applicable to the low-frequency region are also applicable to the mid-frequency region.

Three elements are needed to define a suitable methodology for the mid-frequency region:

- 1) A definition for $f_{\rm IP}$.
- 2) A method for separating the in-phase and out-of-phase components of individual peak modal responses.
- 3) A phase relationship for combining the total out-of-phase response component with the total in-phase response component.

Methods for modal response combination are described in the following sections, where the following notation is used:

- $Sa_i = Spectral Acceleration for mode i$
- $R_i = Response of mode i$
- α_i = In-phase response ratio for mode i
- $Rr_i = In-phase response component for mode i$
- Rp_i = Out-of-phase response component for mode i
- Rr = Total in-phase response component from all modes
- Rp = Total out-of-phase response component from all modes
- Rt = Total combined response from all modes
- C_{ik} = Modal response correlation coefficient between modes j and k.

2.1 Combination of Out-of-Phase Modal Response Components

In generalized form, all of the out-of-phase modal response combination methods can be represented by a single equation:

$$Rp = \left[\sum_{j=1}^{n} \sum_{k=1}^{n} C_{jk} Rp_{j} Rp_{k}\right]^{\frac{1}{2}}$$
 (Eqn. 2 - 1)

The mode correlation coefficients C_{ik} are uniquely defined for each method.

2.1.1 Square Root of the Sum of the Squares (SRSS) Method

At the foundation of all methods for combining uncorrelated modal responses is the SRSS method. All of the methods for combination of the out-of-phase response components are equivalent to SRSS if there are no "closely spaced" modes.

In this case,

$$C_{jk} = 1.0 \text{ for } j = k$$

 $C_{jk} = 0.0 \text{ for } j \neq k$
(Eqn. 2 - 2)

and Equation 2-1 reduces to:

$$Rp = \left[\sum_{i=1}^{n} Rp_{i}^{2}\right]^{\frac{1}{2}}$$
 (Eqn. 2 - 3)

2.1.2 NRC Grouping Method

The NRC Grouping Method (Reference 1) is the most commonly applied method of accounting for closely spaced modes in the nuclear power industry. The system modal responses are grouped and summed absolutely before performing SRSS combination of the groups. To illustrate the method, consider a system with 10 modes, with responses Rp_1 through Rp_{10} , and associated frequencies f_1 through f_{10} having the following distribution:

The modal responses are grouped such that the lowest and highest frequency modes in a group are within 10% and no mode is in more than one group. Using the distribution above, the following groups are created:

$$GR_1 = Rp_1$$

 $GR_2 = |Rp_2| + |Rp_3| + |Rp_4|$
 $GR_3 = |Rp_5| + |Rp_6|$
 $GR_4 = Rp_7$

$$GR_{5} = |Rp_{8}| + |Rp_{9}| + |Rp_{10}|$$
$$Rp = \left[\sum_{i=1}^{n} GR_{i}^{2}\right]^{\frac{1}{2}}$$

(Eqn. 2 - 4)

In this illustration, n = 5.

The major criticism of the NRC Grouping Method is the use of absolute summation within each group. If modal responses are assumed to be correlated because they have closely spaced frequencies, then summation should be algebraic within each group. The bias toward conservatism in the NRC Grouping Method is somewhat contradictory to the basic premise for grouping.

When expressed in terms of the mode correlation coefficients C_{jk} , the NRC Grouping Method may be defined as follows:

$C_{jk} = 1.0$	for $j = k$	
$C_{jk} = 0.0$	for $j \neq k$, not in same group	(Eqn. 2 - 5)
$C_{jk} = 1.0$	for $j \neq k$, in the same group, Rp_j and Rp_k have same sign	(12 q u. <i>2 - 3)</i>
$C_{jk} = -1.0$	for $j \neq k$, in the same group, Rp_j and Rp_k have opposite signs	

In implementing the NRC Grouping Method, the approach presented in the illustration is more straightforward.

2.1.3 NRC Ten Percent Method

The NRC Ten Percent Method (Reference 1) is a generally more conservative variation of the NRC Grouping Method. Closely spaced modes are defined as modes with frequencies within 10% of each other and absolute summation of the closely spaced modal responses is specified. The difference is that modal responses are not grouped.

In terms of the mode correlation coefficients, C_{jk} , the NRC Ten Percent Method is defined as follows:

$C_{jk} = 1.0$	for $j = k$	
$C_{jk} = 0.0$	for $j \neq k$, and f_j and f_k separated by > 10% of the lower frequency	
$C_{jk} = 1.0$	for $j \neq k$, and f_j and f_k separated by $\leq 10\%$ of the lower frequency; Rp_j and Rp_k same sign	(Eqn. 2 - 6)
$C_{jk} = -1.0$	for $j \neq k$, f_j and f_k separated by $\leq 10\%$ of the lower frequency; Rp _i and Rp _k opposite signs	

The definition of C_{jk} is analogous to that for the NRC Grouping Method, except that grouping is not performed.

As an illustration of the difference between these two methods, assume three modal responses Rp_1 , Rp_2 , Rp_3 with frequencies f_1 , f_2 , f_3 and a frequency distribution defined as follows:

 $f_2 \le 1.1 f_1$ $1.1f_1 \le f_3 \le 1.1 f_2$

By the NRC Grouping Method,

$$Rp = \left[\sum_{i=1}^{2} GR_{i}^{2}\right]^{1/2}$$

$$GR_1 = |Rp_1| + |Rp_2|$$
$$GR_2 = Rp_3$$

or

where

$$Rp = \left[\sum_{i=1}^{3} Rp_{i}^{2} + 2 |Rp_{1} * Rp_{2}|\right]^{\frac{1}{2}}$$

By the NRC Ten Percent Method,

$$Rp = \left[\sum_{i=1}^{3} Rp_{i}^{2} + 2|Rp_{1} * Rp_{2}| + 2|Rp_{2} * Rp_{3}|\right]^{\frac{1}{2}}$$

The NRC Ten Percent Method has an additional contribution to Rp because $f_3 \le 1.1 f_2$. The NRC Ten percent Method will always produce results \ge the NRC Grouping Method.

2.1.4 Rosenblueth's Double Sum Combination (DSC)

Rosenblueth (Reference 12) provided the first significant mathematical approach to evaluation of modal correlation for seismic response spectrum analysis. It is based on the application of random vibration theory, utilizing a finite duration of white noise to represent seismic loading. A formula for calculation of the coefficients C_{jk} as a function of the modal circular frequencies (ω_j , ω_k), modal damping ratios (β_j , β_k), and the time duration of strong earthquake motion (t_D) was derived. Using the form of the equation from Reference 1,

$$C_{jk} = \frac{1}{1 + \left\{ \frac{\omega_{j} - \omega_{k}}{\beta_{j}' \omega_{j} + \beta_{k}' \omega_{k}} \right\}^{2}}$$

where $\omega_{()}' = \omega_{()} \left[1 - \beta_{()}^{2} \right]^{\frac{1}{2}}$
 $\beta_{()}' = \beta_{()} + \frac{2}{t_{D}'} \omega_{()}$

(Eqn. 2 - 7)

Appendix D tabulates numerical values of C_{jk} for the DSC Method as a function of frequency, frequency ratio, and strong motion duration time for constant modal damping of 1%, 2%, 5% and 10%. The effect of t_D is most significant at 1% damping and low frequency. For 5% and 10% damping, $t_D = 10$ sec. and 1000 sec. produced similar values for C_{jk} regardless of frequency. The most significant result is that C_{jk} is highly dependent on the damping ratio. For 2%, 5% and 10% damping, $C_{jk} \approx 0.2$, 0.5 and 0.8 respectively, at a frequency ratio of 0.9 (modal frequencies within 10%). In comparison, the definition of closely-spaced modes used in the NRC Grouping and Ten Percent Methods are not damping-dependent.

2.1.5 NRC Double Sum Combination (NRC-DSC)

The NRC-DSC Method (Reference 1) is an adaptation of Rosenblueth's method, described in Section 2.1.4. The coefficients C_{jk} are defined by Equation 2-7. A conservative modification, consistent with the NRC Grouping and Ten Percent methods, is that the product $C_{jk} Rp_j Rp_k$ is always taken as positive. In Rosenblueth's method, the product may be either positive or negative, depending on the signs of Rp_j and Rp_k . Consequently, NRC-DSC will always produce results \geq Rosenblueth's method.

2.1.6 Der Kiureghian's Complete Quadratic Combination (CQC)

Der Kiureghian (Reference 13) presents a methodology similar to Rosenblueth's Double Sum Combination (Reference 12) for evaluation of modal correlation for seismic response spectrum analysis. It is also based on application of random vibration theory, but utilizes an infinite duration of white noise to represent seismic loading. The following formula for calculation of the coefficients C_{jk} as a function of modal circular frequencies and modal damping ratios was derived:

$$C_{jk} = \frac{8 (\beta_{j} \beta_{k} \omega_{j} \omega_{k})^{\frac{1}{2}} * (\beta_{j} \omega_{j} + \beta_{k} \omega_{k}) * \omega_{j} \omega_{k}}{(\omega_{j}^{2} - \omega_{k}^{2})^{2} + 4 \beta_{j} \beta_{k} \omega_{j} \omega_{k} (\omega_{j}^{2} + \omega_{k}^{2}) + 4 (\beta_{j}^{2} + \beta_{k}^{2}) \omega_{j}^{2} \omega_{k}^{2}}$$
(Eqn. 2 - 8)

While the form of Equation 2-8 differs significantly from Equation 2-7, the two equations produce equivalent results if t_D is assumed very large in Equation 2-7. This is shown in Appendix D, where C_{ik} is tabulated for DSC with $t_D = 1000$ sec. and for CQC.

2.1.7 ASCE Standard 4 Recommended Methods

For combination of out-of-phase modal response components, ASCE Standard 4 (Reference 9) specifies the DSC Method (Equation 3200-16). The NRC methods and CQC are also recognized in the commentary.

Draft ASCE Standard 4 (Reference 10) specifies a modified DSC Method (Equation 3200-19) or the CQC Method (Equation 3200-22) as an alternative. The commentary to the Draft ASCE Standard (Reference 10) indicates that Equation 3200-19 produces correlation coefficients "which are practically the same" as Equation 3200-22. Although not indicated, the modified DSC Method presented in Equation 3200-19 was developed by Gupta (Reference 4).

Because they essentially duplicate the DSC and CQC methods, the ASCE methods will not be referenced in the numerical evaluation presented in Chapter 3. However, the numerical results for DSC and CQC are applicable.

2.2 Separation of Modal Responses into Out-of-Phase Components and In-Phase Components

Three methods have received considerable prior review and evaluation: Lindley-Yow (Reference 14), Hadjian (Reference 15), and Gupta (Reference 4). It should be noted that the mathematical statement of each method is not restricted to the mid-frequency range ($f_{SP} < f < f_{ZPA}$) of the response spectrum. However, as discussed at the beginning of this chapter, it is in the mid-frequency range that the separation of individual peak modal responses into out-of-phase and in-phase modal response components is applicable. For $f \leq f_{SP}$, modal responses should be considered out-of-phase and combined by the methods presented in Section 2.1. For $f \geq f_{ZPA}$, modal responses are in-phase and are most accurately accounted for by the method of Kennedy (Reference 3).

The similarities and differences, as well as the limitations, of the three methods are described in the following sections.

2.2.1 Lindley-Yow Method

In its most general form, the Lindley-Yow method (Reference 14) may be defined by the following equations:

- $\alpha_i = ZPA/Sa_i \qquad 0 \le \alpha_i \le 1.0$ (Eqn. 2 9)
 - $Rr_i = R_i * \alpha_i$ (Eqn. 2 10)

$$Rp_i = R_i * \sqrt{1 - \alpha_i^2}$$
 (Eqn. 2 - 11)

$$Rr = \sum_{i=1}^{n} Rr_i$$
 (Eqn. 2 - 12)

$$Rp = \left[\sum_{j=1}^{n} \sum_{k=1}^{n} C_{jk} Rp_{j} Rp_{k}\right]^{\frac{1}{2}}$$
(Eqn. 2 - 13)

$$Rt = \sqrt{Rr^{2} + Rp^{2}}$$
(Eqn. 2 - 14)

where the C_{jk} 's are defined by one of the methods for combining the out-of-phase modal response components described in Section 2.1.

From these mathematical relationships, the following characteristics of the Lindley-Yow method are observed:

- $\alpha_i \rightarrow 1.0$ as $f_i \rightarrow f_{ZPA}$ (Sa_i = ZPA). Consequently, $f_{IP} = f_{ZPA}$ in the Lindley-Yow method.
- The in-phase component of modal response for every mode has an associated acceleration equal to the ZPA.
- The out-of-phase component of an individual peak modal response has an associated modified spectral acceleration given by

$$\overline{S}a_i = \left[Sa_i^2 - ZPA^2\right]^{\frac{1}{2}}$$
(Eqn. 2 - 15)

- $R_i = (Rp_i^2 + Rr_i^2)^{\frac{1}{2}}$; which infers that the in-phase and out-of-phase response components of an individual peak modal response are uncorrelated and, therefore, combine by SRSS.
- All in-phase modal response components (Rr_i) are summed algebraically to obtain Rr.
- All-out-of-phase modal response components (Rp_i) are combined by a suitable method (as described in Section 2.1) to obtain Rp.
- The total response, Rt, is obtained by SRSS combination of Rr and Rp; i.e., Rr and Rp are uncorrelated.
- α_i attains its minimum value at $f_i = f_{SP}$, but increases for $f_i < f_{SP}$ until it attains a value of 1.0 when Sa_i = ZPA in the low frequency region of the spectrum. Values of $\alpha_i > 1.0$ have no meaning because $(1 \alpha_i^2)^{\frac{1}{2}}$ becomes imaginary.

An obvious limitation of the Lindley-Yow method is in the low frequency range $(f < f_{SP})$ of the response spectrum. There is no physical basis for assuming that low frequency modal responses become increasingly in-phase with the input acceleration time-history, which is an outcome if the Lindley-Yow method is applied to low frequency modal responses. Modal responses in the low frequency range are generally out-of-phase with the input acceleration time history. Therefore, the Lindley-Yow method is applicable to structural systems which do not have significant modal responses with $f_i < f_{SP}$. Lindley and Yow (Reference 14) do not address this limitation. For the sample problems presented in Reference 14, the lowest system frequency is greater than f_{SP} of the applied response spectrum. Therefore, the results reported in Reference 14 are not affected by this limitation. Circumventing this limitation in the Lindley-Yow method is straightforward: apply it only to those modes with $f_i \ge f_{SP}$ and set $\alpha_i = 0$ for $f_i \le f_{SP}$.

Professor A.S. Veletsos, one of the project peer reviewers, provided an independent evaluation of the Lindley-Yow method and its limitation, as part of his review of the project results and conclusions. His evaluation is included as Appendix G to this report.

For a structural system with fundamental frequency $\geq f_{SP}$, the Lindley-Yow method lends itself to a relatively straightforward physical interpretation. In the limit, if all modes are retained in the solution, the total mass participation is unity. Applying the Lindley-Yow method is equivalent to performing a static analysis of the system loaded by total mass times the ZPA, and performing the response spectrum analysis for amplified modes $f < f_{ZPA}$ using modified spectral accelerations, \overline{Sa}_i given by Equation 2-15. The total dynamic response is then obtained by SRSS combination.

The Lindley-Yow method automatically provides for algebraic combination of modal responses above f_{ZPA} , because $\alpha_i = 1.0$, $Rp_i = 0$, and $Rr_i = R_i$. However, to completely account for the modal response above f_{ZPA} , all system modes of vibration need to be included in the analysis. This contribution is most accurately and efficiently calculated by use of the missing mass method discussed in Section 2.3. Therefore, while in theory, the Lindley-Yow method includes the inphase contribution from modes above f_{ZPA} , its practical application is for modal responses below f_{ZPA} , coupled with the missing mass method for modal contributions above f_{ZPA} . It is noted that the Lindley-Yow/missing mass approach will produce identical results for any modal analysis cutoff frequency $\geq f_{ZPA}$.

2.2.2 Hadjian Method

The Hadjian Method (Reference 15) is similar in formulation to the Lindley-Yow method, with two notable differences:

• Equation 2-11 is replaced by

$$Rp_i = R_i * (1 - \alpha_i)$$
 (Eqn. 2 - 16)

• Equation 2-14 is replaced by

Rt = |Rp| + |Rr|

(Eqn. 2 - 17)

• The modified spectral acceleration is given by

$$\overline{S}a_i = Sa_i - ZPA$$
 (Eqn. 2 - 18)

NUREG/CR-6645

15

The Hadjian method has the same limitation as the Lindley-Yow method in the low frequency range, because the definition of α_i is identical. However, the Hadjian Method possesses internal contradictions with respect to the assumed phase relationships between in-phase and out-of-phase response components. Combining Equations 2-10 and 2-16 yields

$$R_i = Rp_i + Rr_i$$
 (Eqn. 2 - 19)

This implies that the in-phase and out-of-phase response components for each mode are in-phase with each other. However, all Rr_i's are in-phase and summed algebraically, per Equation 2-12, to obtain Rr. Therefore, it would follow that all Rp_i's are also in-phase and should be summed algebraically to obtain Rp. This contradicts Equation 2-13, in which the Rp_i's are assumed to be predominantly out-of-phase. Kennedy (Reference 3) previously identified this contradiction. On this basis, the Hadjian method is not recommended and is not included in the numerical studies presented in Chapter 3.

2.2.3 Gupta Method

The Gupta Method (Reference 4) is identical in form to the Lindley-Yow method. The one very significant difference is the definition of α_i . Equations 2-10 through 2-14 remain the same. In the Gupta method, α_i is an explicit function of frequency. The original basis for definition of α_i is semi-empirical, derived from numerical studies using actual ground motion records. A best fit equation, which defines α_i as a continuous function of frequency, was developed from the results of the numerical studies.

Two spectrum-dependent frequencies (f_1, f_2) are first defined as follows:

$$f_1 = \frac{\mathrm{Sa}_{\mathrm{max}}}{2\pi \mathrm{Sv}_{\mathrm{max}}}$$
(Eqn. 2-20)

where Sa_{max} and Sv_{max} are the maximum spectral acceleration and velocity, respectively.

$$f_2 = (f_1 + 2 f_{ZPA})/3$$
 (Eqn. 2-21)

2-22)

Gupta's definition of α_i is given by:

$$\alpha_{i} = 0 \text{ for } f_{i} \leq f_{1}$$

$$\alpha_{i} = \frac{\ell n \left(f_{i} / f_{1} \right)}{\ell n \left(f_{2} / f_{1} \right)} \text{ for } f_{1} \leq f_{i} \leq f_{2}$$

$$\alpha_{i} = 1.0 \text{ for } f_{i} \geq f_{2}$$
(Eqn.

For a sharply peaked, in-structure response spectrum,

 $f_1 = f_{SP}$

because $Sv_{max} = Max (Sa_i / \omega_i) = Sa_{max} / \omega_{SP}$

Substitution into Equation 2-20 yields

$$f_1 = \frac{\omega_{\rm SP}}{2\pi} = f_{\rm SP}$$

The corresponding definition of f_2 yields

$$f_2 = (f_{SP} + 2f_{ZPA})/3$$

For a sharply peaked, in-structure response spectrum, the Gupta method has the following characteristics:

- For f_i ≤ f_{SP}, α_i = 0.
 Consequently, all modal responses with f_i ≤ f_{SP} are treated as out-of-phase. The limitation in the Lindley-Yow definition of α_i for f_i ≤ f_{SP} does not apply to Gupta's method.
- For f₂ ≤ f_i ≤ f_{ZPA}, α_i = 1.0 Consequently, all modal responses with f_i ≥ f₂ are treated as in-phase. This infers that f_{IP} = f₂ in the Gupta method.
- Only modal responses with $f_{SP} < f_i < f_2$ are separated into out-of-phase and in-phase response components.

The potential limitations of the Gupta method lie in the semi-empirical basis for definition of α_i as a function of f_i . The range of applicability is difficult to assess without a comprehensive numerical study using ground and in-structure acceleration records. In Reference 4, Gupta indicates that α_i can be numerically evaluated if the time history used to generate the response spectrum is known. It is implied without stating that numerical evaluation of α_i is more accurate than the semi-empirical definition of α_i given by Equation 2-22.

The overall structure of the Gupta method is superior to the Lindley-Yow method because there is no limitation for modal responses with $f_i < f_{SP}$. In addition, any value of $f_{IP} \le f_{ZPA}$ can be accommodated by setting $f_2 = f_{IP}$, in lieu of Equation 2-21.

For the initial numerical studies described in Chapter 3, the Lindley-Yow method was selected to evaluate the importance of separating modal responses into out-of-phase and in-phase response components. For the follow-up numerical studies described in Chapter 4, the Gupta method was selected in order to evaluate the influence of $f_{\rm IP}$ on the response spectrum solution. This was accomplished by selecting three different numerical values for f_2 .

2.2.4 ASCE Standard 4 Recommended Methods

For separation of in-phase and out-of-phase response components, ASCE Standard 4 (Reference 9) recognizes the Lindley-Yow, Hadjian, and Gupta Methods in the commentary.

Draft ASCE Standard 4 (Reference 10) specifies separation of the in-phase and out-of-phase response components consistent with Gupta's method (Eqns. 3200-18, 3200-20, and 3200-21) except that $f_2 = f_r$ (defined as the "cutoff frequency or ZPA frequency") is substituted for Equation 2-21. The frequency f_r is not clearly defined, but is $\leq f_{ZPA}$. The Lindley-Yow and Hadjian methods are recognized in the commentary to Reference 10.

2.3 Contribution of High Frequency Modes

2.3.1 Missing Mass Method

The "Missing Mass" Method is a convenient, computationally efficient and accurate method to (1) account for the contribution of all modes with frequencies above the frequency (f_{ZPA}) at which the response spectrum returns to the Zero Period Acceleration (ZPA) and (2) account for the contribution to support reactions of mass which is apportioned to system support points. It constitutes the total effect of all system mass which does not participate in (i.e., "missing" from) the modes with frequencies below f_{ZPA} . The system response to the missing mass is calculated by performing a static analysis for applied loads equal to the missing mass multiplied by the spectrum ZPA. This method is mathematically rigorous and is considered the only acceptable

method to account for high frequency modal contributions ($f \ge f_{ZPA}$) and mass apportioned to system support points.

Kennedy (Reference 3) documented this method and recommended that it be included in Regulatory Guidance. The 1989 revision to the SRP Section 3.7.2, "Seismic System Analysis," (Reference 2) incorporated Kennedy's recommendation as Appendix A. The mathematical details are presented in both References 2 and 3. For completeness, the mathematical formulation is included as Appendix I to this report. The guideline provided in References 2 and 3, that the missing mass contribution needs to be considered only if the fraction of missing mass at any degree of freedom exceeds 0.1, should be eliminated. This guideline does not consider the total mass which is missing, which in the limit could be 10%. In a static analysis this represents a 10% reduction in the applied load. The missing mass contribution should be calculated in all response spectrum analyses, because its potential effect on support reactions is difficult to judge based on the fraction of missing mass. This calculation has been automated in a number of piping analysis codes and does not represent a significant computational effort.

The missing mass contribution to the response spectrum analysis solution represents response which is completely in-phase with the time varying acceleration input and can be scaled to the instantaneous acceleration to obtain its contribution at any specific point in time. This characteristic is not important in response spectrum analysis because only peak response is predicted. In this case, the ZPA is used to generate the missing mass loading. However, the importance of the missing mass contribution is not limited to response spectrum analysis only. Mode superposition time history analysis is most accurately and efficiently performed by a procedure similar to that employed in response spectrum analysis (Reference 4). Only modes which vibrate at frequencies below f_{ZPA} need to be included in the transient mode superposition solution. The missing mass contribution, scaled to the instantaneous acceleration, is then algebraically summed with the transient solution at the corresponding time to obtain the total solution. This method is more rigorous and accurate than including additional modes in the transient mode superposition solution. Even if additional modes are included, it is still necessary to calculate the missing mass for the excluded, higher frequency modes and system support points. This is quantitatively demonstrated in Appendix E of this report.

Use of the Missing Mass method for calculating the contribution of high frequency modes is recommended in Draft ASCE Standard 4 (Reference 10) for both response spectrum analysis (Eqn. 3200-8) and mode superposition time history analysis (Eqn. 3200-5). In Reference 10, this is referred to as the "residual rigid response due to the missing mass."

2.3.2 Static ZPA Method

The Lindley-Yow Method (Reference 14) defines the acceleration of the in-phase response component of all modes to be the ZPA of the response spectrum. As discussed in Section 2.2.1, the algebraic summation of the in-phase response components for all modes (Rr) is equivalent to the static response for a load equal to the total mass times the ZPA. When using the Lindley-Yow method, an alternate approach to including the contribution of high frequency ($f \ge f_{ZPA}$) modes is to calculate Rr directly by the Static ZPA method. This eliminates the need for calculation of the missing mass, since it is automatically included in the static analysis of total mass times ZPA. The out-of-phase response component (Rp) is calculated in accordance with the Lindley-Yow method.

During the course of numerically verifying the equivalence between Rr calculated by Lindley-Yow plus Missing Mass approach and Rr calculated by the Static ZPA Method, a significant result was obtained which led to a supplementary study of differences in mass distribution defined in a dynamic analysis model and in a static analysis model. Using a BNL version of SAP V adapted for piping analysis, correlation was not initially achieved. Further investigation identified the source of the discrepancy to be the different treatments of the piping system mass. Calculation of Rr by the Lindley-Yow plus Missing Mass approach utilized the dynamic analysis model, in which the distributed piping system mass is replaced by discrete masses at the nodes of the model. Calculation of Rr by the Static ZPA Method initially utilized a static analysis model, in which the mass remains distributed along the pipe elements. For the BM3 model, the differences in mass distribution led to significant discrepancies in the support reactions predicted by the two analyses. When the discrete mass distribution from the dynamic analysis model was utilized in the static ZPA method, all discrepancies disappeared and equivalence between the two approaches to calculate Rr was verified. This issue is further evaluated in Appendix C; guidelines for ensuring that the model discretization is sufficient to accurately represent the distributed mass are also provided.

2.4 Complete Solution for Response Spectrum Analysis

For the numerical studies presented in Chapter 3, three approaches are used to define the complete response spectrum analysis solution. For simplicity, these have been designated Method 1, Method 2, and Method 3, and are defined below. The coefficients C_{jk} are defined by one of the out-of-phase combination methods (Section 2.1.1 through 2.1.6). In the numerical studies, all six methods were tested in conjunction with Methods 1, 2, and 3.

2.4.1 Method 1

Method 1 represents the common method applied to response spectrum analysis since the 1980's. Amplified modal responses ($f < f_{ZPA}$) are combined by SRSS with a correction for closely spaced modal frequencies. The contribution of unamplified modal responses ($f > f_{ZPA}$) is calculated by

the missing mass method of Section 2.3.1. These two components are then combined by SRSS to produce the total solution. Mathematically, this is represented by

$$Rp = \left[\sum_{j=1}^{n} \sum_{k=1}^{n} C_{jk} R_{j} R_{k}\right]^{1/2}$$

n = no. of modes below
$$f_{ZPA}$$
 (Eqn. 2-23)

1.1

 $Rr = R_{\text{missing mass}}$ $Rt = \sqrt{Rp^2 + Rr^2}$

2.4.2 Method 2

Method 2 introduces the concept of in-phase and out-of-phase modal response components for the amplified modes ($f < f_{TPA}$). Mathematically, the complete solution is represented by

$$Rp_{i} = R_{i} * (1 - \alpha_{i}^{2})^{\frac{1}{2}}$$

$$Rr_{i} = R_{i} * \alpha_{i}$$

$$Rp = \left[\sum_{j=1}^{n} \sum_{k=1}^{n} C_{jk} Rp_{j} Rp_{k}\right]^{\frac{1}{2}}$$

$$n = no. \text{ of modes below } f_{ZPA}$$
(Eqn. 2-24)

$$Rr = \sum_{i=1}^{n} Rr_{i} + R_{\text{missing mass}}$$
$$Rt = \sqrt{Rp^{2} + Rr^{2}}$$

The method recommended in Draft ASCE Standard 4 (Reference 10) for obtaining the complete response spectrum analysis solution (Eqns. 3200-17 and 3200-18) is essentially equivalent to Method 2.

Method 2 is equally applicable to both the Lindley-Yow (Section 2.2.1) and the Gupta (Section 2.2.3) methods. Only the definition of α_i changes. For the initial numerical study described in

Chapter 3, the Lindley-Yow method was selected for implementation. For the follow-up numerical study described in Chapter 4, the Gupta method was implemented.

2.4.3 Method 3

Method 3 is a variation of Method 2, which utilizes the Static ZPA Method of Section 2.3.2 to calculate Rr. Mathematically, the complete solution is represented by

$$Rp_{i} = R_{i} * (1 - \alpha_{i}^{2})^{\frac{1}{2}}$$
$$Rp = \left[\sum_{j=1}^{n} \sum_{k=1}^{n} C_{jk} Rp_{j} Rp_{k}\right]^{\frac{1}{2}}$$

n = no. of modes below f_{ZPA}

(Eqn. 2-25)

$$Rr = R_{\text{static ZPA}}$$
$$Rt = \sqrt{Rp^2 + Rr^2}$$

Method 3 is compatible only with the Lindley-Yow method, because calculation of Rr by the Static ZPA Method is based on the Lindley-Yow definition for α_i , per Equation 2-9.

3 QUANTITATIVE STUDIES OF MODAL RESPONSE COMBINATION METHODS

In addition to the qualitative review presented in Section 2, a series of analyses were conducted to provide a quantitative basis for recommending revisions to regulatory guidance on modal combination methods. A piping system model previously utilized in the NUREG/CR-5627 study conducted by BNL (Reference 6) was selected for analysis. This model is designated BM3. Detailed descriptions of the BM3 model and the seismic loading are presented in Appendices A and B respectively. A brief description of the model and loading is provided in Section 3.1

3.1 BM3 Piping Analysis Model

Figure 3-1 shows a schematic of the BM3 piping model, including node, element, support, and pipe size information. Table 3-1 provides a list of the first 31 natural frequencies (up to 70 Hz) for the BM3 model. Appendix A also includes a printout of the computer model, the nodal mass distribution, and the mode participation factors. Figures 3-2 and 3-3 show the 1% and 5% damping, unbroadened acceleration response spectra of the input time history. The 1% response spectrum was used as x-direction input for all response spectrum analysis (RSA) conducted, with one exception. One analysis using the 5% spectrum was conducted in order to assess the effect of damping on the behavior of the modal response combination methods.

The input response spectrum is typical of an in-structure response spectrum which results from filtering and amplification of the seismic ground motion through the building structure/soil system. It exhibits a sharp, highly amplified peak at the fundamental frequency of the structure/soil system. Piping systems attached to building structures are usually subjected to this type of seismic input, instead of ground motion associated with broad-banded response spectra. For this study, the unbroadened spectrum was used to provide a direct comparison to time history analysis results. The input time history of acceleration used to generate the response spectra and to perform the time history analyses is provided in Appendix B.

For the BM3 input response spectra, $f_{ZPA} \approx 16.5$ Hz and the ZPA = 0.54 g. The BM3 model has 14 modes below f_{ZPA} . These modes are associated with the amplified modal responses. From Table 3-1, the following modes are closely spaced, based on a 10% criterion: modes 3 and 4; modes 5 and 6; modes 6 and 7; modes 8, 9, and 10; modes 9, 10 and 11; modes 11 and 12. The number of closely spaced modes was judged to be adequate to assess differences between the six (6) methods tested for combination of the out-of-phase modal responses. For development of complete RSA solutions utilizing Methods 1, 2, and 3 defined in Section 2.4, only the first 14 modes ($f < f_{ZPA}$) are needed.

3 QUANTITATIVE STUDIES

3.2 Description of Analyses Performed

3.2.1 Baseline Time History Analysis

To provide a baseline for assessing the accuracy of RSA methods, time history analysis of BM3 was conducted using the acceleration input tabulated in Appendix B. Both mode superposition and direct integration solutions were obtained. Appendix E contains a discussion of the comparison between the two time history solutions and the tabulated results for support reactions and pipe end moments, for 1% and 5% damping.

In the NUREG/CR-5627 study (Reference 6), a mode superposition time history analysis had been performed using the first 31 modes of the BM3 model ($f_{31} = 70$ Hz). In this study, a direct integration analysis was performed and compared to the previously obtained solution. Significant discrepancies for a number of support reactions prompted additional investigation of the time history solutions. It was determined that the missing mass contribution to the mode superposition solution was significant for these support reactions. Inclusion of the missing mass in the mode superposition solution resolved the discrepancies. The tabulated results in Appendix E show the mode superposition solution with and without the missing mass contribution, as well as comparison to the direct integration solution.

The excellent correlation obtained between the mode superposition and the direct integration solutions demonstrates that constant modal damping can be reasonably approximated in the direct integration method by careful selection of the target frequencies for the calculation of the damping coefficients α and β . Guidelines for performing both mode superposition and direct integration analysis are provided in Appendix E.

For comparison to complete RSA results, the mode superposition solution with the missing mass contribution was used as the baseline. There would be negligible differences in the comparison if the direct integration solution was used as the baseline. The selection was made because several comparisons to partial modal summations are included in the quantitative studies; baselines for these partial modal solutions can only be developed by the mode superposition method.

3.2.2 Response Spectrum Analysis

A series of eight (8) different comparisons between time history and RSA solutions were generated. These results are presented in Tables 3-2 through 3-17, for support reactions and pipe end moments. Pipe end moments are defined as $(Mx^2 + My^2 + Mz^2)^4$. In each Table, predictions using all six of the out-of-phase response combination methods defined in Section 2.1 are presented. Actual numerical values are shown for the baseline time history

solution. The RSA results are shown as the ratio of the RSA numerical value to the time history numerical value. This form of presentation was chosen to facilitate easy recognition of overprediction and underprediction by the RSA methods. A ratio of 1.0 indicates exact agreement; a ratio greater than 1.0 indicates RSA overprediction; a ratio less than 1.0 indicates RSA underprediction. The mean value and standard deviation of the ratios are shown at the bottom of the table for each RSA method, as an indication of the overall correlation and scatter, compared to the time history solution. In calculating the mean and standard deviation of the ratios, all output locations were weighted equally, regardless of their response magnitude.

The eight (8) comparative analyses are

- 1) 8 Mode Time History vs. 8 Mode RSA Combination, $Rp_i = R_i$
- 2) 14 Mode Time History vs. 14 Mode RSA Combination, $Rp_i = R_i$
- 3) 31 Mode Time History vs. 31 Mode RSA Combination, $Rp_i = R_i$
- 4) Complete Time History vs. Method 1, n = 14
- 5) Complete Time History vs. Method 2 (Lindley-Yow), n=14
- 6) Complete Time History vs. Method 2 (Lindley-Yow), n=31
- 7) Complete Time History vs. Method 3, n = 14
- 8) Complete Time History vs. Method 3, n = 14 (5% damping)

Analysis No.'s 1, 2, and 3 were conducted to study the ability of the six (6) out-of-phase response combination methods to match the time history results as the number of included modes is increased. For these three analyses, the modal responses, R_i , are assumed to be out-of-phase; i.e., $Rp_i = R_i$. This method of RSA was used in the early applications of seismic analysis in the nuclear power industry.

Analysis No.'s 4, 5, and 7 were conducted to evaluate the ability of Methods 1, 2, and 3 to match the complete time history solution. Analysis No. 8 tested the sensitivity of the results to a change in damping from 1% to 5%. Analysis No. 6 was included to verify that Method 2 produces the same results when additional modes above f_{ZPA} are included in the analysis.

The equivalency between Rr calculated by Method 2 and Rr calculated by Method 3 was also verified by a separate numerical study. Table 3-18 compares the results of four (4) procedures to

obtain Rr, including the Static ZPA Method. In applications of the Static ZPA Method, the dynamic lumped mass representation is used. See the discussion in Section 2.3.2 and Appendix C.

3.3 Discussion of Numerical Results

3.3.1 Out-of-Phase Modal Response Combination

Tables 3-2 through 3-7 present the 8, 14, and 31 mode RSA comparisons to time history results. The 8 mode RSA shows the best correlation to time history. This is reasonable because the highly amplified responses are predominately out-of-phase with the acceleration input. The 14 mode RSA shows poorer correlation to time history. The six (6) additional modal responses, up to f_{ZPA} , would be expected to have a significant in-phase component, which is not appropriately treated by the out-of-phase modal response combination methods. The 31 mode RSA shows the poorest correlation to time history. The additional 17 modes with $f > f_{ZPA}$ are completely in-phase with each other. The out-of-phase modal combination methods are inappropriate.

Among the combination methods, the RB-DSC and CQC methods consistently show the best correlation to the time history solution. The NRC Grouping, Ten percent and DSC methods produce the most conservative predictions for locations where the time history results are exceeded. However they produce very similar predictions for locations where the time history results are either underpredicted or are reasonably matched. For the BM3 analysis, SRSS performed better overall than the three NRC methods, but worse than the RB-DSC and CQC methods. The increased conservatism introduced by the three NRC methods does not appear to be justified, because there is only a minimal corresponding improvement when RSA underpredicts the time history results.

The small difference in predictions between the RB-DSC and CQC methods is attributed to the definition of $t_D=15$ seconds for the RB-DSC method. Consequently, the mode correlation coefficients for RB-DSC are somewhat larger than the CQC coefficients. See Appendix D.

3.3.2 Complete Solution

Tables 3-8 through 3-17 present comparisons of RSA Methods 1, 2, and 3 to the complete time history solution. Method 1 represents the common RSA methodology utilized since the 1980's. Method 1 produces consistently inferior results when compared to Methods 2 and 3. This is attributed to the lack of consideration of the in-phase response component for the amplified modal responses. Both overpredictions and underpredictions are more extreme, which is consistent with the treatment of in-phase response as out-of-phase response.

Methods 2 and 3 produce essentially identical results, which are in reasonable agreement with the time history solution. The best correlation with the least scatter is achieved with the RB-DSC and CQC methods.

The largest overpredictions occur at support reactions of small magnitude, relative to the largest support reactions. Differences among the mode combination methods are also most extreme at these support reactions. This behavior is most likely attributed to the absence of a dominant modal contribution to the total support reaction. Without a dominant modal contribution, the limited capacity of response spectrum analysis methods to recreate the actual phase relationships between modal responses is more likely to result in less accurate predictions. A typical example is Node 1, M_x .

Comparison of Tables 3-10 and 3-11 to Tables 3-12 and 3-13 demonstrates the insensitivity of the Lindley-Yow Method (Method 2) to the number of modes included in the RSA, provided all modes below f_{zpa} are included. Table 3-18 provides a comparison of four (4) approaches to calculate the total in-phase response component, Rr. The equivalence between Rr for Method 2 and Rr for Method 3 is evident.

Results for the 5% damping input spectrum are presented in Tables 3-16 and 3-17, utilizing Method 3. The greater accuracy of the RB-DSC and CQC combination methods is more evident at 5% damping than at 1% damping. At 5% damping, the coefficients C_{jk} are numerically larger than at 1% damping (see Appendix D). Consequently, differences between the combination methods are more pronounced. The overall level of conservatism for RSA methods is higher at 5% damping than at 1%; however, the scatter is also significantly larger. The NRC methods and SRSS exhibit the largest increases in conservatism and scatter.

3.4 Summary of Results

Based on the quantitative studies described above, the following observations are made:

- Including modes above f_{zpa} in the out-of-phase modal response combination is always incorrect and cannot be justified. The contribution of modes above f_{zpa} is accurately calculated by the "missing mass" procedure and it is considered mandatory to include this contribution.
- Assuming amplified modal responses $(f < f_{zpa})$ have only out-of-phase components can lead to significant error in the RSA prediction. Method 1, which is based on this assumption, is significantly less accurate than Methods 2 and 3, which incorporate separation of modal responses into in-phase and out-of-phase response components.

- Of the six methods tested for combination of the out-of-phase response components, RB-DSC and CQC consistently produce the most accurate results, and are essentially equivalent to each other. Increased accuracy is most notable in the 5% damping case. SRSS compared fairly well to RB-DSC and CQC for 1% damping, but deviated significantly for 5% damping.
- Method 2, using the Lindley-Yow formulation, and Method 3 are equivalent; they provide two approaches to achieve the same solution. Method 3 involves less computation because the total in-phase response component is calculated in a single step.

Mode Number	ω (radians/sec)	f (cycles/sec)
1	18.3	2.91
2	27.6	4.39
3	34.7	5.52
4	35.8	5.70
5	43.8	6.98
6	46.1	7.34
7	49.5	7.88
8	64.7	10.30
9	69.5	11.06
10	70.6	11.23
11	72.2	11.50
12	78.1	12.43
13	87.2	13.88
14	101.3	16.12
15	113.3	18.04
16	117.0	18.62
17	122.7	19.52
18	122.9	19.56
19	137.1	21.82
20	139.4	22.18
21	143.6	22.86
22	163.1	25.95
23	245.2	39.02
24	248.3	39.52
25	258.9	41.21
26	288.5	45.91
27	296.9	47.25
28	330.7	52.64
29	372.5	59.29
30	440.4	70.09
31	444.2	70.70

Table 3-1 BM3 Model Modal Frequencies

_

NUREG/CR-6645

.

Table 3-2 BM3 Model 8 Mode Combination Time History vs. Response Spectrum

Moments in in-lbs

Forces in lbs

Support Reactions

1 % Damping

NODE	REAC.	TIME HISTORY	RESPONSE	SPECTRUM	(EXPRESSE	D AS RATIOS	s of the th	VALUES)
NO.	TYPE	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC
1	Fx	3.34	0.87	0.87	0.88	0.88	0.87	0.87
1	Fy	2.91	1.07	1.07	1.08	1.08	1.07	1.07
1	Fz	0.93	1.50	1.53	1.54	1.53	1.49	1.50
1	Mx	32.25	0.83	0.91	0.93	0.87	0.81	0.81
1	Му	724.63	0.91	0.91	0.91	0.91	0.91	0.91
1	Mz	187.36	0.90	0.90	0.91	0.91	0.90	0.90
4	Fx	25.04	0.88	0.88	0.88	0.88	0.88	0.88
4	Fz	11.26	1.44	1.46	1.47	1.46	1.43	1.43
7	Fy	13.30	1.12	1.13	1.19	1.14	1.11	1.12
11	Fy	13.43	1.37	1.40	1.64	1.42	1.34	1.35
11	Fz	70.88	0.85	0.85	0.85	0.85	0.85	0.85
15	Fx	484.98	0.75	0.76	0.76	0.76	0.76	0.75
17	Fy	25.01	1.90	1.92	2.32	1.97	1.85	1.87
17	Fz	36.05	1.52	1.53	1.75	1.56	1.55	1.54
36	Fy	81.70	1.00	1.01	1.02	1.01	1.00	1.00
36	Fz	36.61	1.35	1.51	1.78	1.44	1.43	1.40
38	Fr	41.85	1.19	1.21	1.23	1.20	1.18	1.19
38	Fy	49.23	1.02	1.03	1.03	1.03	1.02	1.02
38	Fz	12.26	1.39	1.39	1.40	1.39	1.39	1.39
38	Mx	602.71	2.14	2.22	2.29	2.18	2.15	2.14
38	Му	883.44	1.33	1.33	1.34	1.33	1.32	1.33
38	Mz	3486.10	1.02	1.03	1.03	1.03	1.02	1.02
23	Fx	137.41	1.16	1.16	1.16	1.16	1.16	1.16
23	Fy	69.96	1.10	1.14	1.23	1.13	1.10	1.10
31	Fx	6.33	1.00	1.21	1.23	1.05	0.95	0.97
31	Fy_	16.51	1.17	1.25	1.28	1.20	1.15	1.16
31	Fz	18.29	1.66	1.95	1.97	1.74	1.58	1.61
31	Mx	1486.40	1.58	1.94	1.94	1.67	1.48	1.52
- 31	My	129.92	1.45	1.76	1.81	1.55	1.37	1.41
31	Mz	446.70	1.22	1.53	1.56	1.31	1.14	1.17
Mean Va	Mean Value of 30 Comp.			1.29	1.35	1.25	1.21	1.21
Standard	Dev. of 30	Comp.	0.33	0.38	0.43	0.35	0.32	0.33

Table 3-3

- 1

Ť

BM3 Model

8 Mode Combination

Time History vs. Response Spectrum

Pipe End Moments

Moments in in-lbs $(M_x^2 + M_y^2 + M_z^2)^{1/2}$

1 % Damping

ELEM.	TIME HISTORY	RESPONSE SPECTRUM (EXPRESSED AS RATIOS OF THE TH VALUES)						
NO.	(TH) VALUE	SRSS GROUPING TEN PER. NRC-DSC RB-DSC					CQC	
1	727.97	0.90	0.90	0.90	0.90	0.90	0.90	
2	720.75	0.89	0.89	0.89	0.89	0.89	0.89	
3	851.89	0.91	0.91	0.92	0.92	0.91	0.91	
4	718.23	0.98	0.98	0.98	0.98	0.98	0.98	
5	631.26	1.03	1.03	1.04	1.03	1.03	1.03	
6	1999.70	0.95	0.96	0.96	0.96	0.95	0.95	
7	1826.20	0.96	0.96	0.96	0.96	6.96	0.96	
8	1049.10	1.01	1.02	1.06	1.02	1.00	1.00	
9	1769.90	1.01	1.01	1.01	1.01	1.01	1.01	
10	1675.30	1.00	1.01	1.03	1.01	1.00	1.00	
11	3931.90	0.86	0.86	0.86	0.86	0.86	0.86	
12	7628.70	0.87	0.87	0.88	0.87	0.87	0.87	
13	6299.40	0.90	0.90	0.91	0.90	0.90	0.90	
14	9414.80	0.71	0.71	0.73	0.71	0.71	0.71	
15	4056.20	0.75	0.7 5	0.81	0.76	0.76	0.75	
16	3257.00	0.77	0.78	0.86	0.79	0.78	0.78	
17	2532.00	1.72	1.73	2.10	1.78	1.71	1.72	
18	2696.00	1.03	1.04	1.11	1.05	1.03	1.03	
19	1937.60	1.16	1.17	1.31	L.19	1.16	1.16	
20	7915.90	1.12	1.13	1.15	1.13	1.13	1.13	
21	1836.00	1.23	1.26	1.27	1.24	1.22	1.22	
22	2268.30	1.07	1.10	1.10	1.08	1.06	1.07	
23	2151.00	1.08	1.10	1.11	1.09	1.07	1.07	
24	1751.20	1.10	1.13	1.14	1.11	1.09	1.09	
25	538.77	1.17	1.45	1.48	1.25	1.09	1.12	
26	495.58	1.26	1.53	1.57	1.34	1.19	1.22	
27	327.90	1.97	2.20	2.26	2.04	- 1.91	1.94	
28	440.31	1.86	1.92	1.95	1.89	1.85	1.85	
29	456.61	1.75	1.78	1.80	1.77	1.75	1.75	
30	1522.40	1.58	1.95	1.95	1.68	1.49	1.53	
31	8396.90	1.19	1.21	1.22	1.20	1.19	1.19	
32	8240.10	1.21	1.23	1.24	1.22	1.21	1.21	
33	7816.90	1.21	1.22	1.24	1.21	1.21	1.21	
34	6420.40	1.08	1.09	1.09	1.08	1.08	1.08	
35	6909.70	1.06	1.06	1.07	1.06	1.06	1.06	
36	1887.80	1.26	1.27	1.29	1.27	1.26	1.26	
37 3598.70		1.10	1.11	1.12	1.11	1.10	1.10	
					1.12			
Standard						0.29		

Table 3-4 BM3 Model 14 Mode Combination Time History vs. Response Spectrum Support Reactions

Forces in lbs Moments in in-lbs

1 % Damping

NODE	REAC.	TIME HISTORY	RESPONSE	SPECTRUM	(EXPRESSE	D AS RATIOS	of the th	VALUES)
NO.	TYPE	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC
1	Fx	3.96	0.79	0.83	0.90	0.84	0.79	0.79
1	Fy	3.51	1.55	1.65	2.11	1.75	1.41	1.44
1	Fz	2.57	2.91	3.00	4.10	3.29	2.51	2.63
1	Mx	43.23	6.37	6.57	9.05	7.22	5.45	5.71
1	My	794.03	0.87	0.87	0.91	0.88	0.86	0.86
1	Mz	215.80	0.97	1.01	1.19	1.05	0.93	0.94
4	Fr	. 29.24	0.83	0.84	0.92	0.86	0.81	0.82
4	Fz	27.64	2.72	2.80	3.83	3.07	2.34	2.45
7	Fy	13.87	1.12	1.20	1.28	1.18	1.10	1.10
11	Fy	13.25	· 1.48	1.55	1.85	1.60	1.43	1.44
11	Fz	93.01	0.86	0.87	1.00	0.91	0.82	0.83
15	Fx	706.21	0.62	0.63	0.65	0.63	0.63	0.62
17	Fy	25.56	1.91	1.95	2.36	1.99	1.85	1.88
17	Fz	62.29	1.27	1.37	1.48	1.31	1.28	1.28
36	Fy	46.89	1.93	2.16	2.27	2.03	1.91	1.92
36	Fz	68.17	1.15	1.37	1.47	1.21	1.16	1.16
38	Fx	121.91	0.98	1.09	1.20	1.02	1.02	1.00
38	Fy	43.98	1.20	1.22	1.25	1.21	1.20	1.20
38	Fz	42.65	0.90	1.05	1.14	0.96	0.96	0.94
38	Mx	713.03	1.97	2.27	2.41	2.09	1.95	1.96
38	My	2783.00	0.93	1.07	1.16	0.99	0.98	0.97
38	Mz	3117.80	1.19	1.21	1.24	1.20	1.19	1.19
23	Fx	159.21	1.35	1.43	1.52	1.39	1.39	1.38
23	Fy	28.00	3.76	4.72	5.18	4.12	3.68	3.72
31	Fr	6.99	1.45	1.70	1.85	1.56	1.46	1.46
31	Fy	13.95	1.78	1.96	2.05	1.85	1.80	1.79
31	Fz	15.50	2.04	2.43	2.46	2.15	1.95	1.98
31	Mx	1102.30	2.21	2.72	2.75	2.35	2.09	2.14
31	My	259.45	1.09	1.32	1.41	1.17	1.11	1.11
31	Mz	608.00	1.31	1.59	1.70	1.41	1.31	1.32
Mean Va	Mean Value of 30 Comp.			1.82	2.09	1.78	1.58	1.60
Standard	d Dev. of 3) Comp.	1.14	1.24	1.67	1.30	0.97	1.02

NUREG/CR-6645

32

.

扩张

3 QUANTITATIVE STUDIES

Table 3-5

BM3 Model

14 Mode Combination

Time History vs. Response Spectrum

Moments in in-lbs $(M_x^2+M_y^2+M_z^2)^{1/2}$ Pipe End Moments

1.

г

1 % Damping

ELEM.	TIME HISTORY	RESPONSE SPECTRUM (EXPRESSED AS RATIOS OF THE TH VALUES)							
NO.	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC		
1	776.55	0.92	0.93	1.00	0.95	0.90	0.91		
2	759.36	0.91	0.91	0.97	0.93	0.89	0.90		
3	968.28	1.22	1.25	1.55	1.32	1.12	1.15		
4	773.63	1.06	1.07	1.20	1.10	1.02	1.03		
5	701.53	1.36	1.39	1.71	1.47	1.26	1.29		
6	2207.60	0.93	0.94	0.99	0.95	0.91	0.92		
7	1948.20	0.94	0.94	0.98	0.95	0.93	0.93		
8	837.44	2.75	2.86	3.77	3.08	2.43	2.52		
9	1357.40	2.12	2.18	2.73	2.31	1.93	1.99		
10	2183.80	0.96	0.96	1.09	1.00	0.92	0.93		
11	4173.00	0.82	0.83	0.84	0.83	0.82	0.82		
12	8283.10	0.81	0.81	0.82	0.82	0.81	0.81		
13	6579.90	0.87	0.87	0.88	0.87	0.87	0.87		
14	13174.00	0.59	0.60	0.63	0.61	0.60	0.60		
15	2294.00	1.50	1.55	1.72	1.55	1.54	1.53		
16	1693.10	1.99	2.09	2.37	2.09	2.0 6	2.04		
17	2456.50	1.84	1.91	2.29	1.92	1.84	1.84		
18	2377.20	1.23	1.26	1.35	1.25	1.22	1.22		
_ 19	1635.50	1.45	1.49	1.67	1.49	1.44	1.45		
20	7586.00	1.25	1.32	1.36	1.27	1.25	1.25		
21	1616.20	1.49	1.61	1.66	1.54	1.49	1.49		
22	1977.10	1.51	1.60	1.70	1.56	1.54	1.53		
23	1900.20	1.51	1.61	1.70	1.56	1.54	1.53		
24	1607.70	1.52	1.64	1.73	1.57	1.55	1.54		
25	265.36	3.01	3.74	4.00	3.29	2.89	2.94		
26	271.57	2.87	3.53	3.79	3.13	2.78	2.82		
27	348.19	2.11	2.49	2.63	2.26	2.07	2.09		
28	552.58	1.65	1.75	1.79	1.69	1.65	1.65		
29	581.00	1.56	1.64	1.67	1.59	1.56	1.56		
30	1102.30	2.34	2.87	2.92	2.49	2.22	2.27		
31	7586.80	1.61	1.75	1.84	1.67	1.65	1.64		
32	9093.40	1.41	1.54	1.64	1.46	1.44	1.43		
33	11281.00	1.15	1.28	1.36	1.20	1.18	1.17		
34	6061.80	1.21	1.22	1.24	1.22	1.21	1.21		
35	6634.10	1.22	1.28	1.32	1.24	1.23	1.23		
36	2451.60	1.18	1.30	1.37	1.22	1.20	1.19		
37	4009.70	1.18	1.27	1.33	1.21	1.20	1.19		
	lue of 37 Comp.	1.46	1.58	1.72	1.53	1.44	1.45		
Standard	Dev. of 37 Comp.	0.58	0.73	0.84	0.65	0.55	0.56		

Table 3-6 BM3 Model 31 Mode Combination Time History vs. Response Spectrum Support Reactions

Moments in in-lbs

Forces in lbs

1 % Damping

NODE	REAC.	TIME HISTORY	RESPONSE	SPECTRUM	(EXPRESSE	D AS RATIOS	of the th	VALUES)
NO.	TYPE	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC
1	Fx	8.40	0.82	0.83	0.85	0.83	0.82	0.82
1	Fy	10.14	2.28	2.34	2.39	2.34	2.31	2.31
1	Fz	1.60	4.82	5.01	6.75	5.43	4.19	4.37
1	Mx	49.98	5.63	5.85	7.95	6.36	4.85	5.07
1	My	776.73	0.89	0.89	0.93	0.90	0.88	0.88
1	Mz	193.46	2.72	2.79	2.87	2.80	2.73	2.74
4	Fx	68.75	0.66	0.67	0.68	0.67	0.66	0.66
4	Fz	19.55	3.92	4.07	5.49	4.42	3.40	3.55
7	Fy	13.31	1.19	1.28	1.36	1.25	1.17	1.17
11	Fy	13.31	1.51	1.60	1.88	1.64	1.43	1.44
11	Fz	81.14	1.00	1.00	1.15	1.04	0.95	0.96
15	Fx	713.32	0.61	0.62	0.64	0.62	0.62	0.62
17	Fy	25.61	1.90	1.95	2.35	1.98	1.85	1.87
17	Fz	64.26	1.24	1.33	1.45	1.28	1.25	1.25
36	Fy	46.31	1.96	2.19	2.30	2.06	1.94	1.95
36	Fz	48.85	2.07	2.33	2.44	2.15	2.08	2.08
38	Fr	128.79	0.95	1.06	1.16	1.00	1.00	0.98
38	Fy	43.52	1.21	1.24	1.26	1.23	1.21	1.21
38	Fz	31.40	1.26	1.47	1.58	1.34	1.33	1.31
38	Mr	720.04	1.95	2.25	2.39	2.07	1.93	1.94
38	My	2142.00	1.23	1.42	1.54	1.30	1.30	1.28
38	Mz	3088.90	1.20	1.22	1.25	1.22	1.20	1.20
23	Fr	259.22	0.88	0.93	0.99	0.91	0.91	0.90
23	Fy	26.04	4.07	5.11	5.60	4.47	3.98	4.01
31	Fx	23.24	0.84	0.88	0.91	0.86	0.84	0.84
31	Fy	14.21	1.75	1.92	2.02	1.82	1.77	1.76
31	Fz	16.07	1.97	2.34	2.38	2.08	1.88	1.92
31	Mx	1136.90	2.14	2.64	2.67	2.28	2.02	2.07
31	Му	608.43	0.83	0.89	0.91	0.85	0.83	0.83
31	Mz	1767.90	0.81	0.87	0.89	0.83	0.81	0.81
Mean Va	Mean Valur of 30 Comp.			1.97	2.23	1.93	1.74	1.76
Standard	Dev. of 30	Comp.	1.27	1.38	1.84	1.44	1.10	1.15

Table 3-7BM3 Model31 Mode CombinationTime History vs. Response SpectrumPipe End Moments

Moments in in-lbs $(M_x^2 + M_y^2 + M_z^2)^{1/2}$

1 % Damping

ELEM.	TIME HISTORY	RESPONSE S	RESPONSE SPECTRUM (EXPRESSED AS RATIOS OF THE TH VALUES)						
NO.	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC		
1	823.39	0.91	0.92	0.98	0.93	0.89	0.90		
2	818.58	0.87	0.87	0.92	0.88	0.85	0.86		
3	1412.20	0.96	0.98	1.16	1.02	0.90	0.92		
4	762.56	1.08	1.09	1.23	1.13	1.04	1.05		
5	598.91	1.66	1.69	2.05	1.78	1.54	1.57		
6	2134.40	0.97	0.97	1.02	0.99	0.95	0.96		
7	1876.40	0.98	0.98	1.01	0.99	0.97	0.97		
8	852.96	2.70	2.82	3.71	3.03	2.39	2.48		
9	1415.50	2.03	2.09	2.62	2.22	1.86	1.91		
10	1945.30	1.07	1.08	1.23	1.12	1.03	1.04		
11	3826.10	0.90	0.91	0.92	0.91	0.90	0.90		
12	8440.50	0.80	0.80	0.81	0.80	0.80	0.80		
13	6741.60	0.85	0.85	0.86	0.85	.0.85	0.85		
14	13241.00	0.59	0.60	0.63	0.60	0.60	0.60		
15	2290.80	1.50	1.55	1.72	1.55	1.54	1.53		
16	1698.70	1.99	2.09	2.36	2.08	2.05	2.03		
17	2455.40	1.84	1.91	2.29	1.92	1.84	1.84		
18	2360.10	1.24	1.27	1.36	1.26	1.23	1.23		
19	1623.90	1.46	1.50	1.68	1.50	1.46	1.46		
20	7539.20	1.26	1.33	1.36	1.28	1.26	1.26		
21	1595.60	1.53	1.65	1.70	1.57	1.53	1.53		
22	2042.80	1.47	1.56	1.65	1.52	1.50	1.49		
23	1800.80	1.61	1.71	1.81	1.66	1.63	1.63		
24	1522.10	1.66	1.78	1.89	1.72	1.69	1.68		
25	926.28	1.23	1.38	1.44	1.29	1.20	1.21		
26	665.57	1.55	1.76	1.85	1.63	1.52	1.53		
27	399.00	1.97	2.28	2.40	2.09	1.93	1.94		
28	742.38	1.34	1.40	1.44	1.37	1.34	1.34		
29	824.73	1.26	1.32	1.34	1.29	1.27	1.27		
30	1989.00	1.44	1.71	1.73	1.52	1.38	1.40		
31	7437.70	1.65	1.79	1.88	1.70	1.68	1.67		
32	8931.50	1.43	1.57	1.67	1.49	1.47	1.46		
33	11421.00	1.14	1.27	1.35	1.19	1.17	1.16		
34	6096.60	1.20	1.21	1.24	1.21	1.21	1.21		
35	6633.90	1.22	1.28	1.32	1.24	1.23	1.23		
36	1942.80	1.51	1.67	1.76	1.57	1.54	1.53		
37	3538.70	1.35	1.45	1.51	1.39	1.37	1.36		
Mean Va	due of 37 Comp.	1.36	1.43	1.56	1.41	1.34	1.35		
Standard	Dev. of 37 Comp.	0.42	0.46	0.60	0.47	0.39	0.40		

Table 3-8BM3 ModelModal Time History vs. Method 1Response Spectrum (14 modes plus missing mass)

Moments in in-lbs

Forces in lbs

Support Reactions

1 % Damping

NODE	REAC.	TIME HISTORY	RESPONSE	SPECTRUM	(EXPRESSE	D AS RATIOS	5 of the th	VALUES)
NO.	TYPE	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC
1	Fx	43.71	1.10	1.10	1.10	1.10	1.10	1.10
1	Fy	4.36	1.26	1.34	1.70	1.41	1.15	1.18
1	Fz	1.60	4.74	4.87	6.63	5.33	4.10	4.27
1	Mx	49.88	5.55	5.72	7.86	6.28	4.76	4.99
1	Му	776.40	0.89	0.89	0.93	0.90	0.88	0.88
1	Mz	278.42	0.78	0.82	0.95	0.84	0.75	0.75
4	Fx	116.79	0.80	0.80	0.81	0.80	0.80	0.80
4	Fz	20.01	3.77	3.89	5.30	4.26	3.26	3.41
7	Fy	13.27	1.20	1.29	1.37	1.27	1.18	1.18
11	Fy	13.31	1.48	1.55	1.84	1.59	1.42	1.44
11	Fz	81.34	0.99	1.00	1.15	1.03	0.95	0.96
15	Fx	731.47	0.60	0.61	0.63	0.61	0.61	0.61
17	Fy	25.60	1.91	1.95	2.35	1.98	1.85	1.88
17	Fz	65.36	1.22	1.30	1.41	1.25	1.23	1.22
36	Fy	46.69	1.93	2.17	2.28	2.03	1.92	1.92
36	Fz	42.12	2.02	2.36	2.51	2.11	2.04	2.03
38	Fr	732.18	0.89	0.89	0.89	0.89	0.89	0.89
38	Fy	43.44	1.21	1.24	1.26	1.23	1.21	1.21
38	Fz	29.95	1.40	1.60	1.71	1.47	1.47	1.45
38	Mx	719.05	1.95	2.25	2.39	2.07	1.93	1.94
38	My	2084.97	1.31	1.50	1.62	1.38	1.37	1.36
38	Mz	3085.87	1.20	1.22	1.25	1.21	1.20	1.20
23	Fx	259.59	1.02	1.05	1.10	1.03	1.03	1.02
23	Fy	26.08	4.04	5.06	5.56	4.43	3.96	3.99
31	Fx	55.05	0.92	0.92	0.93	0.92	0.92	0.92
31	Fy	14.17	1.75	1.92	2.02	1.82	1.77	1.76
31	Fz	16.08	1.97	2.34	2.38	2.08	1.88	1.91
31	Mx	1137.30	2.15	2.64	2.66	2.28	2.02	2.07
31	My	612.38	0.74	0.80	0.83	0.76	0.75	0.75
31	Mz	1773.20	0.79	0.85	0.88	0.82	0.79	0.80
Mean Va	lean Value of 30 Comp.			1.86	2.14	1.84	1.64	1.66
Standard	Dev. of 30	Comp.	1.23	1.34	1.81	1.41	1.06	1.10

NUREG/CR-6645

36

Table 3-9

BM3 Model

Modal Time History vs. Method 1

11

Response Spectrum (14 modes plus missing mass)

Pipe End Moments

Moments in in-lbs $(M_x^2+M_y^2+M_z^2)^{1/2}$

1 % Damping

ELEM.	TIME HISTORY	RESPONSE SPECTRUM (EXPRESSED AS RATIOS OF THE TH VALUES)						
NO.	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC	
1	790.95	0.91	0.92	0.99	0.93	0.89	0.90	
2	836.77	0.87	0.88	0.93	0.89	0.86	0.87	
3	1429.28	0.96	0.98	1.15	1.01	0.91	0.92	
4	763.87	1.07	1.09	1.22	1.12	1.05	1.06	
5	597.9 8	1.65	1.68	2.04	1.77	1.53	1.56	
6	2133.18	0.97	0.98	1.03	0.99	0.96	0.96	
7	1877.81	0.98	0.98	1.01	0.99	0.97	0.97	
8	852.74	2.70	2.82	3.70	3.03	2.39	2.47	
9	1415.21	2.04	2.09	2.61	2.22	1.85	1.90	
10	1946.24	1.08	1.09	1.23	1.12	1.04	1.05	
11	3829.46	0.90	0.91	0.92	0.91	0.90	0.90	
12	8428.48	0.80	0.80	0.80	0.80	0.79	0.79	
13	6741.03	0.8 6	0.86	0.87	0.8 6	0.85	0.85	
14	13219.91	0.59	0.60	0.63	0.61	0.60	0.60	
15	2293.75	1.50	1.55	1.72	1.55	1.53	1.53	
16	1696.61	1.99	2.09	2.37	2.08	2.06	2.03	
17	2455.62	1.84	1.90	2.29	1.92	1.84	1.84	
18	2363.76	1.23	1.27	1.36	1.26	1.23	1.23	
19	1625.77	1.46	1.50	1.68	1.50	1.46	1.46	
20	7544.81	1.26	1.33	1.37	1.28	1.26	1.26	
21	1590.16	1.52	1.64	1.70	1.56	1.52	1.52	
22	2046.41	1.46	1.56	1.64	1.51	1.49	1.49	
23	1807.75	1.61	1.71	1.81	1.66	1.64	1.63	
24	1518.31	1.63	1.76	1.85	1.69	1.67	1.65	
25	922.51	1.26	1.41	1.47	1.32	1.24	1.25	
26	677.35	1.51	1.72	1.80	1.60	1.48	1.50	
27	390.71	1.99	2.31	2.43	2.11	1.95	1.96	
28	737.42	1.33	1.40	1.44	1.36	1.33	1.33	
29	830.76	1.22	1.27	1.29	1.24	1.23	1.22	
30	1994.56	1.42	1.70	1.72	1.50	1.37	1.39	
31	7428.79	1.65	1.78	1.88	1.71	1.68	1.67	
32	8785.32	1.46	1.60	1.69	1.52	1.49	1.48	
33	10970.06	1.18	1.32	1.40	1.23	1.21	1.20	
34	5993.82	1.22	1.24	1.26	1.24	1.23	1.23	
35	6788.22	1.20	1.25	1.29	1.22	1.21	1.20	
36	1874.84	1.62	1.77	1.86	1.67	1.64	1.63	
37	3501.06	1.37	1.48	1.54	1.41	1.40	1.39	
Mean Va	due of 37 Comp.	1.36	1.44	1.57	1.42	1.34	1.35	
Standard	Dev. of 37 Comp.	0.42	0.46	0.60	0.47	0.39	0.40	

Table 3-10 BM3 Model

Modal Time History vs. Method 2

1 % Damping

Response Spectrum (14 modes using Lindley-Yow approach plus missing mass)

Forces in lbs

Support Reactions

Moments in in-lbs

NODE	REAC.	TIME HISTORY	RESPONSE	SPECTRUM	(EXPRESSE	D AS RATIOS	of the th	VALUES
NO.	TYPE	(TH) VALUE	SRSS	GROUPING		NRC-DSC	RB-DSC	CQC
1	Fr	43.71	1.06	1.06	1.06	1.06	1.06	1.06
1	Fy	4.36	0.85	0.87	0.98	0.89	0.81	0.82
1	Fz	1.60	2.21	2.28	3.02	2.47	1.94	2.02
1	Mx	49.88	2.50	2.60	3.52	2.82	2.15	2.25
1	My	776.40	0.89	0.89	0.90	0.89	0.89	0.89
1	Mz	278.42	0.83	0.84	0.87	0.85	0.83	0.83
4	Fx	116.79	0.90	0.90	0.91	0.91	0.90	0.90
4	Fz	20.01	1.81	1.87	2.45	2.02	1.61	1.66
7	Fy	13.27	1.05	1.07	1.10	1.07	1.04	1.05
11	Fy	13.31	1.14	1.17	1.29	1.19	1.13	1.13
11	Fz	81.34	0.87	0.87	0.91	0.88	0.86	0.86
15	Fx	731.47	0.81	0.81	0.81	0.81	0.81	0.81
17	Fy	25.60	1.42	1.44	1.62	1.46	1.39	1.40
17	Fz	65.36	0.97	0.99	1.02	0.98	0.97	0.97
36	Fy	46.69	1.35	1.44	1.47	1.39	1.35	1.35
36	Fz	42.12	1.28	1.42	1.49	1.32	1.30	1.29
38	Fx	732.18	1.05	1.05	1.05	1.05	1.05	1.05
38	Fy	43.44	1.10	1.11	1.12	1.11	1.10	1.10
38	Fz	29.95	1.27	1.31	1.34	1.28	1.28	1.28
38	Mx	719.05	1.25	1.38	1.43	1.30	1.24	1.24
38	Му	2084.97	1.27	1.30	1.33	1.28	1.28	1.28
38	Mz	3085.87	1.10	1.10	1.11	1.10	1.10	1.10
23	Fx	259.59	1.32	1.32	1.33	1.32	1.32	1.32
23	Fy	26.08	2.14	2.57	2.80	2.31	2.09	2.11
31	Fr	55.05	1.02	1.03	1.03	1.02	1.02	1.02
31	Fy	14.17	1.26	1.33	1.36	1.29	1.26	1.26
31	Fz	16.08	1.43	1.64	1.65	1.48	1.38	1.40
31	Mr	1137.30	1.49	1.79	1.80	1.57	1.41	1.44
31	My	612.38	0.99	1.00	1.01	0.99	0.99	0.99
31	Mz	1773.20	1.00	1.00	1.01	1.00	1.00	1.00
Mean Va	Mean Value of 30 Comp.			1.31	1.43	1.30	1.22	1.23
Standard	Dev. of 30	Comp.	0.42	0.48	0.67	0.49	0.35	0.37

Table 3-11

BM3 Model

Modal Time History vs. Method 2

- 1-

Response Spectrum (14 modes using Lindley-Yow approach plus missing mass)

Pipe End Moments

Moments in in-lbs $(M_x^2+M_y^2+M_z^2)^{1/2}$

.

r

1 % Damping

ELEM.	TIME HISTORY	RESPONSE SPECTRUM (EXPRESSED AS RATIOS OF THE TH VALUES)						
NO.	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC	
1	790.95	0.90	0.90	0.91	0.90	0.89	0.89	
2	836.77	0.90	0.90	0.91	0.90	0.89	0.89	
3	1429.28	0.91	0.91	0.95	0.92	0.90	0.90	
4	763.87	0.98	0.98	1.02	0.99	0.97	0.98	
5	<u>597.98</u>	1.20	1.21	1.32	1.24	1.17	1.18	
6	2133.18	0.94	0.94	0.95	0.94	0.92	0.94	
7	1877.81	0.95	0.95	0.96	0.95	0.94	0.94	
8	852.74	1.59	1.64	1.96	1.72	1.49	1.52	
9	1415.21	1.42	1.44	1.60	1.47	1.37	1.39	
10	1946.24	0.97	0.97	1.01	0.98	0.96	0.96	
11	3829.46	0.91	0.91	0.91	0.91	0.91	0.91	
12	8428.48	0.86	0.86	0.86	0.86	0.86	0.86	
13	6741.03	0.89	0.89	0.90	0.89	0.89	0.89	
14	13219.91	0.81	0.81	0.81	0.81	0.81	0.81	
15	2293.75	1.20	1.22	1.28	1.22	1.21	1.21	
16	1696.61	1.42	1.46	1.56	1.46	1.44	1.44	
17	2455.62	1.38	1.40	1.57	1.41	1.38	1.38	
18	2363.76	1.09	1.10	1.13	1.10	1.09	1.09	
19	1625.77	1.22	1.23	1.31	1.24	1.22	1.22	
20	7544.81	1.11	1.12	1.14	1.11	1.11	1.11	
21	1590.16	1.30	1.33	1.36	1.31	1.30	1.30	
22	2046.41	1.49	1.50	1.52	1.49	1.49	1.49	
23	1807.75	1.38	1.41	1.44	1.39	1.38	1.38	
24	1518.31	1.42	1.45	1.48	1.44	1.43	1.43	
25	922.51	1.11	1.18	1.20	1.13	1.10	1.11	
26	677.35	1.20	1.29	1.31	1.23	1.18	1.19	
27	390.71	1.56	1.68	1.73	1.60	1.53	1.55	
28	737.42	1.24	1.26	1.27	1.25	1.24	1.24	
29	830.76	1.18	1.20	1.20	1.19	1.18	1.18	
30	1994.56	1.26	1.39	1.39	1.29	1.23	1.25	
31	7428.79	1.58	1.61	1.63	1.60	1.58	1.58	
32	8785.32	1.46	1.49	1.52	1.47	1.46	1.46	
33	10970.06	1.26	1.30	1.32	1.27	1.27	1.27	
34	5993.82	1.13	1.14	1.14	1.14	1.14	1.14	
35	6788.22	1.23	1.24	1.25	1.23	1.23	1.23	
36	1874.84	<u>1.3</u> 1	1.35	1.38	1.33	1.32	1.32	
37	3501.0 6	1.25	1.28	1.29	1.27	1.25	1.25	
Mean Va	due of 37 Comp.	1.19	1.21	1.26	1.21	_1.18	1.19	
Standard	Dev. of 37 Comp.	0.22	0.24	0.28	0.24	0.22	0.22	

Table 3-12 BM3 Model

Modal Time History vs. Method 2

Response Spectrum (31 modes using Lindley-Yow approach plus missing mass)

1 % Damping

Forces in lbs

Support Reactions

Moments in in-lbs

NODE REAC. TIME HISTORY RESPONSE SPECTRUM (EXPRESSE) AS RATIOS OF THE TH VALUES) NO. TYPE (TH) VALUE SRSS GROUPING TEN PER. NRC-DSC RB-DSC CQC 1 Fx 4.371 1.06 <									
I Fx 43.71 1.06 1.06 1.06 1.06 1.06 1.06 1 Fy 4.36 0.91 0.94 1.05 0.96 0.38 0.89 1 Fz 1.60 2.22 2.29 3.03 2.48 1.95 2.03 1 Mx 49.88 2.51 2.61 3.52 2.83 2.16 2.26 1 My 776.40 0.89 0.89 0.99 0.89 0.38 0.38 1 Mx 278.42 0.86 0.87 0.85 0.85 0.85 1 Mx 278.42 0.86 0.87 0.85 0.85 0.85 4 Fx 116.79 0.91<				· · · · · · · · · · · · · · · · · · ·		1	_		······
1Fy4.350.910.941.050.960.880.891Fz1.602.222.293.032.481.952.031Mr49.882.512.613.522.832.162.261My776.400.890.890.900.890.890.891Mr278.420.360.870.890.910.910.914Fr116.790.910.910.910.910.910.914Fr2.0011.321.872.462.021.611.677Fy13.271.051.071.101.071.041.0511Fy13.311.141.181.291.191.131.1311Fr81.340.870.870.910.880.860.3615Fx731.470.810.810.810.810.810.810.8117Fy25.601.421.441.621.461.391.4017Fr65.360.970.991.020.980.970.9738Fr732.181.051.051.051.051.051.0538Fy43.441.101.111.121.111.101.1038Fr2.9.951.271.311.331.321.231.2338Mr308.871.101.	NO.	TYPE	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC
1 F_x 1.602.222.293.032.481.952.031 M_x 49.882.512.613.522.832.162.261 M_y 776.400.390.890.900.890.390.391 M_x 278.420.360.870.890.870.850.854 F_x 116.790.910.910.910.910.910.914 F_x 20.011.321.872.462.021.611.677 F_y 13.271.051.071.101.041.0511 F_y 31.311.141.181.291.191.131.1311 F_x 81.340.870.870.910.880.860.8615 F_x 731.470.810.810.810.810.810.810.8117 F_y 25.601.421.441.621.461.391.4017 F_x 65.360.970.991.020.980.970.9736 F_y 46.691.351.441.471.391.351.3538 F_x 732.181.051.051.051.051.051.0538 F_x 23.951.271.311.341.231.281.2838M_x719.051.251.381.431.301.241.2438M_y <td>1</td> <td>Fx</td> <td>43.71</td> <td>1.06</td> <td>1.06</td> <td>1.06</td> <td>1.06</td> <td>1.06</td> <td>1.06</td>	1	Fx	43.71	1.06	1.06	1.06	1.06	1.06	1.06
1Mr49.882.512.613.522.832.162.261My776.400.390.890.900.890.890.890.891Mz278.420.860.870.890.870.850.854Fr116.790.910.910.910.910.910.914Fr20.011.321.872.462.021.611.677Fy13.271.051.071.101.071.141.0511Fr81.340.870.870.910.880.860.8615Fr731.470.810.810.810.810.810.8117Fy25.601.421.441.621.461.391.4017Fr65.360.970.991.020.980.970.9736Fr42.121.291.421.501.331.311.3038Fr732.181.051.051.051.051.051.0538Fr29.951.271.311.341.281.281.2838Mr719.051.251.331.431.301.241.2438My2084.971.271.301.331.231.321.3238Mr719.051.251.331.321.321.321.3239My2084.971.27 <td>1</td> <td>Fy</td> <td>4.36</td> <td>0.91</td> <td>0.94</td> <td>1.05</td> <td>0.96</td> <td>0.88</td> <td>0.89</td>	1	Fy	4.36	0.91	0.94	1.05	0.96	0.88	0.89
1My776.400.390.890.900.890.890.891Mz278.420.360.870.890.870.850.854Fx116.790.910.910.910.910.910.914Fr20.011.821.872.462.021.611.677Fy13.271.051.071.101.071.041.0511Fr81.340.870.870.910.830.860.8615Fr731.470.810.810.810.810.810.8117Fy25.601.421.441.621.461.391.4017Fr65.360.970.991.020.980.970.9736Fr42.121.291.421.501.331.311.3038Fr732.181.051.051.051.051.051.0538Fr29.951.271.311.341.281.281.2838Mr719.051.251.331.311.301.241.2438Mr308.871.101.101.111.101.101.1023Fr29.951.271.331.331.321.321.3233Mr308.5871.101.101.111.101.101.1023Fr25.951.321.33 <td>1</td> <td>Fz</td> <td>1.60</td> <td>2.22</td> <td>2.29</td> <td>3.03</td> <td>2.48</td> <td>1.95</td> <td>2.03</td>	1	Fz	1.60	2.22	2.29	3.03	2.48	1.95	2.03
1 M_{Z} 278.420.860.870.890.870.850.854 F_X 116.790.910.910.910.910.910.910.914 F_X 20.011.821.872.462.021.611.677 F_Y 13.271.051.071.101.071.041.0511 F_Y 13.311.141.181.291.191.131.1311 F_X 81.340.870.870.910.880.860.8615 F_X 731.470.810.810.810.810.810.810.8117 F_Y 25.601.421.441.621.461.391.4017 F_Z 65.360.970.991.020.980.970.9736 F_Y 46.691.351.441.471.391.351.3538 F_X 732.181.051.051.051.051.051.0538 F_Y 29.951.271.311.341.281.281.2838 M_X 719.051.251.381.431.301.241.2438 M_Y 208.4971.271.301.331.231.221.2238 M_X 719.051.251.381.431.301.241.2438 M_Y 208.571.031.031.031.031.031.	1	Mx	49.88	2.51	2.61	3.52	2.83	2.16	2.26
4 Fx 116.79 0.91 0.91 0.91 0.91 0.91 0.91 0.91 4 Fz 20.01 1.82 1.87 2.46 2.02 1.61 1.67 7 Fy 13.27 1.05 1.07 1.10 1.07 1.04 1.05 11 Fy 13.31 1.14 1.18 1.29 1.19 1.13 1.13 11 Fy 13.31 1.14 1.18 1.29 1.19 1.13 1.13 11 Fy 13.31 0.81	1	Му	776.40	0.89	0.89	0.90	0.89	0.89	0.89
4 Fz 20.01 1.82 1.87 2.46 2.02 1.61 1.67 7 Fy 13.27 1.05 1.07 1.10 1.07 1.04 1.05 11 Fy 13.31 1.14 1.18 1.29 1.19 1.13 1.13 11 Fz 81.34 0.87 0.87 0.91 0.88 0.86 0.86 15 Fx 731.47 0.81<	1	Mz	278.42	0.86	0.87	0.89	0.87	0.85	0.85
7 Fy 13.27 1.05 1.07 1.10 1.07 1.04 1.05 11 Fy 13.31 1.14 1.18 1.29 1.19 1.13 1.13 11 Fx 81.34 0.87 0.87 0.91 0.88 0.86 0.86 15 Fx 731.47 0.81 <t< td=""><td>4</td><td>Fr</td><td>116.79</td><td>0.91</td><td>0.91</td><td>0.91</td><td>0.91</td><td>0.91</td><td>0.91</td></t<>	4	Fr	116.79	0.91	0.91	0.91	0.91	0.91	0.91
I1 Fy 13.31 1.14 1.13 1.29 1.19 1.13 1.13 11 Fz 81.34 0.87 0.87 0.91 0.88 0.86 0.86 15 Fx 731.47 0.81	4	Fz	20.01	1.82	1.87	2.46	2.02	1.61	1.67
I1 Fz 81.34 0.87 0.87 0.91 0.88 0.86 0.86 15 Fx 731.47 0.81 <td>7</td> <td>Fy</td> <td>13.27</td> <td>1.05</td> <td>1.07</td> <td>1.10</td> <td>1.07</td> <td>1.04</td> <td>1.05</td>	7	Fy	13.27	1.05	1.07	1.10	1.07	1.04	1.05
15 Fx 731.47 0.81 1.40 1.42 1.46 1.46 1.47 1.39 1.35 1.35 1.35 36 Fz 42.12 1.29 1.42 1.50 1.33 1.31 1.30 38 Fy 43.44 1.10 1.11 1.12 1.11 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.23 1.23	11	Fy	13.31	1.14	1.18	1.29	1.19	1.13	1.13
17 Fy 25.60 1.42 1.44 1.62 1.46 1.39 1.40 17 Fz 65.36 0.97 0.99 1.02 0.98 0.97 0.97 36 Fy 46.69 1.35 1.44 1.47 1.39 1.35 1.35 36 Fz 42.12 1.29 1.42 1.50 1.33 1.31 1.30 38 Fx 732.18 1.05 1.0	11	Fz	81.34	0.87	0.87	0.91	0.88	0.86	0.86
17 F_Z 65.360.970.991.020.980.970.9736Fy46.691.351.441.471.391.351.3536Fz42.121.291.421.501.331.311.3038Fx732.181.051.051.051.051.051.0538Fy43.441.101.111.121.111.101.1038Fz29.951.271.311.341.281.281.2838Mx719.051.251.381.431.301.241.2438My2084.971.271.301.331.281.281.2838Mz3085.871.101.101.111.101.101.1023Fx259.591.321.321.331.321.321.3223Fy26.082.142.572.802.312.092.1131Fx16.081.431.641.651.481.381.4031Mx1137.301.491.791.801.571.411.4431My612.380.991.011.011.000.990.9931Mz1.77.3.01.001.011.021.001.001.00	15	Fx	731.47	0.81	0.81	0.81	0.81	0.81	0.81
17 Fz 65.36 0.97 0.99 1.02 0.98 0.97 0.97 36 Fy 46.69 1.35 1.44 1.47 1.39 1.35 1.35 36 Fz 42.12 1.29 1.42 1.50 1.33 1.31 1.30 38 Fx 732.18 1.05 1.24 1.24 <	17	Fy	25.60	1.42	1.44	1.62	1.46	1.39	1.40
36 Fz 42.12 1.29 1.42 1.50 1.33 1.31 1.30 38 Fx 732.13 1.05 1.03 1.03 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.28 1.28 1.28 1.28 1.28 1.28 <td>17</td> <td></td> <td>65.36</td> <td>0.97</td> <td>0.99</td> <td>1.02</td> <td>0.98</td> <td>0.97</td> <td>0.97</td>	17		65.36	0.97	0.99	1.02	0.98	0.97	0.97
36 Fz 42.12 1.29 1.42 1.50 1.33 1.31 1.30 38 Fx 732.18 1.05 1.03 1.03 1.28 <td>36</td> <td>Fy</td> <td>46.69</td> <td>1.35</td> <td>1.44</td> <td>1.47</td> <td>1.39</td> <td>1.35</td> <td>1.35</td>	36	Fy	46.69	1.35	1.44	1.47	1.39	1.35	1.35
38 Fx 732.18 1.05 1.05 1.05 1.05 1.05 1.05 38 Fy 43.44 1.10 1.11 1.12 1.11 1.10 1.10 38 Fz 29.95 1.27 1.31 1.34 1.28 1.28 1.28 38 Mx 719.05 1.25 1.38 1.43 1.30 1.24 1.24 38 My 2084.97 1.27 1.30 1.33 1.28 1.28 1.28 38 My 2084.97 1.27 1.30 1.33 1.28 1.28 1.28 38 My 3085.87 1.10 1.10 1.11 1.10 1.10 1.10 23 Fx 259.59 1.32 1.32 1.33 1.32 1.32 1.32 31 Fy 26.08 2.14 2.57 2.80 2.31 2.09 2.11 31 Fy 1.6.08 1.43 1.	36		42.12	1.29	1.42	1.50	1.33	1.31	1.30
38 Fz 29.95 1.27 1.31 1.34 1.28 1.28 1.28 38 Mx 719.05 1.25 1.38 1.43 1.30 1.24 1.24 38 My 2084.97 1.27 1.30 1.33 1.28 1.28 1.28 38 My 2084.97 1.27 1.30 1.33 1.28 1.28 1.28 38 Mz 3085.87 1.10 1.10 1.11 1.10 1.10 1.10 23 Fx 259.59 1.32 1.32 1.33 1.32 1.32 1.32 23 Fy 26.08 2.14 2.57 2.80 2.31 2.09 2.11 31 Fx 55.05 1.03 1.03 1.03 1.03 1.03 1.03 31 Fy 14.17 1.26 1.33 1.36 1.29 1.26 1.26 31 Mx 1137.30 1.49 1.	38	Fx	732.18	1.05	1.05	1.05	1.05	1.05	1.05
38 Fz 29.95 1.27 1.31 1.34 1.28 1.28 1.28 38 Mx 719.05 1.25 1.38 1.43 1.30 1.24 1.24 38 My 2084.97 1.27 1.30 1.33 1.28 1.28 1.28 38 My 2084.97 1.27 1.30 1.33 1.28 1.28 1.28 38 Mz 3085.87 1.10 1.10 1.11 1.10 1.10 1.10 23 Fx 259.59 1.32 1.32 1.33 1.32 1.32 1.32 23 Fy 26.08 2.14 2.57 2.80 2.31 2.09 2.11 31 Fx 55.05 1.03 1.03 1.03 1.03 1.03 1.03 31 Fy 14.17 1.26 1.33 1.36 1.29 1.26 1.26 31 Mx 1137.30 1.49 1.	38	Fy	43.44	1.10	1.11	1.12	· 1.11	1.10	1.10
38 My 2084.97 1.27 1.30 1.33 1.28 1.28 1.28 38 Mz 3085.87 1.10 1.10 1.11 1.10 1.10 1.10 23 Fx 259.59 1.32 1.32 1.33 1.32 1.32 1.32 23 Fy 26.08 2.14 2.57 2.80 2.31 2.09 2.11 31 Fx 55.05 1.03 <td< td=""><td>38</td><td></td><td>29.95</td><td>1.27</td><td>1.31</td><td>1.34</td><td>1.28</td><td>1.28</td><td>1.28</td></td<>	38		29.95	1.27	1.31	1.34	1.28	1.28	1.28
38 Mz 3085.87 1.10 1.10 1.11 1.10 1.10 1.10 23 Fx 259.59 1.32 1.32 1.33 1.32 1.32 1.32 23 Fy 26.08 2.14 2.57 2.80 2.31 2.09 2.11 31 Fx 55.05 1.03	38	Мя	719.05	1.25	1.38	1.43	1.30	1.24	1.24
38 Mz 3085.87 1.10 1.10 1.11 1.10 1.10 1.10 23 Fx 259.59 1.32 1.32 1.33 1.32 1.32 1.32 23 Fy 26.08 2.14 2.57 2.80 2.31 2.09 2.11 31 Fx 55.05 1.03 1.03 1.03 1.03 1.03 1.03 31 Fy 14.17 1.26 1.33 1.36 1.29 1.26 1.26 31 Fy 14.17 1.26 1.33 1.36 1.29 1.26 1.26 31 Fy 16.08 1.43 1.64 1.65 1.48 1.38 1.40 31 Mx 1137.30 1.49 1.79 1.80 1.57 1.41 1.44 31 My 612.38 0.99 1.01 1.00 0.99 0.99 31 Mz 1773.20 1.00 1.01 1.00	38	My	2084.97	1.27	1.30	1.33	1.28	1.28	1.28
23 Fr 259.59 1.32 1.32 1.33 1.32 1.32 1.32 23 Fy 26.08 2.14 2.57 2.80 2.31 2.09 2.11 31 Fr 55.05 1.03 1.03 1.03 1.03 1.03 1.03 31 Fy 14.17 1.26 1.33 1.36 1.29 1.26 1.26 31 Fy 14.17 1.26 1.33 1.36 1.29 1.26 1.26 31 Fy 16.08 1.43 1.64 1.65 1.48 1.38 1.40 31 Mx 1137.30 1.49 1.79 1.80 1.57 1.41 1.44 31 My 612.38 0.99 1.01 1.00 0.99 0.99 31 Mz 1773.20 1.00 1.01 1.00 1.00 1.00		1	3085.87	1.10	1.10	1.11	1.10	1.10	1.10
31 Fx 55.05 1.03 1.40 1.44 1.	23	1	259.59	1.32	1.32	1.33	1.32	1.32	1.32
31 Fr 55.05 1.03 1.40 1.	23	Fy	26.08	2.14	2.57	2.80	2.31	2.09	2.11
31 Fy 14.17 1.26 1.33 1.36 1.29 1.26 1.26 31 Fz 16.08 1.43 1.64 1.65 1.48 1.38 1.40 31 Mx 1137.30 1.49 1.79 1.80 1.57 1.41 1.44 31 My 612.38 0.99 1.01 1.00 0.99 0.99 31 Mz 1773.20 1.00 1.01 1.00 1.00 1.00			55.05	1	1.03	1.03	1.03	1.03	1.03
31 Fz 16.08 1.43 1.64 1.65 1.48 1.38 1.40 31 Mx 1137.30 1.49 1.79 1.80 1.57 1.41 1.44 31 My 612.38 0.99 1.01 1.00 0.99 0.99 31 Mz 1773.20 1.00 1.01 1.00 0.99 0.99				i			1	1.26	1.26
31 Mr 1137.30 1.49 1.79 1.80 1.57 1.41 1.44 31 My 612.38 0.99 1.01 1.01 1.00 0.99 0.99 31 Mz 1773.20 1.00 1.01 1.02 1.00 1.00 1.00		1		·····	1				i
31 My 612.38 0.99 1.01 1.01 1.00 0.99 0.99 31 Mz 1773.20 1.00 1.01 1.02 1.00 1.00 1.00					1		1.57		1.44
31 Mz 1773.20 1.00 1.01 1.02 1.00 1.00 1.00				1					1
				·····	t				
		Aean Value of 30 Comp.			1			1.22	1.23
Standard Dev. of 30 Comp. 0.42 0.48 0.67 0.49 0.35 0.37									1

5.2

Table 3-13 BM3 Model

Modal Time History vs. Method 2

Response Spectrum (31 modes using Lindley-Yow approach plus missing mass)

Pipe End Moments

Moments in in-lbs $(M_x^2 + M_y^2 + M_z^2)^{1/2}$

1 % Damping

ELEM.	TIME HISTORY	RESPONSE SPECTRUM (EXPRESSED AS RATIOS OF THE TH VALUES)						
NO.	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC	
1	790.95	0.90	0.90	0.91	0.90	0.89	0.90	
2	836.77	0.90	0.90	0.91	0.90	0.89	0.89	
3	1429.28	0.91	0.92	0.96	0.93	0.90	0.90	
4	763.87	0.98	0.98	1.02	0.99	0.97	0.98	
5	597.98	1.20	1.21	1.32	1.24	1.17	1.18	
6	2133.18	0.94	0.94	0.95	0.94	0.94	0.94	
7	1877.81	0.95	0.95	0.96	0.95	0.94	0.94	
8	852.74	1.59	1.64	1.96	1.72	1.49	1.52	
9	1415.21	1.42	1.44	1.60	1.47	1.37	1.39	
10	1946.24	0.97	0.97	1.01	0.98	0.96	0.96	
11	3829.46	0.91	0.91	0.91	0.91	0.91	0.91	
12	8428.48	0.86	0.86	0.86	0.86	0.86	0.86	
13	6741.03	0.89	0.89	0.90	0.89	0.89	0.89	
14	13219.91	0.81	0.81	0.81	0.81	0.81	0.81	
15	2293.75	1.20	1.22	1.28	1.22	1.21	1.21	
16	1696.61	1.42	1.46	1.56	1.46	1.44	1.44	
17	2455.62	1.38	1.40	1.57	1.41	1.38	1.38	
18	2363.76	1.09	1.10	1.13	1.10	1.09	1.09	
19	1625.77	1.22	1.23	1.31	1.24	1.22	1.22	
20	7544.81	1.11	1.12	1.14	1.11	1.11	1.11	
21	1590.16	1.30	1.33	1.36	1.31	1.30	1.30	
22	2046.41	1.49	1.50	1.52	1.50	1.49	1.49	
23	1807.75	1.38	1.41	1.44	1.39	1.38	1.38	
24	1518.31	1.42	1.45	1.48	1.44	1.43	1.43	
25	922.51	1.12	1.19	1.21	1.15	1.11	1.12	
26	677.35	1.21	1.30	1.32	1.24	1.19	1.20	
27	390.71	1.56	1.70	1.73	1.60	1.53	1.55	
28	737.42	1.24	1.26	1.27	1.25	1.24	1.24	
29	830.76	1.19	1.20	1.21	1.19	1.19	1.19	
30	1994.56	1.27	1.39	1.40	1.30	. 1.23	1.25	
31	7428.79	1.58	1.61	1.63	1.60	1.58	1.58	
32	8785.32	1.46	1.49	1.52	1.47	1.46	1.46	
33	10970.06	1.26	1.30	1.32	1.27	1.27	1.27	
34	5993.82	1.13	1.14	1.14	1.14	1.14	1.14	
35	6788.22	1.23	1.24	1.25	1.23	1.23	1.23	
36	1874.84	1.31	1.35	1.39	1.33	1.32	1.32	
37	3501.0 6	1.25	1.28	1.29	1.27	1.25	1.25	
Mean Va	due of 37 Comp.	1.19	1.22	1.26	1.21	1.18	1.19	
Standard	d Dev. of 37 Comp.	0.22	0.24	0.28	0.24	0.22	0.22	

Table 3-14 BM3 Model

Modal Time History vs. Method 3

Response Spectrum (14 modes using modified spectrum approach plus static ZPA)

1 % Damping

Forces in lbs

Support Reactions

Moments in in-lbs

NODE	REAC.	TIME HISTORY	Y RESPONSE SPECTRUM (EXPRESSED AS RATIOS OF THE TH VALU				VALUES	
NO.	TYPE	(TH) VALUE	SRSS	GROUPING		NRC-DSC	RB-DSC	CQC
1	Fx	43.71	1.06	1.06	1.06	1.06	1.06	1.06
1	Fy	4.36	0.85	0.87	0.98	0.89	0.81	0.82
1	Fz	1.60	2.21	2.28	3.01	2.47	1.94	2.02
1	Mx	49.88	2.50	2.60	3.52	2.82	2.16	2.25
1	My	776.40	0.89	0.89	0.90	0.89	0.89	0.89
1	Mz	278.42	0.83	0.84	0.87	0.85	0.83	0.83
4	Fx	116.79	0.90	0.90	0.91	0.91	0.90	0.90
4	Fz	20.01	1.81	1.87	2.45	2.01	1.61	1.66
7	Fy	13.27	1.05	1.07	1.10	1.07	1.04	1.05
11	Fy	13.31	1.14	1.17	1.29	1.18	1.12	1.13
11	Fz	81.34	0.87	0.87	0.91	0.88	0.86	0.86
15	Fx	731.47	0.81	0.81	0.81	0.81	0.81	0.81
17	Fy	25.60	1.42	1.43	1.61	1.45	1.39	1.40
17	Fz	65.36	0.97	0.99	1.02	0.98	0.97	0.97
36	Fy	46.69	1.35	1.43	1.47	1.38	1.34	1.34
36	Fz	42.12	1.28	1.41	1.49	1.32	1.30	1.29
38	Fx	732.18	1.05	1.05	1.05	1.05	1.05	1.05
38	Fy	43.44	1.10	1.11	1.12	1.11	1.10	1.10
38	Fz	29.95	1.27	1.31	1.34	1.28	1.28	1.28
38	Mr	719.05	1.24	1.37	1.42	1.29	1.23	1.23
38	My	2084.97	1.27	1.30	1.33	1.28	1.28	1.28
38	Mz	3085.87	1.10	1.11	1.11	1.10	1.10	1.10
23	Fx	259.59	1.32	1.32	1.33	1.32	1.32	1.32
23	Fy	26.08	2.12	2.56	2.78	2.29	2.07	2.09
31	Fx	55.05	1.02	1.03	1.03	1.02	1.02	1.02
31	Fy	14.17	1.26	1.33	1.36	1.28	1.26	1.26
31	Fz	16.08	1.42	1.63	1.64	1.48	1.37	1.39
31	Mr	1137.30	1.50	1.79	1.80	1.57	1.41	1.44
31	My	612.38	0.99	1.00	1.01	0.99	0.99	0.99
31	Mz	1773.20	1.00	1.00	1.01	1.00	1.00	1.00
Mean Va	Mean Value of 30 Comp.			1.31	1.42	1.30	1.22	1.23
Standard	Dev. of 30	Comp.	0.42	0.48	0.67	0.49	0.35	0.37

Table 3-15

BM3 Model

Modal Time History vs. Method 3

Response Spectrum (14 modes using modified spectrum approach plus static ZPA)

Pipe End Moments

Moments in in-lbs $(M_x^2+M_y^2+M_z^2)^{1/2}$

1 % Damping

ELEM.	TIME HISTORY	RESPONSE S	PECTRUM (E	XPRESSED A	S RATIOS OF	THE TH VALU	JES)
NO.	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	COC
1	790.95	0.90	0.90	0.91	0.90	0.89	0.89
2	836.77	0.90	0.90	0.91	0.90	0.89	0.89
3	1429.28	0.91	0.91	0.95	0.92	0.90	0.90
4	763.87	0.98	0.98	1.02	0.99	0.97	0.98
5	597.98	1.20	1.21	1.31	1.24	1.17	1.17
6	2133.18	0.94	0.94	0.95	0.94	0.92	0.92
7	1877.81	0.95	0.95	0.96	0.95	0.94	0.95
8	852.74	1.59	1.64	1.96	1.72	1.49	1.52
9	1415.21	1.42	1.45	1.61	1.49	1.37	1.39
10	1946.24	0.97	0.97	1.01	0.98	0.96	0.96
11	3829.46	0.91	0.91	0.92	0.91	0.91	0.91
12	8428.48	0.86	0.86	0.86	0.86	0.86	0.86
13	6741.03	0.89	0.89	0.90	0.89	0.89	0.89
14	13219.91	0.81	0.81	0.81	0.81	0.81	0.81
15	2293.75	1.20	1.22	1.28	1.22	1.21	1.21
16	1696.61	1.42	1.46	1.56	1.46	1.44	1.44
17	2455.62	1.38	1.40	1.57	1.41	1.38	1.38
18	2363.76	1.09	1.10	1.13	1.10	1.09	1.09
19	1625.77	1.22	1.23	1.30	1.24	1.22	1.22
20	7544.81	1.11	1.12	1.14	1.11	1.11	1.11
21	1590.16	1.30	1.33	1.34	1.31	1.29	1.30
22	2046.41	1.48	1.50	1.52	1.49	1.49	1.49
23	1807.75	1.38	1.41	1.43	1.39	1.38	1.38
24	1518.31	1.42	1.45	1.48	1.43	1.42	1.42
25	922.51	1.11	1.18	1.20	1.13	1.10	1.10
26	677.35	1.20	1.29	1.31	1.23	1.18	1.19
_27	390.71	1.55	1.68	1.73	1.60	1.52	1.53
28	737.42	1.24	1.26	1.27	1.25	1.24	1.24
29	830.76	1.18	1.19	1.20	1.19	1.18	1.18
30	1994.56	1.26	1.39	1.40	1.29	1.23	1.25
31	7428.79	1.58	1.61	1.63	1.60	1.58	1.58
32	8785.32	1.46	1.49	1.51	1.47	1.46	1.46
33	10970.06	1.26	1.30	1.32	1.27	1.27	1.27
34	5993.82	1.13	1.14	1.14	1.14	1.14	1.14
35	6788.22	1.23	1.24	1.25	1.23	1.23	1.23
36	1874.84	1.31	1.35	1.39	1.33	1.32	1.32
37	3501.06	1.25	1.28	1.30	1.27	1.25	1.25
Mean Va	lue of 37 Comp.	1.19	1.22	1.26	1.21	1.18	1.19
Standard	Dev. of 37 Comp.	0.22	0.24	0.28	0.24	0.22	0.22

Table 3-16 BM3 Model

Modal Time History vs. Method 3

Response Spectrum (14 modes using modified spectrum approach plus static ZPA)

Forces in lbs

Support Reactions

5 % Damping

Moments in in-lbs

NODE	REAC.	TIME HISTORY	RESPONSE	SPECTRUM	(EXPRESSE	D AS RATIOS	S OF THE TH	VALUES)
NO.	TYPE	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC
1	Fx	44.22	1.05	1.05	1.05	1.05	1.05	1.05
1	Fy	3.86	0.76	0.79	0.94	0.94	0.65	0.65
1	Fz	0.97	3.35	3.43	4.61	4.56	1.70	1.74
1	Mx	18.89	6.03	6.20	8.57	8.41	2.41	2.49
1	Му	694.80	0.97	0.97	0.98	0.98	0.96	0.96
1	Mz	240.22	0.86	0.87	0.90	0.93	0.86	0.86
4	Fx	113.70	0.92	0.92	0.92	0.92	0.92	0.92
4	Fz	13.85	2.43	2.47	3.29	3.25	1.34	1.36
7	Fy	7.95	1.21	1.25	1.29	1.39	1.13	1.14
11	Fy	7.13	1.55	1.61	1.80	1.94	1.40	1.41
11	Fz	71.89	0.95	0.95	0.99	1.00	0.92	0.92
15	Fx	690.97	0.84	0.84	0.84	0.85	0.85	0.85
17	Fy	20.14	1.55	1.57	1.73	1.78	1.42	1.43
17	Fz	60.05	0.98	1.00	1.04	1.05	0.99	0.99
36	Fy	38.70	1.38	1.46	1.50	1.58	1.29	1.30
36	Fz	42.33	1.19	1.27	1.32	1.35	1.19	1.20
38	Fx	740.68	1.04	1.04	1.04	1.04	1.04	1.04
38	Fy	38.18	1.20	1.20	1.21	1.22	1.19	1.19
38	Fz	29.85	1.23	1.26	1.30	1.31	1.30	1.30
38	Mx	465.42	1.49	1.63	1.72	1.85	1.35	1.35
38	Му	2080.83	1.24	1.27	1.29	1.30	1.29	1.29
38	Mz	2713.20	1.19	1.20	1.20	1.22	1.19	1.19
23	Fr	270.50	1.25	1.26	1.26	1.27	1.26	1.26
23	Fy	10.58	3.83	4.76	5.33	5.88	2.69	2.76
31	Fr	54.46	1.04	1.04	1.04	1.04	1.04	1.04
31	Fy	9.76	1.72	1.77	1.81	1.88	1.73	1.74
31	Fz	8.66	2.12	2.35	2.38	2.49	1.89	1.90
31	Mx	560.28	2.21	2.59	2.61	2.69	1.80	1.82
31	My	582.28	1.01	1.02	1.02	1.03	1.01	1.01
31	Mz	1685.20	1.03	1.04	1.04	1.05	1.03	1.03
Mean Va	lue of 30 C	omp.	1.59	1.67	1.87	1.91	1.30	1.31
Standard	Dev. of 30	Comp.	1.10	1.21	1.65	1.67	0.45	0.47

 $\mathcal{G}^{(i)}$

Table 3-17 BM3 Model

Modal Time History vs. Method 3

Response Spectrum (14 modes using modified spectrum approach plus static ZPA)

Moments in in-lbs $(M_x^2+M_y^2+M_z^2)^{1/2}$ Pipe End Moments

r.}[‡]

5 % Damping

ELEM.	TIME HISTORY	RESPONSE SPECTRUM (EXPRESSED AS RATIOS OF THE TH VALUES)							
NO.	(TH) VALUE	SRSS	GROUPING	TEN PER.	NRC-DSC	RB-DSC	CQC		
1	713.05	0.96	0.96	0.97	0.98	0.95	0.95		
2	765.02	0.96	0.96	0.97	0.97	0.95	0.95		
3	1323.65	0.95	0.95	0.99	0.99	0.92	0.92		
4	684.42	1.02	1.02	1.05	1.06	1.00	1.00		
5	528.66	1.25	1.26	1.38	1.39	1.14	1.14		
6	1893.29	1.00	1.00	1.01	1.02	0.99	0.99		
7	1664.64	1.01	1.01	1.02	1.03	1.01	1.01		
8	764.93	1.58	1.62	1.96	1.98	1.18	1.19		
9	1319.86	1.35	1.36	1.53	1.54	1.18	1.18		
10	1714.12	1.00	1.00	1.04	1.05	0.97	0.97		
11	3507.84	0.96	0.96	0.97	0.97	0.96	0.96		
12	7650.43	0.92	0.92	0.92	0.93	0.92	0.92		
13	6075.21	0.95	0.95	0.96	0.96	0.95	0.95		
14	12487.74	0.83	0.83	0.84	0.85	0.84	0.84		
15	2030.00	1.26	1.28	1.33	1.35	1.30	1.30		
16	1057.35	2.08	2.12	2.25	2.31	2.17	2.18		
17	1495.69	2.01	2.03	2.23	2.26	1.96	1.97		
18	2027.05	1.20	1.21	1.23	1.26	1.19	1.19		
19	1370.50	1.34	1.35	1.40	1.43	1.32	1.32		
20	6612.74	1.21	1.23	1.24	1.25	1.21	1.21		
21	1337.38	1.44	1.47	1.48	1.52	1.42	1.43		
22	1803.08	1.63	1.64	1.66	1.68	1.64	1.64		
23	1352.91	1.75	1.78	1.81	1.84	1.78	1.78		
24	1229.48	1.67	1.70	1.73	1.75	1.70	1.70		
25	958.32	1.02	1.05	1.06	1.08	1.00	1.00		
26	689.97	1.09	1.14	1.16	1.19	1.04	1.05		
27	322.88	1.67	1.77	1.81	1.89	1.60	1.60		
28	624.60	1.39	1.40	1.41	1.44	1.38	1.38		
29	737.73	1.29	1.29	1.30	1.32	1.29	1.29		
30	1784.26	1.24	1.32	1.33	1.34	1.17	1.18		
31	7194.98	1.56	1.58	1.60	1.62	1.58	1.58		
32	8768.03	1.40	1.42	1.44	1.46	1.42	1.42		
33	10912.71	1.22	1.24	1.26	1.27	1.24	1.24		
34	5338.54	1.22	1.22	1.23	1.24	1.22	1.22		
35	6348.71	1.27	1.28	1.28	1.29	1.27	1.27		
36	1755.84	1.32	1.35	1.37	1.40	1.34	1.34		
37	3263.83	1.29	1.31	1.32	1.34	1.30	1.30		
Mean Va	due of 37 Comp.	1.28	1.30	1.34	1.36	1.26	1.26		
Standard	Dev. of 37 Comp.	0.30	0.32	0.35	0.36	0.31	0.31		

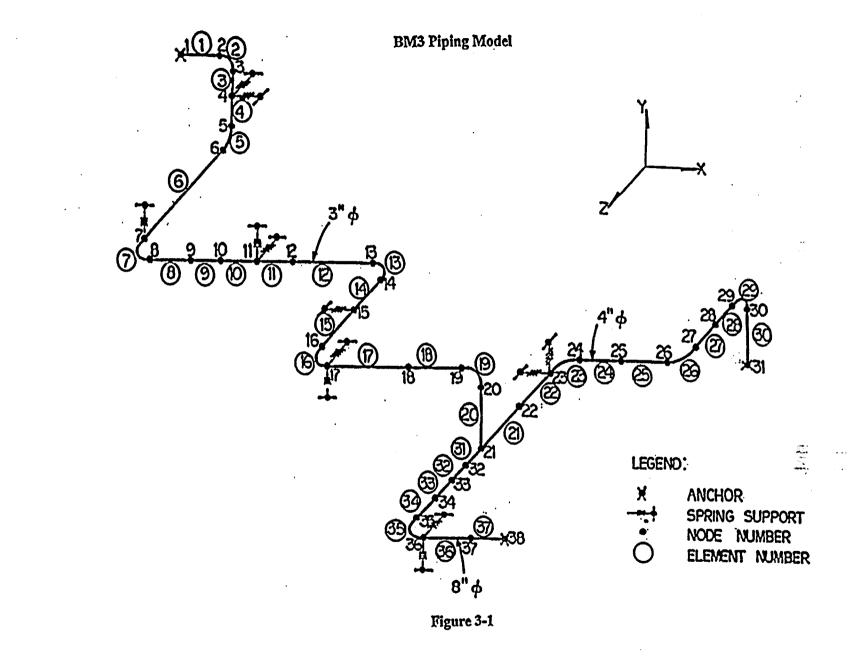
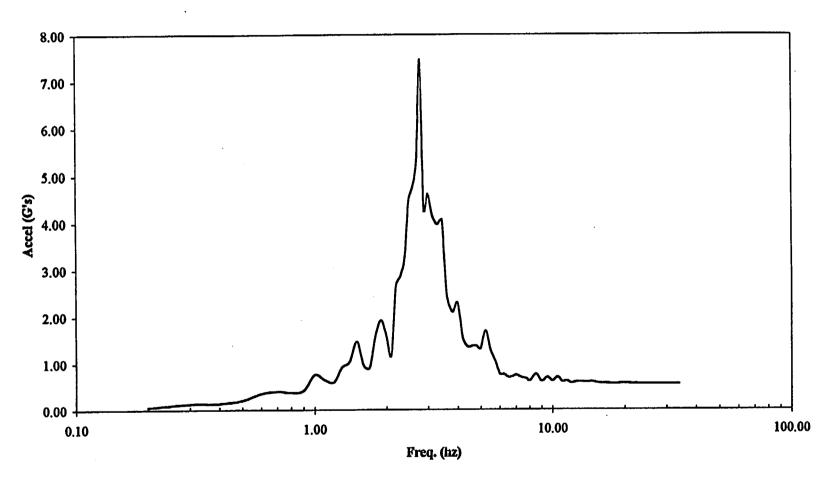
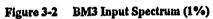
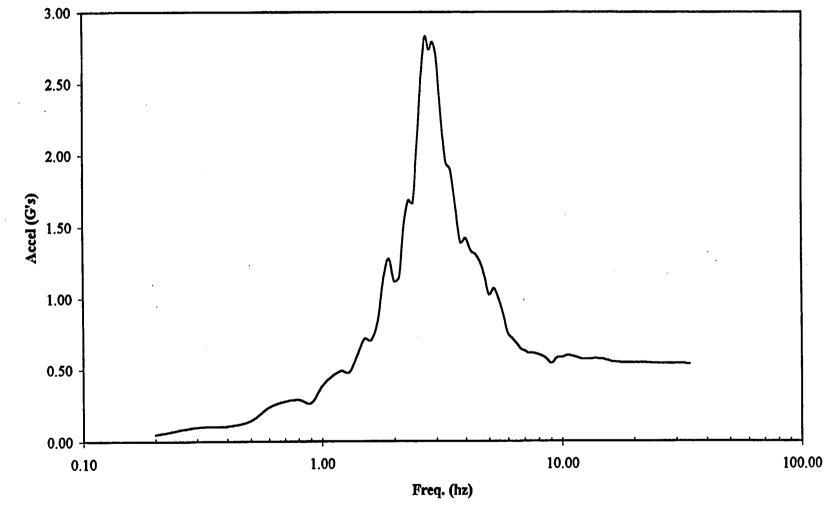

Node	Reac.	Egn. 2-12	Missing Mass	Egn. 2-12	Missing Mass	Egn. 2-12	Missing Mass	Total R,	Total R,	Total R.	Static ZPA
No.	Туре	n=8	n > 8	n=14	n > 14	n=31	n > 31	n=8	n=14	n=31	(Note 1)
1	Fx	1.40	-47.60	1.95	-48.20	6.47	-52.70	-46.20	-46.25	-46.23	-46.21
1	Fy	0.42	0.24	1.35	-0.71	-11.90	12.50	0.66	0.64	0.60	0.66
1	Fz	0.05	0.22	1.30	-1.04	0.27	0.00	0.27	0.26	0.27	0.26
1	Mx	23.30	-12.80	-18.10	28.50	10.60	-0.27	10.50	10.40	10.33	10.53
1	My	-290.00	-38.90	-347.00	18.50	-329.00	0.30	-328.90	-328.50	-328.70	-329.25
1	Mz	64.40	94.20	102.00	56.60	67.50	90.60	158.60	158.60	158.10	158.43
4	Fx	-10.10	-92.70	-13.60	-89.20	-53.90	-48.90	-102.80	-102.80	-102.80	-102.75
4	Fz	-1.19	-4.29	-12.90	7.43	-4.95	-0.48	-5.48	-5.47	-5.43	-5.49
7	Fy	-1.07	1.05	-3.70	3.69	-0.31	0.30	-0.02	-0.01	-0.01	-0.01
11	Fy	-2.68	1.50	-0.80	-0.40	-1.20	0.00	-1.18	-1.20	-1.20	-1.17
11	Fz	30.40	7.26	49.40	-11.80	37.40	0.20	37.66	37.60	37.60	37.65
15	Fx	-236.00	-238.00	-448.00	-25.60	-456.00	-18.40	-474.00	-473.60	-474.40	-474.26
17	Fy	-2.17	5.97	3.72	0.08	3,81	-0.01	3.80	3.80	3.80	3.78
17	Fz	16.80	-52.00	-32.10	-3.05	-33.90	-1.15	-35.20	-35.15	-35.05	-35.17
36	Fy	45.00	-36.10	9.33	-0.41	7.65	1.27	8.90	8.92	8.92	8.92
36	Fz	26.60	5.19	65.30	-33.60	42.20	-10.60	31.79	31.70	31.60	31.68
38	Fx	9.05	-776.00	-137.00	-630.00	-146.00	-621.00	-766.95	-767.00	-767.00	-767.29
38	Fy	-16.90	5.67	-11.70	0.55	-11.30	0.08	-11.23	-11.15	-11.22	-11.24
38	Fz	1.16	-32.30	-48.10	16.90	-33.20	2.02	-31.14	-31.20	-31.18	-31.17
38	Mx	400.00	-590.00	-183.00	-5.94	-190.00	0.99	-190.00	-188.94	-189.01	-189.06
38	My	114.00	-2320.00	-3130.00	928.00	-2280.00	79.30	-2206.00	-2202.00	-2200.70	-2202.83
38	Mz	1190.00	-392.00	837.00	-33.00	806.00	-3.17	798.00	804.00	802.83	804.58
-23	Fx	34.40	-338.00	-153.00	-152.00	-304.00	-0.54	-303.60	-305.00	-304.54	-304.11
23	Fy	55.40	-56.00	1.71	-2.39	-0.74	0.05	-0.60	-0.68	-0.69	-0.68
31	Fx	4.04	-60.50	-7.24	-49.30	-23.30	-33.20	-56.46	-56.54	-56.50	-56.51
31	Fy	-5.69	5.42	-1.19	0.97	-0.08	-0.15	-0.27	-0.22	-0.23	-0.25
31	Fz	12.30	-10.10	-0.05	2.29	2.21	0.03	2.20	2.24	2.24	2.24
31	Mx	1040.00	-818.00	78.00	138.00	215.00	1.31	222.00	216.00	216.31	219.27
31	My	-74.30	655.00	231.00	350.00	577.00	4.16	580.70	581.00	581.16	580.84
31	Mz	-289.00	1990.00	549.00	1150.00	1700.00	5.43	1701.00	1699.00	1705.43	1702.48

Table 3-18Equivalence of R.Lindley-Yow Plus Missing Mass vs. Static ZPA

Note 1: Dynamic model mass distribution used in static ZPA calculation


ŝ


\$


47

8

..

Figure 3-3 BM3 Input Spectrum (5%)

49

NUREE/CR-6645

4 SUPPLEMENTARY STUDY OF ADDITIONAL MODAL RESPONSE COMBINATION METHODS

4.1 Basis for Study of Additional Modal Response Combination Methods

Although the agreement between the Response Spectrum Analysis (RSA) results and the Time History Solution is generally acceptable from an engineering perspective, the M_x support reaction at Node 1 provides an excellent basis for a detailed investigation of the effects of RSA approximations on the prediction of peak response. It is noted that the magnitude of the reaction is relatively small when compared to the maximum moment reaction ($\approx 2\%$), and the RSA results exceed the Time History Solution by a factor of 2 or greater. Therefore, the inaccuracy of RSA in this case is not significant from a design standpoint. However, the specific elements involved in generating this significant overprediction were deemed worthy of a more detailed investigation.

It is important to recall that $f_{ZPA} = 16.5$ Hz was initially chosen based on the response spectrum, and that the first fourteen (14) natural modes of vibration for BM3 have frequencies below 16.5 Hz. Modal contributions above 16.5 Hz are accounted for by the missing mass contribution. Therefore, the evaluation initially concentrated on the combination of the first 14 modes and comparison to the 14 mode time history solution.

A numerical study was performed to examine the individual modal contributions of the first fourteen (14) modes in both the time history solution and the RSA solution. For Node 1, M_x an interesting peculiarity of the modal contributions to the total predicted response is that two modes, Mode 9 (11.06Hz) and Mode 11 (11.50Hz), dominate the response. The responses are opposite in sign, and close in magnitude (-154 vs. 219), with identical times of peak response in the Time History Solution. This type of modal behavior poses a difficult challenge to the RSA methodologies employed in the initial study phase.

Examination of Tables 3-2 and 3-4 for Node 1, M_x shows the deterioration in accuracy between the 8 mode combination and the 14 mode combination. The SRSS combination of modal responses produces a gross overprediction. The DSC and CQC modal combination approaches should improve the situation. However, for 1% damping, $f_1 \approx 10$ Hz, and frequency ratio ≈ 0.95 , the mode correlation coefficient is 0.15-0.23 (see Appendix D). This provides only a minor correction. The largest overpredictions are generated by the NRC Grouping, Ten Percent and DSC Methods, in which closely spaced modes are combined by absolute sum. The complete solution utilizing the Lindley-Yow assumption (see Tables 3-10, 3-12, or 3-14) provides improvement because significant fractions of the modal responses for modes 9 and 11 are included in the algebraic (in-phase) summation, and therefore tend to cancel each other. However, the fractions of the mode 9 and 11 responses included in the out-of-phase response combination are still significant enough to introduce inaccuracy on the conservative side.

4.2 Description of Additional Modal Response Combination Methods

The behavior of the RSA solution for the Node 1, M_x reaction led to a recommendation by the Project Peer Reviewers that a sensitivity study be conducted using alternate modal response combination methods, which might produce more accurate results. Two alternate methods were selected based on the specific behavior at Node 1, M_x . The Gupta Method was also selected for inclusion in this sensitivity study. In the Gupta Method, f_2 defines the frequency above which the modal responses are assumed to be perfectly correlated and consequently combined algebraically. Three different assumptions for frequency f_2 were tested.

The mathematical formulations for the additional modal response combination methods are presented below. The two new methods, developed in conjunction with the project Peer Reviewers, are designated GROUP-1 and GROUP-2. Applications of Gupta's Method are designated GUP-0, GUP-1 and GUP-2. For comparison, the Lindley-Yow CQC results are also included in the tabulated results under the heading LINDLEY. Terms used in the following sections were previously defined in Chapter 2.

4.2.1 Grouping Methods 1 and 2

Grouping Methods consist of two similar procedures, designated GROUP-1 and GROUP-2. GROUP-1 was proposed by Dr. R.P. Kennedy following his peer review of the initial numerical results. GROUP-2 is a variation of GROUP-1 in which the mode 8 through mode 14 responses are not split into out-of-phase and in-phase response components.

Group-1

The 14 modes $(f_i < f_{ZPA})$ are first divided into their in-phase and out-of-phase response components according to the Lindley-Yow method. This has been previously described in Section 2.2.1.

The out-of-phase modal response components are combined in accordance with the following formula:

$$Rp = \sqrt{Rp_{i}^{2} + Rp_{2}^{2} + (Rp_{3} + Rp_{4})^{2} + (Rp_{5} + Rp_{6})^{2} + Rp_{7}^{2} + (Rp_{8} + Rp_{9} + Rp_{10} + Rp_{11} + Rp_{12} + Rp_{13} + Rp_{14})^{2}}$$

The in-phase modal response components are algebraically summed:

$$Rr = \sum_{i=1}^{14} Rr_i$$

The total response for the first 14 modes is:

$$Rt = \sqrt{Rp^2 + Rr^2}$$

which assumes that the in-phase and out-of-phase modal response components Rr and Rp, are uncorrelated.

Group-2

The first 7 modes ($f_i < 9.8$ Hz) are divided by the Lindley-Yow method. The out-of-phase response components are combined in accordance with the following formula:

$$Rp = \sqrt{Rp_1^2 + Rp_2^2 + (Rp_3 + Rp_4)^2 + (Rp_5 + Rp_6)^2 + Rp_7^2}$$

which is identical to GROUP-1 for the first 7 modes. The in-phase response components for the first 7 modes are algebraically summed with the responses for modes 8 through 14, which are treated as completely in-phase with the input time history:

$$Rr = \sum_{i=1}^{7} Rr_i + \sum_{i=8}^{14} R_i$$

The total response for the first 14 modes is again given by:

$$R_t = \sqrt{Rp^2 + Rr^2}$$

GROUP-1 and GROUP-2 differ only in their treatment of modes 8 through 14. GROUP-1 and GROUP-2 both assume that all modes above 9.8 Hz (3.5 times the frequency of the spectral peak) are in-phase and combine algebraically. However, GROUP-1 maintains the Lindley-Yow split for all modes with $f < f_{ZPA}$.

A detailed evaluation of the 1% damping, response spectrum generation calculation concluded that SDOF oscillators with frequencies above 9.5 Hz respond in-phase with the input time history. This is documented in Appendix F. The Appendix F procedure can be applied to any response spectrum, in order to pinpoint the frequency (designated $f_{\rm IP}$) above which SDOF oscillators respond in-phase with the input time history. Knowledge of $f_{\rm IP}$ for a given response spectrum provides a definitive separation between out-of-phase modal responses for which a combination rule is needed and the in-phase modal responses for which algebraic combination is appropriate.

A significant characteristic of GROUP-1 and GROUP-2 is that 100% correlation is assumed between closely spaced modes. The modal correlation coefficients are assumed to be either zero or one, similar to the NRC Grouping Method. However, algebraic combination is employed instead of the absolute sum combination used in the NRC Grouping Method. Grouping of modes in GROUP-1 and GROUP-2 is problem dependent; it cannot be viewed as a generally applicable alternative for the treatment of closely spaced modes.

The primary basis for the grouping is the shape of the BM3 input response spectrum. The single well defined, narrowly banded peak in the response spectrum at 2.8 Hz is the result of strong filtering of the ground motion through the building structure/soil. This spectral shape is encountered frequently in the analysis of distributed systems (e.g., piping) attached to building structure. The strong filtering produces a dynamic input to the distributed system which more closely resembles a single-frequency excitation rather than a broad spectral input characteristic of seismic ground motion. The CQC and DSC mode combination formulations for closely spaced modes are rooted in random vibration theory, which is more appropriate to earthquake ground motion. The phasing of closely spaced modal responses for strongly filtered input motion may be more analogous to the response of MDOF systems to a single-frequency input motion. The basis for the grouping of modes in GROUP-1 and GROUP-2 can be defined as follows:

- The peak of the response spectrum occurs at 2.8 Hz
- Modes with frequencies less than 1.75 times the peak (1.75 x 2.8 Hz = 4.9 Hz) have uncorrelated out-of-phase response components
- Modes with frequencies greater than 3.5 times the peak (3.5 x 2.8 Hz = 9.8 Hz) respond in-phase
- Between 1.75 and 3.5 times the peak frequency, out-of-phase modal response components are grouped and combined algebraically if they are closely spaced (i.e., within 10% of the lowest frequency mode comprising a group). This implies they are perfectly correlated.

The selection of 1.75 and 3.5 times the peak frequency for division of the frequency band is subject to further study and refinement.

4.2.2 Gupta Method - Variations to Value of f_2

The Gupta Method was previously described in Section 2.2.3. The total in-phase response and total out-of-phase response are obtained by:

$$Rr = \sum_{i=1}^{14} Rr_i$$

$$Rp = \left[\sum_{j=1}^{14} \sum_{k=1}^{14} C_{jk} Rp_j Rp_k\right]^{1/2}$$

Cik is defined by Eq. 3200-19 of ASCE Draft Standard 4 (Reference 10):

$$C_{jk} = \frac{2\sqrt{\beta_j \beta_k}}{(\beta_j + \beta_k)} \left[1 + \left(\frac{f_j - f_k}{\beta_j f_j + \beta_k f_k}\right)^2 \right]^{-1}$$

where f_j , f_k are the natural frequency and β_j , β_k are damping ratio for the jth and kth mode respectively. This equation is essentially equivalent to the CQC method. See Section 2.1.7.

The total response for the first fourteen (14) modes is obtained by SRSS combination of Rp and Rr:

$$Rt = \sqrt{Rp^2 + Rr^2}$$

The Gupta Method is well documented (Reference 4) and has been recommended by the ASCE (Reference 10). In the initial phase of this study, it was decided not to include the Gupta Method because it uses semi-empirical relationships developed from earthquake ground motion records, which may not be applicable to building-filtered seismic motion. However, the follow-up sensitivity study provided an opportunity to include several variations of the Gupta Method. The key parameter varied was f_2 , which defines the frequency above which modal responses are combined algebraically (i.e., $\alpha = 1.0$). GUP-0 assumes f_2 equals 3 times the frequency at the spectral peak (3 x 2.8 Hz = 8.4 Hz). GUP-1 uses Gupta's definition of f_2 from Reference 4 (see Section 2.2.3). This yields a numerical value $f_2 = 11.9$ Hz. GUP-2 uses the definition of $f_2 = f_{ZPA}$; therefore, $f_2 = 16.5$ Hz. The selection of f_2 has a significant impact on the predicted response.

4.3 Discussion of Numerical Results for Additional Modal Response Combination Methods

The results of the mode response combination sensitivity study are tabulated in Table 4-1 and 4-2, without the missing mass contribution above 14 modes, and Table 4-3 and 4-4, with the missing mass contribution above 14 modes. The missing mass contribution is algebraically summed with the in-phase component of response from the first 14 modes before combination by SRSS with the out-of-phase component of response. The last two rows of the tables provide the mean value of the response ratio and the corresponding standard deviation.

All of the alternate combination methods except GUP-2 produced more accurate results than Lindley-Yow/CQC. GUP-2 produced the most conservatives results on average, and had the largest standard deviation. This is noteworthy because GUP-2 and Lindley-Yow/CQC use essentially equivalent definitions for C_{jk} , and setting $f_2 = f_{ZPA}$ in the Gupta Method is equivalent to the Lindley-Yow definition of f_{IP} . The only real difference is the numerical value of α as a function of frequency, in the range f_{SP} to f_{ZPA} .

GROUP-1, GROUP-2, and GUP-0 produced results in agreement with each other at most locations. The mean of the ratios and standard deviation of the ratios are the best of the methods tested. It is important to note that the onset of completely in-phase response is assumed to occur between modes 7 and 8, in all three methods (see Table 3-1). GUP-1, with $f_2 = 11.9$ Hz, assumes completely in-phase response occurs between modes 11 and 12 (see Table 3-1). GUP-1 corresponds to Gupta's Method as presented in Reference 4 and described in Section 2.2.3. For the BM3 model and seismic input, GUP-1 produces superior correlation to the time history solution, compared to Lindley-Yow/CQC.

The trend toward improvement in correlation to the time history solution with decreasing $f_{IP}(f_2)$ indicates that appropriate estimation of $f_{IP} < f_{ZPA}$ is a significant aspect of RSA. One method to identify f_{IP} is provided in Appendix F.

The largest discrepancies among the different methods occur for support reactions which are "orthogonal" to the x-directional load input: F_y , F_z , M_x . These reactions are typically smaller in magnitude than the primary reactions F_x , M_y , M_z . For the primary reactions, there is very little scatter in the results from one method to another. The 14 mode solution and the complete solution exhibit similar correlation with the corresponding time history solutions. For the "orthogonal" reactions, considerable scatter between methods is exhibited for both the 14 mode and complete solutions.

Examining the results for Node 1, M_x , which initially instigated the follow-up sensitivity study, it is evident that the RSA prediction is extremely sensitive to the specific modal response combination method employed. Of particular surprise was the deterioration in accuracy

exhibited by GROUP-1, GROUP-2, and GUP-0 between the 14 mode solution and the complete solution. Further investigation of the time history solution for Node 1, M_x revealed that the time of maximum response shifts as successive modal contributions are added. At the end of the 14 mode summation, the maximum response occurs at 13.88 seconds. From Table E-1, it is noted that the complete solution for Node 1, M_x maximizes at 6.68 seconds.

The missing mass contribution above 14 modes occurs at the time of and is scaled to the peak acceleration of the input time history: -.54g at 7.35 seconds. The reaction at Node 1, M_x due to missing mass above 14 modes is of the same order as the 14 mode time history summation: 28.54 vs. 43.23. However, they occur at 13.88 seconds and 7.35 seconds respectively, while the complete time history solution maximizes at 6.68 seconds. It is obvious that the phase relationship between these two components of the time history solution is very important in arriving at the peak response of the complete solution. This element is lacking in the RSA method regardless of the specific mode combination method employed.

As indicated by the scatter of predictions by RSA in the initial study phase and in the follow-up sensitivity study for Node 1, M_x , there will be cases where RSA cannot produce a reasonably accurate prediction of the peak response. However, it is important to note that this appears to be a problem for the "orthogonal" response quantities (i.e., F_y , F_z , M_x for an x-direction input). A typical design RSA would include three directions of input motion, with the major F_y , F_z and M_x contributions coming from y and z direction input. In the SRSS combination of directional responses, errors in F_y , F_z and M_x due to x-direction input should have only a minor effect on the total predicted response due to three directional loading.

An investigation of the modal response combination methods for three directions of input motion was not considered as part of this study, because the introduction of additional variables would have complicated the evaluation of the combination methods. This would be a logical and very useful extension of the results reported herein.

Appendix H presents independent results generated by Professors A.K. Gupta and Abhinav Gupta of North Carolina State University for three directional loading of the BM3 model. These results verify the supposition stated above. Large errors in "orthogonal" output quantities (e.g., Node 1, M_x) are not significant in the combined response to three directional loading.

Appendix H also documents a proposed alternate approach to determine $f_2(f_{\rm IP})$ for use in the Gupta Method. The proposed method is qualitative and requires some judgment, but has an advantage over the quantitative method proposed in Appendix F. For the Appendix F approach, response spectra generation analyses are needed to determine $f_{\rm IP}$ as a function of damping ratio. The method proposed in Appendix H requires only the response spectra plots for different damping values. A single value for f_2 , independent of damping, is estimated from the superimposed plots, and is defined as follows: "The key frequency f_2 is the minimum frequency

at which spectra at various damping values converge." It appears that the Appendix H method would require unbroadened spectra for the determination of f_2 .

For the BM3 x-direction seismic input, $f_2 = 6.0$ Hz is estimated in Appendix H. The method of Appendix F, identified

 $f_{\rm IP} = 9.5 \text{ Hz} @ 1\% \text{ damping}$ $f_{\rm IP} = 7.5 \text{ Hz} @ 5\% \text{ damping}$

for the BM3 seismic input.

Since accurate definition of f_{IP} is essential to improving the correlation between RSA solutions and time history solutions, the methods proposed in Appendix F and Appendix H warrant additional study and refinement. The Appendix F approach is judged to provide an upper bound to f_{IP} ; the Appendix H method, based on its application to the current problem, may provide a lower bound to f_{IP} . It is noted that for 1% damping, GUP-0 ($f_2 = 8.4$ Hz) provided a better match to the time history, on average, than the solution presented in Appendix H ($f_2 = 6.0$ Hz). See Table 4-3 and Appendix H Table 3.

4.4 Summary of Results

Based on the supplementary quantitative study described above, the following observations are made:

- For highly-filtered, in-structure response spectra, improvement in accuracy can be attained by better definition of the onset of completely in-phase modal response $(f_{\rm IP})$.
- Algebraic grouping of closely-spaced modes may be more applicable to highly-filtered response spectra than the RB-DSC and CQC methods.
- Large inaccuracies in prediction of small magnitude responses, due to one direction of seismic input, will likely be insignificant in the total RSA solution for combined three direction of seismic input.
- Candidate methodologies for definition of f_{IP} have been proposed; these warrant further investigation and refinement.
- The response of MDOF systems to a single frequency input may provide a mathematical basis for combining out-of-phase modal response components for highly-filtered, in-structure response spectra. Additional study in this area is warranted.

• The flexibility inherent in Gupta's method, to specify any value of f_{IP} (through definition of f_2) is an advantage over the Lindley-Yow method. The sensitivity of the results to change in f_2 highlights the importance of improving the definition of f_{IP} .

Table 4-1

BM3 Model 14 Mode Combination Time History vs. Response Spectrum Support Reactions Comparison Among Different Methods

Forces in lbs

Moments in in-lbs

1 % Damping

NODE	REAC.	TIME HISTORY	RESPONSE	SPECTRUM	(EXPRESSE	D AS RATIOS	of the th	VALUES)
NO.	TYPE	(TH) VALUE	GROUP-1	GROUP-2	GUP-0	GUP-1	GUP-2	LINDLEY
1	Fr	3.96	0.84	0.85	0.85	0.82	0.81	0.85
1	Fy	3.51	0.96	0.96	0.94	0.97	1.15	1.08
1	Fz	2.57	0.75	0.76	0.77	0.96	1.71	1.35
1	Mx	43.23	0.81	0.72	0.74	1.49	3.51	2.63
1	Му	794.03	0.87	0.88	0.88	0.87	0.87	0.88
1	Mz	215.80	0.87	0.88	0.87	0.86	0.88	0.90
4	Fx	29.24	0.83	0.83	0.84	0.82	0.82	0.84
4	Fz	27.64	0.74	0.75	0.75	0.92	1.60	1.28
7	Fy	13.87	1.04	1.04	1.00	1.04	1.06	1.04
11	Fy	13.25	1.15	1.15	1.01	1.18	1.27	1.13
11	Fz	93.01	0.80	0.81	0.82	0.80	0.80	0.83
15	Fx	706.21	0.81	0.82	0.84	0.78	0.73	0.80
17	Fy	25.56	1.42	1.42	1.27	1.53	1.65	1.41
17	Fz	62.29	0.99	0.96	0.90	1.01	1.11	0.99
36	Fy	46.89	1.15	1.13	1.07	1.26	1.51	1.35
36	Fz	68.17	1.13	1.13	1.16	1.11	1.13	1.16
38	Fx	121.91	1.33	1.32	1.32	1.34	1.26	1.25
38	Fy	43.98	1.08	1.08	1.07	1.10	1.14	1.09
38	Fz	42.65	1.32	1.31	1.32	1.32	1.23	1.24
38	Mx	713.03	1.00	0.86	0.77	1.07	1.43	1.26
38	Му	2783.00	1.32	1.32	1.32	1.33	1.24	1.25
38	Mz	3117.80	1.08	1.08	1.07	1.10	1.13	1.09
23	Fx	159.21	1.46	1.43	1.43	1.50	1.47	1.39
23	Fy	28.00	1.01	0.97	0.69	1.43	2.44	1.97
31	Fx	6.99	1.30	1.26	1.26	1.41	1.46	1.33
31	Fy	13.95	1.24	1.16	1.18	1.27	1.42	1.29
31	Fz	15.50	1.17	1.17	1.26	1.52	1.68	1.45
31	Mx	1102.30	1.10	1.10	1.24	1.60	1.80	1.49
31	Му	259.45	1.13	1.09	1.06	1.18	1.18	1.09
31	Mz	608.00	1.15	1.11	1.10	1.27	1.31	1.17
Mean	Value of 3	0 Comp.	1.06	1.04	1.03	1.16	1.36	1.23
Standa	rd Dev. of	30 Comp.	0.20	0.20	0.21	0.25	0.54	0.36

4

SUPPLEMENTARY STUDY

Table 4-2 **BM3 Model**

14 Mode Combination

Time History vs. Response Spectrum Pipe End Moments Comparison Among Different Methods Moments in in-lbs (M_x²+M_y²+M_z²)^{1/2}

1 % Damping

ELEM.	TIME HISTORY	RESPONSE S	THE TH VALU	IES)			
NO.	(TH) VALUE	GROUP-1	GROUP-2	GUP-0	GUP-1	GUP-2	LINDLEY
1	776.55	0.88	0.89	0.89	0.88	0.89	0.90
2	759.36	0.89	0.89	0.89	0.88	0.88	0.89
3	968.28	0.87	0.87	0.88	0.88	0.98	0.94
4	773.63	0.94	0.95	0.95	0.94	0.97	0.97
5	701.53	0.97	0.97	0.97	0.98	1.10	1.04
6	2207.60	0.90	0.90	0.91	0.90	0.90	0.91
7	1948.20	0.91	0.92	0.92	0.92	0.92	0.92
8	837.44	1.22	1.20	1.17	1.28	1.79	1.56
9	1357.40	1.28	1.27	1.27	1.31	1.57	1.44
10	2183.80	0.89	0.90	0.90	0.89	0.90	0.91
11	4173.00	0.87	0.88	0.88	0.86	0.84	0.87
12	8283.10	0.8 6	0.87	0.87	0.85	0.84	0.86
13	6579.90	0.89	0.90	0.90	0.89	0.88	0.89
14	13174.00	0.81	0.82	0.84	0.78	0.72	0.80
15	2294.00	1.24	1.15	1.14	1.22	1.33	1.22
16	1693.10	1.50	1.35	1.29	1.49	1.69	1.45
17	2456.50	1.39	1.37	1.26	1.49	1.61	1.38
18	2377.20	1.08	1.08	1.06	1.10	1.15	1.09
19	1635.50	1.22	1.21	1.18	1.26	1.33	1.22
20	7586.00	1.10	1.09	1.08	1.12	1.17	L.11
21	1616.20	1.30	1.29	1.28	1.34	1.40	1.32
22	1977.10	1.48	1.45	1.44	1.52	1.54	1.45
23	1900.20	1.49	1.46	1.45	1.53	1.54	1.45
24	1607.70	1.54	1.52	1.51	1.58	1.58	1.50
25	265.36	0.90	0.88	1.20	1.64	2.16	1.77
26	271.57	1.11	1.08	1.28	1.69	2.14	1.77
27	348.19	1.29	1.25	1.28	1.52	1.73	1.52
28	552.58	1.30	1.24	1.23	1.34	1.43	1.33
29	581.00	1.26	1.19	1.18	1.28	1.36	1.27
30	1102.30	1.30	1.29	1.41	1.77	1.96	1.64
31	7586.80	1.63	1.59	1.58	1.66	1.66	1.59
32	9093.40	1.49	1.47	1.45	1.51	1.50	1.45
33	11281.00	1.30	1.29	1.28	1.32	1.29	1.27
34	6061.80	1.15	1.14	1.14	1.17	1.19	1.15
35	6634.10	1.25	1.24	1.24	1.27	1.26	1.23
36	2451.60	1.24	1.23	1.23	1.26	1.25	1.23
37	4009.70	1.26	1.25	1.25	1.27	1.26	1.23
Mean Va	ulue of 37 Comp.	1.16	1.14	1.15	1.23	1.32	1.23
Standaro	Dev. of 37 Comp.	0.23	0.22	0.21	0.29	0.38	0.28

Table 4-3 BM3 Model 14 Modes Plus Missing Mass Combination Time History vs. Response Spectrum Support Reactions Comparison Among Different Methods

Forces in lbs

Moments in in-lbs

1 % Damping

NODE	REAC.	TIME HISTORY	RESPONSE	SPECTRUM	(EXPRESSE	D AS RATIOS	of the th	VALUES)
NO.	TYPE	(TH) VALUE	GROUP-1	GROUP-2	GUP-0	GUP-1	GUP-2	LINDLEY
1	Fx	43.71	1.06	1.06	1.06	1.06	1.07	1.06
1	Fy	4.36	0.72	0.72	0.71	0.74	0.90	0.82
1	Fz	1.60	0.91	0.83	0.84	1.22	2.63	2.03
1	Mx	49.88	0.64	0.38	0.39	1.10	3.00	2.26
1	Му	776.40	0.88	0.89	0.89	0.88	0.88	0.89
1	Mz	278.42	0.81	0.81	· 0.81	0.79	0.79	0.83
4	Fx	116.79	0.90	0.90	0.90	0.89	0.87	0.90
4	Fz	20.01	0.83	0.80	0.81	1.08	2.14	1.67
7	Fy	13.27	1.05	1.05	1.01	1.06	1.09	1.05
11	Fy	13.31	1.14	1.14	1.02	1.18	1.27	1.13
11	Fz	81.34	0.83	0.84	0.84	0.83	0.86	0.86
15	Fx	731.47	0.81	0.82	0.84	0.78	0.73	0.80
17	Fy	25.60	1.42	1.42	1.27	1.52	1.65	1.41
17	Fz	65.36	0.97	0.94	0.88	1.00	1.08	0.97
36	Fy	46.69	1.15	1.14	1.08	1.26	1.52	1.35
36	Fz	42.12	1.23	1.22	1.20	1.21	1.39	1.30
38	Fx	732.18	1.05	1.07	1.07	1.07	1.04	1.05
38	Fy	43.44	1.09	1.09	1.08	1.11	1.15	1.10
38	Fz	29.95	1.42	1.33	1.34	1.36	1.29	1.28
38	Mx	719.05	1.00	0.85	0.76	1.06	1.42	1.25
38	Му	2084.97	1.41	1.34	1.34	1.36	1.30	1.28
38	Mz	3085.87	1.09	1.08	1.08	1.11	1.15	1.10
23	Fr	259.59	1.35	1.38	1.38	1.42	1.36	1.33
23	Fy	26.08	1.08	1.02	0.72	1.54	2.62	2.11
31	Fx	55.05	1.03	1.04	1.04	1.05	1.04	1.03
31	Fy	14.17	1.21	1.14	1.16	1.26	1.40	1.27
31	Fz	16.08	1.14	1.15	1.24	1.48	1.62	1.40
31	Mx	1137.30	1.08	1.08	1.23	1.56	1.74	1.45
31	Му	612.38	0.99	1.02	1.00	1.04	1.00	0.98
31	Mz	1773.20	0.99	1.01	1.00	1.04	1.02	0.99
Mean	Value of 3	0 Comp.	1.04	1.02	1.00	1.14	··· 1.37	1.23
Standa	rd Dev. of	30 Comp.	0.20	0.22	0.22	0.23	0.56	0.37

4 SUPPLEMENTARY STUDY

Table 4-4

BM3 Model

2

14 Modes Plus Missing Mass Combination

Time History vs. Response Spectrum

Pipe End Moments Comparison Among Different Methods Moments in in-lbs $(M_x^2+M_y^2+M_z^2)^{1/2}$

1 % Damping

ELEM.	TIME HISTORY	RESPONSE S	PECTRUM (E	XPRESSED A	S RATIOS OF	THE TH VALL	JES)
NO.	(TH) VALUE	GROUP-1	GROUP-2	GUP-0	GUP-1	GUP-2	LINDLEY
1	790.95	0.88	0.88	0.89	0.87	0.88	0.89
2	836.77	0.88	0.89	0.89	0.87	0.87	0.89
3	1429.28	0.86	0.86	0.86	0.85	0.88	0.89
4	763.87	0.95	0.95	0.95	0.95	0.98	0.97
5	597.98	1.09	1.09	1.09	1.13	1.28	1.18
6	2133.18	0.92	0.92	0.92	0.92	0.93	0.93
7	1877.81	0.93	0.94	0.94	0.94	0.95	0.94
8	852.74	1.20	1.18	1.15	1.25	1.76	1.53
9	1415.21	1.24	1.23	1.23	1.27	1.51	1.39
10	1946.24	0.93	0.94	0.94	0.93	0.96	0.96
11	3829.46	0.90	0.91	0.91	0.90	0.89	0.91
12	8428.48	0.86	0.86	0.87	0.85	0.83	0.86
13	6741.03	0.88	0.89	0.89	0.88	0.87	0.88
14	13219.91	0.81	0.82	0.84	0.78	0.72	0.80
15	2293.75	1.24	1.15	1.14	1.22	1.33	1.22
16	1696.61	1.50	1.35	1.29	1.49	1.69	1.45
17	2455.62	1.39	1.37	1.26	1.49	1.61	1.38
18	2363.76	1.09	1.08	1.07	1.11	1.15	1.09
19	1625.77	1.22	1.21	1.18	1.26	1.33	1.23
20	7544.81	1.11	1.10	1.09	1.13	1.17	1.12
21	1590.16	1.28	1.27	1.25	1.33	1.39	1.30
22	2046.41	1.52	1.51	1.50	1.58	1.57	1.49
23	1807.75	1.43	1.37	1.36	1.45	1.49	1.39
24	1518.31	1.47	1.42	1.41	1.49	1.52	1.43
25	922.51	1.03	1.02	1.06	1.08	1.14	1.12
26	677.35	1.06	1.03	1.08	1.13	1.26	1.19
27	390.71	1.37	1.33	1.37	1.55	1.71	1.55
28	737.42	1.22	1.21	1.20	1.28	1.31	1.24
29	830.76	1.18	1.17	1.16	1.22	1.24	1.19
30	1994.56	1.12	1.14	1.17	1.32	1.38	1.25
31	7428.79	1.63	1.59	1.58	1.66	1.67	1.59
32	8785.32	1.51	1.48	1.47	1.53	1.52	1.47
33	10970.06	1.31	1.30	1.29	1.33	1.30	1.28
34	5993.82	1.14	1.13	1.12	1.16	1.18	1.14
35	6788.22	1.25	1.25	1.24	1.27	1.26	1.23
36	1874.84	1.34	1.28	1.27	1.33	1.38	1.32
37	3501.06	1.29	1.26	1.25	1.29	1.30	1.26
Mean Va	due of 37 Comp.	1.16	1.15	1.14	1.19	1.25	1.19
Standard	Dev. of 37 Comp.	0.23	0.21	0.20	0.24	0.29	0.22

5.1 Technical Conclusions

Based on the results of this evaluation the following technical conclusions have been developed:

- Rosenblueth's DSC method and Der Kiureghian's CQC method for combining the outof-phase modal response components (Rp_i) represent a technical improvement over SRSS and the current methods accepted in Regulatory Guide 1.92 for treatment of closely spaced modes.
- 2) Separation of the out-of-phase (Rp_i) and the in-phase (Rr_i) modal response components for amplified modes ($f < f_{ZPA}$), in accordance with the Lindley-Yow method and the Gupta method (see Method 2, Section 2.4.2), provides a more accurate RSA prediction than the traditionally applied method, which assumes out-of-phase response (Rp_i = R_i) for amplified modes (see Method 1, Section 2.4.1).
- 3) The contribution from high frequency modes ($f \ge f_{ZPA}$) is accurately calculated by the Missing Mass method and should be included in all RSA. The Static ZPA method is a convenient way to account for the high frequency modes when implementing the Lindley-Yow method (see Method 3, Section 2.4.3)..
- 4) Specific structural systems with significant participation of low frequency modes $(f < f_{\text{spectral peak}})$ were not analyzed. The Lindley-Yow method is not suitable for analysis of low frequency systems because of limitations imposed by the definition of the in-phase response component. The Gupta method is not restricted because low frequency modes are correctly treated as out-of-phase (i.e., $Rp_i = R_i$).
- 5) Numerical evaluation of the highly filtered, in-structure response spectrum applied to the BM3 model indicates that the onset of totally in-phase response ($Rr_i = R_i$) occurs at a frequency ($f_{\rm IP}$) significantly below $f_{\rm ZPA}$. The value of $f_{\rm IP}$ can be determined for any response spectrum by the method delineated in Appendix F. This method is potentially applicable to defining f_2 for the Gupta Method (i.e., $f_2 = f_{\rm IP}$). (Note: In Appendix H, Gupta also proposes a new approach to define f_2).
- 6) Excellent correlation between mode superposition and direct integration time history analysis is achievable for constant modal damping. The missing mass contribution to the mode superposition solution must be included, regardless of the number of modes retained in the solution. Appendix E provides guidelines for each time history analysis method, to improve correlation.

- 7) The discrete, nodal mass distribution in a dynamic analysis model should be sufficiently refined to produce a static solution in close agreement with a static solution based on continuously distributed mass. Appendix C provides a discussion and guidelines for ensuring an adequate dynamic mass distribution.
- 8) Broad-banded, ground motion spectral input is more consistent with the technical bases for Rosenblueth's DSC and Der Kiureghian's CQC Methods for modal combination of out-of-phase response components. However, the quantitative results in Chapter 3 indicate their superiority to currently accepted methods, when applied to a highly-filtered, in-structure response spectrum.
- 9) For highly filtered, in-structure response spectra, improvements to the RSA combination methods evaluated in Chapter 3 appear achievable, based on the supplementary study results presented in Chapter 4. A mathematically based grouping method for highly filtered in-structure response spectrum input and refinement of Gupta's Method, based on new approaches to define f_2 for such spectral input, warrant further evaluation.
- 10) The BM3 model can potentially serve as a benchmark problem for evaluating alternate methodologies for RSA. Sufficient model, loading, and time history response data is provided in the report.

5.2 Recommendations for Revision to Regulatory Guide 1.92 and Standard Review Plan 3.7.2

Based on the technical conclusions delineated in Section 5.1, the following revisions to regulatory guidance are recommended:

- 1) The regulatory guidance on modal response combination for RSA should be consolidated in one document. The most logical candidate is R.G. 1.92. This would then be referenced by SRP 3.7.2.
- 2) Acceptable methodologies for developing the complete RSA solution should be defined in R.G. 1.92.
- 3) For out-of-phase response combination, Rosenblueth's DSC and Der Kiureghian's CQC methods should be identified in R.G.1.92 as acceptable methods. SRSS is acceptable in the absence of closely spaced modes. The 10% definition for closely spaced modes is applicable only at low damping ratios (≤2%). For higher damping ratios, closely spaced modes should be defined by 5 times the damping ratio (e.g., 25% for 5% damping; 50% for 10% damping). See Section 2.1.4.

The NRC Ten Percent and NRC-DSC methods should be deleted from R.G. 1.92. Because of its extensive prior use, the NRC Grouping method is a candidate for retention in R.G. 1.92, even though absolute summation of closely spaced modes has no technical basis. The maximum damping ratio should be limited to 2%, because the 10% definition of closely spaced modes is not applicable at higher damping levels.

- 4) For separation of out-of-phase and in-phase components for the amplified modes, the methods of Lindley-Yow and Gupta should be identified in R.G. 1.92 as acceptable methods. R.G. 1.92 should include a cautionary note that the Lindley-Yow method is not suitable for analysis of systems with significant low-frequency response ($f < f_{spectral peak}$).
- 5) For the complete RSA solution, Method 2 (Lindley-Yow or Gupta formulation) and Method 3 should be identified in R.G. 1.92 as acceptable methods, subject to the limitations of the Lindley-Yow method cited in (4) above. Method 1 should be strongly discouraged or identified as unacceptable.
- 6) The missing mass formulation documented in Appendix I should be included in R.G. 1.92, in order to provide a complete definition for Method 2. The contribution of high frequency modes ($f \ge f_{ZPA}$) must be included in all RSA, without exception. Appendix A to SRP 3.7.2 should be deleted.
- 7) R.G. 1.92 should address the importance of the missing mass contribution in mode superposition time history analysis and define an acceptable procedure, analogous to the approach used in Method 2 for RSA. Only modes with $f < f_{ZPA}$ participate in the modal solution; the missing mass contribution, scaled to the instantaneous input acceleration, is treated as an additional mode in the algebraic summation of modal responses at each time step.
- 8) SRP 3.7.2 should contain a discussion of dynamic model vs. static model mass distributions, and provide guidelines for ensuring an adequate discrete mass distribution in the dynamic model. Appendix C provides a framework for revision of SRP 3.7.2.

5.3 Recommendations for Additional Evaluation of Modal Response Combination Methods

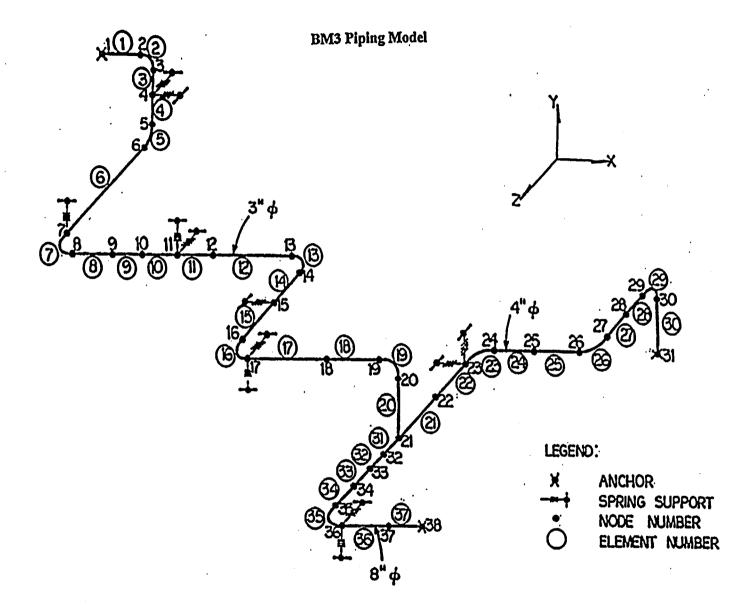
During the course of this study, a number of areas worthy of additional evaluation were identified. The following recommendations are not restricted to regulatory guidance issues, but also address perceived opportunities for improvement of RSA methodology.

1) Numerical study of the RSA methods should be expanded to include additional problems and three directions of seismic input, in order to quantify the level of correlation

achievable in design-type calculations.

- 2) The methodologies developed in Appendix F and Appendix H for definition of f_{IP} should be tested for a wide range of spectral shapes and, if proven, should be incorporated as a integral element of the RSA process.
- 3) A modal response combination method rigorously based on MDOF response to a single frequency input should be developed and tested for highly-filtered, in-structure response spectra.
- 4) A detailed study of modal response combination methods for systems with significant low-frequency response (f < f spectral peak) should be conducted.
- 5) The present project did not address independent support motion (ISM) of multiplysupported systems. The applicability of the results and conclusions of this project to improving ISM analysis methods should be investigated.

6 REFERENCES


- 1. U.S. Nuclear Regulatory Commission, "Combining Modal Responses and Spatial Components in Seismic Response Analysis," Regulatory Guide 1.92, Revision 1, February 1976.
- 2. U.S. Nuclear Regulatory Commission Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, NUREG-0800, Section 3.7.2, "Seismic System Analysis," Revision 2, August 1989.
- Kennedy, R.P., "Position Paper on Response Combinations," Report No. SMA 12211.02-R2-0, March 1984 (Published in Report of the U.S. Nuclear Regulatory Commission Piping Review Committee: Evaluation of Other Dynamic Loads and Load Combinations, NUREG-1061, Vol. 4, pp. B-43 to B-95, April 1985).
- 4. Gupta, A.K., "Response Spectrum Method in Seismic Analysis and Design of Structures," CRC Press, Inc., 1993.
- 5. Mertens, P.G., "A New Algebraic White-Noise Modal Combination Rule GAC(A)," Nuclear Engineering and Design 147(1994) 299-309.
- 6. Bezler, P., Curreri, J.R., Wang, Y.K., and Gupta, A.K., "Alternate Modal Combination Methods in Response Spectrum Analysis," NUREG/CR-5627, BNL, October 1990.
- Wang, Y.K., Subudhi, M., and Bezler, P., "Investigation of the Conservatism Associated with Different Combinations Between Primary and Secondary Piping Responses," NUREG/CR-3086, BNL, January 1983.
- 8. Bezler, P., Hartzman, M., and Reich, M., "Piping Benchmark Problems Dynamic Analysis Uniform Support Motion Response Spectrum Method," NUREG/CR-1677, Vol.1, BNL, August 1980.
- 9. American Society of Civil Engineers, "Seismic Analysis of Safety Related Nuclear Structures and Commentary on Standard for Seismic Analysis of Safety Related Nuclear Structures (4-86), September 1986.
- 10. American Society of Civil Engineers, "Seismic Analysis of Safety Related Nuclear Structures and Commentary," ASCE 4, Revision, Draft, April 1995.
- 11. Maison, B.F., Neuss, C.F., and Kassaj, K., "Earthquake Engineering and Structural Dynamics, Vol. II, p. 623-647; "The Comparative Performance of Seismic Response Spectrum Combination Rules in Building Analysis," John Wiley & Sons, 1983.

6 REFERENCES

- 12. Rosenblueth, E., and Elorduy, J., "Responses of Linear Systems to Certain Transient Disturbances," Proceedings of the Fourth World Conference on Earthquake Engineering, Santiago, Chile, 1969.
- 13. Der Kiureghian, A. "A Response Spectrum Method for Random Vibrations," University of California at Berkeley, June 1980.
- 14. Lindley, D.W., and Yow, T.R., "Modal Response Summation for Seismic Qualification," Proceedings of the Second ASCE Conference on Civil Engineering and Nuclear Power, Vol. VI, Paper 8-2, Knoxville, TN, September 1980.
- 15. Hadjian, A.H., "Seismic Response of Structures by the Response Spectrum Method," Nuclear Engineering and Design, Vol. 66, no. 2, pp. 179-201, August 1981.

APPENDIX A

DESCRIPTION OF BM3 PIPING MODEL

A-2

449 450 1 MODEL 3---UNIFORM 1 * TIME HISTORY ANALYSIS--- tha_x_mall_d1.inp

CONTROL INFORMATION

NIMBER OF NODAL POINTS	=	38
NUMBER OF BLEMENT TYPES NUMBER OF STATIC LOAD CASES	*	2 0 1 0
NUMBER OF DYNAMIC LOAD CASES	-	ĭ
NUMBER OF ANCHOR MVMT CASES	-	ō
NUMBER OF FREQUENCIES		3ĭ
SOLUTION MODE (MODEK)		ō
BQ.0, EXECUTION		-
BO.1, DATA CHECK		
STRESS CALCULATION FLAG	=	0
BQ.0 NO		
EQ.1 YES		
ASMB CODE EVALUATION FLAG		0
EQ.1 CLASS 1 PIPING	-	
BO.2 CLASS2 OR CLASS 3 PIPIN	g	
ACCELERATION DUE TO GRAVITY	=38	6.4
BANDWIDTH MINIMIZATION FLAG	#	1
BO.0 NO		
eõ.1 yes Arbitrary node numbering flag	_	0
EQ.0 NO	=	v
EO.1 YES		
NUMBER OF SUPPORT GROUPS	*	1
FLAG FOR NODAL COORD. INPUT UNIT	S=	ō
EQ.0 CONSISTENT UNIT		
EQ.1 FEET TO INCHES		

LIST OF ANALYSIS TO BE PERFORMED LOAD CASE DISK FILE ANALYSIS TYPE

_		1			0		UNIFORM	TIME	HISTORY	ANALYSIS		
1	NODAL	POINT		CONDI		CODES		NODA	T. DOTNT	COORDINATES	1	
	NUMBER	X	Y	Z	XX	ŶŶ	ZZ		X.	Ŷ	2	T
	1	Q	Q	Q	Q	Q	0 0	.00		.000	.000	.000
	2	N N	Ň	ů N	Ň	Ň	ŭ	15.00		.000	.000	.000 .000
	Ă	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	19.50		180.000	.000	.000
	5	Õ	Ŏ	Ŏ	Õ	Ó	<u> </u>	19.50		199.500	.000	.000
	ğ	õ	ò	<u> </u>	<u>ŏ</u>	Q	<u>o</u>	19.50		204.000	4.500	.000 .000
	á	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	24.00		204.000	144.000	.000
	ġ	ō.	ō	ŏ	ŏ	ŏ	ŏ	96.00	Õ -	204,000	144.000	.000
	10	ò	ò	õ	ò	õ	Q	254.00		-204.000	144.000 144.000	.000
	12	ů ů	Ň	ŏ	Ň	ŏ	ŏ	333.00		204.000	144.000	.000 .000
	13	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	483.00	0 -	204,000	144,000	.000
	14	õ	ò	Ő	õ	õ	0	487.50		-204.000	148.500	.000
	15 16	ŏ	ŏ	ŏ	ŏ	ŏ	0 0	487.50		-204.000	235.500	.000 .000

A-3

NUREG/CR-6645

.

-
-
_
20
ш
~
- 112
<u> </u>
_
-
•
-
÷
σ
-
- Ui

NUREG/CR-6645	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35 35 36 37 38	00000000000000000000000000000000000000	8 X X 8 8 000000000000000000000000000000		000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	492.(575. 723.(727. 727. 727. 733. 851. 851. 851. 851. 727. 727. 727. 727. 727. 727. 727. 72	500 500 500 500 500 500 500 500 500 500	$\begin{array}{r} -204.000\\ -204.000\\ -208.500\\ -264.000\\$	$\begin{array}{c} 240.000\\ 240.000\\ 240.000\\ 240.000\\ 240.000\\ 190.000\\ 190.000\\ 184.000\\ 184.000\\ 184.000\\ 184.000\\ 160.000\\ 142.000\\ 136.000\\ 255.000\\ 270.000\\ 306.000\\ 414.000\\ 426.000\\ 426.000\\ 426.000\\ \end{array}$
A-4	19 20 22 23 24 26 27 29 30 32 33 34 56 78 90 11 12 34 56 78 90 11 12 14 16 78 90 11 22 22 22 22 22 22 22 22 22 22 22 22	x 1 7 3 9 5 1 7 3 9 5 1 7 3 9 5 1 7 3 9 5 1 7 3 9 5 1 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 9 7 3 9 5 1 1 2 1 3 3 9 5 1 1 1 9 3 9 5 1 1 1 1 1 9 3 9 5 1 1 1 1 1 9 3 9 5 1 1 1 1 1 9 3 9 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 6 \\ 6 \\ 8 \\ 9 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1$	z 3951739517395173951739517395173951739517	$\begin{array}{c} \textbf{X} & \textbf{4} \\ \textbf{1062} \\ 228406528477628894066288940662889406628894066288940662889406628894066288940662889406628894066288496622841111111111111111111111111111111111$	Y 5 1173954473955177899517739517395173951718951739517189517395173951739517395173951739517395173	Z 62 1284 334284 56667284062884062884062884066288400662884006628840066288400662884006628840066288400662884006628840066288400662884006628840066288400662884006628840066884006688400668840000000000		• •	·	

.

.

.000 .00000 .00000 .0000 .00000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .000

.

• • .

.

	38	1	2	23	- 2	24	- 1	22	5	2	26		227	222 228
15	Þ	R	I	Ň	G	B	L	B	M	B	N	T	S	

BLEMENT TYPE		1
NUMBER OF ELEMENTS	=	30

CASE (A)	CASE (B)	CASE (C)	CASE (D)
.0000	.0000	.0000	.0000

BLEMENT	NODE	SUPPOR	CODE	DIRECTION	COSINES WRT	GLOBAL AXES	Specified	SPECIFIED	Spring
NUMBER	(N)	GROU	KR	X-	Y-	Z-	Displacement	ROTATION	Rate
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 9 1P F	1 1 1 1 1 1 4 7 1 1 1 5 7 7 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 1 1 5 7 7 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	BNT	00011100000000000000000000000000000000	$\begin{array}{c} 1.000\\ .000$	$\begin{array}{c} .000\\ 1.000\\ .000\\ .000\\ .000\\ 1.000\\ .000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ 1.000\\ .000\\ .000\\ 1.000\\ .000\\ .000\\ 1.000\\ .000\\ .000\\ 1.000\\ .000\\ .000\\ 1.000\\ .000\\$.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000 1.000 .000	.000 .000 .000 .000 .000 .000 .000 .00	.000 .000 .000 .000 .000 .000 .000 .00	1.0000E+11 1.0000E+11 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+08 1.0000E+08 1.0000E+08 1.0000E+08 1.0000E+05 1.0000E+05 1.0000E+05 1.0000E+05 1.0000E+05 1.0000E+05 1.0000E+11 1.0000E+11 1.0000E+20 1.0000E+11 1.0000E+11 1.0000E+11 1.0000E+11 1.0000E+11 1.0000E+11 1.0000E+11 1.0000E+11 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20 1.0000E+20

CONTROL INFORMATION

NUMBER OF PIPE ELEMENTS = 37 NUMBER OF MATERIAL SETS = 1

A-5

A-6

Maximim number of material Temperature input points	*
NUMBER OF SECTION PROPERTY SET	S =
NUMBER OF BRANCH POINT NODES	*
Maximum number of tangents Common to a branch point	=
Flag for neglecting axial Deformations in bend elements (Eq.1, neglect)	×

1MATERIAL PROPERTY TABLES

.

OMATERIAL NUMBER	- (1)				
TEMPERATURE POINTS	= { 1))		
point Number temperatur	Young's Modulus	Poisson's Ratio	THERMAL EXPANSION		
15 ECTION PR	0 2.900E+07 O P E R T Y	.300 TABLE	6.4408-06		
Section Outside Number Diameter	WALL THICKNBSS	SHAPE FACTOR FOR SHEAR	Weight/ Unit length	MASS/ UNIT LENGTH	DESCRIPTION
1 3.500 2 4.500 3 8.625	.2160 .2370 .3220	.0000 .0000 .0000	8.9800B-01 1.3580B+00 4.1870E+00	2.3240E-03 3.5145E-03 1.0836E-02	

1 3 0

3

0

ELEMENT LOAD CASE MULTIPLIERS

	CASE A	CASE B	CASE C	CASE D
X-DIRECTION GRAVITY	.000	.000	.000	.000
Y-DIRECTION GRAVITY	.000	.000	1000	.000
Z-DIRECTION GRAVITY	.000	.000	.000	.õõõ
THERMAL DISTORTION	.000	.000	.000	.õõõ
PRESSURE DISTORTION	.000	.000	.000	.000

1PIPE ELEMENT INPUT DATA

element Number	element Type	NODE -I	Nodr -J	MATL. NUMBER	Section NUMBER		Reference Mperature (Bend Radius)	DESIGN PRESSURE (THIRD POINT)	PEAK PRESSURE (X3 - ORDINATE)	TEST PRESSURE (Y3 - ORDINATE)	END (Z		ODES ND-J NTE)	NODE INCREMENT (BEND DEGREE)	INPUT TAG
12	TANGENT BEND	1 2	2 3	1	1	(50.00 50.00 4.500)	200.00 200.00 (TI) (.00 .00 19.500) (00. 00. (000.	(0 0	0 (000	1 (90.0001)	II IC

3 4 5	Tangent Tangent Bend	3 4 5	456	1 1 1	1 1 1	(50.00 50.00 50.00 4.500}	200.00 200.00 200.00 (TI) (.00 .00 .00 ·19.500) (.00 .00 .00 -204.000)	ŏŏ	-	II II IC
6 7	Tangent Bend	. 7	7 8	1	1	(50.00 50.00 4.500)	200.00 200.00 (TI) (.00 .00 19.500) (.00 .00 -204.000)	0 0 0 0 (144.000)	1 (90.0001)	II IC
8 9 10 11 12 13	TANGENT TANGENT TANGENT TANGENT TANGENT BEND	8 9 10 11 12 13	9 10 11 12 13 14	111111111111111111111111111111111111111	1 1 1 1 1	(50.00 50.00 50.00 50.00 50.00 50.00 4.500)	200.00 200.00 200.00 200.00 200.00 200.00 (TI) (.00 .00 .00 .00 .00 487.500) (.00 .00 .00 .00 .00 .00 -204.000)	0 0 0 0		II II II II IC
14 15 16	TANGENT TANGENT BEND	14 15 16	15 16 17	1 1 1	1 1 1	(50.00 50.00 50.00 4.500)	200.00 200.00 200.00 (TI) (.00 .00 .00 487.500) (.00 .00 .00 -204.000)	0 0 0 0 (240.000)	ĩ	II II IC
17 18 19	Tangent Tangent Bend	17 18 19	18 19 20	1 1 1	1 1 1	(50.00 50.00 50.00 4.500)	200.00 200.00 200.00 (TI) (.00 .00 .00 727.500) (.00 .00 .00 .204.000)	0 0 0 0 (240.000)	1 1 (90.0001)	II II IC
20 21 22 23	Tangent Tangent Tangent Bend	20 21 22 23	21 22 23 24	1 1 1	1 2 2 2	(50.00 50.00 50.00 50.00 6.000)	200.00 200.00 200.00 200.00 (TI) (.00 .00 .00 727.500) (.00 .00 .00 .00 -264.000)	0 0 0 0 0 0 (184.000)	1 1 1 (90.0001)	II II IC
24 25 26	Tangent Tangent Bend	24 25 26	25 26 27	1 1 1	2222	(50.00 50.00 50.00 6.000)	200.00 200.00 200.00 (TI) (.00 .00 851.500) (.00 .00 .00 -264.000)		1 1 (90.0001)	II II IC
27 28 29	TANGENT TANGENT BEND	27 28 29	28 29 30	1 1 1	· 22 22	(50.00 50.00 50.00 6.000)	200.00 200.00 200.00 (TI) (.00 .00 .00 851.500) (.00 .00 .00 -264.000)	0 0 0 0 (136.000)	1 1 (90.0001)	II II IC
30 31 32 PIPE	TANGENT TANGENT TANGENT E L E M	30 21 32 8 N T	31 32 33 I N	1 PUT	2 3 3 D A T A		50.00 50.00 50.00	200.00 200.00 200.00	.00 .00 .00	.00 .00 .00	0 0 0 0 0 0	1 1 1	II II II
ilement Number	Blement Type	Node - I	Node -J	MATL. NUMBER	SECTION NUMBER	TE	REFERENCE MPERATURE (BEND RADIUS)	DESIGN PRESSURE (THIRD POINT)	PEAK PRESSURE (X3 - ORDINATE)	TEST PRESSURE (Y3 - ORDINATE)	END CODES END-I END-J (Z3- ORDINATE)	NODE INCREMENT (BEND DEGREE)	input Tag
33 34 35	Tangent Tangent Bend	33 34 35	34 35 36	1 1 1	3 3 3	(50.00 50.00 50.00 12.000)	200.00 200.00 200.00 (TI) (.00 .00 727.500) (.00 .00 .00 -264.000)	0 0 0 0 (426.000)	1 1 (90.0001)	II II IC
36	TANGENT	36	37	1	3		50.00	200.00	.00	.00	0 0	1	II

•

•

A-7

IP LIM NUREG/CR-6645

37 TANGENT 37 38 18 ANDWIDTH MINIMI	z ATION ³	50.00	200.00	.00	.00	0 0	1	II
3 36 211 212 213 2 4 35 205 206 207 2 5 34 199 200 201 2 6 33 193 194 195 1 7 32 187 188 189 1 8 31 181 182 183 1 9 30 175 176 177 1 10 29 169 170 171 1 11 28 163 164 165 1 12 27 157 158 159 1 13 26 151 152 153 1 14 25 145 146 147 1 16 23 133 134 135 1 18 21 121 122 123 1 19 20 115 116 117 1 20 19 109 101 111	H MINIMIZATION XX YY ZZ 26 227 228 20 221 222 14 215 216 08 209 210 02 203 204 96 197 198 90 191 192 84 185 186 78 179 180 72 173 174 66 167 168 60 161 162 54 155 156 448 149 150 42 143 144 36 137 138 24 125 126 18 119 120 12 113 114 36 137 138 24 125 126 18 119 120 12 113 114 30 131 132 24 125 126 18 119 120 12 113 114 06 107 108 00 101 102 88 89 90 76 77 78 64 65 66 52 53 54 40 41 42 28 29 30 16 17 18 10 11 12 4 5 6 94 95 96 82 83 84 70 71 72 58 59 60 46 47 48 34 35 36 22 23 24 18 18 18 18 19 28 28 28 28 28 28 28 28 28 28						·	
BANDWIDTH NUMBER OF EQUATIONS IN A BLOCK NUMBER OF BLOCKS IN O D A L L O A D S (S T A	= 18 = 228 = 1	ASSES	(DYNAMIC)					
NODE LOAD X-AXIS NUMBER CASE FORCE 1DYNAMICANALYSIS	Y-AXIS Force	Z-AXIS Force	X-AXIS Moment	Y-AXIS MOMENT		Z-AXIS Moment		

•

2

•

NUREG/CR-6645

A-8

Nodal Masses of the Model BM3

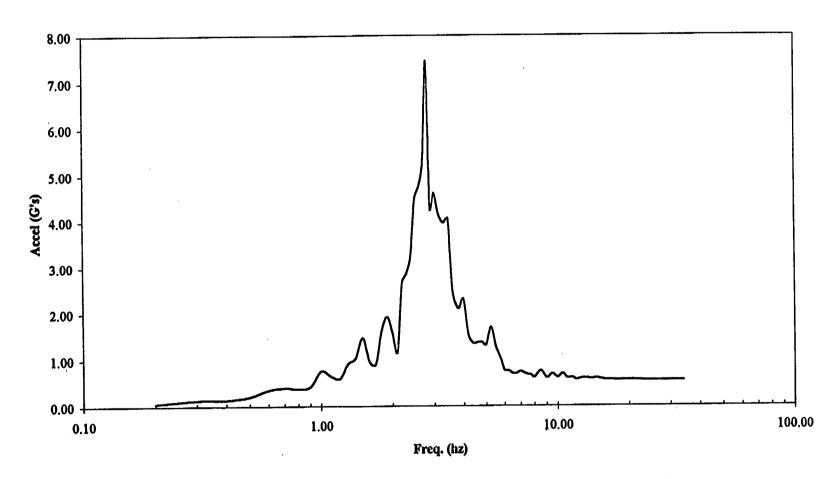
Unit:lbs/in/sec**2

Node No.	Mass
1.	0.017
2	0.026
3	0.212
3 4	0.227
5	0.031
6	0.165
7	0.165
8	0.092
9	0.267
10	0.275
11	0.182
12	0.174
13	0.092
14	0.059
15	0.101
16	0.059
17	0.105
18	.0.268
19	0.18
20	0.073
21	0.207
22	0.088
23	0.043
24	0.052
25	0.197
26	0.178
27	0.048
28	0.063
29	0.048
30	0.175
31	0.158
32	0.163
33	0.276
34	0.78
35	0.687
36	0.687
37	1.17
38	0.585

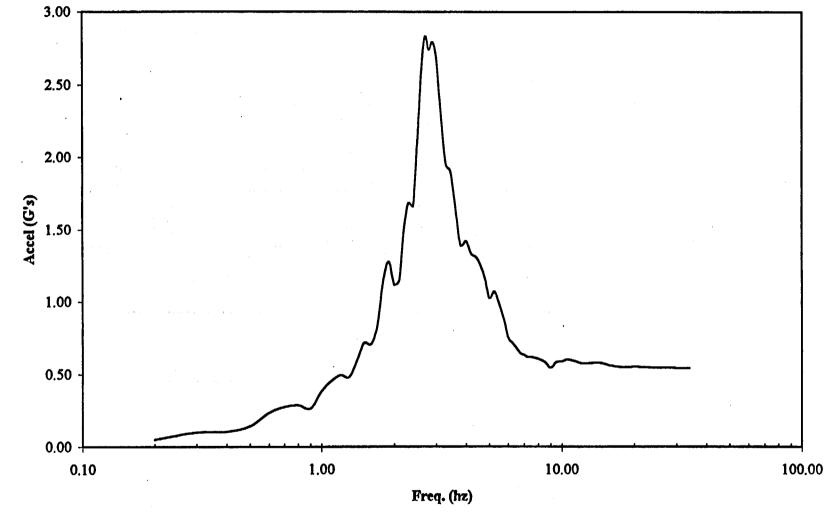
NUREG/CR-6645

A-9

М	ODE	CIRCULAR		
	UMBER	FREQUENCY	FREQUENCY	PERIOD
•••		(RAD/SEC)	(CYCLES/SEC)	(SEC)
0	1	1.8268E+01	2.9074E+00	3.4395E-01
ŏ	2	2.7565E+01	4.3871E+00	2.2794E-01
õ	3	3.4657E+01	5.5158E+00	1.8130E-01
ō	4	3.5840E+01	5.7041E+00	1.7531E-01
ō	5	4.3841E+01	6.9775E+00	1.4332E-01
ō	6	4.6141E+01	7.3436E+00	1.3617E-01
ŏ	7	4.9509E+01	7.8796E+00	1.2691E-01
Ō	8	6.4727E+01	1.0302E+01	9.7071E-02
Ō	9	6.9466E+01	1.1056E+01	9.0450E-02
0	10	7.0578E+01	1.1233E+01	8.9025E-02
Ō	11	7.2241E+01	1.1498E+01	8.6975E-02
0	12	7.8104E+01	1.2431E+01	8.0446E-02
Ō	13	8.7205E+01	1.3879E+01	7.2050E-02
Ō	14	1.0130E+02	1.6122E+01	6.2026E-02
Ō	15	1.1333E+02	1.8038E+01	5.5439E-02
Ō	16	1.1700E+02	1.8621E+01	5.3702E-02
Ō	17	1.2265E+02	1.9521E+01	5.1227E-02
0	18	1.2291E+02	1.9561E+01-	5.1122E-02
0	19	1.3707E+02	2.1815E+01	4.5840E-02
0	20	1.3935E+02	2.2179E+01	4.5088E-02
0	21	1.4361E+02	2.2857E+01	4.3750E-02
0	22	1.6305E+02	2.5950E+01	3.8536E-02.
0	23	2.4517E+02	3.9020E+01	2.5628E-02
0	24	2.4831E+02	3.9521E+01	2.5303E-02
0	25	2.5890E+02	4.1205E+01	2.4269E-02
0	26	2.8845E+02	4.5908E+01	2.1783E-02
0	27	2.9688E+02	4.7249E+01	2.1164E-02
0	28	3.3072E+02	5.2636E+01	1.8999E-02
0	29	3.7253E+02	5.9290E+01	1.6866E-02
0	30	4.4039E+02	7.0090E+01	1.4267E-02
0	31	4.4421E+02	7.0699E+01	1.4144E-02

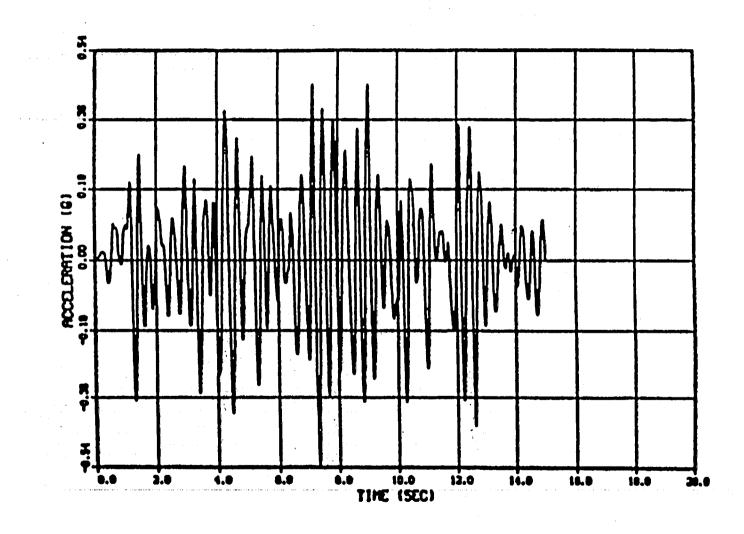

1MODAL	PARTICIPAT	ION FACTORS		
MODE	FREQ(CPS)	X-DIRECTION	Y-DIRECTION	Z-DIRECTION
1	2.907	-2.3473E-02	2.7695E-01	3.5437E-02
2	4.387	-5.5673E-01	9.0279E-02	-1.0926E-01
3	5.516	-4.7719E-02	-9.4682E-01	-1.9203E-01
4	5.704	-9.9555E-03	-2.1351E-01	6.8419E-01
5	6.977	-1.5342E-01	-4.5827E-01	7.4423E-01
6	7.344	5.5364E-01	3.9813E-01	-3.5022E-01
7	7.880	-3.7119E-01	3.9334E-01	4.5914E-01
8	10.302	-4.0272E-01	1.1940E+00	-1.1466E-02
9	11.056	5.5995E-01	1.8119E-01	-7.0772E-02
10	11.233	9.2828E-02	-1.4703E-01	-2.7472E-04
11	11.498	-1.4351E+00	-1.9653E-01	-3.4271E-01
12	12.431	4.2956E-01	-2.4824E-01	-4.5713E-01
13	13.879	-3.2298E-01	-1.5196E-01	-5.3436E-02
14	16.122	9.7048E-02	4.1157E-01	2.9944E-01
15	18.038	-1.0796E-01	4.0371E-02	4.3020E-01
16	18.621	-4.2217E-01	-4.0211E-02	2.9074E-01
17	19.521	-3.2449E-02	-2.8297E-01	-2.1127E-01
18	19.561	-1.4330E-01	8.6254E-02	-6.1027E-01
19	21.815	-3.8758E-01	1.1586E-01	-5.3784E-02
20	22.179	-3.6788E-03	-9.8705E-01	7.5035E-02
21	22.857	-6.9162E-02	8.0846E-02	1.1833E+00
22	25.950	1.6498E-01	-1.8727E-02	1.6100E+00
23	39.020	1.2766E-01	7.3949E-01	-2.9101E-02
24	39.521	-2.4041E-02	-3.3916E-01	-6.4757E-03
25	41.205	-2.0186E-02	3.3298E-01	-1.9897E-02
26	45.908	4.7943E-01	-1.6665E-02	-6.2062E-02
27	47.249	-8.3761E-02	-2.6544E-01	2.6515E-02
28	52.636	-3.3621E-01	4.7051E-02	1.1705E-01

29	59.290	-2.5127E-03	2.4614E-04	-5.0636E-01
30	70.090	4.5397E-02	1.7356E-03	-6.2325E-01
31	70.699	-5.3524E-01	-1.2430E-02	-6.2982E-02


APPENDIX B

_

TIME HISTORY AND RESPONSE SPECTRUM INPUT FOR BM3 ANALYSIS



BM3 Input Spectrum (1%)

BM3 Input Spectrum (5%)

B-3

EN3 TIME HISTORY RECORD

24T 2	4 25	12							
	25 26	1 2							
	6 27	1 2							
6.0	TI	851.5	-264.0	18	4.0				
	27 28	1 2							
	18 29	1 2		•					
	9 30	1 2							
6.0	TI	851.5	-264.0	13	6.0				
	0 31	1 2							
	1 32	1 3							
	2 33	1 3							
	3 34	1 3							•
	4 35	1 3							
	5 36	1 3							
12.0	TI	727.5	-264.0	42	6.0				
	6 37	1 3							
37T · 3	7 38	1 3							
					TIME	HISTORY	ANALYSIS		
			100.0						
1	1 14	1950 20	0.001	. 1	0.01				
-									
1									
									•
1500	1.0 0	PERATIONAL	LEVEL						
.000	.025	.020	.063	.030	.127	.040	.247	.050	.436
.060	.703	.070	L.060	.080.	1.488	.090	1.933	.100	2.343
.110	2.707		3.036	.130	3.341	.140	3.653	.150	4.016
.160	4.481	.170 9	5.053	.180	5.720	.190	6.460	.200	7.199
.210	7.839		8.272	.230	8.433	.240	8.349	.250	8.119
.260	7.898		7.763	.280	7.730	. 29 0	7.780	.300	7.760
.310	7.422		5.549	.330	4.924	.340	2.590	.350	200
.360	-3.220		5.119	.380	-8.900		-12.090		-15.814
	-19.350	.420 -2			-23.220		-23.510		-23.130
	-22.220	.470 -20		.480	-18.410	.490	-15.490		-12.170
.510	-8.580		4.550	.530	.050	.540	5.380	.550	11.680
.560	18.610		5.200	.580	30.370	.590	33.830	.600	35.640
.610	35.460		3.590	.630	31.710	.640	31.080		31.166
.660	31.170		1.120	.680	31.290	.690	31.390	.700	30.820
.710	29.340		6.646	.730	22.460	.740	17.180	.750	11.540
.760	6.556		3.236	.780	1.835	.790	1.780	.800	2.030
.810	1.531		130	.830	-2.250	.840	-3.930	.850	-5.020
.860	-5.220		3.630	.880	.330	.890	6.127	.900	12.550
.910	18.613		3.618	.930	26.986	.940	28.850	.950	30.020
.960			2.500	.980	33.750	.990	34.540	1.000	34.560
1.010				1.030	31.460	1.040	30.040	1.050	29.340
1.060	30.180			1.080	38.420	1.090	44.810	1.100	51.475
1.110	57.912			1.130	69.550	1.140	73.800	1.150	76.150
	75.680	1.170 7			60.900	1.190	46.110	1.200	27.670
1.210					-39.133		-61.080	1.250	-81.110
	-98.830				126.200		135.900	1.300-	142.200
	-143.250				126.150		109.900	1.350	-90.300
	-68.300				-21.051	1.390	3.690		28.670
1.410				1.430		1.440	99.200	1.450	104.800
	105.300				91.100		77.830	1.500	62.140
	45.060			1.530	10.580		-5.064		-18.940
					-51.170		-58.910	1.600	-64.200
	-31.120		J 840	1 620	-58.020	1.640	-49.480	1.650	-39.460
	-66.070		J.JQV A 884	1 200	-14.520	1.690	-9.130	1.700	-3.370
T.660	-29.300	1.670 -2	0.800	**A6A	- 42 . 34 4				

į

	1.720 7.910	1.730 11.692	1.740 13.840	1.750 14.260
1.710 2.640	1.770 12.720	1.780 12.340	1.790 11.590	1.800 9.390
1.760 13.490	1.820 -1.060	1.830 -9.275	1.840 -18.870	1.850 -28.840
1.810 5.210		1.880 -48.440	1.890 -49.200	1.900 -47.540
1.860 -37.870	1.870 -44.560	1.930 -36.040	1.940 -30.680	1.950 -25.310
1.910 -44.430	1.920 -40.640		1.990 1.474	2.000 11.810
1.960 -20.220	1.970 -14.660		2.040 46.760	2.050 49.810
2.010 22.690	2.020 32.910	2.030 41.160		2.100 48.330
2.060 50.900	2.070 50.890	2.080 50.370		2.150 33.160
2.110 46.500	2.120 43.980	2.130 40.770	2.140 36.980	2.200 15.660
2.160 29.580	2.170 25.820	2.180 21.754	2.190 18.100	
2.210 14.300	2.220 13.650	2.230 13.840	2.240 14.633	
2.260 14.350	2.270 11.800	2.280 7.500	2.290 2.070	2.300 -3.854
2.310 -10.127	2.320 -16.677	2.330 -23.257	2.340 -29.545	2.350 -35.200
2.360 -40.270	2.370 -45.040	2.380 -49.500	2.390 -53.310	2.400 -55.620
2.380 -10.270	2.420 -51.130	2.430 -44.950	2.440 -37.650	2.450 -29.410
2.410 -55.050	2.470 -9.890	2.480 .560	2.490 10.110	2.500 18.160
2.460 -20.100		2.530 36.340	2.540 39.640	2.550 40.830
2.510 25.070	2.520 31.250	2.580 35.700	2.590 32.830	2.600 29.700
2.560 40.210	2.570 38.300		2.640 12.430	2.650 7.293
2.610 26.130	2.620 22.040		2.690 -11.440	2.700 -15.455
2.660 2.293	2.670 -2.550	2.680 -7.200		2.750 -44.450
2.710 -19.818	2.720 -25.084	2.730 -31.340	2.740 -38.050	2.800 -48.890
2.760 -49.700	2.770 -52.860	2.780 -53.530	2.790 -52.120	
2.810 -43.630	2.820 -35.990	2.830 -25.760	2.840 -13.340	
2.860 14.222	2.870 27.998	2.880 41.354	2.890 53.810	2.900 64.880
	2.920 81.260	2.930 86.850	2.940 90.700	2.950 92.200
	2.970 83.490	2.980 72.430	2.990 58.100	3.000 42.290
2.960 90.090		3.030760	3.040 -11.720	3.050 -21.500
3.010 26.590		3.080 -46.480	3.090 -53.110	3.100 -59.020
3.060 -30.694	3.070 -39.100	3.130 -65.650	3.140 -53.900	3.150 -60.550
3.110 -63.370	3.120 -65.550	3.130 -83.650	3.190 -19.850	3.200 -2.720
3.160 -55.090	3.170 -46.680	3.180 -34.860	3.240 60.000	3.250 70.250
3.210 14.938	3.220 31.850	3.230 47.100		3.300 54.100
3.260 77.000	3.270 79.050	3.280 75.700		3.350 -41.140
3.310 38.090	3.320 20.270	3.330 .830	3.340 -19.900	3.400-123.830
3.360 -61.870	3.370 -80.710	3.380 -97.000	3.390-111.450	3.400-113.630
3.410-132.440	3.420-135.540	3.430-132.490	3.440-124.440	3.450-113.420
	3.470 -88.960	3.480 -76.420	3.490 -63.210	3.500 -49.130
3.460-101.280	3.520 -19.460	3.530 -4.590	3.540 9.570	3.550 21.940
3.510 -34.416		3.580 42.880	3.590 46.040	3.600 48.730
3.560 31.600	3.570 38.390	3.630 56.150	3.640 57.860	3.650 58.800
3.610 51.340	3.620 53.910		3.690 45.550	3.700 36.660
3.660 58.620	3.670 56.650		3.740 -16.340	3.750 -26.690
3.710 25.204	3.720 11.500	3.730 -3.020	3.790 -32.590	3.800 -26.660
3.760 -33.270	3.770 -36.140	3.780 -35.800		3.850 33.940
3.810 -17.920	3.820 -6.674	3.830 6.614	3.840 20.750	
3.860 44.630	3.870 52.060	3.880 55.970	3.890 56.520	
3.910 47.570	3.920 38.150	3.930 26.060	3.940 12.130	3.950 -2.690
	3.970 -33.551	3.980 -49.341	3.990 -64.670	4.000 -78.600
3.960 -17.930	4.020 -99.270	4.030-105.970	4.040-110.800	4.050-113.900
4.010 -90.240	3.040 -77.470	4.080-111.900	4.090-105.970	4.100 -99.680
4.060-115.210	4.070-114.590	4.130 -60.730	4.140 -43.930	4.150 -26.250
4.110 -89.450	4.120 -76.210	4.180 33.040	4.190 54.610	4.200 75.930
4.150 -7.650	4.170 12.124	4.100 33.434	4.240 138.790	4.250 145.480
4.210 95.900	4.220 113.500	4.230 128.010	4.290 138.900	
4.260 148.210	4.270 147.310	4.280 143.810	- 310 00 700	4.350 68.820
4.310 126.400	4.320 117.580	4.330 105.240	4.340 88.790	
4.360 46.740	4.370 24.450	4.380 3.020	4.390 -17.985	4.450-127.390
4.410 -59.390	4.420 -78.560	4.430 -96.210	4.440-112.440	
4.460-140.460	4.470-150.200	4.480-155.300	4.490-155.600	4.500-151.300
4.400-T40.400	4.520-131.860	4.530-116.610	4.540 -97.660	4.550 -76.090
4.510-143.250			4.590 18.100	4.600 43.890
4.560 -53.190	4.570 -29.880	4.630 103.150	4.640 114.700	4.650 120.700
4.610 66.470	4.620 86.900	2.030 TO3.T30	4.690 93.570	4.700 80.350
4.660 120.700	4.670 115.300	4.680 105.710	1.070 201011	

4.710 66.900	4.720 53.190	4.730 38.710	4.740 22.900	4.750 5.790
4.760 -12.130	4.770 -30.350	4.780 -47.780	4.790 -62.290	4.800 -72.300
4.810 -77.800	4.820 -79.400	4.830 -77.130	4.840 -70.940	4.850 -61.060
4.860 -48.520	4.870 -34.956	4.880 -22.100	4.890 -10.920	4.900 -1.644
4.910 5.828	4.920 11.809	4.930 16.510	4.940 20.270	4.950 23.770
4.960 27.212	4.970 29.890	4.980 31.140	4.990 31.300	5.000 31.340
5.010 31.767	5.020 33.100	5.030 36.332	5.040 41.640	5.050 48.030
5.060 54.406	5.070 60.560 ·	5.080 66.810	5.090 72.899	5.100 78.840
5.110 85.550	5.120 92.980	5.130 99.230	5.140 102.200	5.150 101.160
5.160 96.100	5.170 87.260	5.180 75.150	5.190 60.370	5.200 43.860
5.210 26.840	5.220 10.090	5.230 -6.380	5.240 -23.250	5.250 -41.154
5.260 -59.950	5.270 -78.380	5.280 -94.900	5.290-108.610	5.300-118.910
5.310-125.050	5.320-126.600	5.330-124.140	5.340-118.560	5.350-110.380
5.360-100.000	5.370 -88.120	5.380 -74.640	5.390 -58.930	5.400 -40.500
5.410 -19.920	5.420 1.700	5.430 23.380	5.440 43.670	5.450 60.900 5.500 75.990
5.460 73.590	5.470 80.700	5.480 82.600	5.490 80.500	
5.510 69.310	5.520 60.290	5.530 48.950	5.540 35.770	5.550 21.310 5.600 -50.530
5.560 6.090	5.570 -9.037	5.580 -23.540	5.590 -37.540	5.650 -58.730
5.610 -60.550	5.620 -66.000	5.630 -67.350	5.640 -65.170	
5.660 -47.990	5.670 -34.340	5.680 -19.900	5.690 -6.430	5.700 5.590
5.710 16.663	5.720 27.730		5.740 51.120	5.750 61.180 5.800 64.910
5.760 68.200	5.770 72.050	5.780 72.950	5.790 70.580	
5.810 56.900	5.820 48.100		5.840 32.480	5.850 26.270 5.900 -4.749
5.860 20.580	5.870 14.830	5.880 8.700	5.890 2.164	
5.910 -12.073	5.920 -19.580	5.930 -26.450	5.940 -32.030	5.950 -36.390 . 6.000 -31.830
5.960 -39.620	5.970 -41.330	5.980 -40.840	5.990 -37.730	
6.010 -23.420	6.020 -13.170	6.030 -1.850	6.040 9.490	
6.060 27.790	6.070 33.310	6.080 36.530	6.090 38.280	
6.110 40.050	6.120 40.120	6.130 39.100	6.140 36.540	
6.160 26.630	6.170 19.130	6.180 10.267	6.190 .742	6.200 -8.230 6.250 -23.650
6.210 -15.060	6.220 -19.150	6.230 -21.340	6.240 -22.740	6.300 -16.310
6.260 -23.810	6.270 -23.000	6.280 -21.259	6.290 -18.869	6.350 -9.950
6.310 -13.879	6.320 -11.870	6.330 -10.620	6.340 -10.140	6.400 18.110
6.360 -8.950	6.370 -5.970	6.380301	6.390 8.060	6.450 45.640
6.410 28.230	6.420 36.780	6.430 42.760	6.440 45.750	6.500 22.870
6.460 42.950	6.470 38.750	6.480 34.000	6.490 28.850	6.550 -32.987
6.510 15.470	6.520 6.080	6.530 -5.390	6.540 -18.610 6.590 -81.420	6.600 -87.220
6.560 -47.530	6.570 -61.120	6.580 -72.690	6.640 -93.640	6.650 -91.160
6.610 -90.970	6.620 -93.460	6.630 -94.480		6.700 -45.690
6.660 -87.140	6.670 -80.840	6.680 -71.600	6.690 -59.680	6.750 37.410
6.710 -29.680	6.720 -12.126	6.730 5.750	6.740 22.550	6.800 78.250
6.760 49.890	6.770 59.850	6.780 67.540	6.790 73.550	6.850 76.910
6.810 81.660	6.820 83.550	6.830 83.470	6.840 81.160	6.900 26.120
6.860 70.890	6.870 62.720	6.880 52.170	6.890 39.700	6.950 -37.960
6.910 12.040	6.920 -1.990	6.930 -15.190	6.940 - 27.070	7.000 -80.510
6.960 -48.116	6.970 -57.360	6.980 -65.737	6.990 -73.330	7.050 -95.350
7.010 -87.850	7.020 -94.680	7.030 -99.600	7.040-100.100 7.090 -29.710	7.100 -5.780
7.060 -85.640	7.070 -71.000	7.080 -51.800	7.140 101.430	7.150 126.350
7.110 19.780	7.120 46.806	7.130 74.450		7.200 168.300
7.160 147.900	7.170 163.750	7.180 172.600	7.190 174.250	7.250 28.530
7.210 154.150	7.220 131.300	7.230 101.150	7.240 65.960	7.300-141.300
7.260 -9.040	7.270 -45.377	7.280 -79.830	7.290-112.040 7.340-207.200	7.350-206.900
7.310-166.450	7.320-186.400	7.330-200.200		7.400-109.200
7.360-199.400	7.370-184.800	7.380-163.900	7.390-138.200 7.440 15.267	7.450 44.560
7.410 -78.470	7.420 -47.140	7.430 -15.687	7.490 129.900	7.500 141.500
7.460 71.130	7.470 94.400	7.480 114.000		7.550 124.300
7.510 148.400	7.520 150.100	7.530 146.250	7.540 137.200	7.600 14.440
7.560 108.300	7.570 89.500	7.580 67.410	7.590 42.110 7.640 -90.270	7.650-110.000
7.610 -13.927	7.620 -41.410	7.630 -67.080	7.020 -30.470	7.700-129.600
7.660-125.100	7.670-134.850	7.680-139.100	7.690-137.250	

e Pj

	100 920	7.730 -80.770	7.740 -57.460	7.750 -32.620
7.710-117.100	7.720-100.820		7.790 58.690	7.800 78.450
7.760 -8.010	7.770 15.471		7.840 132.300	7.850 137.600
7.810 96.280	7.820 111.410	7.830 123.450		7.900 106.520
7.860 139.200	7.870 136.400	7.880 129.500	7.890 119.250	
	7.920 75.840	7.930 57.720	7.940 37.920	
	7.970 -21.820	7.980 -40.510	7.990 -59.170	8.000 -77.270
7.960 -2.520		8.030-110.140	8.040-112.400	8.050-110.570
8.010 -92.750	8.020-103.800	8.080 -87.100	8.090 -75.870	8.100 -52.600
8.060-104.900	8.070 -96.650	8.080 -37.200	8.140406	8.150 16.910
8.110 -48.260	8.120 -33.402	8.130 -17.496		8.200 71.035
8.160 32.890	8.170 46.180	8.180 56.350		8.250 103.810
8.210 77.420	8.220 83.650	8.230 90.380	8.240 97.560	8.300 92.090
8.260 107.540	8.270 108.040	8.280 105.310	8.290 99.760	
	8.320 72.570	8.330 61.660	8,340 50.380	8.350 38.570
8.310 82.870		8.380 -2.220	8.390 -16.790	8.400 -30.740
8.360 25.950	8.370 12.300	8.430 -68.800	8.440 -79.670	8.450 -89.080
8.410 -44.040	8.420 -56.790		8.490-112.400	8.500-114.750
8.460 -96.990	8.470-103.440	8.480-108.550	8.540 -99.150	8.550 -88.090
8.510-114.970	8.520-112.500	8.530-107.260		8.600 5.270
8.560 -74.040	8.570 -57.180	8.580 -37.870	8.590 -16.850	8.650 109.450
	8.620 51.910	8.630 74.260	8.540 93.720	8.650 109.450
	8.670 128.200	8.580 130.400	8.690 127.700	8.700 120.100
8.560 121.100		8.730 65.080	8.740 39.720	8.750 11.180
8.710 107.250	8.720 89.000		8.790 -90.020	8.800-107.190
8.760 -17.840	8.770 -45.240	8.780 -69.470	8.840-144.100	8.850-143.450
8.810-121.150	9.094.994.444	8.830-139.700	8.840-144.100	8.900 -59.430
8.860-136.300	8.870-123.250	8.880-105.500	8.890 -84.000	
8.910 -32.320	8.920 -3.390	8.930 26.080	8.940 54.630	
8.310 -34.320	8.970 127.360	8.980 144.900	8.990 158.450	9.000 167.700
8.960 105.970	9.020 174.100	9.030 170.450	9.040 151.400	9.050 147.100
9.010 173.050	9.020 174.100	9.080 80.610	9.090 53.780	9.100 25.690
9.060 128.100	9.070 105.600	9.080 - 55 700	9.140 -76.180	9.150 -92.250
9.110 -2.990	9.120 -30.840	9.130 -55.700	9.190-119.850	9.200-116.600
9.160-104.600	9.170-113.500	9.180-118.700	9.190-119.000	9.250 -52.310
9.210-109.750	9.220 -99.700	9.230 -86.700	9.240 -70.720	9.300 42.200
9.260 -32.300	9.270 -11.850	9.280 7.790	9.290 26.030	
	9.320 63.940	9.330 70.120	9.340 74.920	9.350 79.170
9.310 54.980		9.380 81.760	9.390 76.760	9.400 69.500
9.360 82.530	9.370 83.690		9.440 28.463	9.450 15.039
9.410 60.990	9.420 51.460	9.430 40.670	9.490 -31.490	9.500 -38.230
9.460 1.330	9.470 -11.480	9.480 -22.580		9.550 -42.020
9.510 -43.220	9.520 -46.510	9.530 -47.720	9.540 -46.320	9.600 2.830
9.560 -35.140	9.570 -26.160	9.580 -15.980	9.590 -6.030	
	9.620 18.210	9.630 25.000	9.640 30.620	9.650 34.830
9.610 10.790		9.680 37.530	9.690 36.150	9.700 35.000
9.660 37.550	9.670 38.360		9.740 24.720	9.750 17.990
9.710 34.080	9.720 32.680		9.790 -17.364	9.800 -25.280
9.760 10.240	9.770 1.470	9.780 -8.120	9.840 -48.640	9.850 -52.920
9.810 -31.990	9.820 -38.050	9.830 -43.630	9.840 -10.010	9.900 -55.430
9.860 -56.130	9.870 -58.110	9.880 -58.775	9.890 -57.850	9.950 -43.041
	9.920 -49.047	9.930 -46.472	9.940 -44.559	9.950 -13.041
9.910 -52.211		9.980 -39.340	9.990 -38.671	10.000 -38.390
9.950 -41.607	9.970 -40.300	10.030 -40.220	10.040 -39.990	10.050 -37.020
10.010 -38.660	10.020 -39.390		10.090 8.012	10.100 22.020
10.060 -30.160	10.070 -19.540	10.080 -6.290		10.150 57.350
10.110 34.520	10.120 44.600	10.130 52.290	10.140 57.070	10.200 -6.460
10.160 52.400	10.170 43.200	10.180 30.860	10.190 14.480	10.250-118.280
10.210 -30.710	10.220 -55.900	10.230 -79.890	10.240-101.080	TA-42A-772-940A
T0.370 -34.110	10.270-139.800	10.280-144.530	10.290-144.400	10.300-138.900
10.260-131.000	10.210-133.000	10.330 -99.300	10.340 -80.500	10.350 -59.300
10.310-128.900	10.320-115.600		10.390 26.120	10.400 41.880
10.360 -36.700	10.370 -14.033	10.380 7.322		10.450 79.020
10.410 54.940	10.420 65.430	10.430 73.060		10.500 70.240
10.460 78.150	10.470 76.330	10.480 74.550	10.490 72.620	
	10.520 66.548	10.530 64.570	10.540 60.990	
10.510 68.080		10.580 32.073	10.590 20.610	10.600 8.510
10.560 49.720	10.570 41.880	10.630 -19.320	10.640 -22.380	10.650 -22.990
10.610 -3.090	10.620 -12.810	TA'830 -19 100	10.690 -17.070	10.700 -13.870
10.660 -22.430	10.670 -21.220	10.680 -19.420	TA+A1A	
	•			

		•		
10.710 -9.230	10.720 -2.640	10.730 6.040	10.740 16.190	10.750 26.350
	10.770 41.830	10.780 46.702	10.790 49.470	10.800 50.360
	10.820 50.408	10.830 50.610	10.840 50.520	10.850 49.790
	10.870 43.270	10.880 35.840	10.890 25.300	10.900 12.090
10.860 47.700 10.910 -2.800	10.920 -18.566	10.930 -34.600	10.940 -50.370	10.950 -65.840
	10.970 -91.960	10.980 -99.770	10.990-104.600	11.000-107.640
10.960 -80.335	11.020-108.390	11.030-104.140	11.040 -95.750	11.050 -83.370
11.010-109.170	11.070 -49.800	11.080 -30.170	11.090 -9.260	11.100 12.120
11.060 -67.750 11.110 32.260	11.120 49.860	11.130 64.890	11.140 77.510	11.150 87.160
	11.170 94.820	11.180 92.830	11.190 87.940	11.200 81.100
11.160 93.000	11.220 62.990	11.230 52.770	11.240 42.840	11.250 33.290
11.210 72.700	11.270 16.200		11.290 5.360	11.300 2.550
11.260 24.209	11.320 .640	11.330 .620	11.340 .990	11.350 2.150
11.310 1.110	11.370 7.500	11.380 10.880	11.390 14.340	11.400 17.730
11.360 4.400	11.420 21.710	11.430 23.080	11.440 24.980	11.450 26.965
11.410 20.259 11.460 28.160	11.470 27.938	11.480 26.599	11.490 25.182	11.500 24.690
	11.520 26.670	11.530 28.040	11.540 28.850	11.550 28.360
11.510 25.360	11.570 22.440		11.590 12.500	11.600 7.220
11.560 26.130		11.630 -2.350	11.640 -2.390	11.650 -1.610
11.610 2.620		11.680 3.420	11.690 6.430	11.700 9.400
11.660617			11.740 16.320	11.750 13.120
11.710 12.390		11.780 -10.882	11.790 -20.966	11.800 -29.822
11.760 7.362	11.770919 11.820 -42.439	11.830 -47.303	11.840 -52.194	11.850 -57.220
11.810 -36.880	11.870 -66.320	11.880 -69.500	11.890 -70.980	11.900 -70.340
11.860 -62.050	-	11.930 -58.970	11.940 -54.260	11.950 -50.090
11.910 -67.710	11.920 -63.690	11.980 -36.400	11.990 -28.420	12.000 -17.840
11.960 -46.440	11.970 -42.270	12.030 37.772	12.040 60.600	12.050 82.640
12.010 -3.320	12.020 15.710	12.080 129.100	12.090 134.500	12.100 134.700
12.060 102.520	12.070 118.400	12.130 100.550	12.140 78.700	12.150 52.740
12.110 129.250	12.120 117.700	12.180 -38.660	12.190 -68.190	12.200 -93.800
12.160 23.730	12.170 -7.277	12.230-139.700	12.240-143.600	12.250-141.700
12.210-114.550	12.220-130.000	12.280-109.630	12.290 -93.380	12.300 -75.610
12.260-134.700	12.270-123.630	12.330 -23.450	12.340 -7.610	12.350 7.842
12.310 -57.470	12.320 -39.980		12.390 69.210	12.400 82.510
12.360 23.170	12.370 38.750	12.380 54.421 12.430 115.870	12.440 124.100	12.450 129.750
12.410 94.600	12.420 105.830	12.480 125.800	12.490 114.650	12.500 \$6.600
12.460 132.200	12.470 131.100		12.540 -24.570	12.550 -57.940
12.510 72.050	12.520 42.340		12.590-156.300	12.600-165.400
12.560 -88.900	12.570-116.450	12.580-139.620	12.640-142.900	12.650-124.950
12.610-167.950	12.620-165.200	12.630-156.800	12.690 -34.850	12.700 -12.586
12.660-104.590	12.670 -82.260	12.680 -58.530		12.750 66.710
12.710 7.563	12.720 25.470	12.730 41.240		12.800 84.360
12.760 75.900	12.770 82.240	12.780 85.580		12.850 68.120
12.810 81.370	12.820 77.950	12.830 74.920	12.840 72.070 12.890 27.110	12.900 12.990
12.860 61.730	12.870 52.410	12.880 40.580	12.890 27.110 12.940 -36.660	12.950 -46.100
12.910938	12.920 -14.149	12.930 -26.120	12.990 -65.070	13.000 -62.030
12.960 -54.490	12.970 -61.040	12.980 -64.720	13.040 -21.900	13.050 -10.038
13.010 -55.390	13.020 -45.610	13.030 -34.020		13.100 38.670
13.060 1.220	13.070 12.043	13.080 22.360	13.090 31.390 13.140 56.070	13.150 57.010
	13.120 49.380	13.130 53.370		13.200 38.620
13.160 56.100	13.170 53.440	13.180 45.390	13.190 44.480 13.240454	13.250 -11.920
13.210 31.340	13.220 22.296	13.230 11.442		13.300 -44.720
13.260 -21.780	13.270 -29.890	13.280 -36.501	13.290 -41.440	13.350 -49.600
13.310 -47.160	13.320 -49.350	13.330 -50.840	13.340 -50.970	13.400 -23.784
13.360 -46.800	13.370 -42.500	13.380 -36.830	13.390 -30.440	
13.410 -16.857	13.420 -9.740	13.430 -2.940	13.440 3.030	
13.460 13.000	13.470 16.894	13.480 19.980	13.490 23.010	
13.510 30.180	13.520 33.240	13.530 34.870	13.540 34.550	
13.560 28.560	13.570 23.711	13.580 18.285	13.590 12.739	
13.610 3.535	13.620 .530	13.630 -1.720	13.640 -3.700	
13.660 -7.823	13.670 -8.870	13.680 -8.390	13.690 -6.510	13.700 -3.800

NUREG/CR-6645

13.710966	13.720 1.590	13.730 3.890	13.740 5.838	13.750 7.000
13.760 6.950	13.770 5.750	13.780 3.714	13.790 1.142	13.800 -1.768
13.810 -4.710	13.820 -7.390	13.830 -9.770	13.840 -11.591	13.850 -12.200
13.860 -11.340	13.870 -9.550	13.880 -7.475	13.890 -5.222	13.900 -2.745
13.910145	13.920 2.271	13.930 4.110	13.940 5.130	13.950 5.458
	13.970 4.490	13.980 2.820	13.990 .550	14.000 -2.179
		14.030 -14.591	14.040 -19.160	
14.010 -5.599		14.080 -25.680	14.090 -23.220	
14.060 -25.570	14.070 -26.500		14.140 1.170	14.150 7.146
14.110 -14.900	14.120 -9.890		14.190 29.140	
14.160 13.180	14.170 19.140			
14.210 33.650	14.220 33.560	14.230 32.700	14.240 31.680	
14.260 29.190	14.270 26.900	14.280 23.390	14.290 18.700	
14.310 6.485	14.320483	14.330 -7.492	14.340 -13.966	14.350 -19.350
14.360 -23.480	14.370 -26.700	14.380 -29.506	14.390 -32.120	
14.410 -36.650	14.420 -38.370	14.430 -39.190	14.440 -38.730	14.450 -36.870
14.460 -33.660	14.470 -29.350	14.480 -24.120	14.490 -18.070	14.500 -11.270
14.510 3.950	14.520 3.510	14.530 10.750	14.540 17.290	14.550 22.640
14.560 26.370	14.570 28.290	14.580 28.400	14.590 26.850	14.600 23.910
14.610 19.740	14.620 14.520	14.630 8.550	14.640 1.920	14.650 -5.490
14.660 -13.744	14.670 -22.525		14.690 -39.120	14.700 -45.690
14.710 -50.430	14.720 -53.190	14.730 -54.160	14.740 -53.630	14.750 -51.870
	14.770 -45.030	14.780 -39.870	14.790 -33.640	14.800 -26.470
		14.830613	14.840 8.154	14.850 16.090
14.810 -18.410	14.820 -9.659		14.890 35.820	14.900 38.130
14.860 22.800	14.870 28.240		14.940 35.310	14.950 31.400
14.910 39.330	14.920 39.300	14.930 37.950		211700 221100
14.960 26.350	14.970 20.500	14.980 14.210	14.990 7.653	
3				

3 3

NUREG/CR-6645

APPENDIX C

a gi≩

13

POTENTIAL DIFFERENCES BETWEEN DYNAMIC AND STATIC MASS DISTRIBUTIONS FOR THE SAME COMPUTER MODEL

The analysis of nuclear power plant structures, systems and components often requires that static analysis solutions and dynamic analysis solutions for the same computer model be combined to produce the total stress state, for comparison to a design allowable stress. One such combination is deadweight plus seismic load. To produce accurate load combination results, it is important that the mass distribution for the static analysis and the dynamic analysis be comparable and sufficiently refined. During the course of the present study (see Section 2.3.2), convergence of the Lindley-Yow plus missing mass in-phase response component to the static analysis solution for total mass times ZPA was tested for the BM3 piping model used in the numerical studies. The first attempt to correlate these two solutions was unsuccessful, because the piping computer code, based on SAP V, treats the distributed mass of the piping model differently in static analyses and dynamic analyses. The dynamic analysis treats the distributed piping mass as lumped masses at the node points, based on adjacent pipe element lengths. The static analysis treats the distributed piping mass times acceleration as a distributed load along the length of the pipe element. The static analysis procedure is the more accurate representation for calculation of stresses and reactions at supports. However, for the dynamic analysis solution, a finite number of mass degrees of freedom are defined by assigning the mass to the locations of the node points.

In dynamic analysis, the definition of node points is primarily driven by the physical characteristics of the piping system (support points, branch points, and in-line components) and by the dynamic behavior which is to be predicted (frequency range and mode shapes). A third criterion for definition of node points should also be included: sufficient refinement for accurate prediction of stresses and support reactions.

Tables C-1 and C-2 present a comparison between two static analysis solutions, for BM3 support reactions and pipe end moments, respectively. The column labeled "static/dyn" are the results for the dynamic lumped mass representation multiplied by ZPA. The column labeled "static/sta" are the results for the static distributed mass representation multiplied by ZPA. Both analyses utilized the same computer model and computer code.

Examination of Table C-1 indicates that reaction forces F_x , F_y , F_z are in reasonable agreement; however, moment reactions at the fixed support points (nodes 1, 31, 38) have significant differences (>10%). Table C-2 indicates that the pipe end moments for elements in the vicinity of the fixed support points also have significant differences (>10%). Two effects contribute to poor correlation of the moment. In the dynamic analysis, mass apportioned to the fixed supports (nodes 1, 31, 38) do not produce any moment effect. Also, concentrated loads (i.e., lumped masses) do not generally produce the same moments as a distributed load. Both of these effects can be minimized in the dynamic analysis by defining of a sufficient number of node points in the vicinity of fixed supports. During development of the mathematical model, a sensitivity study should be conducted to ensure that the node point distribution is sufficient to produce an accurate static solution. Successive refinement of the node point distribution should be performed until there is reasonable correlation between results generated with the dynamic lumped mass representation and the static distributed mass representation. Some existing computer codes for piping analysis may be less susceptible to this condition because corrections have been built into the code. It is important for the analyst to understand the treatment of mass and ensure that an adequate lumped mass distribution has been defined for the dynamic analysis.

 $\geq 2^{1/2}$

Support Reactions of Static Analyses due to Different Mass Distributions

Forces in lbs Moments in in-lbs

1 % Damping

NODE	REAC.	ZPA	ZPA
NO.	TYPE	static/dyn	static/sta
1	Fx	-46.21	-50.50
1	Fy	0.66	0.66
1	Fz	0.26	0.01
1	Mx	10.53	32.80
1	My	-329.25	-478.00
1	Mz	158.43	-823.00
4	Fx	-102.75	-98.00
4	Fz	-5.49	-4.26
7	Fy	-0.01	-0.85
11	Fy	-1.17	-0.12
11	Fz	37.65	36.00
15	Fx	-474.26	-475.00
17	Fy	3.78	3.84
17	Fz	-35.17	-34.40
36	Fy	8.92	8.70
36	Fz	31.68	34.80
38	Fx	-767.29	-770.00
38	Fy	-11.24	-11.20
38	Fz	-31.17	-35.60
38	Mx	-189.06	-195.00
38	My	-2202.83	-2520.00
38	Mz	804.58	
23	Fx	-304.11	-297.00
23	Fy	-0.68	-0.15
31	Fx	-56.51	
31	Fy	-0.25	
31	Fz	2.24	3.49
31	Mx	219.27	344.00
31	My	580.84	502.00
31	Mz	1702.48	2200.00
		1	

Table C-1

NUREG/CR-6645

C-4

Pipe End Moments of Static Analyses due to Different Mass Distribution

• 5

ć,

Resultant Moments in in-lbs

1 % Damping

NO. static/dyn static/stat 1 357.75 961.37 2 450.75 808.88 3 995.58 1241.14 4 327.00 526.13 5 241.67 303.25 6 868.02 627.91 7 725.62 486.36 8 354.59 179.07 9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23	ELEM	ZPA	ZPA
2 450.75 808.88 3 995.58 1241.14 4 327.00 526.13 5 241.67 303.25 6 868.02 627.91 7 725.62 486.36 8 354.59 179.07 9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25	NO.	static/dyn	static/sta
3 995.58 1241.14 4 327.00 526.13 5 241.67 303.25 6 868.02 627.91 7 725.62 486.36 8 354.59 179.07 9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26	1	357.75	961.37
4 327.00 526.13 5 241.67 303.25 6 868.02 627.91 7 725.62 486.36 8 354.59 179.07 9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27	2	450.75	808.88
5 241.67 303.25 6 868.02 627.91 7 725.62 486.36 8 354.59 179.07 9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28	3	995.58	1241.14
6 868.02 627.91 7 725.62 486.36 8 354.59 179.07 9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 30	4	327.00	526.13
7 725.62 486.36 8 354.59 179.07 9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 30 1812.15 2279.14 31	5	and the second sec	
8 354.59 179.07 9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 <td></td> <td></td> <td></td>			
9 502.09 498.37 10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32<	7	A CONTRACTOR OF	the second s
10 912.98 836.15 11 1617.18 1642.18 12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37	8	and the second se	Contraction of the second s
111617.181642.1812 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	9		and the second
12 3951.97 3927.76 13 2956.60 2925.35 14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	10	912.98	
132956.602925.3514 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	11	1617.18	
14 8613.31 8664.29 15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	12		
15 475.77 503.56 16 467.76 445.32 17 310.22 302.07 18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
17310.22302.0718706.10755.4619471.56519.70202028.912009.3221580.58524.32221971.491987.20231167.591191.47241123.541119.4325922.09788.2226657.25536.0927340.76257.7128600.98502.4329710.13578.43301812.152279.14317523.237288.41329107.418828.373310884.8410502.09342199.422703.06354815.865424.33361247.941402.92			
18 706.10 755.46 19 471.56 519.70 20 2028.91 2009.32 21 580.58 524.32 22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92			the second s
19471.56519.70202028.912009.3221580.58524.32221971.491987.20231167.591191.47241123.541119.4325922.09788.2226657.25536.0927340.76257.7128600.98502.4329710.13578.43301812.152279.14317523.237288.41329107.418828.373310884.8410502.09342199.422703.06354815.865424.33361247.941402.92		the second se	
202028.912009.3221580.58524.32221971.491987.20231167.591191.47241123.541119.4325922.09788.2226657.25536.0927340.76257.7128600.98502.4329710.13578.43301812.152279.14317523.237288.41329107.418828.373310884.8410502.09342199.422703.06354815.865424.33361247.941402.92	18	706.10	
21580.58524.32221971.491987.20231167.591191.47241123.541119.4325922.09788.2226657.25536.0927340.76257.7128600.98502.4329710.13578.43301812.152279.14317523.237288.41329107.418828.373310884.8410502.09342199.422703.06354815.865424.33361247.941402.92	19	471.56	
22 1971.49 1987.20 23 1167.59 1191.47 24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	20		
231167.591191.47241123.541119.4325922.09788.2226657.25536.0927340.76257.7128600.98502.4329710.13578.43301812.152279.14317523.237288.41329107.418828.373310884.8410502.09342199.422703.06354815.865424.33361247.941402.92			
24 1123.54 1119.43 25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92			
25 922.09 788.22 26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	. 23		
26 657.25 536.09 27 340.76 257.71 28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	24	1123.54	
27340.76257.7128600.98502.4329710.13578.43301812.152279.14317523.237288.41329107.418828.373310884.8410502.09342199.422703.06354815.865424.33361247.941402.92	25	922.09	the second se
28 600.98 502.43 29 710.13 578.43 30 1812.15 2279.14 31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	26	657.25	
29710.13578.43301812.152279.14317523.237288.41329107.418828.373310884.8410502.09342199.422703.06354815.865424.33361247.941402.92	27	340.76	
301812.152279.14317523.237288.41329107.418828.373310884.8410502.09342199.422703.06354815.865424.33361247.941402.92	28	600.98	the second se
31 7523.23 7288.41 32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	29		and the second se
32 9107.41 8828.37 33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	30		
33 10884.84 10502.09 34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	31	7523.23	
34 2199.42 2703.06 35 4815.86 5424.33 36 1247.94 1402.92	32	9107.41	
35 4815.86 5424.33 36 1247.94 1402.92	33		
36 1247.94 1402.92	34	2199.42	
	. 35	4815.86	
37 2352.78 2649.47	36	1247.94	
	37	2352.78	2649.47

Table C-2

APPENDIX D

TABULATION OF MODE CORRELATION COEFFICIENTS FOR THE DOUBLE SUM COMBINATION (DSC) AND THE COMPLETE QUADRATIC COMBINATION (CQC) METHODS

<u>1% DAMPING</u>

MODE CORRELATION COEFFICIENTS

f	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
2 Hz	1.0	1.0	1.0	1.0
	.95	.54	.36	.15
	.91	.22	.12	.04
1	.87	.11	.06	.02
5 Hz	1.0	1.0	1.0	1.0
	.95	.32	.24	.15
	.91	.10	.07	.04
	.87	.05	.03	.02
10 Hz	1.0	1.0	1.0	1.0
	.95	.23	.19	.15
	.91	.07	.06	.04
	.87	.03	.03	.02
20 Hz	1.0	1.0	1.0	1.0
	.95	.19	.17	.15
	.91	.06	.05	.04
	.87	.03	.02	.02
30 Hz	1.0	1.0	1.0	1.0
	.95	.18	.16	.15
	.91	.05	.05	.04
	.87	.02	.02	.02

P-2

MODE CORRELATION COEFFICIENTS

f ₁	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
2 Hz	1.0	1.0	1.0	1.0
	.95	.69	.58	.41
	.91	.35	.25	.15
• •	.87	.19	.13	.07
	.83	.12	.08	.04
5 Hz	1.0	1.0	1.0	1.0
	.95	.55	.49	.41
	.91	.23	.19	.15
	.87	.12	.09	.07
	.83	.07	.06	.04
10 Hz	1.0	1.0	1.0	1.0
	.95	.49	.45	.41
	.91	.19	.17	.15
•	.87	.09	.08	.07
	.83	.06	.05	.04
20 Hz	1.0	1.0	1.0	1.0
	.95	.45	.43	.41
	.91	.17	.16	.15
	.87	.08	.08	.07
	.83	.05	.05	.04
30 Hz	1.0	1.0	1.0	1.0
	.95	.44	.43	.41
	.91	.16	.16	.15
	.87	.08	.08	.07
	.83	.05	.05	.04

D-3

NUREG/CR=6645

NUREG/CR-6645

f ₁	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
2 Hz	1.0	1.0	1.0	1.0
<i>L</i> 11 <u>L</u>	.95	.88	.86	.82
	.91	.65	.60	.53
	.87	.45	.39	.33
•	.83	.32	.27	.22
	.79	.23	.19	.15
	.75	.17	.14	.11
5 Hz	1.0	1.0	1.0	1.0
J 112	.95	.85	.83	.82
	.91	.58	.56	.53
	.87	.38	.36	.33
	.83	.26	.24	.22
	.79	.18	.17	.15
	.75	.13	.12	.11
10 Hz	1.0	1.0	1.0	1.0
	.95	.83	.83	.82
	.91	.56	.54	.53
	.87	.36	.34	.33
•	.83	.24	.23	.22
	.79	.17	.16	.15
	.75	.12	.12	.11

MODE CORRELATION COEFFICIENTS

5% DAMPING

P4

MODE CORRELATION COEFFICIENTS (CONT'D)

f ₁	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
20 Hz	1.0	1.0	1.0	1.0
	.95	.83	.82	.82
1	.91	.54	.53	.53
	.87	.34	.34	.33
	.83	.23	.22	.22
	.79	.16	.16	.15
	.75	.12	.11	.11
30 Hz	1.0	1.0	1.0	1.0
н. С	.95	.82	.82	.82
· · · ·	.91	.54	.53	.53
	.87	.34	.34	.33
	.83	.23	.22	.22
	.79	.16	.15	.15
	.75	.12	.11	.11

P-5

10%	6 D	AM	pn	NG
107	017	77 I V I	E 11	NU I

MODE CORRELATION COEFFICIENTS

f ₁	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
2 Hz	1.0	1.0	1.0	1.0
	.95	.96	.95	.95
	.91	.86	.84	.81
	.87	.72	.70	.66
	.83	.60	.56	.52
	.79	.48	.45	.41
	.75	.39	.36	.32
	.72	.32	30	.26
	.68	.27	.24	.21
•	.65	.22	.20	.17
•	.62	.19	.17	.14
1	.59	.16	.15	.12
4	.57	.14	.13	.10
	.54	.12	.11	.09
	.51	.11	.10	.08

.

f _l	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
5 Hz	1.0	1.0	1.0	1.0
	.95	.95	.95	.95
	.91	.83	.83	.81
	.87	.69	.68	.66
	.83	.56	.54	.52
	.79	.45	.43	.41
	.75	.36	.35	.32
	.72	.29	.28	.26
	.68	.24	.23	.21
	.65	.20	.19	.17
	.62	.17	.16	.14
	.59	.15	.14	.12
	.57	.13	.12	.10
	.54	.11	.11	.09
	.51	.10	.09	.08

MODE CORRELATION COEFFICIENTS (CONT'D)

10% DAMPING

MODE CORRELATION COEFFICIENTS (CONT'D)

f ₁	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
10 Hz	1.0	1.0	1.0	1.0
	.95	.95	.95	.95
	.91	.83	.82	.81
·	.87	.68	.67	.66
	.83	.54	.54	.52
	.79	.43	.43	.41
	.75	.35	.34	.32
	.72	.28	.28	.26
	.68	.23	.23	.21
	.65	.19	.19	.17
	.62	.16	.16	.14
	.59	.14	.14	.12
	.57	.12	.12	.10
	.54	.11	.10	.09
	.51	.09	.09	.08

f ₁	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
20 Hz	1.0	1.0	1.0	1.0
	.95	.95	.95	.95
	.91	.82	.82	.81
	.87	.67	.67	66
	.83	.54	.53	.52
	.79	.43	.42	.41
	.75	.34	.34	.32
	.72	.28	.27	.26
	.68	.23	.22	.21
	.65	.19	.19	.17
	.62	.16	.16	.14
	.59	.14	.14	.12
		.12	.12	.10
	.54	.11	.10	.09
	.51	.09	.09	.08

MODE CORRELATION COEFFICIENTS (CONT'D)

D-9

MODE CORRELATION COEFFICIENTS (CONT'D)

f,	f ₁ /f ₂	DSC (T = 10 sec)	DSC (T = 20 sec)	DSC (T = 1000 sec) and CQC
30 Hz	1.0	1.0	1.0	1.0
30 112	.95	.95	.95	.95
		.82	.82	.81
•	.91 97	.67	.67	.66
	.87	.53	.53	.52
	.83	.42	.42	.41
	.79	.42	.34	.32
· ·	.75		.27	.26
-	.72	.28	.22	.21
	.68	.23	.19	.17
	.65	.19	.16	.14
1	.62	.16	.14	.12
	.59	.14	· · · · · · · · · · · · · · · · · · ·	.10
ì	.57	.12	.12	.09
	.54	.10	.10	.09
	.51	.09	.09	

D-10

APPENDIX E

COMPARISON OF TIME HISTORY SOLUTION METHODS: MODE SUPERPOSITION VS. DIRECT INTEGRATION

Comparison of Mode Superposition vs. Direct Integration Time History

In mode superposition time history analysis, the residual or "missing" mass effect must be calculated and algebraically summed with the modal responses. To utilize modal time history analysis efficiently, only modal responses with frequencies up to the ZPA frequency need to be calculated; the "missing mass" not participating in these modes should be treated as an additional mode, with its peak response calculated from a static analysis of the system for ZPA times "missing mass" (as defined in Appendix I of report). The time variation for the missing mass mode is obtained by scaling this peak response to the input time history. Clearly, knowledge of the response spectrum is very useful when mode superposition time history is being performed.

The value of the response spectrum is perhaps even more significant when a direct integration time history analysis is being conducted. The spectrum provides useful information for (1) the definition of the integration time step and (2) the development of α - β damping coefficients to simulate constant modal damping. The integration time step must be sufficiently small to capture responses which oscillate at all frequencies below the ZPA frequency. In addition, knowing the frequency range of spectral amplification can help in the selection of target frequencies to obtain a best fit α - β combination for approximating constant modal damping.

For the direct integration time history analyses of BM3, α and β were determined by specifying the target modal damping at the frequency of the fundamental mode (2.9 Hz) of the BM3 model and at an intermediate frequency between this frequency and f_{ZPA} (16.5 Hz). A frequency of 11.5 Hz was selected, in order to achieve the best fit over the 2.9 Hz to 16.5 Hz range of interest. This resulted in a minimum damping equal to 80% of the target modal damping, which occurs at ~ 5.7 Hz, and a maximum damping equal to 130% of the target modal damping, which occurs at 16.5 Hz. Sensitivity to variations in the damping value diminishes as f_{ZPA} is approached; consequently, somewhat higher effective modal damping in the high frequency end of the amplified range of the spectrum has relatively negligible effect on the total dynamic solution.

In the case of the BM3 model and loading, comparison between the direct integration solution and the mode superposition plus missing mass solution indicates close agreement for both 1% and 5% damping. See Tables E-1 through E-4. The missing mass contribution to the mode superposition solution is significant. Without accounting for this contribution, one might conclude that direct integration is somewhat inaccurate when compared to mode superposition because of its inherent inability to represent constant modal damping. Table E-5 shows the missing mass, representing the residual after 31 modes (> 70 Hz). By including the missing mass contribution, excellent correlation was obtained between the complete mode superposition solution and the direct integration solution. Based on this comparative study, it is plausible that criticism of direct integration methods may be rooted in three potential sources for differences between direct integration and mode superposition solutions:

1) integration time step too large in the direct integration analysis;

2) poor definition of α - β coefficients in the direct integration analysis;

3)

failure to include the "missing mass" contribution in the mode superposition analysis.

E-3

		Comparison		k Support Read Different App		rces of BM3	•
Forces in lb	S						
Moments in	ı in-Ibs					1 %	Damping
NODE	REAC.	MODAL	TIME	MODAL (31m)	TIME	DIRECT	TIME

Table E-1
Comparison of Peak Support Reaction Forces of BM3
Due to Different Approaches

NODE	REAC.	MODAL	TIME	MODAL (31m)	TIME	DIRECT	TIME
NO.	TYPE	(31 modes)	at sec.	Plus M.M.	at sec	INTEGRATION	at sec.
1	Fx	8.40	7.34	43.71	7.36	43.63	7.35
1	Fy	10.14	7.34	4.36	4.56	3.35	4.69
1	Fz	1.60	7.48	1.60	7.48	1.59	7.35
1	Mx	49.98	6.68	49.88	6.68	45.14	6.68
1	My	776.73	7.36	776.40	7.36	778.86	7.35
1	Mz	193.46	4.54	278.42	7.36	279.55	7.35
4	Fx	68.75	. 7.34	116.79	7.36		7.35
4	Fz	19.55	7.34	20.01	7.34	21.03	7.35
7	Fy	13.31	12.90	13.27	12.90	13.78	12.89
11	Fy	13.31	12.72	13.31	12.72	13.74	12.73
11	Fz	81.14	7.36	81.34	7.36	. 82.49	7.35
15	Fx	713.32	7.36	731.47	7.36	740.29	7.35
17	Fy	25.61	11.00	25.60	11.00	27.45	11.01
17	Fz	64.26	7.34	65.36	7.34	66.32	7.35
36	Fy	46.31	4.80	46.69	4.80	47.26	4.80
36	Fz	48.85	7.18	42.12	3.88	41.80	4.46
38	Fx	128.79	4.48	732.18	7.36	736.41	7.35
38	Fy	43.52	7.36	43.44	7.36	42.51	7.36
38	Fz	31.40	4.48	29.95	4.48	29.49	4.48
38	Mx	720.04	7.34	719.05	7.34	· 719.65	7.33
38	Му	2142.00	4.48	2084.97	4.48	2055.80	4.48
38	Mz	3088.90	7.36	3085.87	7.36	3018.90	7.36
23	Fx	259.22	4.48	259.59	4.48	265.71	4.47
23	Fy	26.04	7.38	26.08	7.38	24.60	7.38
31	Fx	23,24	7.34	55.05	7.34	55.78	7.35
31	Fy	14.21	10.56		10.56	• 14.20	10.56
31	Fz	16.07	11.84		11.84	16.90	11.83
31	Mx	1136.90	11.84		11.84	1173.80	11.84
31	Му	608.43	7.34	612.38	7.34	620.26	7.35
31	Mz	1767.90	7.34		7.34	1776.60	7.35

Table E-2Comparison of Peak Pipe Resultant Moments of BM3Due to Different Approaches

đ.

ELEM.	MODAL	TIME	MODAL (31m)	TIME	DIRECT	TIM
No.	(31 modes)	at sec.	Plus M.M.	at sec	INTEGRATION	at see
1	823.40	7.36	790.95	7.36	791.02	7.3
2	818.58	7.36	836.77	7.36	838.40	7.3
3	1412.22	7.36	1429.28	7.36	1441.59	7.3
4	762.56	7.36	763.87	7.36	764.19	7.3
5	598.91	7.36	597.98	7.36	602.54	7.3
6	2134.36	7.36	2133.18	7.36	2141.09	7.3
7	1876.38	7.36	1877.81	7.36	1880.06	7.3
8	852.96	7.38	852.74	7.38	832.43	4.6
9	1415.46	7.38	1415.21	7.38	. 1438.67	4.6
10	1945.32	7.36	1946.24	7.36	1967.00	7.3
11	3826.15	7.36	3829.46	7.36	3804.39	7.3
12	8440.47	7.36	8428.4 8	7.36	8437.39	7.3
13	6741.68	7.36	6741.03	7.36	6738.07	7.3
14	13241.93	7.36	13219.91	7.36	13373.34	7.3
15	2290.84	7.36	2293.75	7.36	2364.57	4.6
16	1698.69	10.56	1696.61	10.56	· 1697.84	10.5
17	2455.47	10.66	2455.62	10.66	2492.35	10.6
18	2360.13	7.36	2363.76	7.36	2349.31	7.3
19	1623.90	7.36	1625.77	7.36	1623.68	7.3
20	7539.21	7.36	7544.81	7.36	7484.45	7.3
21	1595.61	7.36	1590.16	7.36	1564.96	7.3
22 ·	2042.84	10.56	2046.41	10.56	2036.58	10.5
23	1800.75	10.56	1807.75	10.56	1802.73	10.5
24	1522.11	10.56	1518.31	10.56	1514.11	10.5
25 ·	926.28	7.34	922.51	7.34	915.35	7.3
26	665.57	7.34	677.35	7.34	674.46	7.3
27	399.00	7.34	390.71	7.34	387.38	7.3
28	742.39	7.34	737.A2	7.34	734.60	7.3
29	. 824.73	7.34	830.76	7.34	825.51	7.3
30	1988.96	7.34	1994.56	7.34	2042.35	7.3
31	7437.70	10.56	7428.79	10.56	7377.43	10.5
32	8931.45	7.34	8785.32	7.34	8703.23	7.3
33	11421.16	7.34	10970.06	7.34	10866.98	7.3
34	6096.62	7.36	5993.82	7.36	5966.82	7.3
35	6633.91	7.36	6788.22	7.36	6757.74	7.3
36	1942.86	7.36	1874.84	7.36	1892.65	7.3
37	3538.74	7.36	3501.06	7.36	3487.86	7.3

Table E-3Comparison of Peak Support Reaction Forces of BM3Due to Different Approaches

			Due to	Different Appr	oaches		
Forces in II							
Moments in		r		·		5%]	Damping
NODE	REAC.	MODAL	TIME	MODAL (31m)	TIME	DIRECT	TIME
<u>NO.</u>	TYPE	(31 modes)	at sec.	Plus M.M.	at sec	INTEGRATION	at sec.
1	Fx	7.87	7.36	44.22	7.36	44.19	7.35
1	Fy	11.33	7.34	3.86	7.26	2.24	7.39
1	Fz	0.97	7.50	0.97	7.50	1.02	7.49
1	Mx	19.11	9.04	18.89	9.04	18.84	4.51
1	Му	695.11	7.36	694.80	7.36	703.87	7.36
1	Mz	156.85	7.38	240.22	7.36	239.67	7.37
4	Fx	65.32	7.36	113.70	7.36	113.82	7.35
4	Fz	13.38	7.36	13.85	7.36	14.07	7.36
7	Fy	8.01	7.60	7.95	7.60	8.26	7.61
11	Fy	7.13	12.74	7.13	12.74	7.54	12.73
11	Fz	71.69	7.36	71.89	7.36	72.60	7.36
15	Fx	672.79	7.36	690.97	7.36	692.19	7,36
17	Fy	20.15	7.38	20.14	7.38	20.26	7.38
17	Fz	58.91	7.36	60.05	7.36	60.27	7.36
36	Fy	37.58	7.38	38.70	7.38	39.84	7.37
36	Fz	50.25	12.60	42.33	12.60	41.88	12.61
38	Fx	136.14	7.34	740.68	7.36	744.53	7.35
38	Fy	38.25	7.38	38.18	7.38	39.69	7.37
38	Fz	31.43	7.18	29.85	7.18	29.61	7.19
38	Mx	466.39	7.36	465.42	7.36	481.87	7.49
38	My	2143.30	7.18	2080.83	7.18	2065.30	7.19
38	Mz	2715.60	7,38	2713.20	7.38	2820.50	7.37
23	Fx	270.09	12.60	270.50	12.60	268.35	12.60
23	Fy	10,54	7.38	10.58	7.38	10.97	6.57
31	Fx	22.57	7.34	54.46	7.36	55.10	7.35
31	Fy	9.62	7.38		7.38	• 10.16	7.50
31	Fz	8.66	7.28	8.66	7.28	9.02	7.28
31	Mx	559.28	12.60		12.60	598.88	7.29
31	My	578.29	7.34	582.28	7.34	586.45	7.35
31	Mz	1679.80	7.34		7.34	1685.60	7.35

NUREG/CR-6645

.

ELEM.	MODAL	TIME	MODAL (31m)	TIME	DIRECT	TIM
No.	(31 modes)	at sec.	Plas M.M.	at sec	INTEGRATION	at se
1	745.97	7.36	713.05	7.36	721.44	7.3
2	746.03	7.36	765.02	7.36	772.40	7.3
3	1306.36	7.36	1323.65	7.36	1326.79	7.3
4	683.45	7.36	684.42	7.36	693.18	7.3
5	529.22	7.36	528.66	7.36	538.01	7.3
6	1894.42	7.36	1893.29	7.36	1919.87	7.3
7	1663.22	7.36	1664.64	7.36	1695.52	7.3
8	765.19	7.36	764.93	7.36	781.15	7.3
9	1320.17	7.36	1319.86	7.38	1362.63	7.3
10	1713.20	7.36	1714.12	7.36	1730.62	7.3
11	3504.53	7.36	3507.84	7.36	3557.59	7.3
12	7662.41	7.36	7650.43	7.36	7733.23	7.3
13	6075.86	7.36	6075.21	7.36	6149.10	7.3
14	12509.76	7.36	12487.74	7.36	12525.94	7.3
15	2027.62	7.38	2030.00	7.38	2061.56	7.3
16	1057.72	7.26	1057.35	7.26	1032.69	7.1
17	1496.87	7.38	1495.69	7.38	1523.29	7.3
18	2023.46	7.36	2027.05	7.36	2107.67	7.1
19.	1368.94	7.38	1370.50	7.38	1433.54	7.
20	6607.12	7.36	6612.74	7.36	6886.72	7.
21	1340.38	7.38	1337.38	7.38	1397.33	7.
22 ·	1789.34	7.36	1803.08	7.36	1822.39	7.
23	1339.89	7.36	1352.91	7.36	1368.99	7.
24	1236.93	7.36	1229.48	7.36	1232.76	7.
25	962.11	7.34	958.32	7.34	952.48	7.
26	677.97	7.34	689.97	7.34	687.08	7.
27	328.88	12.6	322.88	12.6	320.59	12
28	630.00	7.36	624.60	7.36	635.7 5	7.
29	731.43	7.36	737.73	7.36	749.77	7.
30	1777.89	7.34		7.34	1798.77	7.
31	7221.12	7.36	7194.98	7.36	7240.74	7.
32	8935.01	7.34	8768.03	7.34	8747.80	7.
33	11395.76	7.34		7.34	10913.38	7.
34	5486.76	7.36		7.36	5519.24	7.
35	6167.02	7.36		7.36	6378.37	7.
36	1835.19	7.36	1755.84	7.36	1763.67	7.
37	3308.12	7.36		7.36	3278.70	7.

Table E-4 Comparison of Peak Pipe Resultant Moments of BM3 Due to Different Approaches

12

Node No.	Total Mass	nissing mass indicates 31 mode ma Participating Mass of 31 modes	
1	0.017	0.000	0.017
2	0.026	0.000	0.026
3	. 0.212	0.001	0.211
4	0.227	0.000	0.227
5	0.031	0.024	0.007
6	0.165	0.166	-0.001
7	0.165	0.168	-0.003
8	0.092	0.093	-0.001
9	0.267	0.270	-0.003
10	0.275	0.277	-0.002
11	0.182	0.183	-0.001
12	0.174	0.174	0.000
13	0.092	0.092	0.000
14	0.059	0.053	0.006
15	0.101	0.008	0.093
16	0.059	0.055	0.004
17	0.105	0.106	-0.001
18	0.268	0.272	-0.004
19	0.180	0.183	-0.003
20	0.073	0.073	0.000
21	0.207	0.170	0.037
22	0.088	0.066	0.022
23	0.043	0.038	0.005
24	0.052	0.053	-0.001
25	0.197	0.202	-0.005
26	· 0.178	0.189	-0.011
27	0.048	0.053	-0.005
28	0.063	0.072	-0.009
29	0.048	0.051	-0.003
30	0.175	0.165	0.010
31	0.158	0.000	0.158
32	0.163	0.150	0.013
33	0.276	0.280	-0.004
34	0.780	0.881	-0.101
35	0.687	0.090	0.597
36	0.687	0.008	0.679
37	1.170	0.007	1.163
38	0.585	0.000	0.585

Table E-5
Nodal Masses Participating In 31 Mode Combination
(lbs-sec**2/in)

(105-----

APPENDIX F

1

1

USE OF RESPONSE SPECTRUM GENERATION SDOF OSCILLATOR RESPONSES TO ESTABLISH THE THRESHOLD FREQUENCY FOR IN-PHASE MODAL RESPONSE

Methodology for Identification of the Lowest-Frequency SDOF Oscillator which Responds In-phase with the Input Time History during Response Spectrum Generation

A key element in the utilization of the Response Spectrum Method to predict peak dynamic response due to a seismic time history input is establishing appropriate phase relationships between the individual peak modal responses, so that the result of modal combination provides a reasonable estimate of the peak dynamic response.

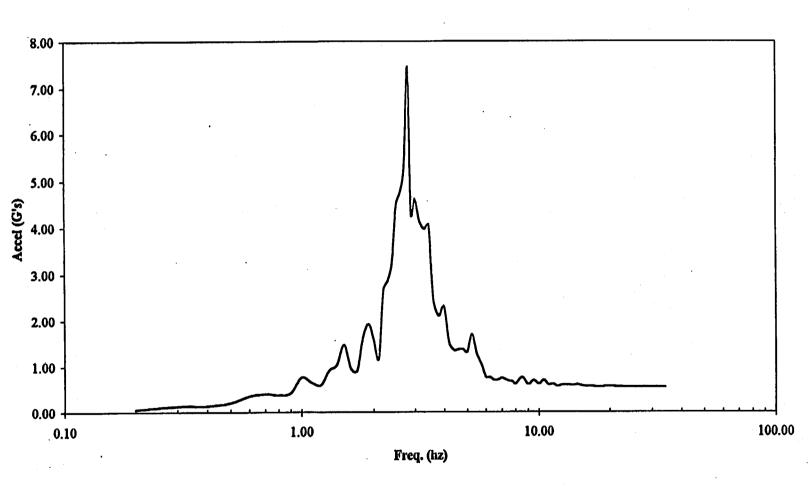
During the generation of a response spectrum from a ground or in-structure time history record, the complete time history of each SDOF oscillator response is calculated and processed to identify the peak response. This peak response becomes a single point on the response spectrum plot. Associated with each SDOF oscillator peak response is the time of occurrence and direction of the peak response. This information is typically not retained since it is not needed to generate the response spectrum. However, valuable conclusions can be derived from this information by comparison to the time and direction of the peak acceleration in the time history record.

The lowest SDOF oscillator frequency (f_{ip}) for which the time and direction of peak response coincides with the time and direction of the peak of the input time history represents the onset of in-phase response with the input, provided all higher-frequency SDOF oscillator responses exhibit the same behavior; i.e., for $f \ge f_{ip}$, all SDOF

oscillator peak responses occur at the same time and in the same direction as the peak of the input time history. To further verify that in-phase response exists, a comparison of the crossings of the acceleration equal to zero datum between the input time history and SDOF oscillator time history response should be performed for SDOF oscillator frequencies in the vicinity of f_{ip} .

Once f_{ip} is established by this procedure, which can be fully automated and made a part of the response spectrum generation algorithm, it is straightforward to specify in the modal combination methodology that all structural modes with frequency $\geq f_{ip}$ are to be combined algebraically. Application of this approach to the BM3 time history record for 1% and 5% damping produced the following results:

	f_{ip}	j _{zpa}
1% damping	9.5 HZ	16.5 HZ
5% damping	7.5 HZ	16.5 HZ


Algebraic combination of structural modal responses for $f \ge f_{zpe}$ is accomplished by the "missing mass" procedure using the ZPA. In the frequency range f_{ip} to f_{zpe} , individual

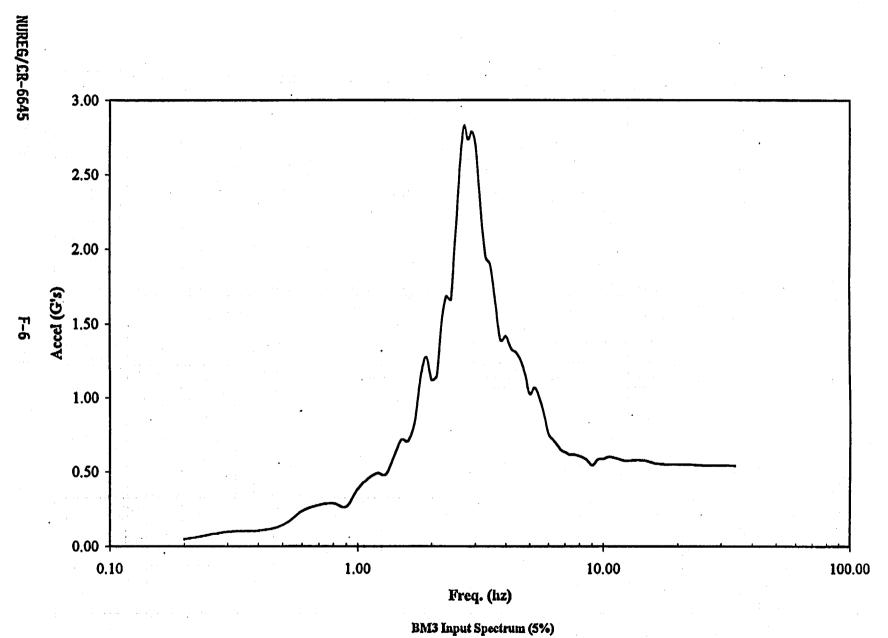
structural modal responses are algebraically combined with the "missing mass" contribution. Consequently, the response of all modes with $f \ge f_{ip}$ are combined algebraically.

Numerical Results

Numerical data for the 1% and 5% damping cases are provided: the response spectrum plots and tables showing the peak spectral acceleration and associated time of occurrence for the frequency range 0.2 to 34 Hz. In-phase response was verified by comparing the crossings of the acceleration equal to zero datum, as discussed above.

NUREG/CR-6645

BM3 Input Spectrum (1%)


F

Occurence Time of Spectral Accelerations of the BM3 Input Spectrum

1% Damping

Freq (hz)	Peak Accel (g)	Occ. at sec.	Freq (hz)	Peak Accel (g)	Occ. at sec.
0.20	0.06	6.64	4.80	1.36	7.34
0.30	0.13	12.28	5.00	1.31 ·	12.76
0.40	0.13	8.49	5.25	1.69	12.62
0.50	0.20	12.43	5.50	1.27	12.61
0.60	0.35	10.49	5.75	1.04	12.59
0.70	0.39	11.04	6.00	0.76	12.59
0.80	0.37	10.96	6.25	0.76	7.32
0.90	0.41	12.40	6.50	0.69	7.32
1.00	0.76	9.20	6.75	0.70	12.60
1.10	0.64	-12.09	7.00	0.74	7.19
1.20	0.59	12.82	7.25	0.70	7.17
1.30	0.91	12.27	7.50	0.67	7.34
1.40	1.03	5.94	7.75	0.66	7.31
1.50	1.46	10.12	8.00	0.61	7.34
1.60	0.95	12.41	8.50	0.75	7.31
1.70	0.91	4.45	9.00	0.60	12.59
1.80	1.61	4.67	9.50	0.69	7.34
1.90	1.92	4.62	10.00	0.61	7.33
2.00	1.57	8.82	10.50	0.70	7.35
2.10	1.18	7.68	11.00	0.59	7.32
2.20	2.65	5.47	11.50	0.61	7.33
2.30	2.85	7.14	12.00	0,56	7.33
2.40	3.26	7.68	12.50	0.59	7.34
2.50	4.47	9.17	13.00	0.59	7.34
2.60	4.75	12.92	13.50	0.59	7.34
2.70	5.29	11.31	14.00	0.58	7.34
2.80	7.44	9.41	14.50	0.59	7.33
2.90	4.27 ·	8.27	15.00	0.58	7.33
3.00	4.61.	8.26	16.00	0.55	7.33
3.15	4.13	9.90	17.00	0.56	7.33
3.30	3.96	12.43	18.00	0.55	7.33
3.45	4.05	9.19	20.00	0.55	7.34
3.60	2.44	7.52	22.00	0.55	7.34
3.80	2.09	7.84	25.00	0.54	7.34
4.00	2.29	7.51	28.00	0.54	7.33
4.20	1.52	12.25	31.00	0.54	7.34
4.40	1.34	7.35	34.00	0.54	7.33
4.60	1.37	7.35			

F--5

Occurence Time of Spectral Accelerations of the BM3 Input Spectrum

5% Damping

				· · · · · · · · · · · · · · · · · · ·	1
Freq (hz)	Peak Accel (g)	Occ. at sec.	Freq (hz)	Peak Accel (g)	Occ. at sec.
0.20	0.05	6.57	4.80 ·	1.16	7.34
0.30	0.10	12.22	5.00	1.03	7.34
0.40	0.10	12.82	5.25	1.07	12.62
0.50	0.14	12.43	5.50	0.99	12.61
0.60	0.24	10.47	5.75	0.88	12.60
0.70	0.28	10.99	6.00	0.75	7.32
0.80	0.29	10.93	6.25	0.72	7.32
· 0.90	0.27	11.79	6.50	0.68	7.32
1.00	0.38	9.19	6.75	0.64	7.32
1.10	0.45	12.07	·7.00	0.63	7.18
1.20	0.49	12.02	7.25	0.62	7.18
1.30	0.48	12.26	7.50	0.62	7.33
1.40	0.59	5.91	7.75	0.61	7.33
1.50	0.71	4.45	8.00	0.60	7.33
1.60	0.70	4.43	8.50	0.58	7.32
1.70	0.83	4.43	9.00	0.54	7.35
1.80	1.13	4.65	9.50	0.58	7.35
1.90	1.27	4.62	10.00	0.59	7.35
2.00	1.12	4.60	10.50	0.60	7.34
2.10	1.15	4.60	11.00	0.59	7.34
2.20	1.51	5.45	11.50	0.59	7.34
2.30	1.69	5.42	12.00	0.58	7.34
2.40	1.66	5.39	12.50	0.57	7.34
2.50	2.11	9.15	13.00	0.58	7.34
2.60	2.57	9.12	13.50	0.58	7.34
2.70	2.83	9.28	14.00	0.58	7.34
2.80	2.74	8.31	14.50	0.58	7.33
2.90	2.79	8.11	15.00	0.57	7.33
3.00	2.70	7.91	16.00	0.56	7.33
3.15	2.28	7.89	17.00	0.55	7.33
3.30	1.95	7.88	18.00	0.55	7.33
3.45	1.90	7.86	20.00	0.55	7.34
3.60	1.68	7.53	22.00	0.55	7.34
3.80	1.39	7.52	25.00	0.54	7.34
4.00	1.42	7.51	28.00	0.54	7.3
4.00	1.33	7.36	31.00	0.54	7.3
	1.31	7.35	34.00	0.54	7.3
4.40	1.25	7.35			

NUREG/CR-6645

.

APPENDIX G

EVALUATION OF LINDLEY-YOW METHOD

by

Professor A. Veletsos Rice University

APPENDIX G

Fundamental to the Lindley-Yow method is the premise that the response of a system may be expressed as the sum of two components:

- 1. An "in-phase" component, the instantaneous value of which is equal to the corresponding, static effect of the forcing function; and
- 2. A series of "out-of-phase" components, the characteristics of which depend on the characteristics both of the forcing function and of the system itself.

The maximum value of the total response is then determined by SRSS combination of the numerical values of the component maxima.

For the base-excited systems examined in the report, the in-phase component at any time t is proportional to the ground acceleration, $\ddot{y}(t)$, and the out-of-phase component for a given mode of vibration is proportional to the instantaneous pseudo-acceleration, A(t), of a single-degree-of-freedom system having the natural frequency of that mode. The maximum values of $\ddot{y}(t)$ and A(t) will henceforth be identified as \ddot{y}_o and A_o , respectively.

The maximum response obtained by this approach is clearly larger than the maximum static response, and in recognition of this fact, the method is said to apply only to system frequencies for which the amplification factor of response, AF, defined as the ratio of the maximum dynamic to maximum static response, is equal to or greater than unity. This factor, which is effectively the ratio A_o/\ddot{y}_o is, of course, the reciprocal of the factor α used in the report. The relatively high natural frequency for which AF = 1 is denoted in the following by the symbol f_h

For system frequencies $f \ge f_h$, the out-of-phase component of response is zero, and the in-phase component is indeed equal to the static response. This is true both of single-degree-of-freedom systems and multi-degree-of-freedom systems with fundamental natural frequencies greater than f_h . As duly noted in the report, a static analysis of the system in this case, or an analysis that considers only the in-phase component of response will yield the correct solution.

As the natural frequency of the system decreases below f_h , it is well known that the AF increases and, after reaching a peak, which depending on the degree of periodicity of the forcing function may be quite high, it decreases, returning to the unit value, and then attains even lower values. Let f_l be the natural frequency of the relatively low-frequency system for which AF returns to unity. According to the Lindley-Yow method, the response history of a single-degree-of-freedom system with such a frequency will be identical to that of the corresponding static response. Expressed differently, the temporal variation of the pseudo-acceleration A(t) will be the same in this case as that of the input acceleration $\ddot{y}(t)$. This conclusion is simply unacceptable, as precise analyses will reveal that the response of such a low-frequency system has no resemblance to the static response, but is dominated instead by oscillations of a frequency equal or close to the natural frequency of system.

ana A

APPENDIX G

Since the characteristics of the solution cannot be expected to change abruptly with a change in the natural frequency of the system, the Lindley-Yow method should also be inapplicable over a range of natural frequencies higher than but close to f_i . By contrast, the method should give quite satisfactory results over a range of natural frequencies close to but lower than f_h . Furthermore, the higher the amount of damping of the system, the lower will be, in the latter case, the contribution of the out-of-phase component of response compared to that of the in-phase component, and hence, the wider will be expected to be the range of applicability of the Lindley-Yow method.

For broad-banded response spectra of the type associated with the 1940 El Centro earthquake record, which Lindley and Yow utilized, the frequency f_i may indeed be significantly lower than the fundamental natural frequency of the secondary systems that are of interest in the present study. However, the base-input motion for such a system is typically dominated by oscillations of a frequency equal to or close to the fundamental natural frequency of the primary system; the associated response spectrum is sharply peaked; and the fundamental natural frequency of the secondary system may well be close to f_i , particularly when the primary system is comparatively stiff. It follows that the limitations of the Lindley-Yow method in the neighborhood of the low-frequency limit f_i are not of academic interest only.

I believe that these matters should be emphasized in the description of method, as I interpret the objective of Chapter II of the report to be to provide not merely a description of the various methods, but also some evaluation of them. Incidentally, Gupta's method is superior in this respect, and this should also be duly acknowledged.

And now, to what I regard to be a more important point. When defined by the displacements $\{u(t)\}$ of the points of mass concentration relative to the moving base, the response of an n-degree-of-freedom system can be expressed in the form

$$\{ u(t) \} = \sum_{j=1}^{n} c_{j} \{ \phi_{j} \} A_{j}(t)$$
 (1)

Where $\{\phi_j\}$ = the jth mode of the vibration of the system; c_j = the participation factor for that mode; and $A_j(t)$ = the instantaneous pseudo-acceleration of a single-degree-of-freedom system with a natural frequency equal to the jth natural frequency of the given system.

If $A_{i}(t)$ in Eq. 1 is expressed as

$$A_i(t) = \ddot{y}(t) + \Delta A_i(t)$$
⁽²⁾

that is, as the sum of the ground acceleration and an incremental pseudo-acceleration, $\Delta A_{f}(t)$, Eq. 1 can be rewritten as

NUREG/CR-6645

G - 3

APPENDIX G

$$\{u(t)\} = \sum_{j=1}^{n} c_j \{\phi_j\} [\dot{y}(t) + \Delta A_j(t)]$$
(3)

or as

$$\{ u(t) \} = \{ u_{st}(t) \} + \sum_{j=1}^{n} c_{j} \{ \phi_{j} \} \Delta A_{j}(t)$$
(4)

where $\{u_{st}(t)\}\$ represents the instantaneous values of the static displacements, and the series expression defines the corresponding dynamic increments.

In the Lindley-Yow method, the maximum value of the incremental pseudo-acceleration for a given mode, denoted in the following simply as ΔA_{o} , is given by

$$\Delta A_o = \left(A_o^2 - \ddot{y}_o^2\right)^{\frac{1}{2}} \tag{5}$$

This is not an exact definition of ΔA_0 The exact maximum is given by the peak value of the difference of A(t) and $\ddot{y}(t)$, and generally occurs at a time different from that for which A(t) attains its maximum value.

An indication of the difference between the exact value of ΔA_o and that determined from Eq. 5 is provided in Table 1 and Fig. 1, which presents the relevant response spectra for undamped systems subjected to a relatively simple ground motion. The acceleration trace of the ground motion considered consists of a sequence of three half-sine pulses of alternating- signs and durations t_i , $2t_i$, and t_i , as shown in the inset diagram. The velocity and displacement traces of the motion are full-cycle and half-cycle pulses, respectively. The results are displayed in dimensionless form, with the pseudo-accelerations normalized with respect to the maximum input acceleration, and the abscissa representing the product of the natural frequency of the system and the duration of the middle acceleration pulse.

At high values of the frequency parameter $2f_{i}$, the two sets of results in Fig. 1 both tend to a limiting value of zero. However, at the lower frequency values, they differ significantly to the left of the highest spectral peak. The very large differences in the results obtained in the low-frequency range raise serious questions about the applicability of either procedure in this range.

Neither procedure is logical for very-low-frequency systems. While I believe that it is possible to modify the procedure to yield satisfactory results in this frequency range as well, this extension is

clearly beyond the scope of the present project. In this case, working with the deformation and pseudo-velocity values of the response spectra holds the secret, in my view, to improvement.

Table 1.Pseudo-acceleration values for undamped single-degree-of-freedom systems
obtained by different procedures. Systems excited by a half-cycle displacement
pulse.

2 <i>f</i> t ₁	$\sqrt{\left(\frac{A_o}{\bar{y}_o}\right)^2 - 1}$	$\frac{\Delta A_o}{\ddot{y}_o}$
0.5	2.70	3.090
0.8	3.77	3.894
1.0	2.85	2.038
1.5	2.67	2.400
2.0	2.21	2.160
2.5	1.27	0.967
3.0	1.12	0.500

APPENDIX G

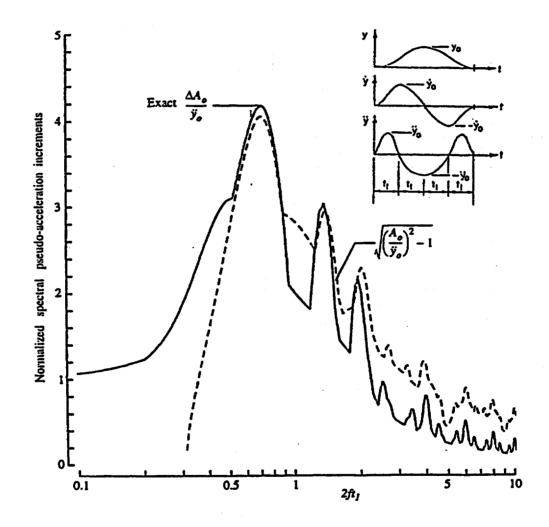


Fig. 1 Approximate and exact response spectra for incremental pseudo-acceleration of single-degree-of-freedom, undamped systems subjected to indicated base motion.

NUREG/CR-6645

G-6

APPENDIX H

INDEPENDENT ANALYSIS OF BM3 PIPING MODEL

by

Professors A.K. Gupta and Abhinav Gupta North Carolina State University

APPENDIX H

Proposed Definition of f, for Gupta's Method

Unlike the RG 1.60 spectrum, the actual earthquake spectra do not have a sharp transition from the amplified to constant (ZPA) acceleration regions. To reduce the arbitrariness and in accordance with the Draft ASCE 4, we propose that the key frequency f_2 be defined as follows: "The key frequency f_2 is the minimum frequency at which spectra at various damping values converge." Although, there would still be some room for variable interpretation by different people, this definition is much more precise than the definition of f_r at which the spectral acceleration becomes equal to the ZPA. (In the Draft ASCE definition of f_2 and f_r have not been appropriately separated, f_r is assumed to be equal to f_2 . This observation is true in the RG 1.60 spectra, but not in the spectrum at hand.)

For the input motion considered in this study, the above definition gives f_2 approximately equal to 6.0 Hz., as shown in the attached Fig. 1. We evaluated the values for rigid response coefficient, α , numerically for the input time history considered in this study and compared it with those evaluated using the definition of α given in section 2.2.3 of the report and $f_2 = 6.0$ Hz. As shown in the attached Fig. 2, the proposed definition of f_2 gives good estimation of α .

Independent Analysis of the BM3 Piping Model

We modeled the piping system BM3 on PIPESTRESS and performed a time history analysis using 14 modes and the missing mass effect. Table 1 compares the frequencies calculated by us (using PIPESTRESS) with those given in the report (using SAP). The two programs have different bend elements. Yet, the frequencies from the two sets of analyses are practically identical. Table 2 compares the time history results for x-direction input motion calculated by us with those given in the report. As shown in this table, the results from two sets of analyses are close to each other except for the reaction FY at node 1 for which the difference is 24%. Large difference in this reaction force may occur due to its insignificant value for the x direction input motion considered and effect of different bend stiffness.

<u>Comparison of Gupta (f₂ = 6.0 Hz) and Lindley-Yow Methods to</u> <u>Time History Results for Three Directions of Input Motion</u>

We performed response spectrum analyses using Lindley-Yow method and Gupta method with $f_2 = 6.0$ Hz. and using numerically calculated values of rigid response coefficient α . Tables 3 through 6 give the results for Lindley-Yow and Gupta methods and Tables 7 through 10 give the corresponding results for numerically calculated values of α .

We performed the time history and response spectrum analyses for all three directions of input motion. For vertical direction, the input motion was considered to be 3/3 of that in the horizontal

APPENDIX H

direction. Table 6 compares the time history results with the response spectrum results for Lindley-Yow and Gupta method with $f_2 = 6.0$ Hz. The response values in this table are obtained by combining individual responses for input motions in x, y and z directions using SRSS rule. As shown in this table, the mean and standard deviation of responses from the two methods of combining modal responses are almost identical. Further, these mean and standard deviation values are practically the same as those calculated using numerically calculated value of α and given in Table 10.

Response tables 4-1 and 4-2 (end of Chapter 4 in the report) compare time history and response spectrum results for all the support reactions when input is applied in x-direction only. It is desirable to compare either only those reactions that get significant contribution from x-direction input analysis or all the reactions after combining responses from all the three (x, y and z) input motion analyses.

To illustrate the above, let us consider reactions MX at node 1, FY at node 23, and FX, FY and FZ at node 31. Table 11 gives the values of these reactions calculated from the time history and response spectrum analyses for each of the three directions of input motion and also the responses due to the three inputs combined by SRSS rule. As seen in this table, these reactions get most of their response from excitation in a particular direction. For excitation in other two directions, their values are insignificant. The insignificant values can have large differences in the time history and response spectrum results. However, the results from the two analyses are close to each other for significant response values and for the combined response.

APPENDIX H

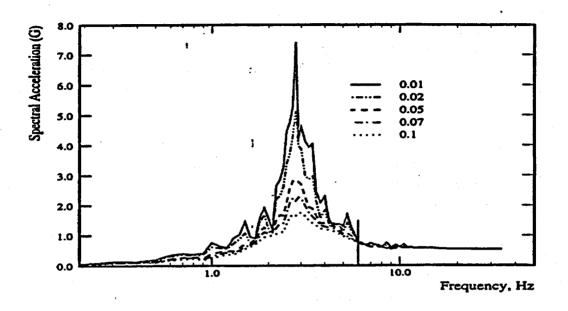


Figure 1: Input Response Spectra ($f_2 = 6.0$ Hz)

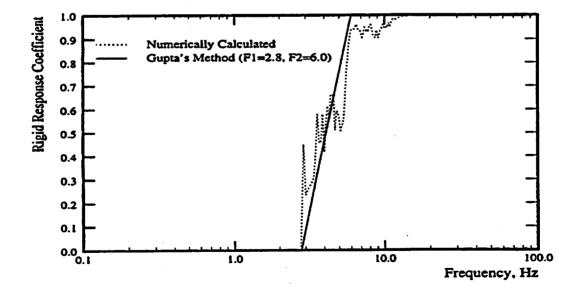


Figure 2: Variation of Rigid Response Coefficient with Frequency

NUREG/CR-6645

H-4

Mode	SAP	PIPESTRESS	Percent Difference
	S	P	(P-S)*100/S
1	2.9074	2.9074	0.00
2	4.3871	4.3871	0.00
3	5.5158	5.5158	0.00
4	5.7041	5.7042	0.00
5	6.9775	6.9776	0.00
6	7.3436	7.3434	0.00
7	7.8796	7.8794	0.00
8	10.302	10.3013	-0.01
9	11.056	11.0558	0.00
10	11.233	11.2329	0.00
11	11.498	11.4974	-0.01
12	12.431	12.4307	0.00
13	13.879	13.8790	0.00
14	16.122	16.1230	0.01

Table 1: Frequencies (Hz) of BM3 Piping System

APPENDIX H

NODE	REAC.	SAP	PIPESTRESS	Ratio
NO.	TYPE	(S)	(P)	P/S
1	FX	43.71	45.18	1.03
1	FY	4.36	3.32	0.76
1	FZ	1.6	1.65	1.03
1	MX	49.88	49.42	0.99
1	MY	776.4	783.27	1.01
1	MZ	278.42	273.95	0.98
4	FX	116.79	119.88	1.03
4	FZ	20.01	21.61	1.08
7	FY	13.27	13.75	1.04
11	FY	13.31	13.58	1.02
11	FZ	81.34	83.02	1.02
15	FX	731.47	743.50	1.02
17	FY	25.6	26.89	1.05
17	FZ	65.36	66.74	1.02
36	FY	46.69	48.92	1.05
36	FZ	42.12	41.82	0.99
38	FX	732.18	760.46	1.04
38	FY	43.44	43.35	1.00
38	FZ	29.95	29.93	1.00
- 38	MX	719.05	727.98	1.01
38	MY	2084.97	2086.88	1.00
38	MZ	3085.87	3078.87	1.00
23	FX	259.59	266.49	1.03
23	FY	26.08	25.94	0.99
31	FX	55.05	57.23	1.04
31	FY	14.17	14.17	1.00
31	FZ	16.08	16.61	1.03
31	MX	1137.3	1157.15	1.02
31	MY	612.38	622.11	1.02
31	MZ	1773.2	1794.08	1.01
	Mean Va	lue of 30	Comp.	1.01
	Standard	Dev. of 30) Comp.	0.05

Table 2: Comparison of Time History Results from SAP and PIPESTRESS, X Direction Input

F = Force (lbs) M = Moment (in-lbs)

NODE	REAC.	Time-History	Gupta Method	Ratio	Lindley-Yow	Ratio
NO.	TYPE	(TH)	· (GUP)	GUP/TH	(LY)	LY/TH
1	FX	45.18	45.43	1.01	46.21	1.02
1	FY	3.32	3.08	0.93	3.58	1.08
1	FZ	1.65	1.34	0.81	3.24	1.97
1	MX	49.42	1 17.06	0.35	112.68	2.28
1	MY	783.27	707.04	0.90	687.72	0.88
1	MZ	273.95	241.32	0.88	229.08	0.84
4	FX	119.88	109.30	0.91	104.60	0.87
4	FZ	21.61	16.22	0.75	33.36	1.54
7	FY	13.75	· 12.25	0.89	13.84	1.01
11	FY	13.58	11.16	0.82	15.00	1.10
11	FZ	83.02	71.77	0.86	69.80	0.84
15	FX	743.50	657.80	0.88	586.10	0.79
17	FY	26.89	25.36	0.94	35.81	1.33
17	FZ	66.74	55.83	0.84	63.26	0.95
36	FY	48.92	45.12	0.92	63.09	1.29
36	FZ	41.82	45.80	1.10	54.48	1.30
38	FX	760.46	776.20	1.02	768.90	1.01
38	FY	43.35	44.52	1.03	47.82	1.10
38	FZ	29.93	37.11	1.24	38.32	1.28
38	MX	727.98	507.96	0.70	901.20	1.24
38	MY	2086.88	2587.20	1.24	2672.40	1.28
38	MZ	3078.87	3157.20	1.03	3384.00	1.10
23	FX	266.49	326.10	1.22	343.30	1.29
23	FY	25.94	10.60	0.41	55.43	2.14
31	FX	57.23	56.06	0.98	56.71	0.99
31	FY	14.17	14.19	1.00	17.90	1.26
31	FZ	16.61	13.95	0.84	22.35	1.35
31	MX	1157.15	809.88	0.70	1636.80	1.41
31	MY	622.11	576.24	0.93	601.44	0.97
31	MZ	1794.08	1670.40	0.93	1759.20	0.98
	Mean	Value of 30 Con	mp.	0.90 0.19		1.22
	Standard Dev. of 30 Comp.					0.36

Table 3: Comparison of Time History and Response Spectrum Results, X Direction Input

37

F = Force (lbs)

* Gupta Method, with $f_1=2.8$ Hz and $f_2=6.0$ Hz

H - 7

NODE	REAC.	Time-History	Gupta Method	Ratio	Lindley-Yow	Ratio
NO.	TYPE	(TH)	(GUP)	GUP/TH	(LY)	LY/TH
1	FX	16.92	17.94	1.06	17.81	1.05
1	FY	110.20	96.04	0.87	98.51	0.89
1	FZ	3.99	3.43	0.86	4.25	1.07
.1	MX	165.51	143.52	0.87	176.40	1.07
1	MY	138.03	148.56	1.08	158.28	1.15
1 .	MZ	1864.83	1497.60	0.80	1807.20	0.97
4	FX	24.46	22.70	0.93	26.93	1.10
4	FZ	21.55	15.96	0.74	32.19	1.49
7	FY	127.13	150.60	1.18	138.60	1.09
11	FY	199.14	202.70	1.02	189.50	0.95
11	FZ	24.15	17.93	0.74	34.97	1.45
15	FX	41.97	36.29	0.86	59.33	1.41
17	FY	97.96	102.70	1.05	97.60	1.00
17	FZ	13.05	7.83	0.60	16.25	1.24
36	FY	375.52	376.10	1.00	353.70	0.94
36	FZ	17.77	14.70	0.83	27.19	1.53
38	FX	11.12	7.18	0.65	14.65	1.32
38	FY	197.70	179.20	0.91	180.80	0.91
38	FZ	3.11	2.27	0.73	5.03	1.62
38	MX	2707.97	3094.80	1.14	2817.60	1.04
38	MY	211.07	153.72	0.73	336.48	1.59
38	MZ	6093.94	5581.20	0.92	5698.80	0.94
23	FX	20.51	21.07	1.03	26.87	1.31
23	FY	250.13	261.00	1.04	235.20	0.94
31	FX	3.62	1.31	0.36	6.39	1.76
31	FY	92.25	93.03	1.01	89.26	0.97
31	FZ	16.68	1.83	0.11	32.13	1.93
31	MX	2346.41	1747.20	0.74	2940.00	1.25
31	MY	327.44	314.64	0.96	325.08	0.99
31	MZ	673.64	568.44	0.84	752.52	1.12
	Mear	Value of 30 Co	0.86		1.20	
		ard Dev. of 30 (0.22		0.27

Table 4: Comparison of Time History and Response Spectrum Results, Y Direction Input

F = Force (lbs)* Gupta Method, with $f_1=2.8$ Hz and $f_2=6.0$ Hz

M = Moment (in-lbs)

NUREG/CR-6645

H - 8

NODE	REAC.	Time-History	Gupta Method	Ratio	Lindley-Yow	Ratio
NO.	TYPE	(TH)	(GUP)	GUP/TH	(LY)	LY/TH
1	FX	5.46	5.70	1.04	5.23	0.96
1	FY	16.42	16.80	1.02	14.23	0.87
1	FZ	36.40	, 33.29	0.91	39.89	1.10
1	MX	710.77	721.20	1.01	627.00	0.88
1	MY	462.39	344.40	0.74	652.44	1.41
1	MZ	508.10	520.80	1.02	430.20	0.85
4	FX	40.01	38.07	0.95	34.89	0.87
4	FZ	263.24	275.30	1.05	237.30	0.90
7	FY	28.26	29.06	1.03	32.37	1.15
11	FY	37.30	26.19 ·	0.70	46.82	1.26
11	FZ	211.19	207.50	0.98	185.30	0.88
15	FX	69.48	62.23	0.90	89.16	1.28
17	FY	19.51	15.80	0.81	23.08	1.18
17	FZ	123.97	111.70	0.90	133.80	1.08
36	FY	29.18	30.50	1.05	30.17	1.03
36	FZ	882.28	882.90	1.00	856.30	0.97
38	FX	16.45	10.33	0.63	24.16	1.47
38	FY	8.21	8.03	0.98	11.29	1.38
38	FZ	265.01	251.70	0.95	255.20	0.96
38	MX	578.94	612.36	1.06	706.92	1.22
38	MY	8476.37	7932.00	0.94	8162.40	0.96
38	MZ	580.75	567.96	0.98	794.52	1.37
23	FX	44.83	37.37	0.83	44.20	0.99
23	FY	23.43	12.55	0.54	36.68	1.57
31	FX	16.34	15.08	0.92	17.43	1.07
31	FY	15.81	2.92	0.18	24.89	1.57
31	FZ	150.11	156.00	1.04	146.80	0.98
31	MX	10204.29	10142.40	0.99	10062.00	0.99
31	MY	666.02	620.64	0.93	708.36	1.06
31	MZ	1876.89	1759.20	0.94	1969.20	1.05
·······	Mean	Value of 30 Co	mp.	0.90		1.11
[Standa	rd Dev. of 30 C	omp.	0.18		0.21

Table 5: Comparison of Time History and Response Spectrum Results, Z Direction Input

1

iri, i Ç

 $F = Force (lbs) \qquad M = Moment (in-lbs)$ * Gupta Method, with $f_1=2.8$ Hz and $f_2=6.0$ Hz

NODE	REAC.	Time-History	Gupta Method	Ratio	Lindley-Yow	Ratio
NO.	TYPE	(TH)	(GUP)	GUP/TH	(LY)	LY/TH
1	FX	48.55	49.18	1.01	49.80	1.03
1	FY	111.47	97.55	0.88	99.60	0.89
1	FZ	36.66	, 33.49	0.91	40.25	1.10
1	MX	731.46	735.54	1.01	661.02	0.90
1	MY	919.98	800.37	0.87	961.09	1.04
1	MZ	1952.13	1603.83	0.82	1871.77	0.96
4	FX	128.73	117.95	0.92	113.51	0.88
4	FZ	265.00	276.24	1.04	241.79	0.91
7	FY	130.96	153.87	1.17	143.00	1.09
11	FY	203.06	204.69	1.01	195.77	0.96
11	FZ	228.20	220.29	0.97	201.07	0.88
15	FX	747.92	661.73	0.88	595.80	0.80
17	FY	103.44	106.96	1.03	106.49	1.03
17	FZ	141.39	125.12	0.88	148.89	1.05
36	FY	379.81	380.02	1.00	360.55	0.95
36	FZ	883.45	884.21	1.00	858.46	0.97
38	FX	760.72	776.30	1.02	769.42	1.01
38	FY	202.57	184.82	0.91	187.36	0.92
38	FZ	266.71	254.43	0.95	258.11	0.97
38	MX	2863.26	3195.43	1.12	3041.51	1.06
38	MY	8732.04	8344.69	0.96	8595.33	0.98
38	MZ	6852.21	6437.41	0.94	6675.26	0.97
23	FX	271.01	328.91	1.21	347.18	1.28
23	FY	252.56	261.52	1.04	244.41	0.97
31	FX	59.62	58.07	0.97	59.67	1.00
31	FY	94.66	94.15	0.99	94.38	1.00
31	FZ	151.94	156.63	1.03	151.93	1.00
31	MX	10534.33	10323.61	0.98	10609.74	1.01
31	MY	968.42	903.46	0.93	984.47	1.02
31	MZ	2682.39	2491.61	0.93	2745.69	1.02
		Value of 30 Co	1	0.98		0.99
		ard Dev. of 30 C	the second s	0.08		0.09

Table 6: Comparison of Time History and Response Spectrum Results, Combined Responses for All Three Input Motions

F = Force (lbs)* Gupta Method, with $f_1=2.8$ Hz and $f_2=6.0$ Hz

M = Moment (in-lbs)

NODE	NODE REAC. Time-History Response Spectrum					
NO.	TYPE	(TH)	(RS)	Ratio RS/TH		
1	FX	45.18	44.86	0.99		
1	FY	3.32	3.45	1.04		
1	FZ	1.65	1.84	1.12		
. 1	MX	49.42	52.86	1.07		
1	MY	783.27	707.04	0.90		
1	MZ	273.95	273.84	1.00		
4 -	FX	119.88	110.70	0.92		
4	FZ	21.61	21.31	0.99		
7	FY	13.75	12.71	0.92		
11	FY	13.58	11.63	0.86		
11	FZ	83.02	73.18	0.88		
15	FX	743.50	659.90	0.89		
17	FY	26.89	28.15	1.05		
17	FZ	66.74	59.28	0.89		
36	FY	48.92	48.74	1.00		
36	FZ	41.82	44.23	1.06		
38	FX	760.46	771.20	1.01		
38	FY	43.35	44.31	1.02		
38	FZ	29.93	35.63	1.19		
38	MX	727.98	639.96	0.88		
38	MY	2086.88	2486.40	1.19		
38	MZ	3078.87	3141.60	1.02		
23	FX	266.49	313.30	1.18		
23	FY	25.94	28.42	1.10		
31	FX	57.23	56.05	0.98		
31	FY	14.17	14.26	1.01		
31	FZ	16.61	15.69	0.94		
31	MX	1157.15	1065.24	0.92		
31	MY	622.11	585.60	0.94		
31	MZ	1794.08	1694.40	0.94		
		n Value of 30 C		1.00		
	Stand	lard Dev. of 30	Comp.	0.09		

Table 7: Comparison of Time History and Response Spectrum Results with Numerically Calculated Values of Rigid Response Coefficients, α , X Direction Input

10,14

ń

É

F = Force (lbs)

M = Moment (in-lbs)

NODE	REAC.	Time-History	Response Spectrum	Ratio
NO.	TYPE	(TH)	(RS)	RS/TH
1	FX	16.92	15.21	0.90
1	FY	110.20	104.60	0.95
1	FZ	13.99	3.84	0.96
1	MX	165.51	161.76	0.98
1	MY	138.03	131.76	0.95
1	MZ	1864.83	1872.00	1.00
4	FX	24.46	22.42	0.92
4	FZ	21.55	24.38	1.13
7	FY	127.13	120.80	0.95
11	FY	199.14	212.50	1.07
11	FZ	24.15	26.60	1.10
15	FX	41.97	41.55	0.99
17	FY	97.96	116.20	1.19
17	FZ	13.05	11.23	0.86
36	FY	375.52	366.20	0.98
36	FZ	17.77	18.73	1.05
- 38	FX	11.12	9.55	0.86
38	FY	197.70	178.50	0.90
38	FZ	3.11	3.17	1.02
38	MX	2707.97	2954.40	1.09
38	MY	211.07	213.12	1.01
38	MZ	6093.94	5530.80	0.91
23	FX	20.51	22.15	1.08
23	FY	250.13	266.80	1.07
31	FX	3.62	3.70	1.02
31	FY	92.25	91.40	0.99
31	FZ	16.68	18.05	1.08
31	MX	2346.41	2187.60	0.93
31	MY	327.44	320.88	0.98
31	MZ	673.64	629.88	0.94
	Me	an Value of 30	Comp.	1.00
	Star	dard Dev. of 30) Comp.	0.08

Table 8: Comparison of Time History and Response Spectrum Results with Numerically Calculated Values of Rigid Response Coefficients, α , Y Direction Input

F	=	Force	(lbs)
•			• •

M = Moment (in-lbs)

NODE	REAC.	Time-History	Response Spectrum	Ratio
NO.	TYPE	(TH)	(RS)	RS/TH
1	FX	5.46	4.82	0.88
1 .	FY	16.42	14.54	0.89
1	FZ	36.40	34.94	0.96
1	MX	710.77	703.08	0.99
1	MY	462.39	426.48	0.92
1	MZ	508.10	429.24	0.84
4	FX	40.01	36.14	0.90
4	FZ	263.24	265.60	1.01
7	FY	28.26	26.79	0.95
11	FY	37.30	37.08	0.99
11	FZ	211.19	200.10	0.95
15	FX	69.48	64.63	0.93
17	FY	19.51	16.83	0.86
17	FZ	123.97	119.40	0.96
36	FY	29.18	31.71	1.09
36	FZ	882.28	876.40	0.99
38	FX	16.45	14.91	0.91
38	FY	8.21	8.53	1.04
38	FZ	265.01	252.50	0.95
38	MX	578.94	642.00	1.11
38	MY	8476.37	7981.20	0.94
38	MZ	580.75	601.92	1.04
23	FX	44.83	39.56	0.88
23	FY	23.43	23.76	1.01
31	FX	16.34	15.81	0.97
31	FY	15.81	13.81	0.87
31	FZ	150.11	153.70	1.02
31	MX	10204.29	10140.00	0.99
31	MY	666.02	648.00	0.97
31	MZ	1876.89	1825.20	0.97
	0.96			
	Stan	dard Dev. of 30	Comp.	0.06

Table 9: Comparison of Time History and Response Spectrum Results with Numerically Calculated Values of Rigid Response Coefficients, α , Z Direction Input

1

÷

 $3 \le 5$

ŧ

F = Force (lbs)

M = Moment (in-lbs)

NO. TYPE (TH) (RS) RS/TH 1 FX 48.55 47.61 0.98 1 FY 111.47 105.66 0.95 1 FZ 3d.66 35.20 0.96 1 MX 731.46 723.38 0.99 1 MX 731.46 723.38 0.99 1 MZ 1952.13 1940.00 0.99 4 FX 128.73 118.59 0.92 4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FY 203.06 216.02 1.06 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FZ 383.45 877.72 0.99	NODE	REAC.	Time-History	Response Spectrum	Ratio
1 FX 48.55 47.61 0.98 1 FY 111.47 105.66 0.95 1 FZ 36.66 35.20 0.96 1 MX 731.46 723.38 0.99 1 MY 919.98 336.15 0.91 1 MZ 1952.13 1940.00 0.99 4 FX 128.73 118.59 0.92 4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.73 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01					RS/TH
1 FY 111.47 105.66 0.95 1 FZ 36.66 35.20 0.96 1 MX 731.46 723.33 0.99 1 MY 919.98 836.15 0.91 1 MZ 1952.13 1940.00 0.99 4 FX 128.73 118.59 0.92 4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.73 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FZ 266.71 255.02 0.96 <td></td> <td></td> <td></td> <td></td> <td></td>					
I FZ 36.66 35.20 0.96 1 MX 731.46 723.38 0.99 1 MY 919.98 836.15 0.91 1 MZ 1952.13 1940.00 0.99 4 FX 128.73 118.59 0.92 4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MZ 6352.21 6389.19 0.9					
I MX 731.46 723.38 0.99 1 MY 919.98 836.15 0.91 1 MZ 1952.13 1940.00 0.99 4 FX 128.73 118.59 0.92 4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FY 203.06 216.02 1.06 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FZ 266.71 255.02 0.96 38 MX 2363.26 3090.34 1.					
I MY 919.98 836.15 0.91 1 MZ 1952.13 1940.00 0.99 4 FX 128.73 118.59 0.92 4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FY 203.06 216.02 1.06 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FZ 266.71 255.02 0.96 38 MZ 6852.21 6389.19 0.93 38 MZ 6852.21 6389.19 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
1 MZ 1952.13 1940.00 0.99 4 FX 128.73 118.59 0.92 4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FY 203.06 216.02 1.06 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MZ 6852.21 6389.19 0.93 31 FX 271.01 316.56 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
4 FX 128.73 118.59 0.92 4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FY 203.06 216.02 1.06 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 MX 2863.26 3090.34 1.08 38 MX 2852.21 6389.19 0.93 31 FX 271.01 316.56 1.17 23 FY 252.56 269.36 <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
4 FZ 265.00 267.57 1.01 7 FY 130.96 124.39 0.95 11 FY 203.06 216.02 1.06 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 <t< td=""><td>_</td><td></td><td></td><td>118.59</td><td>0.92</td></t<>	_			118.59	0.92
7 FY 130.96 124.39 0.95 11 FY 203.06 216.02 1.06 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 134.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 <td< td=""><td>_</td><td></td><td>265.00</td><td>267.57</td><td>1.01</td></td<>	_		265.00	267.57	1.01
11 FY 203.06 216.02 1.06 11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FZ 151.94 155.55 <t< td=""><td></td><td></td><td></td><td></td><td>0.95</td></t<>					0.95
11 FZ 228.20 214.72 0.94 15 FX 747.92 664.36 0.89 17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MZ 6852.21 6389.19 0.93 38 MZ 6852.21 6389.19 0.93 31 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.93 31 FY 94.66 93.53 <t< td=""><td>11</td><td></td><td></td><td>216.02</td><td>1.06</td></t<>	11			216.02	1.06
17 FY 103.44 120.74 1.17 17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MY 8732.04 8362.25 0.96 38 MZ 6352.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35		FZ	228.20	214.72	0.94
17 FZ 141.39 133.78 0.95 36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MY 8732.04 8362.25 0.96 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87	15	FX	747.92	664.36	0.89
36 FY 379.81 370.79 0.98 36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MX 2863.26 3090.34 1.08 38 MY 8732.04 8362.25 0.96 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87	17	FY	103.44	120.74	1.17
36 FZ 883.45 877.72 0.99 38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MY 8732.04 8362.25 0.96 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99 99 99 90 90	17	FZ	141.39	133.78	0.95
38 FX 760.72 771.40 1.01 38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MX 2863.26 3090.34 1.08 38 MY 8732.04 8362.25 0.96 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99 0.99 0.99	36	FY	379.81	370.79	0.98
38 FY 202.57 184.11 0.91 38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MX 2863.26 3090.34 1.08 38 MY 8732.04 8362.25 0.96 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FY 94.66 93.53 0.99 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99 0.99 0.99	36	FZ	883.45	877.72	0.99
38 FZ 266.71 255.02 0.96 38 MX 2863.26 3090.34 1.08 38 MY 8732.04 8362.25 0.96 38 MY 8732.04 8362.25 0.96 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99 0.99 0.99	38	FX	760.72	771.40	
38 MX 2863.26 3090.34 1.08 38 MY 8732.04 8362.25 0.96 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FY 94.66 93.53 0.99 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99 0.99 0.99	38	FY	202.57		
38 MY 8732.04 8362.25 0.96 38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FY 94.66 93.53 0.99 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99 0.99 0.99	38	FZ	266.71		
38 MZ 6852.21 6389.19 0.93 23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FY 94.66 93.53 0.99 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99 0.99 0.99	- 38	MX	2863.26	3090.34	
23 FX 271.01 316.56 1.17 23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FY 94.66 93.53 0.99 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99 0.99 0.99	38	MY	8732.04	8362.25	0.96
23 FY 252.56 269.36 1.07 31 FX 59.62 58.35 0.98 31 FY 94.66 93.53 0.99 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp.	38	MZ	6852.21	6389.19	0.93
31 FX 59.62 58.35 0.98 31 FY 94.66 93.53 0.99 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp.	23	FX			
31 FY 94.66 93.53 0.99 31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99	23	FY	252.56		1.07
31 FZ 151.94 155.55 1.02 31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99	31				
31 MX 10534.33 10427.84 0.99 31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99	31		94.66		
31 MY 968.42 930.48 0.96 31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp.	31	FZ			
31 MZ 2682.39 2568.87 0.96 Mean Value of 30 Comp. 0.99	31	MX	10534.33		
Mean Value of 30 Comp. 0.99	31	MY	968.42		
	31				
Standard Dev. of 30 Comp. 0.07		Me	an Value of 30	Comp.	0.99
	4	Star	ndard Dev. of 30) Comp.	0.07

Table 10: Comparison of Time History and Response Spectrum Results with Numerically Calculated Values of Rigid Response Coefficients, α , Combined Responses for All Three Input Motions

F = Force (lbs)

M = Moment (in-lbs)

Table 11: Comparison of Time History and Response Spectrum Results for Some Specific Reactions

- HE

NODE	REAC.	X-Dir	ection	Y-Dir	ection	Z-Dir	ection	Com	bined
NO.	TYPE	TH	RS	TH	RS	TH	RS	TH	RS
1	MX	49.42	17.06	165.51	143.52	710.77	721.20	731.46	735.54
23	FY	25.94	10.60	250.13	261.00	23.43	12.55	252.56	261.52
31	FX	57.23	56.06	3.62	1.31	16.34	15.08	59.62	58.07
31 ·	FY	14.17	14.19	92.25	93.03	15.81	2.92	94.66	94.15
31	FZ	16.61	13.95	16.68	1.83	150.11	156.00	151.94	156.63

F = Force (lbs)TH – Time-History

M = Moment (in-lbs)

RS - Rsponse Spectrum using Gupta Method with $f_1=2.8$ Hz and $f_2=6.0$ Hz

APPENDIX I

CALCULATION OF MISSING MASS CONTRIBUTION TO TOTAL RESPONSE

APPENDIX I

Mathematical descriptions of the "missing mass" contribution to total response are contained in report References 3, 4, and 10. Reference 3 presents a step-by-step, mechanistic approach. Reference 4 presents a more complete mathematical description, which provides additional insight. Reference 10 essentially incorporates the mathematical description of Reference 4. It is recommended that Reference 4, Section 3.4 be reviewed to attain an understanding of the procedure.

The following steps can be utilized to calculate the response contribution of all system modes of vibration with frequencies equal to or greater than f_{zpa} .

Each direction of earthquake input motion must be considered separately.

- Step 1: Determine the modal responses only for those modes that have natural frequencies less than that at which the spectral acceleration approximately returns to the ZPA (f_{zpa}) .
- Step 2: For each degree of freedom (DOF) included in the dynamic analysis, determine the fraction of DOF mass included in the summation of all of the modes included in Step 1. This fraction d_i for each DOF i is given by:

$$\mathbf{d}_{i} = \sum_{n=1}^{N} \mathbf{c}_{n,j} \,\phi_{n,i} \tag{1}$$

where,

n

is the mode number (1, 2, ..., N)

N is the total number of modes included in Step 1

 Φ_{ni} is the eigenvector value for mode n and DOF i

j is the direction of input motion

 c_{ni} is the participation factor for mode n in the jth direction:

$$\mathbf{c}_{n,j} = \frac{\left\{\phi_{n}\right\}^{\mathrm{T}}[\mathbf{m}]\left\{\delta_{ij}\right\}}{\left\{\phi_{n}\right\}^{\mathrm{T}}[\mathbf{m}]\left\{\phi_{n}\right\}}$$
(2)

where δ_{ij} is the Kronecker delta, which is one if DOF i is in the direction of the earthquake input motion and zero if DOF i is a rotation or not in the direction of the earthquake input motion. This assumes that the three orthogonal directions of earthquake input motion are coincident with the DOF directions.

Next, determine the fraction of DOF mass not included in the summation of these modes:

$$\mathbf{e}_{i} = \mathbf{d}_{i} - \boldsymbol{\delta}_{ii} \tag{3}$$

Step 3: Higher modes can be assumed to respond in phase with the ZPA and, thus, with each other; hence, these modes are combined algebraically, which is equivalent to pseudo static response to the inertial forces from these higher modes excited at the ZPA. The pseudo static inertial forces associated with the summation of all higher modes for each DOF i are given by:

$$\mathbf{P}_{i} = \mathbf{Z}\mathbf{P}\mathbf{A} \ \mathbf{X} \ \mathbf{M}_{i} \ \mathbf{X} \ \mathbf{e}_{i} \tag{4}$$

where P_i is the force or moment to be applied at DOF i. M_i is the mass or mass moment of inertia associated with DOF i.

The structure is then statically analyzed for this set of pseudo static inertial forces applied to all of the degrees of freedom to determine the maximum responses associated with high-frequency modes not included in Step 1.

This procedure requires the computation of individual modal responses only for lower-frequency modes. Thus, the more difficult higher-frequency modes need not be determined. The procedure ensures inclusion of all modes of the structural model and proper representation of DOF masses.

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION (2-89)	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev.,
NRCM 1102, 3201, 3202	and Addendum Numbers, if any.)
BIBLIOGRAPHIC DATA SHEET (See instructions on the reverse)	NUREG/CR-6645 BNL-NUREG-52576
2. TITLE AND SUBTITLE	3. DATE REPORT PUBLISHED
Reevaluation of Regulatory Guidance on Modal Response Combination Methods for	MONTH YEAR
Seismic Response Spectrum Analysis	December 1999
	4. FIN OR GRANT NUMBER W-6521
5. AUTHOR(S)	6. TYPE OF REPORT
R. Morante, Y. Wang	
	7. PERIOD COVERED (Inclusive Dates)
8. PERFORMING ORGANIZATION - NAME AND ADDRESS (if NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and name and mailing address.)	mailing address; if contractor, provide
Department of Advanced Technology Brookhaven National Laboratory/Bidg. 130/P.O. Box 5000	
Upton, NY 11973-5000	
9. SPONSORING ORGANIZATION - NAME AND ADDRESS (if NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, L and mailing address.)	U.S. Nuclear Regulatory Commission,
Division of Engineering Technology Office of Nuclear Regulatory Research U.S. Nuclear Regulatory Commission	
Washington, DC 20555-0001	
10. SUPPLEMENTARY NOTES	
R.M. Kenneally, Project Manager	
11. ABSTRACT (200 words or less)	
Regulatory Guide 1.92, "Combining Modal Responses and Spatial Components in Seismic Respon- 1976. The objectives of this project were to re-evaluate the current regulatory guidance for combin- response spectrum analysis; evaluate recent technical developments; and recommend revisions to addition, Standard Review Plan Section 3.7.2, "Seismic System Analysis," was reviewed to identify to be revised. The objectives were addressed through a literature review of past studies, suppleme system model previously utilized in NUREG/CR-5627, "Alternate Modal Combination Methods in R	ing modal responses in the regulatory guidance. In related sections which may need ented by analysis of a piping
This project evaluated (1) methods for separation of the in-phase and out-of-phase modal respons combination of the out-of-phase modal response components; (3) the contribution of "missing mass three elements of response to produce the total response. Numerical results from response spectra corresponding time history analysis results to assess the accuracy of the various combination meth	s; and (4) the combination of the um analyses were compared to
During the course of the project, several insights relating to potential improvements in the methodol identified and documented. These include (1) improvements in correlation between mode superpointegration time history; (2) use of response spectrum generation single degree of freedom oscillator frequency above which modal responses are in-phase with the input time history; and (3) evaluation differences in mass distribution used in static and dynamic analyses of a piping system.	osition time history and direct or responses to define the
12 KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.)	13. AVAILABILITY STATEMENT
Seismic effects	UNLIMITED
Regulatory Guides Frequency analysis	14. SECURITY CLASSIFICATION (This Page)
Frequency measurement Systems analysis	UNCLASSIFIED
Spectral response	(This Report) UNCLASSIFIED
	15. NUMBER OF PAGES
	16. PRICE
NRC FORM 335 (2-89)	τ

Federal Recycling Program